A lifetime perspective on the incentive and distributional effects of the UK tax system

Mike Brewer, Monica Costa Dias and Jonathan Shaw

Richard Blundell, Monica Costa Dias, Costas Meghir and Jonathan Shaw

Preliminary – comments welcome
Motivation

- Welfare policies aim to redistribute at minimum efficiency cost
- Reforms typically justified by static arguments and evidence
- But annual inequality is very different to lifecycle inequality
 - Inequality exacerbated in annual snapshot
 - No distinction between inter- and intrapersonal redistribution
 - Difficult to disentangle variation from different sources: permanent individual differences, predictable lifecycle changes, decisions motivated by dynamic considerations, and transitory shocks
- Distortions mismeasured in a static framework
 - Labour supply and education choices partly driven by dynamic considerations
What we do

Today:

- How progressive is the UK tax and benefit system from annual and lifecycle perspectives?
- How has it changed over time?
- What are the implications for inequality and its sources?

Project also addresses:

- How does tax and benefit system affect work incentives over lifecycle?
Literature: redistribution and inequality

• Annual inequality higher than lifecycle inequality
• Annual inequality reduced more by tax and benefit system (Liebman, 2002, Bjorklund and Palme, 1997; Bengtsson et al, 2011)
• Much redistribution is across lifecycle rather than individuals (Bovenberg et al, 2008; O’Donoghue, 2001; Bartels, 2011)
• Retirement pensions possibly most important component of transfers across lifecycle (van de Ven, 2005)
• Majority (50-90%) of inequality due to initial conditions (Huggett et al, 2011; Storesletten et al, 2004; Keane and Wolpin, 1997)
How we do it

• Lifecycle model of female education, employment and saving choices
• Focus is on families containing a woman
• Female decisions sensitive to family circumstances and market conditions, including policy environment
• Careful modelling of employment, earnings and family composition
• Detailed model of UK tax and benefit system
 – Held fixed throughout life
What we leave out

- Retirement is simplified
 - Deterministic retirement age and end of life
 - Retirement excluded from analysis of tax and benefit system

- Taxes and benefits
 - Taxation of capital
 - Indirect taxation
 - Disability

- Endogenous male behavioural responses
Model: overview of female lifecycle

Life in four stages:

1. Initial conditions
 - Wealth and ability

2. Education (up to 18/21)
 - Secondary, A-levels or university (determines type of human capital)

3. Working life (18/21-59)
 - Labour supply {0hrs, 20hrs, 40hrs} and consumption
 - Partnering and childbearing

4. Retirement (60-69)
 - Consumption only
Model: dynamics of female earnings

- **Wage equation**

 \[w_{sia} = \ln W_s + \alpha_s \ln(e_{ia} + 1) + v_{sia} \]

 - Log wage
 - Market wage rate
 - Experience
 - Productivity

 \[v_{sia} = \rho v_{sia-1} + u_{sia} \]

- **Experience accumulation**

 \[e_{ia+1} = e_{ia} (1 - \delta_s) + \delta_{sPT} 1[l_{ia} = 20] + \delta_{sFT} 1[l_{ia} = 40] \]

 - Depreciation rate
 - PT accumulation rate
 - FT accumulation rate
Model: dynamics of family income

- (Exogenous) family formation dynamics
 - Children
 - At most 1 child
 - Arrival probability depends on female age, education and presence of partner
 - Departure with certainty when child reaches age 18
 - Partners
 - Characterised by education, employment status and wage
 - Arrival probability for male with given education depends on female age and education
 - Departure probability depends on female age, presence of child and male education
Model: dynamics of family income

- Male wage equation and selection into employment
 \[w_{s^{m}_{ia}}^m = \ln W_{s^{m}_{ia}}^m + \alpha_{s^{m}_{ia}}^m \ln (a - 18) + \nu_{s^{m}_{ia}}^m \]

 \[\nu_{s^{m}_{ia}}^m = \rho_{v_{s^{m}_{ia-1}}^m} + u_{s^{m}_{ia}}^m \]
 \[u_{s^{m}_{ia}}^m \sim N(0, \sigma_{u_{s^{m}_{ia}}}^2) \]
 \[\nu_{s^{m}_{ia}}^m \sim N(0, \sigma_{v_{s^{m}_{ia}}}^2) \]

- Detailed model of tax and benefit system (FORTAX)
 - Mostly 2006 tax and benefit system
 - Taxes: income tax, NI, council tax
 - Benefits: child benefit, maternity grant, tax credits, income support, housing benefit, council tax benefit, free school meals
Model: decision-making environment

- Risk averse individuals faced with uncertainty
 - Own productivity (health)
 - Family dynamics: partnering/separation, child bearing
 - Partner employment and income

- No insurance market
 - Only implicit insurance through human capital, savings and public policy

- Credit constraints
 - So public policy may facilitate transfers across lifecycle

- Decisions taken to maximise expected lifetime utility

\[
V_a (X_{ia}) = \max \left\{ \prod_{b=1}^{A} \beta^{b-a} U(c_{ib}, l_{ib}; X_{ib}) \mid X_{ia} \right\}
\]
Model: data and estimation

All results below are based on data simulated by the model
- Lifecycles simulated for lots of imaginary individuals given initial conditions
- Simulating an individual involves:
 - Drawing exogenous shocks (e.g. for productivity, family composition, ability)
 - Using the model to determine the choices the individual will make at each age

What guarantees that the simulated data mimics patterns in the real data?
- Model designed to be able to capture key features of real data
- Parameters chosen to make simulated data look as like real data as possible

Real data: BHPS unbalanced panel of 5,300 females over 16 waves, 1991–2006
- 12% in all 16 waves, 56% in six waves or fewer; 17% observed starting working life

Estimation by method of simulated moments (MSM)
- Calculate moments of real data
- Calculate same moments of simulated data
- Use minimisation routine to minimise distance between real and simulated moments
Model fit (1): Female wage rates

Female Wage Rate
Percentiles 10, 25, 50 75 and 90

Low education
A-levels and equivalent
University education

Percentiles 10, 25, 50 75 and 90
Female Wage Rate
data sim
Model fit (2): Female earnings

Female Earnings
Percentiles 10, 25, 50, 75 and 90

Low education

A-levels or equivalent

University education

Percentiles 10, 25, 50, 75 and 90

Female Earnings data sim

© Institute for Fiscal Studies
Model fit (3): Gross income distributions

Equivalised gross annual family income
Sample window

Low education
A-levels or equivalent
College education

Gross income

data simulations

density: ginc_pc

Institute for Fiscal Studies
Model fit (4): gross income across the lifecycle

Equivalised family LC gross income
by female education and age

mean

st deviation

data, s=1
simulation, s=1
data, s=2
simulation, s=2
data, s=3
simulation, s=3
Model fit (5): gross income mobility

Transitions for equivalised gross family income; consecutive years

<table>
<thead>
<tr>
<th>Real data</th>
<th>Quintile 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Quintile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quintile 1</td>
<td>0.801</td>
<td>0.165</td>
<td>0.025</td>
<td>0.007</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>0.109</td>
<td>0.650</td>
<td>0.196</td>
<td>0.039</td>
<td>0.006</td>
</tr>
<tr>
<td>3</td>
<td>0.023</td>
<td>0.127</td>
<td>0.627</td>
<td>0.200</td>
<td>0.023</td>
</tr>
<tr>
<td>4</td>
<td>0.005</td>
<td>0.028</td>
<td>0.141</td>
<td>0.644</td>
<td>0.182</td>
</tr>
<tr>
<td>Quintile 5</td>
<td>0.002</td>
<td>0.006</td>
<td>0.021</td>
<td>0.108</td>
<td>0.863</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulated data</th>
<th>Quintile 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Quintile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quintile 1</td>
<td>0.801</td>
<td>0.157</td>
<td>0.037</td>
<td>0.004</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.118</td>
<td>0.688</td>
<td>0.161</td>
<td>0.027</td>
<td>0.005</td>
</tr>
<tr>
<td>3</td>
<td>0.039</td>
<td>0.124</td>
<td>0.619</td>
<td>0.207</td>
<td>0.010</td>
</tr>
<tr>
<td>4</td>
<td>0.015</td>
<td>0.029</td>
<td>0.152</td>
<td>0.637</td>
<td>0.166</td>
</tr>
<tr>
<td>Quintile 5</td>
<td>0.002</td>
<td>0.012</td>
<td>0.015</td>
<td>0.132</td>
<td>0.840</td>
</tr>
</tbody>
</table>
Definitions: income, average tax rate (ATR) and progressivity

- Gross earnings is earnings from employment
- Equivalised using modified OECD equivalence scale
- Average tax rate:
 \[ATR = \frac{N}{E} = \frac{T - B}{E} \]
 \(E \) = equivalised d gross family earnings
 \(N \) = equivalised d taxes net of benefits
 \(T \) = equivalised d family tax liability
 \(B \) = equivalised d family benefit entitlements

- Progressivity = ATR increases with equivalised gross family earnings
- Cross-section dataset: randomly selected one age for each family
Q1: How progressive is the UK tax and benefit system from annual and lifecycle perspectives?
Median net tax and ATR by gross income decile
2006 tax system

2006: Median net tax and ATR by decile of gross family income
Equivalised; no childcare costs

Net tax
ATR

Equivalised gross family income decile

Annual income
Annualised lifecycle income
Median cross-sectional ATR by age and quintile
2006 tax system

2006: Median cross-sectional ATR for all females
No childcare costs

By cross-sectional income quintile

By lifecycle income quintile

© Institute for Fiscal Studies
Income shares by decile
2006 tax system

Income shares by decile in 2006 (equiv income)

Decile of income distribution

- annual gross income
- annual net income
- LC gross income
- LC net income
Q2: How has progressivity changes over time?
Change in median ATR by income quintile, 1990–2006

1990-2006: Median ATR across all families
By gross family income quintile; no childcare costs

Median ATR
Year
Annual

Lifecycle
<table>
<thead>
<tr>
<th></th>
<th>Annual gross</th>
<th>Annual net</th>
<th>Lifecycle gross</th>
<th>Lifecycle net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quintile 1</td>
<td>+0.2%</td>
<td>+1.4%</td>
<td>-0.0%</td>
<td>+0.6%</td>
</tr>
<tr>
<td>2</td>
<td>-0.9%</td>
<td>-0.3%</td>
<td>-0.2%</td>
<td>+0.1%</td>
</tr>
<tr>
<td>3</td>
<td>+0.0%</td>
<td>-0.3%</td>
<td>-0.1%</td>
<td>-0.0%</td>
</tr>
<tr>
<td>4</td>
<td>+0.2%</td>
<td>-0.2%</td>
<td>+0.0%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>Quintile 5</td>
<td>+0.5%</td>
<td>-0.6%</td>
<td>+0.3%</td>
<td>-0.5%</td>
</tr>
</tbody>
</table>
Q3: What are the implications for inequality and its sources?
Variance decomposition for annual income: within vs between groups

<table>
<thead>
<tr>
<th></th>
<th>Within</th>
<th>Between</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female earnings</td>
<td>0.445</td>
<td>0.555</td>
<td>1</td>
</tr>
<tr>
<td>Equivalised gross family income</td>
<td>0.563</td>
<td>0.437</td>
<td>1</td>
</tr>
<tr>
<td>Equivalised net family income</td>
<td>0.577</td>
<td>0.423</td>
<td>1</td>
</tr>
<tr>
<td>% reduction in variance</td>
<td>60.1</td>
<td>62.3</td>
<td>61.1</td>
</tr>
</tbody>
</table>

Within = variation in annual income (i.e. transitory)

Between = variation in lifecycle income (i.e. permanent)
Change in annual income variance: 1991–2006

<table>
<thead>
<tr>
<th></th>
<th>Within</th>
<th>Between</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalised gross family income</td>
<td>-0.9%</td>
<td>+0.3%</td>
<td>-0.4%</td>
</tr>
<tr>
<td>Equivalised net family income</td>
<td>-8.0%</td>
<td>-6.5%</td>
<td>-6.7%</td>
</tr>
</tbody>
</table>
Variance decomposition for lifecycle income

<table>
<thead>
<tr>
<th></th>
<th>2006</th>
<th>Initial conditions</th>
<th>Education</th>
<th>Family</th>
<th>Residual</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female earnings</td>
<td>0.314</td>
<td>0.244</td>
<td>0.020</td>
<td>0.419</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Equivalised gross family income</td>
<td>0.169</td>
<td>0.234</td>
<td>0.055</td>
<td>0.538</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Equivalised net family income</td>
<td>0.174</td>
<td>0.216</td>
<td>0.035</td>
<td>0.571</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>% reduction in variance</td>
<td>62.1</td>
<td>65.9</td>
<td>76.0</td>
<td>60.8</td>
<td>63.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1991</th>
<th></th>
<th>Family</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalised gross family income</td>
<td></td>
<td>0.051</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalised net family income</td>
<td></td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% reduction in variance</td>
<td></td>
<td>63.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Tax and benefit system broadly progressive, but not clearly more so from cross-sectional rather than lifecycle perspective
• We are less pessimistic than other papers about ability of tax and benefit system to affect lifecycle outcomes
• Reforms since 1990 have:
 – Favoured bottom of distribution
 – Affected within (annual) and between (lifecycle) inequality fairly evenly
• Sources of lifecycle inequality:
 – Initial conditions and education account for over half of variability in lifecycle earnings
 – Education important: selection in partnering and odds of separation