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Abstract. 

The burgeoning use of ordinal data throughout the Empirical Sciences calls for location and 

variation measurement instruments suitable for such data environments. Neither Pearson’s 

Coefficient of Variation nor the Sharpe Ratio, relative variation comparison workhorses in 

cardinal worlds, are applicable in ordinal paradigms without artificial data scaling, a practice 

recently much criticized for its inherent ambiguity. Here, employing the concept of probabilistic 

distance, unequivocal, scale independent, Coefficient of Variation analogues for use in 

Multivariate Ordered Categorical environments are introduced and exemplified in analyses of 

Self-Reported Health outcomes in the UK and Human Resource determinants in Canada.  
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Introduction. 

 

The number of active pollsters in the United States that collect and analyze ordered categorical 

data has more than doubled since the turn of the century (Pew Research Centre 2023). Within 

the Health and Social Sciences, randomized controlled trials that generate ordinal outcomes 

have seen increasing use (Selman et. al. 2023) to the point where the World Health 

Organization developed an ordinal scale describing the disease severity of COVID-19  that has 

been adapted in various treatment trials (Marshall et. Al. 2020). All such data has been 

generated with the generic intent of comparing relative outcome levels of, and variations 

within, diverse subgroups which requires a means of measuring and comparing the location and 

within group variation in ordinal data environments.  

In cardinally measured paradigms, means and standard deviations, and their combination in the 

form of the Coefficient of Variation (𝐶𝑂𝑉) (Pearson 1896) and its inverse, the Sharpe Ratio 

(𝐶𝑂𝑉-1) (Sharpe 1964,1994), have been used extensively to answer generic level and variation 

questions, but cardinality is of the essence in that pursuit. In ordered categorical worlds, some 

form of artificial scaling has typically been applied to categories to facilitate analysis (see for 

example, Likert 1932, Rankin 1957 and Cantril 1965) but that presents problems of scale 

dependency and concomitant equivocation since different, though equally valid, scales 

frequently yield substantively different conclusions (Bond and Lang 2019, Schroder and Yitzhaki 

2017) raising questions concerning the viability of variation measurement about a location 

measure in ordered categorical data situations.  

Without artificial scaling, 𝐶𝑂𝑉 and 𝐶𝑂𝑉-1 have no natural analogues in ordered categorical data 

environments since that paradigm is bereft of cardinal measure. In its absence, inequality and 



polarization researchers have used notions of probabilistic distance (Mendelson 1987) and the 

construct of a median preserving spread in order to quantify variation for the purpose of 

measuring inequality and polarization (Blair and Lacy 2000, Allison and Foster 2004, Kobus 

and Kurek 2019). The probabilistic distance of a given category from the median focus 

category is measured in terms of the likelihood of an outcome occurring in the given or 

any other category between it and the median category, the higher that probability is, 

the further apart are the categories deemed to be. Inequality is then quantified as the 

average probabilistic distance from the median focus category of all non-median 

categories.  

Here, taking a slightly different view of inequality measurement in ordered categorical 

environments, the notion of probabilistic distance is employed to develop analogs of 

the Coefficient of Variation (and by implication the Sharp Ratio) for use in multivariate 

ordered categorical data environments. In the following, details of the conventional 

Coefficient of Variation and its multivariate versions are outlined in Section 1, Section 2 

proposes an analogue for multivariate ordered categorical data environments and 

Section 3 provides two exemplifying applications. The first, a univariate analysis of the 

progress of self-reported Health Status in the United Kingdom from 2010 to 2018 (just 

prior to the Covid outbreak) explores health inequities and the aging process and 

reveals increasing relative inequalities. The second, a multivariate analysis of the 

progress of experience and embodied human capital factors underlying of Canadian 

Human Resource Stocks across gender and time (the 2006-2016 decade) reveals some 

gender divergence in Human Resource acquisition. Conclusions are drawn in Section 4.  



1.The Coefficient of Variation. 

 

First introduced by Pearson (1896) as the ratio of the standard deviation to the mean, 𝐶𝑂𝑉 is a 

unit free relative variation measure. It, and its inverse, the well-known Sharpe (1964,1994) 

Ratio used for examining risk adjusted Excess Returns1, have been used extensively in 

economics and finance as a measure of economic inequality and relative risk. Despite its 

disadvantages (Kvalseth 2017), it has also seen extensive use in the physical and biological 

sciences (Weber et. al 2004), engineering (Jalalibal et.al. 2021) and Industrial Organization fields 

(Bedeian & Mossholder 2000) where cardinally measurable data abounds. Pearson proposed 

𝐶𝑂𝑉 in response to Galtons’ practice of using the 13 to 12 male-female size ratio2 in his work 

on Natural Inheritance (Galton 1894) and used the mean focused variation measure 

standardized by the mean to address the comparative variation of organ sizes (usually skull and 

bone dimensions) across race and gender3. His rationale for standardizing the dispersion 

measure by the mean was a concern for reliability and consistency across disparate 

distributions, that variation measurement should not be too variable or at least consistently 

variable i.e. sufficiently stable about the mean value, so as to be comparably useful across races 

and genders. In more recent times 𝐶𝑂𝑉 has seen a variety of extensions to multivariate 

 
1 Following concerns that the standard deviation was not an adequate reflection of downside risk, the Sortino 
Ratio (Sortino and Price 1994) modified the Sharpe Ratio by considering only non-positive deviations from the 
mean in the standard deviation calculation. Similar modifications are possible in the ordered categorical paradigm.   
2 Galton would rescale a female organ size by 13/12 to obtain a comparable male equivalent. 
3 Pearson’s view of his new statistic (Pearson 1896 pp. 276-9) was circumspect but enthusiastic, he wrote: 

“Of course, it does not follow because we have defined in this manner our “coefficient of variation”, that this is 
really a significant quantity in the comparison of various races; it may be only a convenient mathematical 
expression, but I believe there is evidence to show that it is a more reliable test of “efficiency” in a race than 
absolute variation.” 



environments (see Albert and Zhang 2010 for a survey) based on alternative approaches to 

dealing with the multiplicity of measurement units. 

For expository convenience consider a continuous cardinally measurable variable 𝑥 with 0 <

𝑥 < 𝑌 < ∞ and denote group 𝑡’s 𝑃𝐷𝐹: 𝑓𝑡(𝑥) with a corresponding 𝐶𝐷𝐹: 𝐹𝑡(𝑥) = 𝑃𝑡(𝑋 < 𝑥) =

∫ 𝑓𝑡(𝑧)𝑑𝑧
𝑥

0
, Survival Function 𝑆𝐹: 𝑆𝑡(𝑥) = 𝑃𝑡(𝑋 ≥ 𝑥) = 1 − 𝐹𝑡(𝑥), group 𝑡 mean: 𝜇𝑡 =

𝐸𝑓𝑡(𝑥)(𝑥) = ∫ 𝑥𝑓𝑡(𝑥)𝑑𝑥
𝑌

0
 and group 𝑡 variance of 𝑥: 𝜎𝑡

2 = 𝐸𝑓𝑡(𝑥)((𝑥 − 𝜇𝑡)
2) = ∫ (𝑥 −

𝑌

0

𝜇𝑡)
2𝑓𝑡(𝑥)𝑑𝑥.  Note that letting 𝑢(𝑥) = 𝑥 and 𝑣′(𝑥) = 𝑓(𝑥), the integration by parts rule4  

reveals the mean to be the integral of the survival function since 𝜇 = ∫ 𝑥𝑓(𝑥)𝑑𝑥 =
𝑌

0

[𝑥𝐹(𝑥)]0
𝑌 − ∫ 𝐹(𝑥)𝑑𝑥

𝑌

0
= 𝑌 − ∫ 𝐹(𝑥)𝑑𝑥 = ∫ (1 − 𝐹(𝑥))𝑑𝑥 =

𝑌

0

𝑌

0
∫ 𝑆(𝑥)𝑑𝑥

𝑌

0
 which yields an 

alternative interpretation of the mean as the cumulation of chances of higher outcomes than 

𝑥 over its range. Then 𝐶𝑂𝑉𝑓𝑡(𝑥)(𝑥), the group 𝑡 Coefficient of Variation may be written as: 

                                                        𝐶𝑂𝑉𝑓𝑡(𝑥)(𝑥) =
√𝜎𝑡

2

𝜇𝑡
=

√𝜎𝑡
2

∫ 𝑆𝑡(𝑥)𝑑𝑥
𝑌
0

                         [1] 

 

Practically, for a collection of 𝑁 randomly sampled cardinally measurable values 𝑥𝑖 , 𝑖 =

1, . . 𝑁, where for convenience 𝑥𝑖 ≥ 0, the basic 𝐶𝑂𝑉 is given by: 

                            𝐶𝑂𝑉 =
√∑ (𝑥𝑖−𝑥)

2
/(𝑁−1)𝑁

𝑖=1

𝑥
=

𝜎̂

𝜇̂
; 𝑤ℎ𝑒𝑟𝑒 𝜇̂ = 𝑥 = ∑ 𝑥𝑖

𝑁
𝑖=1 /𝑁         [2] 

When data are sampled from a set of K discrete cardinally measurable values 𝑥𝑘 𝑘 =

1, . . , 𝐾 where 𝑝𝑘 is the proportion of the sample that took on the value 𝑥𝑘, [1] can be 

computed as: 

 

4 ∫ 𝑢(𝑥)𝑣′(𝑥)𝑑𝑥 = [𝑢(𝑥)𝑣(𝑥)]0
𝑌 − ∫ 𝑢′(𝑥)𝑣(𝑥)𝑑𝑥

𝑌

0

𝑌

0
 

https://onlinelibrary.wiley.com/authored-by/ContribAuthorRaw/Albert/Adelin
https://onlinelibrary.wiley.com/authored-by/ContribAuthorRaw/Zhang/Lixin


                            𝐶𝑂𝑉 =
√∑ (𝑥𝑘−𝑥)

2
𝑝𝑘

𝐾
𝑘=1

𝑥
=

𝜎̂

𝜇̂
; 𝑤ℎ𝑒𝑟𝑒 𝜇̂ = 𝑥 = ∑ 𝑥𝑘

𝐾
𝑘=1 𝑝𝑘             [2a] 

As a measure of relative variation, it can be seen to be the square root of the variance 

estimate, which is the average of the squared distances of the 𝑥𝑖’s from the mean, 

divided by the mean. The mean is very much the focus of the statistic, it is the value 

that minimises the magnitude of the variance estimate (a similar variation measure 

around any other value would always be at least as large) and division by it dilutes the 

standard deviation value and renders the statistic a unit free measure5. Its inverse, the 

Sharpe Ratio (Sharpe 1994), is employed in the finance field in risk vs. return scenarios, 

where the 𝑥𝑖’s are rates of excess return and 𝜎̂ is a measure of their riskiness level, 

𝐶𝑂𝑉−1 can be seen to dilute the average excess return level by the level of riskiness. In 

the context of income inequality and wellbeing measurement6, the Sharpe measure 

dilutes the average income level by a measure of the inequality with which incomes 

are distributed thus providing an inequality modulated income measure. 

 

Multivariate Extensions of the Coefficient of Variation. 

 

Extending the coefficient of variation to the multivariate paradigm has seen several 

alternative formulations of a Multivariate 𝐶𝑂𝑉 proposed in the literature. Albert and 

Zhang (2010) reviewed some of these and proposed a novel formulation themselves, 

 

5 Similar statistics can be contrived if other foci are of interest by making 𝑥 the median or modal value of 

the collection, indeed dividing the standard deviation by any quantile value would render it a unit free 
measure relative to the designated quantile. 

6 𝐶𝑂𝑉 can be shown to satisfy the inequality measurement axioms of anonymity, scale invariance and population 
independence (Champernowne and Cowell 1999).  



all amount to standardizing a function of the variance covariance matrix with the inner 

product of the dimension means and taking the square root thereof. The object being 

to reconcile the diverse units of measurement in the various dimensions to obtain a 

unit free measure. In a 𝑄 > 1 dimension setting, letting 𝜇 be the 𝑄 x 1 vector of 

dimension means and 𝐶 be the 𝑄 x 𝑄 covariance matrix, the alternatives (see inter alia 

Reyment 1960, Van Valen 1974, Voinov and Nikulin 1966 and Albert and Zhang 2010) 

considered by Albert and Zhang were: 

                                        √
𝑑𝑒𝑡(𝐶)

1
𝐾⁄

 𝜇′ 𝜇
;    √

𝑡𝑟𝐶

𝜇′ 𝜇
;    √

1

𝜇′𝐶−1 𝜇
;    √

𝜇′ 𝐶𝜇

(𝜇′ 𝜇)
2. 

It is worthy of note that when 𝑄 = 1 all of these formulae reduce to the conventional 

coefficient of variation yet in multivariate empirical settings they can yield very 

different values for a given sample (Aerts, Haesbroeck and Ruwet 2015). 

 

2. A Coefficient of Variation Analogue for Multivariate Ordered Categorical Data. 

 

To develop Coefficient of Variation or Sharpe-Ratio analogues for Ordered Categorical 

data, a means of measuring location and variation in the absence of cardinal measure 

is required7. The notion of probabilistic distance, the sense that two ordered outcomes 

are further apart the greater is the probability of an outcome between them occurring, 

is useful in this case. 

 

 
7 Development of the asymptotic distributions of the various constructs used in this analysis is confined to the 
appendix. 



To fix ideas, suppose 𝐾 ≥ 3 ordered categories indexed 𝑘 = 1, . . , 𝐾 with higher 𝑘 implying 

higher category. Endow the categories with a Probability Density Function 𝑓 described by the 

probabilities 𝑝𝑓𝑘, 𝑘 = 1, . . , 𝐾 of being in the 𝑘’th category under distribution 𝑓, where 𝑝𝑓𝑘 ≥

0 and ∑ 𝑝𝑓𝑘
𝐾
𝑘=1 = 1. For 𝑘 = 1, . . , 𝐾, the Cumulative Distribution Function 𝐹 is given by 𝐹𝑘 =

∑ 𝑝𝑓𝑖
𝑘
𝑖=1  and the Survival Function 𝑆 is given by 𝑆𝑘 = 1 − 𝐹𝑘. Analogous to the continuous 

paradigm formulation of the mean as the integral of the survival function over the 

range of 𝑥, the sum of the Survival Function values over all categories could be 

considered as a “Mean Ordered Categorical” or 𝑀𝑂𝐶 location measure where: 

𝑀𝑂𝐶 = ∑ 𝑆𝑘

𝐾

𝑘=1
 

Note that, with a potential minimum value of 0 (when all probability mass is in the 

lowest category) and a maximum potential value of 𝐾 − 1 (when all probability mass is 

in the highest category), 𝑀𝑂𝐶 is not independent of 𝐾, the number of categories. 

While this is of no consequence when group outcomes are being compared across a 

common number of categories, it does matter when different groups have different 

numbers of categories. This can be resolved by dividing 𝑀𝑂𝐶 by 𝐾 − 1 rendering it a 

number on the unit interval. 

Note that in multidimensional ordered categorical data problems, since probabilistic 

distance is the unit of measurement across all dimensions, a “Mean Ordered 

Categorical” or 𝑀𝑂𝐶 location measure is easily developed. For example, consider a 

two-dimension situation where the second dimension has 𝐽 categories and the joint 

probability density function 𝑓 described by the probabilities 𝑝𝑓𝑘,𝑗, 𝑘 = 1, . . , 𝐾, 𝑗 = 1, . . , 𝐽  



where 𝑝𝑓𝑘,𝑗 ≥ 0 and ∑ ∑ 𝑝𝑓𝑘,𝑗
𝐾
𝑘=1

𝐽
𝑗=1 = 1 yields a Cumulative Distribution Function 𝐹𝑓𝑘,𝑗 =

∑ ∑ 𝑝𝑓𝑖,ℎ
𝑘
𝑖=1

𝑗
ℎ=1  and Survival Function 𝑆𝑘,𝑗 = 1 − 𝐹𝑓𝑘,𝑗 for  𝑘 = 1, . . , 𝐾 𝑗 = 1, . . , 𝐽, then: 

  

𝑀𝑂𝐶 = ∑ ∑ 𝑆𝑘,𝑗

𝐾

𝑘=1

𝐽

𝑗=1
 

In two dimensions MOC will have a minimum potential value of 0 and a maximum 

potential value of 𝐾𝐽 − 1 and dividing MOC by this value will yield a location index that 

is comparable across two dimensioned outcomes with differing numbers of categories. 

An alternative Median Location measure is problematic in many dimensions since the 

median is a contour of points.  

Developing a measure of variation. 

For a given outcome 𝑘∗ ∈ 1, . . , 𝐾 and outcomes 𝑘 = 𝑘∗ + 1, . . , 𝐾, define the Upper Cumulants 

of 𝑓 with respect to 𝑘∗ as 𝐹𝑘
𝑈,𝑘∗

= ∑ 𝑝𝑓𝑖 
𝑘
𝑖=𝑘∗+1  (note for 𝑘 ≤ 𝑘∗ , 𝐹𝑘

𝑈,𝑘∗

= 0) and, for outcomes 

𝑘 = 1, . . , 𝑘∗ − 1, define its Lower Cumulants as  𝐹𝑘
𝐿,𝑘∗

= ∑ 𝑝𝑓𝑖 
𝑘∗−1
𝑖=𝑘  (note for 𝑘 ≥ 𝑘∗ , 𝐹𝑘

𝐿,𝑘∗

=

0). It may be seen that  
𝐹𝑘

𝐿,𝑘∗

𝐹1
𝐿,𝑘∗  𝑘 = 1, . . , 𝑘∗ − 1 is in effect the  SF of the below 𝑘∗ conditional 

PDF, whereas 
𝐹𝑘

𝑈,𝑘∗

𝐹𝐾
𝑈,𝑘∗  𝑘 = 𝑘∗ + 1, . . , 𝐾 is the CDF of the above 𝑘∗ conditional PDF. When 𝑘 > 𝑘∗,

𝐹𝑘
𝑈,𝑘∗

 is the probability of an outcome between 𝑘∗ and 𝑘 + 1 occurring which is monotonically 

non decreasing in 𝑘, when  𝑘 < 𝑘∗, 𝐹𝑘
𝐿,𝑘∗

 is the probability of an outcome between 𝑘∗ and 𝑘 −

1 occurring which is monotonically non-decreasing in 𝑘∗ − 𝑘. Each record a sense of 

probabilistic distance of 𝑘 from 𝑘∗ in terms of the chance that an outcome will emerge 

between 𝑘 and 𝑘∗ which increases with |𝑘∗ − 𝑘|. Similarly defining 𝐺𝑘
𝑈,𝑘∗

, 𝐺𝑘
𝐿,𝑘∗

, the Upper and 



Lower Cumulants of 𝑔 about 𝑘∗, then 𝑔 constitutes an increasing spread of 𝑓 with respect to 

outcome 𝑘∗ when: 

 𝐺𝑘
𝐿,𝑘∗

≥ 𝐹𝑘
𝐿,𝑘∗

∀ 𝑘 = 1, . , 𝑘∗ − 1 𝑎𝑛𝑑 𝐺𝑘
𝑈,𝑘∗

≥ 𝐹𝑘
𝑈,𝑘∗

∀ 𝑘 = 𝑘∗ + 1, . , 𝐾 𝑤𝑖𝑡ℎ > 𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒.     [3] 

The Mendelson (1987) condition [3] amounts to a first order stochastic dominance condition on 

the “downward looking” below 𝑘∗ conditional distributions (i.e. imagine the category orderings 

below 𝑘∗ were reversed) and the “upward looking” above 𝑘∗ conditional distributions where 𝑓 

dominates 𝑔 in each context. Intuitively, with respect to 𝑘∗ inequality in 𝑔 distribution is 

greater than inequality in 𝑓 distribution with respect to 𝑘∗ when the chance of below 𝑘∗ 

outcomes and the chance of above 𝑘∗ outcomes are both at least as great in 𝑔 as they are in 𝑓 

with strictly greater than in at least one case8.  

Given the absence of cardinal measure, setting 𝑘∗ as the “median” category and using this 

notion of probabilistic distance has been the basis of inequality and bi-polarization 

measurement in univariate ordered categorical paradigms (Blair and Lacy 2000, Allison and 

Foster 2004, Kobus 2015). However, if inequality is conceptualized as the antithesis of 

equality or complete commonality in the population, the aggregate distance of 

subjects from a potential focus point of complete commonality would characterize it. 

In this context, when compared to the mode which is the most likely point of complete 

commonality, the Median or the Mean may not be very good focus points. They often have 

lower probabilistic density than the mode (for example in heavily skewed or strongly 

segmented bimodal distributions), rendering them less likely candidates as point of complete 

 
8 This construct is similar to notions of left and right distributional separation developed in Anderson (2004) and if 

a Sortino and Price (1994) type analysis was desired only left separation (i.e. 𝐺𝑘
𝐿,𝑘∗

≥ 𝐹𝑘
𝐿,𝑘∗

∀ 𝑘 = 1, . , 𝑘∗ − 1) 
should be considered. 



equality. Furthermore, in multivariate settings mean and median focal points are difficult to 

determine whereas the modal point is usually uniquely determined (even in a multiplicity of 

nodes there is usually one node with a density greater than the rest).  

Noting that, in a likelihood sense, the mode is the most likely point of complete 

equality, Anderson and Yalonetzki (2023) provide an alternative to the Median 

Preserving Spread formulation in the Modally Preserving Spread with the mode as a 

focal point. As an inequality measure it has a natural likelihood-based interpretation 

(average probabilistic distance from the most likely point of commonality), is well 

defined in multidimensional situations, and has a probabilistic unit of measurement 

which is common to all dimensions.  

The Modal Preserving Spread.  

Define the Modal outcome of distribution 𝑓 as outcome 𝑘∗ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑓𝑘∗ = max
𝑘

𝑝𝑓𝑘 . 

Determining 𝑘∗ by seeking that category for which 𝑝̂𝑓𝑘∗ = max
𝑘

𝑝̂𝑓𝑘  where 𝑝̂𝑓𝑘, 𝑘 = 1, . . , 𝐾 are 

the maximum likelihood estimates of category densities, renders 𝑘∗ as the maximum likelihood 

estimate of the category most likely to command unanimity of membership. Since the smallest 

possible value of 𝑝𝑓𝑘∗  is  
1

𝐾
+ 𝜀 where 𝜀 has arbitrarily small positive value,   

1

𝐾
< 𝑝𝑓𝑘∗ ≤ 1 and, 

when 𝑝𝑓𝑘∗  is viewed as the chance that the whole population resides in outcome 𝑘∗, 𝐿𝐶(𝑓) =

(𝐾𝑝𝑓𝑘∗ − 1)/(𝐾 − 1) is a very natural likelihood based measure or index on the unit interval of 

the extent of commonality or equality of outcome in the distribution at the modal outcome. 

When 𝐿𝐶(𝑓) → 0 there is little chance of equality of outcome, when 𝐿𝐶(𝑓) → 1 there is every 

chance of equality of outcome. It follows that its complement, 𝐼𝐼(𝑓) = 1 − 𝐿𝐶(𝑓) =

𝐾(1 − 𝑝𝑓𝑘∗)/(𝐾 − 1) is an intuitive likelihood-based measure of the extent of inequality of 



outcome9. Unfortunately, it is not responsive to variation in spread in the rest of the 

distribution in the sense that a marginal shift in mass from 𝑘′ to 𝑘′′ where 𝑘′ , 𝑘′′ ≠ 𝑘∗ would 

leave it unaltered unless the shift rendered 𝑘′′ the new modal outcome. To capture this, the 

concept of a modal preserving spread needs to be considered. Basically 𝑔 constitutes a Modal 

Preserving Spread of 𝑓 if [3] holds and 𝑘∗remains the modal outcome of 𝑔 i.e. 𝑝𝑔𝑘∗ = max
𝑘

𝑝𝑔𝑘. 

This can be readily checked by considering 𝑈𝐴𝑀𝐵𝐼(𝑓, 𝑔)  =
∑ ((𝐺𝑘

𝑈,𝑘∗
−𝐹𝑘

𝑈,𝑘∗
)+(𝐺𝑘

𝐿,𝑘∗
−𝐹𝑘

𝐿,𝑘∗
))𝐾

𝑘=1

∑ (|(𝐺𝑘
𝑈,𝑘∗

−𝐹𝑘
𝑈,𝑘∗

)|+|(𝐺𝑘
𝐿,𝑘∗

−𝐹𝑘
𝐿,𝑘∗

)|)𝐾
𝑘=1

 , 

when 𝑈𝐴𝑀𝐵𝐼(𝑓, 𝑔) = 1, distribution 𝑔 constitutes an unambiguous Modal Preserving Spread of 

distribution 𝑓. Furthermore, given dispersion from the focus point 𝑘∗ is maximized when 𝑘∗/𝐾 

mass is allocated to the lowest outcome and 
(𝐾−𝑘∗)

𝐾
 is allocated to the highest outcome: 

                          0 ≤ 𝐼𝑀𝑃𝑆(𝑔, 𝑓) =
∑ ((𝐺𝑘

𝑈,𝑘∗
−𝐹𝑘

𝑈,𝑘∗
)+(𝐺𝑘

𝐿,𝑘∗
−𝐹𝑘

𝐿,𝑘∗
))𝐾

𝑘=1

(
𝑘∗ ∑ 𝑖𝑘∗−1

𝑖=1
𝐾

+ 
(𝐾−𝑘∗)∑ (𝑖−𝑘∗)𝐾

𝑖=𝑘∗+1
𝐾

−∑ (𝐹𝑘
𝑈,𝑘∗

+𝐹𝑘
𝐿,𝑘∗

)𝐾
𝑘=1 )

≤ 1               

provides an index measure on the unit interval of the extent of increased Modally Focused 

relative spread or inequality associated with a move from 𝑓 to 𝑔.  

 

A Modally Focused Inequality Index for Ordered Categorical Data. 

 

Suppose 𝑓𝑒 was the distribution of a completely equal group with all elements experiencing 

outcome 𝑘∗, then 𝑝𝑓𝑘∗ = 1 and 𝑝𝑓𝑘 = 0 ∀ 𝑘 ≠ 𝑘∗ so that  𝐹𝑘
𝑈,𝑘∗

= 0 and 𝐹𝑘
𝐿,𝑘∗

= 0 ∀ 𝑘, then 

𝐼𝑀𝑃𝑆(𝑔, 𝑓𝑒) becomes:  

                                       𝐼𝑀𝑃𝑆(𝑔, 𝑓𝑒) =
∑ (𝐺𝑘

𝑈,𝑘∗
+𝐺𝑘

𝐿,𝑘∗
)𝐾

𝑘=1

(
(𝑘∗−1)∑ 𝑖𝑘∗−1

𝑖=1
𝐾

+ 
(𝐾−𝑘∗)∑ (𝑖−𝑘∗)𝐾

𝑖=𝑘∗+1
𝐾

)

= 𝑀𝐹𝐼(𝑔)                 [4] 

 
9 Indeed, in unordered categorical worlds 𝐼𝐶 and 𝐼𝐼 provide equally useful indices of commonality and inequality.  



[4] corresponds to a measure of the extent of inequality inherent in the ordered 

categorical distribution 𝑔 relative to a state of complete equality at the category most 

likely to command unanimous membership and thus provides a measure, 𝑀𝐹𝐼(𝑔), of 

the Modally Focused Inequality inherent in distribution 𝑔. Let the 𝑘∗ Focussed 

Probabilistic Distance vector 𝐺𝑃𝐷,𝑘∗ 
 , recording the chance of being in the collection of 

categories successively further distanced from 𝑘∗ , be given by: 

𝐺𝑃𝐷,𝑘∗ 
=

[
 
 
 
 
 
 

𝐺1
𝐿

.
𝐺𝑘∗ −1

𝐿

0
𝐺𝑘∗ +1

𝑈

.
𝐺𝐾−𝑘∗ 

𝑈 ]
 
 
 
 
 
 

 

Note that the Probabilistic Distance function is an increasing function of the categorical 

distance from the 𝑖∗ category which does not depend upon arbitrary attribution of value to a 

category in the form of a scale. Letting 𝜑(𝐾, 𝑘∗ ) = (
𝑘∗ ∑ 𝑖𝑘∗−1

𝑖=1

𝐾
+ 

(𝐾−𝑘∗) ∑ (𝑖−𝑘∗)𝐾
𝑖=,𝑘∗+1

𝐾
) then, 

given a K dimensioned unit vector 𝑑, 𝑀𝐹𝐼(𝑔) may be written as10: 

                                                   0 ≤ 𝑀𝐹𝐼(𝑔, 𝑘∗ ) =
1

𝜑(𝐾,𝑘∗ )
𝑑′𝐺𝑃𝐷,𝑘∗ 

≤ 1                                 [5] 

A multivariate version. 

 

In a multidimensional ordered categorical context, one of the attractions of the probabilistic 

distance approach is that, unlike the corresponding cardinal environment, the unit of measure 

is a probability number that is common to all dimensions. For simplicity, consider the bivariate 

categorical case where both dimensions are ordered with 𝑝𝑓,𝑖,𝑗 ≥ 0: 𝑖 = 1, . . , 𝐼, 𝑗 =

 
10 Note that when comparing groups with common 𝐾, 𝑘∗ , the term 1/𝜑(𝐾, 𝑘∗ ) can be omitted. 



1, . . , 𝐽 ∑ ∑ 𝑝𝑓,𝑖,𝑗
𝐽
𝑗=1 = 1𝐼

𝑖=1  with the ordering again following the dimension indexing, 

cumulative and counter cumulative density functions are well defined with  𝐹𝑖,𝑗 =

∑ ∑ 𝑝𝑓,𝑘,𝑙
𝑗
𝑙=1

𝑖
𝑘=1  𝑓𝑜𝑟 𝑖 = 1, . . , 𝐼, 𝑗 = 1, . . , 𝐽. 

In the modal case where 𝑘∗ coordinates are {𝑖∗, 𝑗∗} so that max
𝑖,𝑗

𝑝𝑓,𝑖,𝑗 = 𝑝𝑓,𝑖∗,𝑗∗:  

                                            Let 𝑝𝑓,𝑖∗,𝑗
∗∗ = 𝑝𝑓,𝑖∗,𝑗  𝑗 = 1, . . , 𝐽 𝑎𝑛𝑑  𝑝𝑓,𝑖,𝑗∗

∗∗ = 𝑝𝑓,𝑖,𝑗∗  𝑖 = 1, . . , 𝐼 

 𝐹𝑖,𝑗
∗∗ =  𝐹𝑖+1,𝑗

∗∗ + 𝑝𝑓,𝑖,𝑗  ∀ 𝑖 < 𝑖∗ 𝑎𝑛𝑑 𝐹𝑖,𝑗
∗∗ =  𝐹𝑖,𝑗

∗∗ + 𝑝𝑓,𝑖,𝑗 ∀ 𝑖 > 𝑖∗, ∀𝑗 = 1, . . , 𝐽 

 𝐹𝑖,𝑗
L𝑘∗

=  𝐹𝑖,𝑗+1
L𝑘∗

+  𝐹𝑖,𝑗
∗∗ ∀ 𝑗 < 𝑗∗ 𝑎𝑛𝑑 𝐹𝑖,𝑗+1

U𝑘∗
=  𝐹𝑖,𝑗

U𝑘∗
+  𝐹𝑖,𝑗

∗∗ ∀ 𝑗 > 𝑗∗, 𝑖 = 1, . . , 𝐼 

Again, when 𝑝𝑓,𝑖∗,𝑗∗  is viewed as the likelihood that the whole population resides in outcome 

{𝑖∗, 𝑗∗}, 𝐼𝐶(𝑓) = (𝐼𝐽𝑝𝑓,𝑖∗,𝑗∗ − 1) (𝐼𝐽 − 1)⁄  is a very natural measure or index on the unit interval 

of the commonality or equality of outcome in the distribution, so that its complement, 𝐼𝐼(𝑓) =

𝐼𝐽(1 − 𝑝𝑓,𝑖∗,𝑗∗)/(𝐼𝐽 − 1) provides an intuitive likelihood based measure of inequality of 

outcome and it is an equally useful index of such in unordered categorical paradigms. 

The corresponding 2-dimensional version of [4] is given by: 

                            𝑀𝐹𝐼(𝑔) =
∑ ∑ (𝐺𝑖,𝑗

𝑈,𝑘∗
+𝐺𝑖,𝑗

𝐿,𝑘∗
)

𝐽
𝑗=1

𝐼
𝑖=1

(
𝑗∗𝑖∗ ∑ ∑ 𝑖𝑗

𝑗∗

𝑗=1
𝑖∗−1
𝑖=1

𝐼𝐽
+ 

(𝐼𝐽−𝑗∗𝑖∗)∑ ∑ (𝑖𝑗−𝑖∗𝑗∗)
𝐽
𝑗=𝑗∗+1

𝐼
𝑖=𝑖∗+1

𝐼𝐽
)

                             

Appropriately vectorized versions of the 𝐼 x 𝐽 matrices 𝐺.,.
𝑈,𝑘∗

 and 𝐺.,.
𝐿,𝑘∗

 and their corresponding 

𝐼𝐽 square cumulation matrix 𝐶𝑖∗𝑗∗  can be constructed to form the 𝑖∗, 𝑗∗ Focused Probabilistic 

Distance vector 𝐺𝑃𝐷,𝑖∗,𝑗∗
 , recording the chance of being in the collection of categories 

successively further distanced from 𝑖∗, 𝑗∗. Then, given an 𝐼𝐽 dimensioned unit vector 𝑑, 

𝑀𝐹𝐼(𝑔) may be written as: 

                                                          𝑀𝐹𝐼(𝑔) =
1

𝜑(𝐼𝐽,𝑖∗,𝑗∗)
𝑑′𝐺𝑃𝐷,𝑖∗,𝑗∗

                                          [6] 



 

Standardization. 

 

Pearsons’ concern in ordered categorical environments would have been that such 

measures of spread would not be “stable” for reliable comparison across groups 

without suitable locational standardisation. Sharpes’ concern would have been that 

the location measure would have not been diluted by an appropriate measure of 

uncertainty, in essence it is a variation standardised location measure much like a 

standard normal statistic. All that remains for an Ordered Categorical Coefficient of 

Variation or its inverse (𝑂𝐶𝐶𝑂𝑉 or 𝑂𝐶𝐶𝑂𝑉-1) is to standardize 𝑀𝐹𝐼(𝑔) with an 

appropriate probability-based distance measure factor to render it unit free. 

Analogous to the continuous paradigm formulation of the mean as the integral of the 

survival function over the range of x (see [1] above) the sum of the SF values over all 

categories ∑ (1 − 𝐺(𝑘))𝐾
𝑘=1  could be considered so that: 

                                 𝑂𝐶𝐶𝑂𝑉 = (K − 1)𝑀𝐹𝐼(𝑔, 𝑘∗ )/(∑ (1 − 𝐺(𝑘))𝐾
𝑘=1 )                                   [7] 

would provide an ordered categorical Coefficient of Variation analogue appropriate to for the 

situation at hand11. 

The inverse of 𝑂𝐶𝐶𝑂𝑉 is the ordered categorical paradigm equivalent of the Sharpe Ratio 

which is a risk or uncertainty adjusted average returns measure. Thus, it can be viewed as an 

outcome level measure diluted by a measure of uncertainty surrounding outcome levels.   

 

 
11 [7] is clearly dependent upon K, this is of no consequence when variates with a common K are being compared, 
but when variates with different K’s are being compared their respective values of [7] should be rescaled by 

𝛾(𝐾) =
(𝐾 − 1)

𝐾⁄  

  



 

Axiomatics. 

 

Suppose that 𝑥 is the n x 1 dimensioned list of the category locations of n sampled individuals 

upon which the estimates of 𝑝̂𝑓𝑘, 𝑘 = 1, . . , 𝐾 are based, then 𝑂𝐶𝐶𝑂𝑉 is readily shown to satisfy 

the axioms of Anonymity (i.e. it is independent of the ordering of the list 𝑥); Scale Invariance (it 

is independent of any arbitrary scale accorded the categories) and Population Independence (it 

will not change when the population is replicated and added to itself) it can also be shown to 

satisfy a weak version of the Pigou-Dalton Transfer Principal (when the presence in a higher 

category is reduced by 1 and the presence in a lower category increased by 1 without altering 

the mode, it will not increase). However, 𝑂𝐶𝐶𝑂𝑉 is not independent of K, the number of 

categories. While this is of no consequence when groups are being compared over the same 

number of categories, it does need attention when groups are being compared over different 

numbers of categories so that when comparing groups based upon different numbers of 

categories, it may be prudent to multiply 𝑂𝐶𝐶𝑂𝑉 by 1/(𝐾 + 1) for comparison purposes.      

3. Two Examples.  

To illustrate application of the Ordered Categorical Coefficient of Variation and its components, 

two examples are reported. To reflect concerns about the health and aging connection in the 

context of an aging population, a univariate analysis of Self- Reported Health outcomes in the 

United Kingdom over the pre-covid period 2010-2018 is pursued. To exemplify a multivariate 

application, an analysis of the progress of the multivariate distribution of experience and 

embodied human capital factors that underlay Human Resource stocks in Canada over the 

2006-2016 decade. 



3.1 Health Outcomes in the United Kingdom. 

Given the propensity of health to decline with age and the health-longevity gender paradox12, 

nations with ageing populations tend to experience declining overall health outcomes which 

may well differ by gender, raising concerns about inequalities in health outcomes as they relate 

to the aging process. A challenge with studying these phenomena is that health outcomes are 

ordered categorical in nature. Here the progress of health outcomes in the UK over the period 

2010-2018 are examined using individual seven category self-reported ordered categorical 

health responses over six life cycle Age Group categories for males and females drawn from the 

Understanding Society Data Set13. Table A1 in the appendix reports details of the age groups, 

categories and the Probability Density Functions for male and female samples for the two years 

upon which the results are based. 

Table 1 reports the average MOC, MFI and COV over the population for the two years. As may 

be observed, the Ordered Categorical Coefficient of Variation indicates an increase in relative 

health inequality over the period, the result of a significant decline in self-reported health levels 

 
12 It has long been understood that health outcomes deteriorate with age (Deaton and Paxson 1998, Kerkhofs and 
Lindeboom 1997) and even if age groups maintain their health status over time overall health will appear to 
deteriorate because of the composition effects of increasing proportions of older cohorts in the population. Recent 
work (Case and Paxon 2005, Nusselder et.al. 2010, Oksuzyan et.al. 2009, Van Oyen 2013) has highlighted a female-
male health-longevity paradox - that women typically experience worse health outcomes than men throughout 
their lives, yet they tend to live longer.  
13 Understanding Society: the UK Household Longitudinal Study (UKHLS) is a University of Essex Institute for Social 

and Economic Research survey collecting data from participants by surveying the members of approximately 
40,000 households a year. After incomplete records were excluded, a 2-period sample of 75487 subjects remained 
with recorded levels of self-reported Health, Age group and gender categories.  

 



combined with a somewhat more marginal increase in health inequality levels.  Table 2 reports 

more detailed level, inequality and resultant Ordered Categorical Coefficient of Variations for 

the respective groups and years. 

Table 1. Overall Health Levels Inequalities and Coefficients of Variation 2010 - 2018 
 Average Health Level 

Index (𝑀𝑂𝐶) 
     2010           2018 

Average Health Inequality 
Index (𝑀𝐹𝐼) 
        2010                 2018 

Average Coefficient 
of Variation (𝐶𝑂𝑉) 
   2010         2018 

Mean 
(Standard Error) 

   3.9006        3.8226 
  (0.0167)     (0.0194) 

      3.3170              3.3373 
     (0.0090)           (0.0107) 

 0.8516      0.8744 

2010-2018 Difference (s.e.)  “t” 0.0780  (0.0256) “3.0457” -0.0203  (0.0140) “-1.4509”  

  

Note that health levels deteriorate significantly over the life cycle for both males and females in 

both years, furthermore they tend to be lower for females than for males. Typically, outcomes  

 
Table 2. Health Level, Inequality and Coefficient of Variation by Gender over the Life Cycle. 

                                  Females                                                                                  Males 
   < 26    26-35    36-45    46-55     56-65     >65        < 26     26-35    36-45    46-55    56-65      >65 

Levels 𝑀𝑂𝐶 
2010 
Std. Error 
 
2018 
Std. Error 

 
4.1164  4.0930  3.8942  3.7343  3.7546  3.6737  4.3062  4.0883  3.9591  3.8107  3.7648  3.7570  
0.0578  0.0552  0.0504  0.0538  0.0578  0.0540  0.0637  0.0647  0.0576  0.0614  0.0638  0.0582 
 
4.0500  3.9507  3.8324  3.6536  3.5555  3.7364  4.2555  3.9368  3.8978  3.7676  3.7237  3.8404 
0.0730  0.0716  0.0645  0.0608  0.0639  0.0560  0.0781  0.0852  0.0735  0.0670  0.0705  0.0598 

10-18 Difference 
Standard Errors 
t tests 

0.0664  0.1423  0.0618  0.0807  0.1991 -0.0627  0.0507  0.1515  0.0613  0.0431  0.0411 -0.0834  
0.0931  0.0904  0.0819  0.0812  0.0862  0.0778  0.1008  0.1070  0.0934  0.0909  0.0951  0.0834  
0.7131  1.5740  0.7550  0.9940  2.3107 -0.8060  0.5031  1.4161  0.6565  0.4743  0.4323 -0.9994 

Inequality 𝑀𝐹𝑆 
2010 
Std. Error 
 
2018 
Std. Error 

 
3.3389  3.3890  3.3207  3.2103  3.2656  3.1762  3.3677  3.3968  3.4031  3.3857  3.3668  3.2605  
0.0325  0.0299  0.0271  0.0279  0.0300  0.0286  0.0360  0.0361  0.0318  0.0329  0.0340  0.0310 
   
3.2735  3.3822  3.3499  3.2256  3.1685  3.3124  3.2730  3.3588  3.4913  3.4246  3.3732  3.4524 
0.0411  0.0404  0.0358  0.0328  0.0337  0.0304  0.0435  0.0486  0.0416  0.0366  0.0381  0.0332 

10-18 Difference 
Standard Errors 
t tests 

0.0654 0.0068 -0.0292 -0.0153 0.0971 -0.1362  0.0947  0.0380 -0.0882 -0.0389 -0.0064 -0.1919  
0.0524  0.0503  0.0449  0.0431  0.0452  0.0417  0.0564  0.0605  0.0524  0.0492  0.0511  0.0455  
1.2483  0.1352 -0.6499 -0.3552 2.1496 -3.2637 1.6780  0.6278 -1.6842 -0.7906 -0.1253 -4.2196 

𝐶𝑂𝑉 
2010 
2018 

 
0.8111  0.8280  0.8527  0.8597  0.8698  0.8646  0.7821  0.8309  0.8596  0.8885  0.8943  0.8678  
0.8083  0.8561  0.8741  0.8829  0.8912  0.8865  0.7691  0.8532  0.8957  0.9090  0.9059  0.8990 

 

at each age group are worse in 2018 than they were in 2010 signaling an almost universal 

intertemporal decline in health over the period, the one notable exception being the over 65’s 



where both genders see an improvement over the period. With regard to inequality, the 

intertemporal changes are somewhat less universal though the senior group in both genders 

records a significant increase in inequality. However there does appear to be a decline in 

inequality over the life cycle in 2010 which is much less apparent in 2018. Overall, the 

coefficient of variation appears to be growing steadily over the life cycle for both genders with 

females exhibiting greater relative variation in 2010 than 2018 with miles exhibiting greater 

variation in 2018 rather than 2010. 

3.2 Relative Variation in the distribution of Human Resource factors across the gender divide. 

A nations Human Resource Stock (𝐻𝑅𝑆), the aggregation of its constituent agents 𝐻𝑅𝑆’s, is an 

amorphous amalgam of their Embodied Human Capital and Cumulated Experience. The fact 

that males and females face different labour market and life cycle circumstances and have 

different knowledge acquisition traits suggests that a nations 𝐻𝑅𝑆 has been acquired and 

employed differently across the gender divide (Goldin 2014) and differences between the 

genders of the within gender level and variability of its possession is of interest. To this end an 

analysis of the corresponding Ordered Categorical Coefficient of Variation can be informative 

regarding the relative variation and the Sharpe ratio can reveal something about the 

uncertainty diluted level of human resources.   

Assessing the levels is difficult since both components are fundamentally latent and 

unobservable. Experience - the agents productivity enhancing skills acquired by practice and 

learning by doing - can be proxied for by the passage of time or the recorded age group of the 

individual. Embodied Human Capital – the agents’ education and training augmented innate 

abilities– can be proxied for by the Education and Training level they have received. Both 



proxies are ordered categorical variates and, beyond the afore-mentioned issues associated 

with using and combining artificially attributed cardinal scales to ordinal variates, their 

combination in some simple algebraic form is problematic. To examine the progress of Human 

Resource Stocks in Canada, data on the age, education and training status of individuals have 

been drawn from the Census of Canada Individual Files for the years 2006 and 201614. 

The joint probability distributions (PDF) and survival functions (SF) over experience and 

education and training level groups for Canadian Males and Females in 2006 and 2016 are 

reported in Table A2 in the appendix.  

Table 1 reports 𝑂𝐶𝐶𝑂𝑉 and Sharpe Ratios together with their components for the joint density 

for Males and Females in 2006 and 2016. What may be gleaned from Table 1 is that relative 

variation of human resource stocks increased for both Females and Males over the decade, but 

much more so for Males, a result of the substantial shift downwards in the Male modal location 

engendering a substantial increase in relative variation and a sharp reduction in the uncertainty 

moderated level of human resources.  

Table 1. Bivariate Ordered Categorical Coefficient of Variation 
 Modal Experience, 

Training Location 
Variation Location Value 𝑂𝐶𝐶𝑂𝑉 Sharpe 

Females 2006 3,3 3.0662 18.2842 0.1677 5.9630 

Females 2016 4,2 3.6889 19.4335 0.1865 5.3619 

Males 2006 3,3 3.0592 17.5026 0.1748 5.7208 

Males 2016 1,2 10.5715 18.1212 0.5834 1.7140 

 

 

 
14 All agents over the age of 19 who received an income and reported age and educational status were included in 
the study resulting in 608538 observations in 2006 (312405 of which were female) and 610346 in 2016 (326676 of 
which were female). An individual’s experience is proxied for by their age group category with 20-29, 30-39, 40-49, 
50-59, 60-69 and ≥ 70 being the designated experience categories. The education and training embodied human 
capital levels are based on 5 ordered categories:- EDU1:  Did not finish high school, EDU2: Completed High school, 
EDU3: Trade or Apprentice certification or University certification or diploma below bachelor degree level and 
EDU5: University certificate or diploma bachelor level and above, including masters and doctorates. EDU3 and 40-
49 age group were deemed the Sufficient Human Resource level. 



 
 
Table 2. Education Ordered Categorical Coefficient of Variation 

     EDU1     EDU2      EDU3     EDU4      EDU5      𝑂𝐶𝐶𝑂𝑉 Sharpe 

Females 2006 PDF 
Survival Function 

  0.2104   0.2792   0.3109   0.0570   0.1425  
  0.7896   0.5104   0.1995   0.1425   0.0000  

 0.6346  
 

1.5758 

Females 2016 PDF 
Survival Function 

  0.1681   0.3035   0.2751   0.0399   0.2134  
  0.8319   0.5284   0.2533   0.2134   0.0000  

 0.6367  
 

1.5706 

Males 2006 PDF 
Survival Function 

  0.2139   0.2591   0.3502   0.0446   0.1322  
  0.7861   0.5270   0.1768   0.1321   0.0000  

 0.6139  
 

1.6289 

Males 2016 PDF 
Survival Function 

  0.2010   0.3374   0.2311   0.0314   0.1992  
  0.7990   0.4616   0.2306   0.1992   0.0000 

 0.6462 1.5475 

 
Table 3. Experience Ordered Categorical Coefficient of Variation 

     20-29     30-39     40-49     50-59     60-69      >  69 𝑂𝐶𝐶𝑂𝑉 Sharpe 

2006 
Female 

PDF 
Survival Func 

  0.1689   0.1749   0.2169   0.1751   0.1203   0.1439  
  0.8311   0.6562   0.4393   0.2642   0.1439   0.0000  

0.5825  
 

1.7167 

2016 
Female 

PDF 
Survival Func 

  0.1673   0.1625   0.1647   0.1921   0.1609   0.1525  
  0.8327   0.6702   0.5054   0.3133   0.1525   0.0000  

0.5891  
 

1.6975 

2006 
Male 

PDF 
Survival Func 

  0.1807   0.1782   0.2232   0.1872   0.1195   0.1113  
  0.8193   0.6412   0.4180   0.2308   0.1113   0.0000  

0.5853  
 

1.7085 

2016 
Male 

PDF 
Survival Func 

  0.1904   0.1689   0.1685   0.1959   0.1537   0.1225  
  0.8096   0.6407   0.4722   0.2763   0.1225   0.0000  

0.6360  
 

1.5723 

 

When the marginal Education and Experience distributions are considered in Tables 2 and 3 

respectively, a greater increase in relative variation in both Education and Experience for males 

relative to females can be observed in both dimensions. When viewed separately, the individual 

dimension mode changes over time are similar across genders (mode levels lowering in the 

case of education and increasing in the case of experience), but is not reflected in the bivariate 

distribution (increasing experience, decreasing education for women, both decreasing for men).  

Table 4. Education and Experience comparison. 

         𝑂𝐶𝐶𝑂𝑉    𝐾 adjusted 𝑂𝐶𝐶𝑂𝑉   𝐾 adjusted  Sharpe 

Education 2006  Female 
Education 2016 Female 
Education 2006 Male 
Education 2016 Male 

        0.6346                  0.5077                         1.9697  
        0.6367                  0.5094                         1.9632  
        0.6139                  0.4911                         2.0362  
        0.6462                  0.5170                         1.9344 

Experience 2006  Female 
Experience 2016 Female 
Experience 2006 Male 
Experience 2016 Male 

        0.5825                  0.4854                         2.0601  
        0.5891                  0.4909                         2.0370  
        0.5853                  0.4878                         2.0502  
        0.6360                  0.5300                         1.8868 



The relative variation in education as opposed to experience outcomes is examined in Table 4. 

To make this comparison the ordered categorical coefficient of variation needs to be adjusted 

by the number of categories in the respective variates. When this is done it can be observed 

that with the exception of males in 2016 education has greater relative variation than does 

experience so the position is reversed for 2016 males. 

4. Conclusions.  

By invoking the notion of probabilistic distance and developing measures of levels and spreads 

analogous to means and standard deviations in cardinal paradigms, the construction of a 

measure of relative ordinal variation which is unit free and comparable across populations is 

possible, despite the lack of cardinality. Furthermore, the measures are easily implemented in 

multidimensional environments. Exemplifying applications of the measure to examine the 

relative variability in univariate health outcomes in the UK and multivariate human resource 

factors across the gender divide in Canada revealed substantial and meaningful differences. 
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Apppendix.  

Inference. 

Following Rao (2009), given an independent random sample of size 𝑛, 𝑝𝑔̂, the estimator of the 

vector of outcome probabilities 𝑝𝑔 is multivariate normal:  

                                                         √𝑛 (𝑝𝑔̂ − 𝑝𝑔)~𝑁(0, 𝑉𝑔)                                                      

where:                                𝑉𝑔 =

[
 
 
 
 
𝑝1,𝑔 0 0 . 0

0 𝑝2,𝑔 0 . 0

0
.
0

0
.
0

𝑝3,𝑔 . 0

. . 0
0 . 𝑝K,𝑔]

 
 
 
 

−

[
 
 
 
 
𝑝1,𝑔

𝑝2,𝑔
.
.

𝑝K,𝑔]
 
 
 
 

[𝑝1,𝑔 𝑝2,𝑔
. . 𝑝𝐾,𝑔]               

Given a 𝐾 dimensioned square cumulation matrix 𝐶𝑘∗  with typical element 𝑐𝑖,𝑗 𝑖, 𝑗 = 1, . . , 𝐼 

where for 𝑖, 𝑗 <  𝑘∗, 𝑐𝑖,𝑗 = 1 𝑤ℎ𝑒𝑛 𝑗 ≥ 𝑖 𝑎𝑛𝑑 0  otherwise, and for 𝑖, 𝑗 >  𝑘∗, 𝑐𝑖,𝑗 = 1 𝑤ℎ𝑒𝑛 𝑗 ≤

𝑖 𝑎𝑛𝑑 0  otherwise, all other elements of the matrix are 0 15, and a summation vector 𝑑 which 

is a K x 1 column of ones, then  𝐺𝑃𝐷,𝑘∗ 
= 𝐶𝑘∗𝑝𝑔 and 𝐺̂𝑔

𝑃𝐷,𝑘∗

= 𝐶𝑘∗𝑝𝑔̂ so that: 

√𝑛(𝐺̂𝑔
𝑃𝐷,𝑘∗

− 𝐺𝑔
𝑃𝐷,𝑘∗

)~𝑁(0, 𝐶𝑘∗𝑉𝑔𝐶𝑘∗′) 

So that 𝑀𝐹𝐼̂(𝑔), estimates of 𝑀𝐹𝐼(𝑔) will be such that: 

√𝑛 (𝑀𝐹𝐼̂(𝑔) − 𝑀𝐹𝐼(𝑔))~𝑁 (0,
1

𝜑(𝐾, 𝑘∗ )2
𝑑′𝐶𝑘∗𝑉𝑔𝐶𝑘∗′𝑑) 

 
15 As an example, for 𝐼 = 6 and 𝑘∗ = 3,  𝐶𝑘∗  is of the form: 

𝐶𝑘∗ =

[
 
 
 
 
 
1 1 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
1 1 0
1 1 1]

 
 
 
 
 

 

 



Table A1. PDF’s For the UK Health Outcomes.  

Category*                                  Females                                                                                  Males 
   < 26      26-35    36-45    46-55     56-65     >65              < 26     26-35    36-45    46-55    56-65      >65 

2010 
1 
2 
3 
4 
5 
6 
7 

 
   0.0259  0.0307  0.0445  0.0589  0.0564  0.0558        0.0227  0.0236  0.0334  0.0502  0.0491  0.0498  
   0.0497  0.0579  0.0728  0.0796  0.0852  0.0842        0.0357  0.0538  0.0582  0.0701  0.0806  0.0810  
   0.1170  0.1249  0.1355  0.1586  0.1481  0.1553        0.0957  0.1320  0.1425  0.1476  0.1491  0.1458  
   0.0939  0.0722  0.0765  0.0772  0.0748  0.1011        0.0857  0.0770  0.0839  0.0806  0.0816  0.0960  
   0.1720  0.1436  0.1473  0.1274  0.1265  0.1419        0.1667  0.1668  0.1570  0.1389  0.1364  0.1399  
   0.3860  0.4299  0.4087  0.3935  0.4112  0.3622        0.4058  0.4085  0.4138  0.4276  0.4236  0.3882  
   0.1555  0.1408  0.1147  0.1048  0.0978  0.0995        0.1877  0.1383  0.1112  0.0850  0.0796  0.0993 

2018 
1 
2 
3 
4 
5 
6 
7 

 
   0.0254  0.0362  0.0383  0.0430  0.0641  0.0406        0.0267  0.0271  0.0214  0.0369  0.0452  0.0416  
   0.0616  0.0621  0.0787  0.0998  0.0991  0.0871        0.0418  0.0596  0.0643  0.0771  0.0901  0.0658  
   0.1129  0.1226  0.1345  0.1564  0.1598  0.1425        0.0988  0.1306  0.1438  0.1512  0.1394  0.1389  
   0.1049  0.0916  0.0894  0.0938  0.0907  0.1095        0.0920  0.1078  0.1058  0.1048  0.0994  0.0941  
   0.1834  0.1826  0.1755  0.1610  0.1442  0.1505        0.1599  0.1975  0.1763  0.1449  0.1430  0.1611  
   0.3565  0.3912  0.3871  0.3604  0.3647  0.3850        0.3843  0.3618  0.4071  0.4165  0.4128  0.4209  
   0.1553  0.1137  0.0965  0.0856  0.0774  0.0848        0.1965  0.1156  0.0813  0.0686  0.0701  0.0776 

*The seven categories were: 1 Completely dissatisfied, 2 Mostly dissatisfied, 3 Somewhat dissatisfied, 4 
neither dissatisfied nor satisfied, 5 Somewhat satisfied, 6 Mostly satisfied and 7 Completely satisfied. 
Note that category 6, the mostly satisfied category is always the modal category. 
Table A2*. 
                                 Joint PDF                                               Survival Function 

     EDU1     EDU2      EDU3     EDU4      EDU5     EDU1     EDU2      EDU3     EDU4      EDU5 

Females 
2006 

20-29 
30-39 
40-49 
50-59 
60-69 
 >  69 

  0.0181   0.0552   0.0543   0.0077   0.0337   0.9819   0.9268   0.8725   0.8648   0.8311  
  0.0182   0.0390   0.0666   0.0105   0.0405   0.9637   0.8696   0.7487   0.7305   0.6562  
  0.0294   0.0628   0.0795   0.0129   0.0323   0.9343   0.7773   0.5769   0.5459   0.4393  
  0.0320   0.0540   0.0557   0.0114   0.0219   0.9023   0.6913   0.4351   0.3928   0.2642  
  0.0408   0.0321   0.0304   0.0081   0.0089   0.8615   0.6184   0.3318   0.2814   0.1439  
  0.0719   0.0361   0.0243   0.0066   0.0050   0.7896   0.5104   0.1995   0.1425   0.0000 

Females 
2016 

20-29 
30-39 
40-49 
50-59 
60-69 
 >  69 

  0.0137   0.0588   0.0436   0.0052   0.0461   0.9863   0.9275   0.8839   0.8787   0.8327  
  0.0135   0.0364   0.0511   0.0067   0.0548   0.9728   0.8775   0.7828   0.7710   0.6702  
  0.0166   0.0404   0.0544   0.0075   0.0459   0.9562   0.8206   0.6714   0.6522   0.5054  
  0.0272   0.0638   0.0597   0.0080   0.0335   0.9290   0.7296   0.5209   0.4936   0.3133  
  0.0332   0.0580   0.0408   0.0066   0.0223   0.8958   0.6385   0.3890   0.3551   0.1525  
  0.0639   0.0461   0.0256   0.0060   0.0108   0.8319   0.5284   0.2533   0.2134   0.0000 

Males 
2006 

20-29 
30-39 
40-49 
50-59 
60-69 
 >  69 

  0.0265   0.0673   0.0565   0.0067   0.0238   0.9736   0.9063   0.8498   0.8431   0.8193  
  0.0244   0.0444   0.0675   0.0083   0.0335   0.9491   0.8374   0.7135   0.6985   0.6412  
  0.0390   0.0557   0.0873   0.0100   0.0311   0.9101   0.7427   0.5313   0.5063   0.4180  
  0.0372   0.0473   0.0683   0.0093   0.0251   0.8728   0.6582   0.3785   0.3442   0.2308  
  0.0374   0.0245   0.0400   0.0059   0.0117   0.8354   0.5962   0.2766   0.2364   0.1113 
  0.0493   0.0199   0.0306   0.0044   0.0071   0.7861   0.5270   0.1768   0.1321   0.0000   

Males 
2016 

20-29 
30-39 
40-49 
50-59 
60-69 
 >  69 

  0.0236   0.0855   0.0397   0.0041   0.0375   0.9764   0.8909   0.8512   0.8471   0.8096  
  0.0223   0.0525   0.0454   0.0051   0.0436   0.9540   0.8160   0.7309   0.7217   0.6407  
  0.0246   0.0524   0.0446   0.0061   0.0408   0.9295   0.7390   0.6093   0.5940   0.4722  
  0.0412   0.0634   0.0494   0.0062   0.0356   0.8882   0.6344   0.4552   0.4337   0.2763  
  0.0373   0.0507   0.0333   0.0055   0.0269   0.8509   0.5464   0.3339   0.3068   0.1225  
  0.0520   0.0328   0.0186   0.0043   0.0149   0.7990   0.4616   0.2306   0.1992   0.0000  

* Note that the distributions have multiple nodes with point densities greater than all contiguous points but there 

is always a unique universal modal with a density value greater than any other point in the range. 
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