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Summary

We consider the estimation of Cobb-Douglas production functions using panel
data covering a large sample of companies observed for a small number of time
periods. Standard GMM estimators, which eliminate unobserved …rm-speci…c
e¤ects by taking …rst di¤erences, have been found to produce unsatisfactory results
in this context (Mairesse and Hall, 1996).

We attribute this to weak instruments: the series on …rm sales, capital and
employment are highly persistent, so that lagged levels are only weakly correlated
with subsequent …rst di¤erences. As shown in Blundell and Bond (1998), this
can result in large …nite-sample biases when using the standard …rst-di¤erenced
GMM estimator.

Blundell and Bond (1998) also show that these biases can be dramatically
reduced by exploiting reasonable stationarity restrictions on the initial conditions
process. This yields an extended GMM estimator in which lagged …rst-diferences
of the series are also used as instruments for the levels equations (cf. Arellano
and Bover, 1995).

Using data for a panel of R&D-performing US manufacturing companies, sim-
ilar to that in Mairesse and Hall (1996), we show that the instruments available
for the production function in …rst di¤erences are indeed weak. We …nd that
the additional instruments used in our extended GMM estimator appear to be
both valid and informative in this context; this estimator yields much more rea-
sonable parameter estimates. We also stress the importance of allowing for an
autoregressive component in the productivity shocks.



“In empirical practice, the application of panel methods to micro-data

produced rather unsatisfactory results: low and often insigni…cant cap-

ital coe¢cients and unreasonably low estimates of returns to scale.”

— Griliches and Mairesse (1997).

1. Introduction

The estimation of simple Cobb-Douglas production functions from company panel

data has become something of a graveyard for panel data estimation methods.

As detailed in the recent paper by Griliches and Mairesse (1997), simple OLS

regressions yield plausible parameter estimates, in line with evidence from factor

shares and generally consistent with constant returns to scale. But attempts to

control for unobserved heterogeneity and simultaneity - both likely sources of bias

in the OLS results - have tended to yield less satisfactory parameter estimates.

In particular, the application of GMM estimators which take …rst di¤erences to

eliminate unobserved …rm-speci…c e¤ects and use lagged instruments to correct

for simultaneity in the …rst-di¤erenced equations, has tended to produce very

unsatisfactory results in this context (see, for example, Mairesse and Hall (1996)).

In this paper we suggest that these problems are related to the weak correla-

tions that exist between the current growth rates of …rm sales, capital and employ-

ment, and the lagged levels of these variables. This results in weak instruments in

the context of the …rst-di¤erenced GMM estimator. In an earlier paper ( Blundell

and Bond, 1998) we showed that weak instruments could cause large …nite-sample

biases when using the …rst-di¤erenced GMM procedure to estimate autoregressive

models for moderately persistent series from moderately short panels. We also

showed that these biases could be dramatically reduced by incorporating more

informative moment conditions that are valid under quite reasonable stationarity

restrictions on the initial conditions process. Essentially this results in the use of
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lagged …rst-di¤erences as instruments for equations in levels, in addition to the

usual lagged levels as instruments for equations in …rst-di¤erences (cf. Arellano

and Bover, 1995).

Here we analyse whether similar issues are present in the production function

application, and whether the extended GMM estimator gives more reasonable

results in this context. Using a panel of R&D-performing US manufacturing

…rms similar to that used by Mairesse and Hall (1996), we …rst con…rm that

the …rst-di¤erenced GMM estimator yields a low and statistically insigni…cant

capital coe¢cient, and suggests sharply decreasing returns to scale. We then

show that the sales, capital and employment series are highly persistent, and that

the instruments used by the …rst-di¤erenced estimator contain little information

about the endogenous variables in …rst-di¤erences. Using the extended GMM

estimator, we …nd much more reasonable results: that is, we …nd a higher and

strongly signi…cant capital coe¢cient, and we do not reject constant returns to

scale. The additional instruments used in this extended GMM estimator are not

rejected in this application, and we con…rm that the lagged …rst-di¤erences are

informative instruments for the endogenous variables in levels. We also show that

imposing constant returns to scale produces more reasonable results when the

…rst-di¤erenced GMM estimator is used. One further feature of our results is the

importance of allowing for an AR(1) component in the production function error

term. We need to allow for this serial correlation in order to obtain any valid

lagged internal instruments for equations in …rst-di¤erences or equations in levels.

The rest of the paper is organised as follows. Section 2 sets out the production

function speci…cation we estimate. Section 3 reviews the …rst-di¤erenced GMM

estimator, describes the extended ‘system’ GMM estimator, and discusses the

validity of the additional moment conditions which this estimator exploits in the

production function context. Section 4 brie‡y describes the data we use, and

Section 5 presents our empirical results. Section 6 concludes.
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2. Model

We consider the Cobb-Douglas production function

yit = ¯nnit + ¯kkit + °t + (´i + vit +mit) (2.1)

vit = ½vi;t¡1 + eit j½j < 1

eit;mit sMA(0)

where yit is log sales of …rm i in year t, nit is log employment, kit is log capital stock

and °t is a year-speci…c intercept. Of the error components, ´i is an unobserved

…rm-speci…c e¤ect, vit is a possibly autoregressive (productivity) shock and mit

re‡ects serially uncorrelated measurement errors. Constant returns to scale would

imply ¯n + ¯k = 1, but this is not necessarily imposed.

We are interested in consistent estimation of the parameters (¯n; ¯k; ½) when

the number of …rms (N ) is large and the number of years (T ) is …xed. We maintain

that both employment (nit) and capital (kit) are potentially correlated with the

…rm-speci…c e¤ects (´i), and with both productivity shocks (eit) and measurement

errors (mit):

The model has a dynamic (common factor) representation

yit = ¯nnit ¡ ½¯nni;t¡1 + ¯kkit ¡ ½¯kki;t¡1 + ½yi;t¡1 (2.2)

+(°t ¡ ½°t¡1) + (´i(1¡ ½) + eit +mit ¡ ½mi;t¡1)

or

yit = ¼1nit + ¼2ni;t¡1 + ¼3kit + ¼4ki;t¡1 + ¼5yi;t¡1 + °
¤
t + (´

¤
i + wit) (2.3)

subject to two non-linear (common factor) restrictions ¼2 = ¡¼1¼5 and ¼4 =

¡¼3¼5. Given consistent estimates of the unrestricted parameter vector ¼ =
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(¼1; ¼2; ¼3; ¼4; ¼5) and var(¼), these restrictions can be (tested and) imposed using

minimum distance to obtain the restricted parameter vector (¯n; ¯k; ½). Notice

that wit = eit s MA(0) if there are no measurement errors (var(mit) = 0), and

wit s MA(1) otherwise.

3. GMM estimation

3.1. First di¤erences

A standard assumption on the initial conditions (E [xi1eit] = E [xi1mit] = 0

for t = 2; :::; T ) yields the following moment conditions

E [xi;t¡s¢wit] = 0 where xit = (nit; kit; yit) (3.1)

for s > 2 when wit s MA(0), and for s > 3 when wit s MA(1). This allows the

use of suitably lagged levels of the variables as instruments, after the equation

has been …rst-di¤erenced to eliminate the …rm-speci…c e¤ects (cf. Arellano and

Bond, 1991).

Note however that the resulting …rst-di¤erenced GMM estimator has been

found to have poor …nite sample properties (bias and imprecision) when the lagged

levels of the series are only weakly correlated with subsequent …rst di¤erences, so

that the instruments available for the …rst-di¤erenced equations are weak (cf.

Blundell and Bond, 1998). This may arise here when the marginal processes for

employment (nit) and capital (kit) are highly persistent, or close to random walk

processes, as is often found to be the case.

To be more precise about these statements, consider the AR(1) model

yit = ®yi;t¡1 + ´i + vit (3.2)

where vit here is serially uncorrelated (½ = 0). The instruments used in the stan-

dard …rst-di¤erenced GMM estimator become less informative in two important

cases. First, as the value of the autoregressive parameter ® increases towards
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unity; and second, as the variance of the permanent e¤ects (´i) increases relative

to the variance of the transitory shocks (vit). For simplicity, consider the case with

T = 3: In this case, the moment conditions corresponding to the …rst-di¤erenced

GMM estimator reduce to a single orthogonality condition. The …rst-di¤erenced

GMM estimator estimator then corresponds to a simple instrumental variable

(IV) estimator with reduced form (instrumental variable regression) equation

¢yi2 = ¼yi1 + ri for i = 1; ::::; N: (3.3)

For su¢ciently high autoregressive parameter ® or for su¢ciently high variance

of the permanent e¤ects, the least squares estimate of the reduced form coe¢cient

¼ can be made arbitrarily close to zero. In this case the instrument yi1 is only

weakly correlated with ¢yi2: To see this notice that the model (3.2) implies that

¢yi2 = (®¡ 1)yi1 + ´i + vi2 for i = 1; ::::; N: (3.4)

The least squares estimator of (®¡1) in (3.4) is generally biased upwards, towards

zero, since we expect E(yi1´i) > 0: Assuming stationarity and letting ¾2´ = var(´i)

and ¾2v = var(vit), the plim of b¼ is given by

plim b¼ = (® ¡ 1) k
¾2´
¾2v
+ k

with k =
(1¡ ®)2
(1¡ ®2) :

The bias term e¤ectively scales the estimated coe¢cient on the instrumental vari-

able yi1 toward zero. We …nd that plim b¼ ! 0 as ® ! 1 or as (¾2´=¾
2
v) ! 1,

which are the cases in which the …rst stage F-statistic is Op(1).

Blundell and Bond (1998) characterise this problem of weak instruments using

the concentration parameter of Nelson and Startz (1990a,b) and Staiger and Stock

(1997). First note that the F-statistic for the …rst stage instrumental variable

regression converges to a noncentral chi-squared with one degree of freedom. The

concentration parameter is then the corresponding noncentrality parameter which

we label ¿ . The IV estimator performs poorly when ¿ approaches zero. Assuming
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stationarity, ¿ has the following simple characterisation in terms of the parameters

of the AR(1) model

¿ =
(¾2vk)

2

¾2´ + ¾
2
vk

where k =
(1¡ ®)2
(1¡ ®2) : (3.5)

The performance of the …rst-di¤erenced GMM estimator in this AR(1) speci…ca-

tion can therefore be seen to deteriorate as ® ! 1, as well as for increassing values

of (¾2´=¾
2
v).

Blundell and Bond (1998) also report some results of a Monte Carlo study

which investigates the …nite sample properties of these GMM estimators in the

AR(1) model. In Table 1 we present some speci…c examples that highlight the

issues involved. We consider sample sizes with N = 100 and 500, T = 4 and values

for ® of 0.5, 0.8 and 0.9. In all cases reported here, ¾2´ = ¾
2
v = 1 and the initial

conditions yi1 satisfy stationarity. These results illustrate the poor performance

of the …rst-di¤erenced GMM estimator (DIF) at high values of ®. Table 1 column

‘DIF’ presents the mean and standard deviation for this estimator in the Monte

Carlo simulations. Consider the experiments where ® is 0.8 or 0.9. For the

…rst-di¤erenced GMM estimator we …nd both a huge downward bias and very

imprecise estimates. This is consistent with our analysis of weak instruments.

For this reason, we consider further restrictions on the model which may yield

more informative moment conditions.

3.2. Levels

If we are willing to assume that E [¢nit´¤i ] = E [¢kit´
¤
i ] = 0 and that the

initial conditions satisfy E [¢yi2´¤i ] = 0, then we obtain the additional moment

conditions

E [¢xi;t¡s(´
¤
i + wit)] = 0 (3.6)
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for s = 1 when wit s MA(0), and for s = 2 when wit s MA(1) (cf. Arellano

and Bover, 1995).1 This allows the use of suitably lagged …rst di¤erences of

the variables as instruments for the equations in levels. Both sets of moment

conditions can be exploited as a linear GMM estimator in a system containing both

…rst-di¤erenced and levels equations. Combining both sets of moment conditions

provides what we label the system (SYS) GMM estimator.

For the AR(1) model, Table 1 shows that there can be dramatic reductions

in …nite sample bias from exploiting additional moment conditions of this type,

in cases where the autoregressive parameter is only weakly identi…ed from the

…rst-di¤erenced equations. This can also result in substantial improvements in

precision. In contrast to the DIF estimator, there is virtually no bias and much

better precision, even in the smaller sample size and for ® of order 0.8.

3.3. Validity of the levels restrictions

To consider when these additional assumptions are likely to be valid in a

multivariate context, we brie‡y consider the model

yit = ®yi;t¡1 + ¯xit + (´i + eit) (3.7)

and close this by considering the following AR(1) process for the regressor

xit = °xi;t¡1 + (±´i + uit): (3.8)

Thus ± > 0 allows the level of xit to be correlated with ´i, and we also allow

E [uiteit] 6= 0.
First notice that by repeated substitution after …rst-di¤erencing (3.8), we can

write

¢xit = °
t¡2¢xi2 +

t¡3X

s=0

°s¢ui;t¡s (3.9)

1Further lagged di¤erences can be shown to be redundant if all available moment conditions
in …rst di¤erences are exploited.
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so that ¢xit will be correlated with ´i if and only if ¢xi2 is correlated with ´i. To

guarantee E [¢xi2´i] = 0 we require the initial conditions restriction

E

·µ
xi1 ¡ ±´i

1¡ °

¶
±´i

¸
= 0 (3.10)

which would be satis…ed under stationarity of the xit process.

Given this restriction, writing ¢yit similarly as

¢yit = ®
t¡2¢yi2 +

t¡3X

s=0

®s (¯¢xi;t¡s +¢ei;t¡s) (3.11)

shows that ¢yit will be correlated with ´i if and only if ¢yi2 is correlated with

´i. To guarantee E [¢yi2´i] = 0 we then require the similar initial conditions

restriction

E

2
4
0
@yi1 ¡

¯
³
±´i
1¡°

´
+ ´i

1¡ ®

1
A ´i

3
5 = 0 (3.12)

which would again be satis…ed under stationarity. Thus joint stationarity of the yit

and xit processes is su¢cient (but not necessary) for the validity of the additional

moment restrictions for the equations in levels. The moment conditions (3.6)

thus require the …rst moments of (nit; kit; yit) to be time-invariant (conditional on

common year dummies), but do not restrict the second and higher order moments

of the series.

4. Data

The data we use is a balanced panel of 509 R&D-performing US manufacturing

companies observed for 8 years, 1982-89. This data was kindly made available

to us by Bronwyn Hall, and is similar to that used in Mairesse and Hall (1996),

although the sample of 509 …rms used here is larger than the …nal sample of

442 …rms used in Mairesse and Hall (1996). Capital stock and employment are

measured at the end of the …rm’s accounting year, and sales is used as a proxy

for output. Further details of the data construction can be found in Mairesse and

Hall (1996).
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5. Results

5.1. Basic production function estimates

Table 2 reports results for the basic production function, not imposing con-

stant returns to scale, for a range of estimators. We report results for both the

unrestricted model (2.3) and the restricted model (2.1), where the common factor

restrictions are tested and imposed using minimum distance.2 We report results

for a one-step GMM estimator, for which inference based on the asymptotic vari-

ance matrix has been found to be more reliable than for the (asymptotically)

more e¢cient two-step estimator. Simulations suggest that the loss in precision

that results from not using the optimal weight matrix is unlikely to be large (cf.

Blundell and Bond, 1998).

As expected in the presence of …rm-speci…c e¤ects, OLS levels appears to give

an upwards-biased estimate of the coe¢cient on the lagged dependent variable,

whilst within groups appears to give a downwards-biased estimate of this coe¢-

cient. Note that even using OLS, we reject the hypothesis that ½ = 1, and even

using within groups we reject the hypothesis that ½ = 0: Although the pattern of

signs on current and lagged regressors in the unrestricted models are consistent

with the AR(1) error-component speci…cation, the common factor restrictions are

rejected for both these estimators. They also reject constant returns to scale.3

The validity of lagged levels dated t-2 as instruments in the …rst-di¤erenced

equations is clearly rejected by the Sargan test of overidentifying restrictions.4

This is consistent with the presence of measurement errors. Instruments dated

t-3 (and earlier) are accepted, and the test of common factor restrictions is easily

passed in these …rst-di¤erenced GMM results. However the estimated coe¢cient

2The unrestricted results are computed using DPD98 for GAUSS (see Arellano and Bond,
1998).

3The table reports p-values from minimum distance and Wald tests of these parameter
restrictions.

4p-values reported.
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on the lagged dependent variable is barely higher than the within groups estimate.

We expect this coe¢cient to be biased downwards if the instruments available are

weak (cf. Blundell and Bond (1998) and Table 1). Indeed the di¤erenced GMM

parameter estimates are all very close to the within groups results. The estimate

of ¯k is low and statistically weak, and the constant returns to scale restriction is

rejected.

The validity of lagged levels dated t-3 (and earlier) as instruments in the

…rst-di¤erenced equations, combined with lagged …rst di¤erences dated t-2 as

instruments in the levels equations, appears to be marginal in the system GMM

estimator. However this is partly re‡ecting the increased power of the Sargan test

to reject the instruments used in the …rst-di¤erenced equations. A Di¤erence-

Sargan statistic that speci…cally tests the additional moment conditions used in

the levels equations accepts their validity at the 10% level. The system GMM

parameter estimatates appear to be reasonable. The estimated coe¢cient on

the lagged dependent variable is higher than the within groups estimate, but

well below the OLS levels estimate. The common factor restrictions are easily

accepted, and the estimate of ¯k is both higher and better determined than the

di¤erenced GMM estimate. The constant returns to scale restriction is easily

accepted in the system GMM results.5

5.2. Diagnosis

If the system GMM results are to be our preferred parameter estimates, we

have to explain why the di¤erenced GMM results should be biased. If the in-

struments used in the …rst-di¤erenced estimator are weak, then the di¤erenced

GMM results are expected to be biased in the direction of within groups. Note

5One puzzle is that we …nd little evidence of second-order serial correlation in the …rst-
di¤erenced residuals (i.e. an MA(1) component in the error term in levels), although the use
of instruments dated t-2 is strongly rejected. It may be that the eit productivity shocks are
also MA(1), in a way that happens to o¤set the appearance of serial correlation that would
otherwise result from measurement errors.
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that the …rst-di¤erenced (one-step) GMM estimator coincides with a 2SLS es-

timator, exploiting the same moment conditions, when the …rm-speci…c e¤ects

are eliminated using the orthogonal deviations transformation, rather than tak-

ing …rst-di¤erences (Arellano and Bover, 1995). Note also that OLS in the model

transformed to orthogonal deviations coincides with within groups (Arellano and

Bover, 1995), and that weak instruments will bias 2SLS in the direction of OLS

(Nelson and Startz, 1990a,b). Hence weak instruments will bias this particular

2SLS estimator (which coincides with …rst-di¤erenced GMM) in the direction of

within groups. Thus the similarity between our di¤erenced GMM and within

groups results suggests that weak-instruments biases may be important here.

To investigate this further, Table 3 reports simple AR(1) speci…cations for the

three series, employment (nit), capital (kit) and sales (yit). All three series are

found to be highly persistent, although even using OLS levels estimates none is

found to have an exact unit root. For the employment series, both di¤erenced

and system GMM estimators suggest an autoregressive coe¢cient around 0.9, and

di¤erenced GMM does not appear to be seriously biased. However for capital and

sales, whilst system GMM again suggests an autoregressive coe¢cient around 0.9,

the di¤erenced GMM estimates are found to be signi…cantly lower, and close to

the corresponding within groups estimates. These downward biases in di¤erenced

GMM estimates of the AR(1) models for capital and sales are consistent with

the …nite sample biases found in Blundell and Bond (1998) and illustrated in

Table 1. Indeed the surprise is that di¤erenced GMM gives reasonable results

for the employment series. One di¤erence is that the variance of the …rm-speci…c

e¤ects is found to be lower, relative to the variance of transitory shocks, for the

employment series. The ratio of these variances is around 1.2 for employment,

but 2.2 for capital and 1.7 for sales.

Table 4 reports some properties of the reduced form regressions from the AR(1)

models. We focus on the 1989 cross section, where the largest set of lagged
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instruments is available. The reduced form regression for the …rst-di¤erenced

estimator relates ¢xi;88 to xi;86 and further lags. These instruments are jointly

signi…cant in the employment reduced form, but not for capital or sales. This helps

to explain why the di¤erenced GMM estimator performs poorly in the models for

capital and sales. The reduced form regression for the levels equations relates

xi;88 to ¢xi;87 and further lags. These instruments are jointly signi…cant in the

capital reduced form, although not for sales. This helps to explain why the system

GMM estimator, which exploits both sets of moment conditions, works well for

the capital series.

These results suggest that weak instruments biases are a potential problem

when relying on …rst-di¤erenced GMM estimators using these persistent series.

This does not necessarily imply that weak instruments will be a problem when

estimating the production function, since it may be that lagged combinations

of the three series will be more informative than the lagged levels of any one

series alone. However our results in Table 2 suggest that there may be important

…nite sample biases a¤ecting the di¤erenced GMM estimates of the production

function. Moreover it is no surprise that the largest biases appear to be found on

the coe¢cients for capital and lagged sales.

5.3. Constant returns to scale

Our preferred system GMM results in Table 2 accept the validity of the con-

stant returns to scale restriction. Table 5 considers imposing this restriction using

each of the estimators. Two points are noteworthy. First, the validity of the mo-

ment conditions used to obtain the system GMM estimates becomes less marginal

after imposing constant returns to scale. However the parameter estimates are

very close to those found in Table 2, and the common factor restriction continues

to hold.

Second, the …rst-di¤erenced GMM estimates are now much closer to the system
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GMM results, and not so close to the within groups estimates. Imposing constant

returns to scale here seems to reduce the weak instruments biases in the di¤erenced

GMM estimates, possibly because the capital-labour ratio is less persistent than

the levels of either series. This may provide some justi…cation for the practice

of imposing constant returns to scale in order to obtain reasonable estimates of

the coe¢cient on capital, even though the restriction tends to be rejected with

…rst-di¤erenced estimators.

Both these points increase our con…dence that the system GMM estimator

works well in this application.

6. Conclusions

In this paper we have considered the estimation of a simple Cobb-Douglas produc-

tion function using an 8 year panel for 509 R&D-performing US manufacturing

companies. Our …ndings suggest the importance of …nite-sample biases due to

weak instruments when the …rst-di¤erenced GMM estimator is used, although

these biases appear less important when constant returns to scale is imposed. We

obtain much more reasonable results using the system GMM estimator: speci…-

cally we …nd a higher and strongly signi…cant capital coe¢cient, and we do not

reject constant returns to scale. We …nd that the additional instruments used in

the system GMM estimator are both valid and informative in this context.

Whilst it would be dangerous to generalise from this one application, we

can also report encouraging results from other applications of the system GMM

approach. This has been applied to production function data for Britain and

Germany (Bond, Harho¤ and Van Reenen, 1998a), to labour demand equations

(Blundell and Bond, 1998), to investment equations (Bond, Harho¤ and Van

Reenen, 1988b) and to cross-country growth regressions (Bond, Hoe­er and Tem-

ple, 1998). In each context the additional moment restrictions exploited by the

system GMM estimator appear to be valid, and they appear to be useful in re-
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ducing …nite-sample biases associated with …rst-di¤erenced GMM.
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Table 1.     Simulation Results.

N α DIF SYS

100 0.5 .4641
(.2674)

.5100
(.1330)

0.8 .4844
(.8224)

.8101
(.1618)

0.9 .2264
(.8264)

.9405
(.1564)

500 0.5 .4887
(.1172)

.5021
(.0632)

0.8 .7386
(.3085)

.7939
(.0779)

0.9 .5978
(.6407)

.9043
(.0999)

The table reports means (standard deviations) from experiments with T = 4
and 1000 replications. The model is yit = αyi,t-1 + ηi + vit, with var(ηi) =
var(vit) = 1 and initial conditions drawn from the stationary distribution for
yi1. Results are reported for two-step GMM estimators.

Source: Blundell and Bond (1998), Table 2(a).
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Table 2.     Production Function Estimates

OLS
Levels

Within
groups

DIF
t-2

DIF
t-3

SYS
t-2

SYS
t-3

nt 0.479 0.488 0.513 0.499 0.629 0.472
(.029) (.030) (.089) (.101) (.106) (.112)

nt-1 -0.423 -0.023 0.073 -0.147 -0.092 -0.278
(.031) (.034) (.093) (.113) (.108) (.120)

kt 0.235 0.177 0.132 0.194 0.361 0.398
(.035) (.034) (.118) (.154) (.129) (.152)

kt-1 -0.212 -0.131 -0.207 -0.105 -0.326 -0.209
(.035) (.025) (.095) (.110) (.104) (.119)

yt-1 0.922 0.404 0.326 0.426 0.462 0.602
(.011) (.029) (.052) (.079) (.051) (.098)

m1 -2.60 -8.89 -6.21 -4.84 -8.14 -6.53

m2 -2.06 -1.09 -1.36 -0.69 -0.59 -0.35

Sargan - - .001 .073 .000 .032

Dif
Sargan

- - - - .001 .102

βn 0.538 0.488 0.583 0.515 0.773 0.479
(.025) (.030) (.085) (.099) (.093) (.098)

βk 0.266 0.199 0.062 0.225 0.231 0.492
(.032) (.033) (.079) (.126) (.075) (.074)

ρ 0.964 0.512 0.377 0.448 0.509 0.565
(.006) (.022) (.049) (.073) (.048) (.078)

Comfac .000 .000 .014 .711 .012 .772

CRS .000 .000 .000 .006 .922 .641

Asymptotic standard errors in parentheses.

Year dummies included in all models.
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Notes to Tables

m1 and m2 are tests for first-order and second-order serial correlation,
asymptotically N(0,1). We test the levels residuals for OLS levels, and the
first-differenced residuals in all other columns.

Sargan is a test of the over-identifying restrictions for the GMM estimators.
P-values are reported.

Dif Sargan is a test of the additional moment conditions used in the system
GMM estimators relative to the corresponding first-differenced GMM
estimators. P-values are reported.

Comfac is a minimum distance test of the non-linear common factor
restrictions imposed in the restricted models. P-values are reported.

CRS is a Wald test of the constant returns to scale hypothesis βn + βk = 1 in
the restricted models. P-values are reported.
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Table 3.     AR(1) Model Estimates

Labour (nt) OLS
levels

Within
Groups

DIF
t-3

SYS
t-3

SYS
t-4

nt-1 0.986 0.723 0.920 0.923
(.002) (.022) (.062) (.033)

m1 4.16 -8.51 -7.62 -8.99

m2 2.67 0.60 0.44 0.43

Sargan - - .040 .056

Dif Sargan - - - .387

Capital (kt)

kt-1 0.987 0.733 0.768 0.925
(.002) (.027) (.070) (.021)

m1 7.72 -6.82 -5.80 -6.51

m2 2.29 -1.73 -1.73 -1.81

Sargan - - .563 .627

Dif Sargan - - - .562

Sales (yt)

yt-1 0.988 0.693 0.775 0.963 0.893
(.002) (.025) (.063) (.048) (.063)

m1 5.70 -7.35 -5.95 -7.15 -6.35

m2 0.97 -2.37 -2.46 -2.53 -2.63

Sargan - - .040 .025 .092

Dif Sargan - - - .134 -

Asymptotic standard errors in parentheses.

Year dummies included in all models.
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Table 4.     Reduced Form Equations for 1989

Labour First Differences Levels

Wald .021 .082

R2 .032 .019

Capital

Wald .088 .001

R2 .014 .034

Sales

Wald .631 .536

R2 .011 .009

First Differences: Reduced Form regression of ∆xt-1 on xt-3, xt-4, … , xt-7.

Levels: Reduced Form regression of xt-1 on ∆xt-2, ∆xt-3, … , ∆xt-6.

Wald: p-value testing H0: slope coefficients jointly zero.

R2: coefficient of determination.
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Table 5.     Production Function Estimates imposing CRS

OLS
Levels

Within
Groups

DIF
t-3

SYS
t-3

nt 0.615 0.632 0.527 0.516
(.034) (.034) (.102) (.101)

nt-1 -0.559 -0.135 -0.204 -0.288
(.035) (.033) (.109) (.117)

yt-1 0.906 0.361 0.460 0.562
(.011) (.029) (.074) (.079)

m1 -5.01 -9.78 -6.14 -6.80

m2 -2.36 -0.81 -0.61 -0.36

Sargan - - .060 .065

Dif
Sargan

- - - .329

βn 0.605 0.655 0.534 0.518
(.025) (.034) (.102) (.079)

βk 0.395 0.345 0.466 0.482
- - - -

ρ 0.907 0.424 0.478 0.563
(.011) (.025) (.065) (.068)

Comfac .651 .000 .600 .966

Asymptotic standard errors in parentheses.

Year dummies included in all models.


