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Abstract

A comparison of hazard rates of duration outcomes before and after policy changes is

hampered by non-identification if there is unobserved heterogeneity in the effects and no

model structure is imposed. We develop a discontinuity approach that overcomes this by

exploiting variation in the moment at which different cohorts are exposed to the policy

change, i.e. by considering spells crossing the policy change. We prove identification of

average treatment effects on hazard rates without model structure. We estimate these
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effects by local linear kernel hazard regression. We use the introduction of the NDYP

program for young unemployed individuals to estimate average program participation

effects on the exit rate to work.
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1 Introduction

Regression discontinuity (or discontinuity design) is often used to evaluate policy effects.

In case of a policy change at a point of time τ ∗, the idea is that a comparison of observed

individual outcomes just before and just after τ ∗ may provide an estimate of the mean causal

effect of the policy change on the individual outcome.

Empirical researchers have struggled to apply this methodology in studies where the

outcome of interest is a duration variable, like unemployment duration or the duration until

recovery of a disease. The typical approach considers two cohorts of individuals flowing into

the state of interest before and after τ ∗, in order to compare spells that begin before and after

the policy change.1 But the spells that begin before τ ∗ do not all end before τ ∗, implying that

the corresponding duration outcomes are affected by both policy regimes. One could eliminate

spells ending after τ ∗ from the pre-reform spells, following the line of reason that then these

are fully observed under the old policy regime. Generally, however, a positive fraction of the

earlier spells will be right-censored at τ ∗. If the pre-policy-change data (or, to be short, the

pre-policy data) are from a cohort flowing in at τ0 < τ ∗, then one could restrict attention to

the truncated duration distribution on (0, τ ∗− τ0) as the outcome of interest. More in general,

one may right-censor the pre-policy spells at the moment of the policy change. This is what

empirical studies typically have done.

These approaches give rise to two problems. First notice that splitting the data into

pre- and post-policy spells effectively translates the policy regime into an explanatory variable

that is constant within a given spell. It follows from the literature on duration models that

any effects on the individual hazard are only identified under rather strong semi-parametric

assumptions. Most prominently, (i) proportionality of the duration dependence effect and

the effect of the explanatory variable and unobserved explanatory variables on the hazard

rate, implying a causal policy effect that is constant across individuals, and (ii) independence

1Notice that with a single cohort of individuals flowing in at say τ0 < τ∗, the effect of the policy change

cannot be distinguished from the duration dependence of the hazard at and after τ∗ − τ0.
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between the observed and unobserved individual characteristics (see e.g. Meyer, 1996, and

Abbring and Van den Berg, 2005; we discuss this in detail in section 2.4.1 of this paper.) This

is problematic because we are primarily interested in features of individual hazard rates, and

because such semi-parametric assumptions may be unappealing.

The second problem is practical. Let τ0 denote the date at which the first pre-policy

spells start. The smaller τ ∗ − τ0, the less interesting the studied outcome is, whereas the

larger τ ∗ − τ0, the longer one has to wait before post-policy data become available that enable

a full comparison. If one is interested in the effect on the hazard rate after two years of

unemployment duration then one would have to wait for two years after the policy change

before an estimate can be made.

In this paper we demonstrate that, in fact, ongoing spells at the moment of the policy

change can be fruitfully used to identify and estimate causal parameters of interest. Specifi-

cally, we prove identification of an average causal treatment effect on the hazard rate of the

duration distribution in the presence of unobserved heterogeneity, in a fully non-parametric

setting without imposing a (mixed) proportional hazard model structure and without mak-

ing a “random effects” assumption (i.e. independence of observed explanatory variables from

unobserved heterogeneity). We obtain the same type of results for survival probabilities con-

ditional on survival up to a given duration. The basic insight follows from the fact that the

policy change is an exogenous time-varying binary explanatory variable whose discontinuity

point varies independently across spells that started before τ ∗. By comparing survivors who

share a given elapsed duration t at the moment of the policy change to survivors at the same

elapsed duration t in an earlier cohort, we effectively compare two cohorts exposed to the

same dynamic selection of individuals with favorable unobserved characteristics up to t. So

the two cohorts are identical in terms of their unobserved composition at t. This means that

a cross-cohort comparison of outcomes conditional on survival up to t identifies average causal

effects and is not contaminated by selection effects.

The identification results naturally lead to an empirical implementation. In case the

hazard rate is the outcome of interest, this requires estimates of observed hazard rates. In
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general, these are selective averages of individual hazard rates, but by carefully combining

different observed hazard rates we obtain the average causal effect of interest.

This is a novel result. As noted above, in models where the policy regime is a time-

invariant element of X, the observed hazards are uninformative on the average policy effect

on the individual hazard rates if one does not impose some untestable model structure, unless

one assumes absence of unobserved heterogeneity. In our approach, however, the observed

hazards are informative on average policy effects on individual hazard rates, in the presence of

unobserved heterogeneity, and without model structure. In particular, this implies that effects

that may have been estimated in models where the policy regime is an element of X and

under the assumption of no unobserved heterogeneity (and therefore under the assumption of

homogeneous effects) are also valid in the presence of unobserved heterogeneity.

We show that the observed hazard rates can be estimated by using non-parametric kernel-

type estimation methods. The estimation of the hazard rate at the moment of the policy

change involves estimation at the boundary of the relevant duration interval. Standard kernel

estimators are heavily biased at such boundaries. We deal with this by using the Müller and

Wang (1994) boundary kernel hazard estimation method with data-adaptive local bandwidths.

In addition, we use local linear kernel smoothing, along the lines of Wang (2005). We also

perform discrete-time analyses with time-aggregated data. The first method in particular has

been used in demography and biostatistics but is not well known in econometrics. This is why

we explain it in some detail in the paper.

We also consider estimation of average causal effects on conditional survival probabilities,

that is, the average effect of being exposed to the policy from duration t0 onwards on the

probability of leaving the state of interest before some duration t1 > t0. This requires estimates

of the corresponding observed probabilities or two cohorts: one that reaches duration t0 at

calender time τ ∗ and one that enters the state of interest before τ ∗ − t1 and hence reaches

duration t0 before τ
∗. Here, as well as with estimation of effects on hazard rates, one typically

has a choice between a range of cohorts that may serve as the comparison group of non-treated

on [t0, t1). We develop a “matching” procedure to select the most appropriate cohort.
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At least three branches of literature are connected to the present paper. First, our esti-

mation approach is related to the “regression discontinuity” approach for treatment effects and

policy evaluation (see Hahn, Todd and Van der Klaauw, 2001, Porter, 2003, and Frölich, 2007,

for important recent econometric contributions in a non-parametric setting). One difference is

that right-censoring is an essential feature of duration data, which our estimators need to be

able to handle. The second difference is that we estimate hazard rates instead of densities, and

the empirical hazard rates are not independent over different durations. Another difference is

that the hazard estimates that we combine to estimate effects are taken from samples from

different cohorts. This does not require that these hazard rates have any determinant in com-

mon. As such, we do not assume that the counterfactual hazard rate in the absence of a policy

change is continuous as a function of the elapsed duration t. If we do assume continuity of this

hazard rate, then we can attempt to make a before-after comparison around the discontinuity

point in a given cohort. A before-after comparison has the advantage that we do not need to

assume absence of selective cohort differences, although as noted above we could deal with the

latter by matching the most appropriate cohort.

The second relevant branch of literature concerns the literature on treatment evaluation

using “dynamic matching”, where the assignment process is such that treatments can occur

at any possible elapsed duration in the state of interest. Typically, this literature considers

survivors at a given elapsed duration t0 and compares individuals whose treatment is observed

to start at t0 to the survivors at t0 who have not been treated yet at t0. The treatment status

among these individuals at t0 is assumed to be conditionally independent of the potential

outcomes after t0, conditional on a set of covariates X. This is the identifying conditional

independence assumption (CIA). The literature takes into account that those who have not

yet been treated at t0 may be treated later, but in general it is silent on the dynamic selection

before t0. Fredriksson and Johansson (2008) develop a matching estimator for average effects of

treatment at t0 on the conditional survival distribution on (t0,∞). Crépon et al. (2009) show

that the underlying assumptions are essentially the same as in our case, namely “conditional

independence” and “no anticipation” (see Section 2 below). The matching estimator is then

similar to our estimator for average effects on conditional survival probabilities. However, our
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analysis provides a foundation for the CIA, by relating it to events in the duration interval

from zero up to t0. The analysis carries an important caveat for the application of dynamic

matching estimators, namely that the CIA is unlikely to be satisfied if the treatment and

comparison groups have had systematically different event histories between zero (say, entry

into unemployment) and the moment of treatment t0, even if they have the same personal

characteristics and the same labor market history before entry into the state of interest. If the

treated are from a region that is equivalent to the comparison region except for an idiosyncratic

temporary business cycle shock at say 0.5t0, then the composition in terms of unobservables

at t0 is systematically different between treatment and comparison groups, and hence the CIA

fails.

Thirdly, there is a literature on identification of duration models with unobserved hetero-

geneity V and time-varying explanatory variablesX(t). In particular, Brinch (2007) shows that

certain types of time-varying explanatory variables enable full identification of a generalized

Mixed Proportional Hazard (MPH) model in which t and X(t) may interact in the individual

hazard rate. However, this requires that the covariates are independent of V and that V acts

multiplicatively on the individual hazard rate, effectively ruling out cross-individual hetero-

geneity in the covariate effects. We do not need to assume either of these for our results. We

discuss the connection to this literature in more detail below.

We apply our novel methodological approach to estimate the average effect of participa-

tion in the New Deal for Young People (NDYP) program for young unemployed in the UK on

the individual transition rate from unemployment to work. All young unemployed individu-

als enter the program upon reaching 6 months of unemployment. From that moment until 4

months later, they receive intensive job search assistance. This program was implemented on

April 1, 1998. Among those unemployed at the implementation date, only those whose elapsed

unemployment duration was a multiple of 6 months were allowed in. If the elapsed duration

was not a multiple of 6 months, then in principle the individual was only allowed in at the first

moment that his or her elapsed duration would equal a multiple of 6 months.

This scheme allows for identification and non-parametric estimation of some additional
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treatment effects. From the implementation date onwards, the policy and its enrollment rules

are known to the unemployed. This means that individuals who are unemployed for say 1

month at this date know that if they stay unemployed for another 5 months then they will be

treated. Our approach can then be used to identify a meaningful average effect of knowing

that one will be treated after 5 months. These are effects of anticipation by the individual of

the moment at which he or she will be treated. We show that the analysis of effects on hazard

rates and conditional exit probabilities provides insights that are not obtained when studying

effects on unconditional survival probabilities.

The NDYP has been evaluated before, in a range of studies (see e.g. Blundell et al., 2004,

De Giorgi, 2005, Costa Dias, Ichimura and Van den Berg, 2008). In the empirical section we

address differences with this literature in terms of methods and results.

The outline of the paper is as follows. In Section 2 we introduce the duration variable and

the policy change, and we consider which average causal effects are identified under various

assumptions concerning the available data. Section 3 deals with non-parametric kernel-type

estimation. Section 4 contains the empirical application. Section 5 concludes.

2 Duration distributions, policy changes, and identifi-

cation

2.1 Notation

We consider a population of agents or individuals flowing into a state of interest, which

we label interchangeably the ‘whole population’, ‘population of interest’ or ‘inflow population’.

We are interested in the durations that these individuals subsequently spend in that state. In

particular, we want to measure the causal effect of a single binary treatment that is either

assigned to commence at some time in R+ := [0,∞) after entering the state or not assigned

at all. As an example, the treatment may be the exposure of an unemployed individual to

6



intensive job search assistance by his or her case worker. The duration of interest is the

unemployment duration, and the treatment may start after having spent a certain amount

of time in unemployment. We can cast this in the standard potential outcome framework by

recognizing that the dynamically assigned binary treatment can be reinterpreted as a set of

mutually exclusive treatments indexed by values in some subset of R+∪{∞} that we denote by

A. Here, the point ∞ represents the no-treatment case. To each treatment s ∈ A corresponds

a random variable T (s) that represents the potential outcome duration if treatment happens

at duration s.2 For each individual we define a vector {T (s), s ∈ A} of potential outcomes

under each possible treatment status s. For ease of exposition we assume that each T (s) is a

continuous random variable.

Causal inference is concerned with contrasting potential outcomes corresponding to dif-

ferent treatments. Specifically, we are interested in the differences between the distributions

of T (s) and T (s′) corresponding to treatments s, s′ ∈ A. In social sciences, the exit rate or

hazard rate of a duration distribution is the most interesting feature of this distribution, as it is

directly related to the agent’s behavior and his information set and circumstances conditional

on survival into the state of interest (see Van den Berg, 2001). Our empirical application in

Section 4 provides an example of the insights that can be learned from the study of outcomes

that condition on survival. In sum, we focus on the effect of the treatments on the individual

exit rate out of the state of interest and the individual conditional exit probabilities out of this

state.

For an arbitrary s, let the distribution function of the potential outcome T (s) be denoted

by FT (s). This is a function of the time since inflow into the state of interest, t. The corre-

sponding ‘integrated hazard’, ΘT (s)(t), is defined by ΘT (s)(t) = − log(1−FT (s)(t)). We assume

that ΘT (s)(t) has a continuous first-derivative on (0,∞) possibly except for a finite number of

points where it is right-continuous. The hazard rate of T (s), denoted by θT (s), can then be

formally introduced as the right-derivative of the integrated hazard with respect to t.

2We do not need to specify the length of the time span during which a treatment takes place, as long as it

does not vary given s.
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We allow agents to be heterogeneous in terms of observed characteristics, X, and unob-

served characteristics, V . These may be exogenously time-varying, but for ease of exposition

we abstract from this. For simplicity, we take V to be a continuous random variable. The

hazard rate, integrated hazard and the distribution function of T (s) can be defined for indi-

viduals with characteristics (X,V ). We denote these by θT (s) (t | X, V ), ΘT (s) (t | X,V ) and

FT (s) (t | X, V ), respectively. The survival function is F s (t | X, V ) = 1− FT (s) (t | X,V ).

Because the treatments are mutually exclusive, we can never observe potential outcomes

corresponding to different treatments simultaneously. Treatments are assigned according to the

random variable S with support A. The actual observed outcome is T = T (S) for individuals

assigned to treatment S; all other potential outcomes are counterfactual. Then, S simply

denotes the elapsed duration at the moment when the agent enrolls in the program. The

hazard, integrated hazard, distribution and survival functions of the observed outcome T are

denoted by θ, Θ, F and F , respectively.

2.2 Treatment effects

We are interested in measuring the differences between the duration distributions of T (s)

and T (s′) corresponding to treatments s, s′ ∈ A. These are summarized in so-called treatment

effects. The individual additive effect of replacing treatment s with treatment s′ for someone

with characteristics (X, V ) is,

θT (s′)(t | X,V )− θT (s)(t | X, V ) (1)

for t ≥ 0 and for s′, s ∈ A. This is the additive effect on the hazard rate at t.

For the same individual, we also consider the relative treatment effect on the probability

of surviving up to t conditional on survival up to t0

1− FT (s′)(t | X,V )

1− FT (s′)(t0 | X, V )
−

1− FT (s)(t | X, V )

1− FT (s)(t0 | X,V )
(2)

for t ≥ t0 ≥ 0 and, as before, s′, s ∈ A. At t0 = 0 this captures the effect on the unconditional
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survival function. And finally, the relative effect on the hazard rate at t is

θT (s′)(t | X, V )

θT (s)(t | X,V )
(3)

for all t ≥ 0 and for all s′, s ∈ A.

Since we allow for heterogeneity across agents, it is natural to focus on inference of

averages of individual treatment effects like (1), as quantities of interest. The averages are

taken over the distribution of V | X in the relevant sub-population. In the sequel, we define

average additive effects on the hazard rates θT (s)(t | X, V ) while assuming the latter satisfy

the usual regularity conditions that guarantee existence of the expressions below. Analogous

additive and relative effects can be defined for the conditional survival probabilities and the

hazard rate, respectively.

We define the additive Average Treatment Effect (ATE) on the hazard rate at duration

t of replacing treatment s with treatment s′ conditional on observed characteristics X as

ATE (t; s′, s | X) = E
[
θT (s′)(t | X, V )− θT (s)(t | X, V ) | X

]
. (4)

This involves aggregation over the whole population. However, the hazard at some duration t >

0 concerns a sub-population of survivors at t, which is typically different from the population

at inflow. As shown in the next section, it may also depend on the treatment status. Thus, and

instead, one would like to take the average over V among survivors at t. Following Abbring

and Van den Berg (2005), we propose the following average treatment effects on the individual

hazard rate:

ATTS (t; s′, s | X) = E
[
θT (s′)(t | X,V )− θT (s)(t | X, V ) | X,S = s′, T (s′) ≥ t

]
(5)

ATNTS (t; s′, s | X) = E
[
θT (s′)(t | X,V )− θT (s)(t | X, V ) | X,S = s, T (s) ≥ t

]
(6)

ATSs̃ (t; s
′, s | X) = E

[
θT (s′)(t | X,V )− θT (s)(t | X, V ) | X,T (s̃) ≥ t

]
(7)

ATS (t; s′, s | X) = E
[
θT (s′)(t | X,V )− θT (s)(t | X, V ) | X,T (s′) ≥ t, T (s) ≥ t

]
(8)

which can be called the Average Treatment effect on the Treated Survivors at t (ATTS), the

Average Treatment effect on the Non-Treated Survivors at t (ATNTS), the Average Treatment
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effect on the Survivors at t if treatment had been s̃ (ATSs̃) and the Average Treatment effect on

the Survivors at t (ATS). ATTS (t; s′, s | X) (ATNTS) averages over the distribution of (V | X)

among the survivors at t among those assigned to treatment s′ (s). ATSs̃ (t; s
′, s | X) averages

over the distribution of (V | X) among the survivors at t had treatment been s̃. In particular,

s̃ can assume the value s′ (or s), in which case the population of interest is that of survivors at

t had treatment been s′ (respectively s). ATSs′ (ATSs) differs from ATTS (ATNTS) because

it is unconditional on treatment assignment. And finally, ATS (t; s′, s | X) averages over the

distribution of (V | X) among survivors at t under both treatments, s and s′.

2.3 Assumptions

Inference is based on a random sample of agents from the population. For each of these

we observe the duration outcome T and the observed covariates X. Generally, the treatment

S is observed iff S ≤ T . However, note that if A = {0, s0} for some s0 ∈ (0,∞] then S is

effectively always observed.3

We assume that treatment assignment is randomized conditional on covariates (X, V ),

and also that treatment assignment is randomized over V given X,

Assumption 1 (Assignment). S⊥⊥{T (s), s ∈ A} | (X,V ) and S⊥⊥V | X.

The significance of this assumption is better understood if we interpret (X, V ) as the

information available to the individual at inflow. Without loss of generality, and for any treat-

ment status S = s ∈ A, we can write T (s) = T (s;X, V ) + ϵs where T (s;X, V ) is the expected

potential outcome at inflow (T (s;X, V ) = E [T (s) | X,V ]) and ϵs represents all unpredictable

(at the time of treatment assignment) variation in this outcome. Clearly, the distribution of

ϵs may depend on (X, V ). But the first condition in assumption 1 imposes that, once condi-

3We also allow for random right-censoring of T . This is usually referred to as “simple random right-

censoring”. Extensions to more general forms of independent censoring and filtering are straightforward (see

Andersen et al., 1993, and Fleming and Harrington, 1991).
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tioning on (X, V ), the joint distribution of {ϵs, s ∈ A}, is unrelated to treatment assignment.

The second half of assumption 1 states that assignment is random at inflow conditional on

observed characteristics X.

Assumption 1 is equivalent to S⊥⊥ (V, {T (s), s ∈ A}) | X and implies that S⊥⊥{T (s), s ∈ A} |
X.4 The latter is assumed from the outset in the dynamic matching literature (see e.g.

Fredriksson and Johansson, 2008, and Crépon et al., 2009).5

Although assumption 1 ensures that assignment is random at inflow (S⊥⊥V | X), it does

not preclude selective behavior after that. In general, the distribution of V | X among survivors

at duration t > 0 differs from the distribution of V among the inflow population. Moreover,

if the treatment has a causal effect on the duration, then the distribution of V among the

survivors at points in time t > 0 typically depends on the treatment, so V⊥⊥�S | X,T > t.6

In other words, there is no treatment randomization at t > 0 despite the randomization

(V⊥⊥S | X) at t = 0.

4To see the former, we first show that assumption 1 implies S⊥⊥ (V, W ) | X where W = {T (s), s ∈ A}. Let
f be the general symbol for density. Then

f (V,W | X,S) = f (W | X,S, V ) f (V | X,S)

= f (W | X,V ) f (V | X)

= f (V,W | X)

where the second equality results from the application of both conditions in assumption 1.

The reverse implication, that S⊥⊥ (V, W ) | X implies assumption 1, can be shown as follows

f (W | X,S, V ) =
f (W,V | X,S)

f (V | X,S)
=

f (W,V | X)

f (V | X,S)
=

f (W,V | X)

f (V | X)
= f (W | X,V )

where the second equality is a direct application of the independence condition and the third equality results

from

f (V | X,S) =

∫
f (V,W | X,S) dW =

∫
f (V,W | X) dW = f (V | X) .

proving that both conditions in assumption 1 hold.
5Notice that in the unrealistic case where V is degenerate, ΘT (s) can be estimated using standard hazard

regression techniques (see e.g. Fleming and Harrington, 1991).
6See Meyer (1996).
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For some empirical designs, however, differential (by treatment status) selective behavior

after inflow but prior to treatment can be ruled out. This amounts to assume that there is no

anticipation by agents of the moment of future treatment. With this we mean that agents do

not have private information about the moment of realization of a future treatment (or that

they do not act on such information). We formalize this condition by assuming that current

potential integrated hazards do not depend on the moment of future treatment enrollment,

Assumption 2 (No anticipation). ΘT (s)(t | X, V ) = ΘT (∞)(t | X,V ) for all s ∈ A and all

t ≤ s and all (X, V ).

See Abbring and Van den Berg (2003) for a detailed discussion. Recall that ΘT (∞) is the

integrated hazard of the potential duration corresponding to never enrolling in treatment.

The consequences of selective behavior after inflow are reflected on the distribution of

unobserved variables V at some duration t > 0. To see this, let g and G represent the density

and cumulative distribution functions of V , respectively. It holds that

g (v | X,S = s, T ≥ t) =
F (t | X,S = s, V = v) g (v | X,S = s)∫∞
0

F (t | X,S = s, V ) dG (V | X,S = s)

=
F T (s) (t | X,V = v) g (v | X)∫∞
0

F T (s) (t | X,V ) dG (V | X)

=
exp

{
−ΘT (s) (t | X,V = v)

}
g (v | X)∫∞

0
exp

{
−ΘT (s) (t | X,V )

}
dG (V | X)

where the second equality follows from the randomization assumption 1. Clearly, the distribu-

tion of V among survivors is generally not independent of duration t or of the treatment status

S. In fact, it is easy to construct examples in which the distribution of V among the treated

survivors at t is first-order stochastically dominated by the distribution of V among the non-

treated survivors at t.7 Under assumption 2, however, selection behavior before treatment can

7For simplicity, suppose there is only one possible treatment, S = s0, meaning that A = {s0,∞}. If

treatment has a positive impact in the individual hazard rate (so that θs0(t|X,V ) > θT (∞)(t|X,V ) for t > s0)

and θS(t|X,V ) is increasing in V , and more strongly so after treatment if S = s0, then the individual hazard

rate at t > s0 is larger if both S = s0 and V is large. As a result, the treated survivors at t may contain

relatively few treated individuals with a high value of V .
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be ruled-out, and assignment to treatment S = s is randomized among the ‘not-yet-treated’

survivors at s (this is shown below, see Proposition 1).

Assumptions 1 and 2 are in line with cases in which a comprehensive policy is rigor-

ously implemented from a specific point in calendar time onwards. This is further discussed in

the next section. Another example is a randomized experiment with an instantaneous binary

treatment status (i.e. A = {0,∞}). As shown in Abbring and Van den Berg (2003, 2005), re-

laxation of assumption 1 implies that a semi-parametric model framework needs to be adopted

in order to be able to identify objects of interest.

2.4 Inference

In this section we consider inference under two distinct empirical designs that are com-

monly available and generally satisfy assumptions 1 and 2. Both explore a policy change, the

first to compare the steady states before and after the reform, the second to explore variation

in the spell duration at treatment assignment for spells starting at different times prior to the

reform. We show that non-parametric identification of the impact of treatment on the duration

outcomes of survivors can only be ensured for the latter.

2.4.1 Spells from the steady states before and after the policy change

We consider empirical inference if the data collection leads to two samples: one in which

Pr(S = 0) = 1 and one in which Pr(S = ∞) = 1. These can be thought of as samples from the

inflow into the state of interest: the sample with Pr(S = 0) = 1 is taken after the introduction

of a comprehensive policy that consists of an immediate treatment for all who enter the state

of interest, whereas the other sample is taken infinitely long before the introduction of the

policy. One may also think of the sample with Pr(S = 0) = 1 as a sample of fully treated

agents and the other sample as a sample from the comparison population. The purpose of this

subsection is to demonstrate that this sampling scheme, which has been widely used in the
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empirical literature, has limited value for inference of effects of interest.

Note that, in this setting, S is observed by the agent from the beginning, and assumption

2 is void. Assumption 1 states that the treatment assignment upon inflow into the state of

interest is not selective, conditional on X. In particular, it requires that the distribution of

characteristics V | X at inflow is the same under both policy regimes.

Average treatment effects can be defined for the comparison of treated (S = 0) and non-

treated (S = ∞), in a analogous way to equations (4)-(8). So, for instance, the average effect

on the treated survivors at t is

ATTS(t; 0,∞ | X) = E
[
θT (0) (t | X, V )− θT (∞) (t | X, V )

∣∣ X,S = 0, T (0) ≥ t
]
.

Notice that the ATS (t; 0,∞ | X) for the relative change in the hazard rate basically equals

the survivor average causal effect of Rubin (2000) in case the latter would be applied to the

duration outcome itself rather than to effects on non-duration outcomes.

The measures of interest that we introduced cannot be estimated non-parametrically from

this data design. Non-parametric inference produces the sample counterparts of the following

quantities

θ (t | X,S = 0) , θ (t | X,S = ∞) ,
F (t | X,S = 0)

F (t0 | X,S = 0)
and

F (t | X,S = ∞)

F (t0 | X,S = ∞)

where θ (t | X,S = s) and F (t | X,S = s) are, respectively, the observed hazard rate and the

survival function at duration t among those with observed characteristics X assigned to treat-

ment s. The individual and observed hazard rates for any triple (t, s,X) are related by

θ (t | X,S = s) = E
[
θ (t | X,S = s, V )

∣∣ X,S = s, T ≥ t
]

(9)

= E
[
θT (s) (t | X, V )

∣∣ X,S = s, T (s) ≥ t
]

where θT (s) (t | X, V ) is the individual hazard rate for potential outcome T (s) at duration t

among those with treatment status s, and the expectations are taken over the distribution

of V conditional on survival up to t. The second equality is a result of the first condition in
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assumption 1. Consequently,

θ (t | X,S = 0) − θ (t | X,S = ∞)

= E
[
θT (0) (t | X, V )

∣∣ X,S = 0, T (0) ≥ t
]
− E

[
θT (∞) (t | X,V )

∣∣ X,S = ∞, T (∞) ≥ t
]

=

{
E
[
θT (0) (t | X,V )

∣∣ X,S = 0, T (0) ≥ t
]
− E

[
θT (∞) (t | X, V )

∣∣ X,S = 0, T (0) ≥ t
]}

+

{
E
[
θT (∞) (t | X,V )

∣∣ X,S = 0, T (0) ≥ t
]
− E

[
θT (∞) (t | X, V )

∣∣ X,S = ∞, T (∞) ≥ t
]}

Thus, the difference between the observed hazard rates is the sum of two terms. The first term

(in line 3 of the above expression) is the average treatment effect ATTS (t; 0,∞ | X). The

second term (line 4) is the selection effect that, among the survivors at t, the treatment and

comparison groups have systematically different unobserved characteristics at T = t despite

the randomization at t = 0. A similar decomposition applies to the other objects of interest.

Clearly, the left-hand side does not capture any meaningful treatment effect because the second

term on the right-hand side reflects the selection effect and is unobserved.

In fact, one can construct examples where θ(t | X,S = 0) < θ(t | X,S = ∞) even if

θT (0)(t | X, V ) > θT (∞)(t | X,V ) almost surely for all t, V,X.

by analogy to the analysis in Van den Berg (2001) of observed covariate effects in MPH models.

The results are straightforwardly extended to more general A as long as we only use data

on spells in which the treatment status does not change.8 To identify average treatment effects

8We should emphasize that it is possible to identify other treatment effect measures, notably the average ad-

ditive treatment effect on the unconditional survival probability at t, i.e. E
[
F 0(t | X,V )− F∞(t | X,V ) | X

]
.

This equals F 0(t | X) − F∞(t | X). With randomization, as in assumption 1, this in turn is equal to

F (t | X,S = 0)−F (t | X,S = ∞). The two survivor functions in the latter can be estimated straightforwardly

taking account of right-censoring. For example, in the absence of X, non-parametric survival estimators like

Kaplan-Meier estimators can be used (see e.g. Andersen et al., 1993, and Fleming and Harrington, 1991).

One can derive uniform confidence bounds on the potential duration distributions and tests of hypotheses like

F 0 = F∞ (see Andersen et al., 1993). One may also obtain point-wise results for isolated survival probabilities,

e.g. to assess the effect of training on the probabilities of staying unemployed for 6 or 12 months. Furthermore,

under the assumption that all individual treatment effects have the same sign across t and V , this sign is

identified from the observed distributions or the observed hazard rates at t = 0.
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in the setting of the current subsection, one needs to adopt a semi-parametric model structure

like an MPH model, or one needs to assume absence of unobserved heterogeneity.

2.4.2 Spells that are interrupted by the policy change

In this subsection we consider empirical inference if the data collection is based on random

samples from the cohorts flowing into the state of interest before the unexpected introduction

of a comprehensive policy. Let τ denote calendar time, and let τ ∗ denote the moment at which

the policy is implemented. We assume that we follow samples from the inflows at calendar

times τ < τ ∗ at least until and including the moment τ ∗.

We assume that the policy applies to all agents from calendar time τ ∗ onwards, including

to those who enter the state of interest before τ ∗. As a result, each agent has a positive

probability of being exposed to the policy. Inflow at time τ0 < τ ∗ leads to s = τ ∗ − τ0.

Thus, there is a one-to-one correspondence between the moment of inflow and the duration at

which the treatment starts. However, in this setting, s is not known until calendar time τ ∗

as there is no anticipation of the introduction of the policy program and, thus, of the future

moment of treatment (assumption 2). We rule out that the distributions of T (s) | (X, V ) are

discontinuous at T (s) = s (though, of course, the hazard rates may be discontinuous there).

Assumption 1 again implies that the treatment assignment upon inflow into the state of

interest is not selective, conditional on X. In this empirical setting, assumption 1 implies that

the distribution of characteristics V in the inflow sample is constant over calendar time.

Comparing agents who flow in before τ ∗ to those who flow in after τ ∗ is hampered by

the problems discussed in the previous subsection. However, we can now also focus on the

effect at duration t of a treatment that starts at duration s′ = τ ∗− τ0, as compared to the case

where at duration s′ no treatment is assigned yet. We consider the average treatment effects

as defined in equations (4)-(8). For instance, the ATTS for treatment s′ at duration t > s′ is

ATTS (t; s′, s | X) = E
[
θT (s′)(t | X, V )− θT (s)(t | X,V )

∣∣X,S = s′, T (s′) ≥ t
]

for s′ ≤ t, s.
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The following proposition is the key to the main results of the paper.

Proposition 1. Consider two cohorts flowing in at τ0 and τ1 such that τ1 < τ0 < τ ∗. Let

ti = τ ∗ − τi. Under Assumptions 1 and 2, [V | T ≥ t0, X, S = t0] and [V | T ≥ t0, X, S = t1]

have the same distribution, namely the distribution of [V | T (s) ≥ t0, X] with s ≥ t0. This

distribution does not vary with s for any s ≥ t0.

Proof: Take any s ≥ t0. As before, let g denote the density function of V and F and F T (s)

the survival functions for the observed and potential outcomes, T and T (s) respectively. The

density of V conditional on (T ≥ t0, X, S = s) can be written as

g (V | T ≥ t0, X, S = s) =
F (t0 | V,X, S = s) g (V | X,S = s)

F (t0 | X,S = s)

In this expression,

F (t0 | V,X, S = s) = F T (s) (t0 | V,X)

g (V | X,S = s) = g (V | X)

where the first and second equalities are implied by, respectively, the first and second conditions

in assumption 1 (namely S⊥⊥{T (s), s ∈ A} | (X,V ) and S⊥⊥V | X). This means that the

density g (V | T ≥ t0, X, S = s) as a function of V is proportional to F T (s) (t0 | V,X) g (V | X),

which, in turn, is proportional to g (V | T (s) ≥ t0, X). In particular, this holds when S is t0

or t1 since t1 > t0.

Next, we show that g (V | T (s) ≥ t0, X) does not vary with s for all s ≥ t0, and including

s = t1. We notice that

F T (s) (t0 | V,X) = exp
{
−ΘT (s)(t0 | X,V )

}
= exp

{
−ΘT (t0)(t0 | X,V )

}
where the second equality is ensured by assumption 2 for all s ≥ t0. This implies that the

density g (V | T (s) ≥ t0, X) as a function of V is proportional to F T (t0) (t0 | V,X) g (V | X),

17



where the latter is proportional to g (V | T (t0) ≥ t0, X). Thus, g (V | T (s) ≥ t0, X) is the same

for every s ≥ t0, and particularly for s = t0 and s = t1. �

The significance of this proposition is that it shows that there is no selection problem if

we compare the sub-population of individuals who are observed to be treated at the elapsed

duration t0 to the sub-population of survivors at t0 who will be treated at a higher elapsed

duration, in the sense that these sub-populations have the same composition. In other words,

V⊥⊥S | T ≥ t0, X, S ≥ t0. Clearly, it is crucial that the sub-populations come from populations

that are identical to each other at their moment of entry into the state of interest. Moreover,

it is crucial that individuals do not act on the future moment of treatment, because then their

hazard rates (and consequently the dynamic selection) would already differ before t0. Under

these two assumptions, the dynamic selection between the moment of entry and the elapsed

duration t0 develops equally in both populations, and the resulting sub-populations at t0 are

equal.

We now apply this result to the identification of average treatment effects. These are the

main methodological results of the paper. We first enunciate the result and proof and then

discuss the meaning and relevance of the identified measures.

Recall that ti = τ ∗ − τi. From a cohort flowing in at τi < τ ∗, we observe the distribution

of (T | X,S = ti). This entails observation of the conditional duration distribution of (T | T ≥
t0, X, S = ti) and the hazard rate θ(t0|X,S = ti) evaluated at t0.

Proposition 2. Consider the introduction of a comprehensive policy at time τ ∗. Suppose

we have duration data from cohorts that flow in before τ ∗. Under assumptions 1 and 2, the

average treatment effects on the individual hazard rate at duration t0 of treatment at t0 as

compared to treatment at t1 > t0, ATTS(t0; t0, t1), ATNTS(t0; t0, t1) and ATS(t0; t0, t1), are

non-parametrically identified and equal θ(t0|X,S = t0)− θ(t0|X,S = t1). These do not depend

on t1 as long as t1 exceeds t0.
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Proof: Contrasting the hazard rates for the observed durations at t0 yields

θ (t0 | X,S = t0) − θ (t0 | X,S = t1)

= E
[
θ (t0 | X, V, S = t0)

∣∣X,S = t0, T ≥ t0
]
− E

[
θ (t0 | X, V, S = t1)

∣∣X,S = t1, T ≥ t0
]

= E
[
θ (t0 | X, V, S = t0)

∣∣X,S = t0, T ≥ t0
]
− E

[
θ (t0 | X, V, S = t1)

∣∣X,S = t0, T ≥ t0
]

= E
[
θT (t0) (t0 | X, V )− θT (t1) (t0 | X, V )

∣∣X,S = t0, T (t0) ≥ t0]

= ATTS (t0; t0, t1 | X))

The first equality follows from the application of equation (9) to each term of the left-hand

side of the first line. Then, by Proposition 1, the distributions over which the expectations

are taken in the second term (line 2) are the same for any treatment t1 ≥ t0, explaining the

second equality. The third equality follows from the first condition in assumption 1, just like

in expression (9). Thus the difference in observed hazard rates identifies the ATTS.

Since the distributions of (V | X,S = t0, T ≥ t0) and (V | X,S = t1, T ≥ t0) are identical

(Proposition 1), it also follows that ATTS (t0; t0, t1 | X) equals ATNTS (t0; t0, t1 | X). More-

over, since both former distributions are the same as the distribution of (V | X,T (s) ≥ t0) for

any s ≥ t0 (again shown in Proposition 1), it also follows that it equals the distribution of

(V | X,T (s) ≥ t0, T (s
′) ≥ t0) for any s, s′ ≥ t0. In particular, it is the same as the distribution

of (V | X,T (t0) ≥ t0, T (t1) ≥ t0) for t1 > t0, implying that the ATS is also equal to the ATTS

and the ATNTS.

Finally, assumption 2 ensures that changing the value of t1 does not affect the value of

the treatment effect as long as t1 > t0. �

The ATTS (t0; t0, t1) and ATNTS (t0; t0, t1) capture the instantaneous causal effect of ex-

posure to the policy (i.e., the instantaneous causal effect of the treatment) at elapsed durations

t0, compared to when the assigned moment of exposure takes place at a higher duration. These

measures are identified without any functional-form restriction on the individual hazard rates

and without the need to assume independence of observed and unobserved explanatory vari-

ables. From the above proof it is also clear that the results extend to settings where X and/or
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V are not constant over time, provided that assumptions 1 and 2 about the assignment process

and the absence of anticipation are accordingly modified.

Since ATTS (t0; t0, t1), ATNTS (t0; t0, t1) and ATS (t0; t0, t1) are all equal and do not

depend on t1 as long as t1 > t0, we may denote them by a short-hand measure ATS(t0) giving

the average instantaneous effect of the treatment at t0 on the survivors at t0.

The sub-population over which the average is taken depends on t0. This is because the

composition of the sub-population changes due to dynamic selection as the elapsed duration t0

increases. As a result, it is not possible to combine the average treatment effects for different

t0 in order to estimate how the average effect on the hazard changes over time for a given

(sub-)population. Dynamic matching estimators have the same problem (see Crépon et al.,

2009).

Under assumptions 1 and 2, average treatment effects on the individual conditional sur-

vival probabilities are also non-parametrically identified. In this case, we define average effects

such as the ATTS as

E
[
F T (s′) (t+ a | X,V ) − F T (s) (t+ a | X,V )

∣∣X,S = s′, T (s′) > t
]

with s′ ≤ s and a > 0. It follows that these are identified if t ≤ s′ for the empirical design we are

considering under assumptions 1 and 2. In particular, take t = s′ = t0, a = 1 and s > t0. The

average causal effect on survivors of starting the treatment at t0 on the probability of surviving

up to t0 + 1, as compared to when the treatment starts sometime after t0, is identified from

F (t0 + 1 | T ≥ t0, X, S = t0) − F (t0 + 1 | T ≥ t0, X, S > t0) .

Notice that the counterfactual may include cases where treatment happens at a later stage

but before the outcome is realised, in which case the treatment effect parameter identifies

the impact of being treated at t0 versus not being treated at t0 (but possibly being treated

later) among the ‘not-yet-treated’ survivors at t0 (see Sianesi, 2004, for a discussion of this

parameter). Under the current assumptions, however, it is also possible to identify the causal

effect on survivors of treatment at t0 versus no treatment up to the time when the outcome is
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measured. For instance, taking again t = s′ = t0 and a = 1, one can choose the counterfactual

s > t0 + 1 to identify the impact on survivors of treatment at t0 versus no treatment before

t0 + 1 on the probability of surviving up to t0 + 1:

F (t0 + 1 | T ≥ t0, X, S = t0) − F (t0 + 1 | T ≥ t0, X, S > t0 + 1) .

Clearly, these results enable applications in discrete-time settings as well (see below).

Now consider the average relative effect on the individual hazard rates. By analogy to

the proof of Proposition 2, it follows that

θ (t0 | X,S = t0)

θ (t0 | X,S = t1)
=

E
[
θ (t0 | X, V, S = t0)

∣∣X,S = t0, T ≥ t0
]

E
[
θ (t0 | X, V, S = t1)

∣∣X,S = t1, T ≥ t0
]

=
E
[
θT (t0) (t0 | X, V )

∣∣X,S = t0, T (t0) ≥ t0
]

E
[
θT (t1) (t0 | X, V )

∣∣X,S = t0, T (t0) ≥ t0
]

=
E
[
θT (t0) (t0 | X, V )

∣∣X,T (s) ≥ t0
]

E
[
θT (t1) (t0 | X, V )

∣∣X,T (s) ≥ t0
] (10)

for any s ≥ t0 and, in particular, for s = t0. Thus, the ratio of the observable average hazard

rates equals the relative effect on the average counterfactual hazard rates (averaged over the

same sub-population). This does not necessarily equal the average effect on the ratio. For this

we make the additional assumption,

Assumption 3 (Multiplicative unobserved heterogeneity). θT (s) (t | X,V ) = θ0T (s) (t | X)V .

Assumption 3 imposes that the individual characteristics V affect the counterfactual

hazard rates in the same proportional way. Note that this is weaker than assuming an MPH

model for T (s) | X,V or T | X,S, V . First, it does not rule out that t and X and the treatment

status interact in the hazard rates of T (s) | X, V or T | X,S, V . And secondly, it does not

make the MPH assumption that V⊥⊥X. But it does imply that individual treatment effects

on the hazard at t can be expressed as

θ0T (s′) (t | X)

θ0T (s) (t | X)
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so they are homogeneous across individuals with different V (although not necessarily across

X or over time). Indeed, the individual effects at t equal ATE (t; s′, s | X), ATS (t; s′, s | X),

ATTS (t; s′, s | X) and ATNTS (t; s′, s | X) on the relative magnitude of the hazard rate.

By substituting Assumption 3 into (10) it follows that, for t1 > t0, ATS (t0; t0, t1 | X)

(and thus ATE (t0; t0, t1 | X)) on the relative magnitude of the hazard rate is identified by

θ (t0 | X,S = t0)

θ (t0 | X,S = t1)

The next proposition summarizes this result.

Proposition 3. Consider the introduction of a comprehensive policy at time τ ∗. Suppose we

have duration data from cohorts that flow in before τ ∗. Under Assumptions 1 to 3, the relative

treatment effect on the individual hazard rate at t0 is non-parametrically identified and equals

θ (t0 | X,S = t0)

θ (t0 | X,S = t1)

with t1 > t0. This does not depend on t1 as long as t1 exceeds t0.

This result can be related to identification results for duration models with unobserved

heterogeneity and time-varying explanatory variables. Honoré (1991) considers an MPH model

with a time-varying explanatory variable that is equal across individuals at short durations

but different for some individuals at high durations (notice that our variable S can be re-

expressed like that if we only use one cohort with t1 > t0). He shows that the MPH model

is fully identified without assumptions on the tail of the distribution of V . He identifies the

effect of the time-varying covariate on the individual hazard rate by considering the ratio of

the observable hazard rates at a point in time where the covariate value changes for a subset

of individuals. This approach is essentially equal to the approach in the proof of Proposition

3. Brinch (2007) considers a hazard rate model where X is absent and S is replaced by a

time-varying explanatory variable x̃(t) that is different across individuals at short durations

but equal for some individuals at high durations. His model is more general than an MPH

model because t and x̃(t) may interact in the individual hazard rate, like in our assumption
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3. However, it does not allow for covariates X that are dependent on V , and it requires a

monotonicity assumption on the over-all effect of the past path of x̃(t) on the observed survival

probability, which we do not need. Brinch (2007) shows that his model is fully identified. His

proof is a mirror-image of the proof of Proposition 3: he exploits variation in the value of x̃(t)

at short durations in order to gather information on the unobserved heterogeneity distribution,

whereas we exploit the lack of variation in the dynamic selection up to t0 in order to gather

information on the causal effect of S.

We end this subsection with a discussion of the identification of average treatment effects

that are not mentioned in the above propositions. Clearly, one cannot hope to identify a full

model, that is, the unknown functions θT (s) (t | X, V ) for all s and the distribution of V |X.

What about the average treatment effects on the individual hazard rate ATTS (t; s′, s) and

ATNTS (t; s′, s) if s′ is strictly smaller than t and s? In such cases, inference is subject to the

same problem as discussed in section 2.4.1: the dynamic selection between s′ and t causes the

sub-population with S = s′ among the survivors at t to be systematically different from the

sub-population with S = s among the survivors at t. This also implies that, without additional

exogenous variation in the treatment duration, and without any functional form assumptions,

we cannot identify any accumulation effects of a prolonged exposure to the treatment or delayed

effects of a treatment, if the object of interest is the hazard rate. Notice that these shortcomings

are averted if the conditional survival probability is the object of interest. In this case one may

estimate F T (t0) (t0 + a | T (t0) ≥ t0, X)− F T (t1) (t0 + a | T (t1) ≥ t0, X) with t1 ≥ t0 + a, where

a captures the length of time needed for accumulation effects or delayed responses to kick in.
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3 Hazard rate estimation at a discontinuity using non-

parametric smoothing

3.1 Hazard rates of interest

From section 2.4.2, the identification of the average causal effect of the policy change on

the individual hazard rates is based on the comparison of observed hazard rates for different

entry cohorts into the state of interest. Each of these is separately identified from the corre-

sponding cohort-specific duration data. It is therefore a natural approach to non-parametrically

estimate both hazard rates, i.e. θ(t0|X,S = t0) and θ(t0|X,S = t1) for some t1 > t0.

The estimation of the hazard rate θ(t|X,S = t0) at the moment of the policy change, for

cohorts flowing into the state of interest at τ0 such that t0 = τ ∗ − τ0 (the treatment group),

involves estimation at the left boundary t0 of the relevant duration interval. After all, the shape

of the individual hazard rate after the policy change t0 may not have anything in common with

the shape before t0, so we restrict attention to duration outcomes exceeding t0. The estimated

hazard rate for the treatment group is then contrasted against a similar estimate of the hazard

rate at the left boundary t0 for cohorts reaching such duration before the policy reform at τ ∗.

Standard kernel hazard estimators are heavily biased at the boundary point. In this

section we discuss the application of methods that are designed to handle discontinuities.

Specifically, we propose boundary kernel hazard estimators and local linear kernel smoothing

estimators. The statistical literature on non-parametric hazard rate estimation in the presence

of discontinuities in the hazard rate and discretely jumping explanatory variables is not yet

well-developed or well-known.9 In section 3.2 we discuss a non-parametric estimator that

is mostly unknown in the economics field, the boundary kernel hazard estimators of Müller

9Most of the literature on the non-parametric estimation of hazard rates imposes strong smoothness condi-

tions on the true underlying hazard rate as a function of t and the explanatory variables (in our case, S and

X), and the explanatory variables are often assumed to be continuous. In cases where smoothness is absent at

a boundary of the support, the hazard rate is often only evaluated at interior points.
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and Wang (1994). An alternative to the boundary kernel hazard estimator is the local linear

smoothing (or local linear fitting, or locally weighted least squares). We do not discuss it here

since it is more widely applied (see Wang, 2005, for an intuitive overview in the field of hazard

rate estimation, and Nielsen and Tanggaard, 2001, Jiang and Doksum, 2003, and Bagkavos

and Patil, 2008, for more details). In the empirical application below, we have applied both

methods to reach very similar conclusions.10

Note that the non-parametric estimation restricts attention to the truncated duration

variables T | S, T ≥ t0. For expositional convenience and without loss of generality, we

transform the left-truncated durations by shifting them to the left, so that our ultimate interest

is in the hazard rate at the boundary 0 when evaluating it from above. When discussing the

estimators we also suppress S in the notation as all the estimation exercise is conditional on

treatment assignment and the same principles apply regardless of treatment assignment. In

the first part of this section, and in line with the empirical analysis below, we do not consider

observed explanatory variables X.11

3.2 Boundary kernel hazard estimators

In the empirical analysis of section 4 we adopt the second-order boundary kernel hazard

estimator of Müller and Wang (1994). Since this is still a largely unknown estimator among

economists, we discuss it here in some detail.

Consider a random sample of n subjects, where the duration outcomes can be independent

right-censored. Let Ti denote the minimum of the duration outcome and the censoring outcome

for subject i (i = 1, . . . , n). Note that this notation deviates from the notation where T denotes

10See Andersen et al. (1993) for an introduction to these approaches.
11If X is exogenously time-varying on (0, t0) in a systematic way across cohorts, then this may cause the

two hazard rates to have common determinants, but we do not pursue this here. Also, in the special case

where V is assumed fixed over time and Assumption 3 applies, each T | X,S has a survival function that is

a Laplace transform of a monotone function of the duration variable, but we do not exploit this restriction in

the estimation procedure.
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the duration outcome of interest and T (s) denotes the potential outcome when treatment

assignment is s. In fact, we abstract from treatment assignment in this section as all estimation

is conditional on it. The difference between T and Ti will always be clear by the presence or

absence of an index. Furthermore, δi is a binary variable equalling 1 iff the duration outcome

is realized before the censoring outcome. Let (T(i), δ(i)) be the ordered sample with respect to

the Ti (so T(1) ≤ T(2) ≤ · · · ≤ T(n)).

We assume that the true hazard rate is twice continuously differentiable in an interval A

starting at 0, A = [0, U ] where U > 0 is the right boundary of the interval. To explain the kernel

estimator, consider first the case in which the bandwidth b is global. We distinguish between

the boundary region B = {t : 0 ≤ t < b} and the interior region I = {t : b ≤ t ≤ U}, which is

adjacent to B (we do not discuss estimation on the right boundary of A here, see Müller and

Wang, 1994, for details). In I, the kernel hazard estimator is the standard Ramlau-Hansen

kernel hazard estimator,12

θ̃(t) =
1

b

n∑
i=1

K

(
t− T(i)

b

)
δ(i)

n− i+ 1

where K is taken to be the Epanechnikov kernel,

K(z) =
3

4
(1− z2) for |z| ≤ 1 (11)

and where b is understood to decrease with n, as explained below. Notice that z in (11) in the

standardized difference between the duration of interest, t, and observations T(i), (t− T(i))/b.

In B, the above estimator needs to be modified to account for the bias at the boundary,

which is typically of asymptotic order O(b) with the above estimator. The kernel function K

is modified to depend on the distance to the left boundary (0). So then K has two arguments,

say q and z, where q equals the relative distance t/b to the left boundary and z, as above,

12This smoothes the increments of the Nelson-Aalen estimator Λn(t) of the integrated hazard based on a

random sample of n subjects,

Λn(t) =
∑

i:T(i)≤t

δ(i)

n− i+ 1
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equals (t − T(i))/b. Thus q ∈ [0, 1) and z ∈ [−1, q] for any point t ∈ B. This ensures that

the support of the boundary kernel does not extend beyond the left boundary. The modified

Kernel function is

K (q, z) =
12

(1 + q)4
(z + 1)

[
z (1− 2q) +

3q2 − 2q + 1

2

]
for q ∈ [0, 1], z ∈ [−1, q]

which simplifies to (11) if q = 1 (that is, in I). Müller and Wang (1994) plot K(q, z) as a

function of z for various values of q. As mentioned, K(1, z) is again the Epanechnikov kernel.

As q decreases, the kernel becomes more and more skewed, and the weight assigned to values

close to the boundary increases strongly. At the left boundary, q equals zero and the estimator

of θ(0) equals

θ̃ (0) =
1

b

n∑
i=1

K

(
0,

t− T(i)

b

)
δ(i)

n− i+ 1

with

K (0, z) = 6 (z + 1) (2z + 1)

There is a positive probability that θ̃(0) is negative since the kernel function may assume

negative values when q is close to 0 and z is small (close to −1). In such cases it must be

replaced by zero.

The boundary correction reduces the bias. At the same time, the variance of the estimator

increases, because the number of points used to estimate the hazard close to 0 becomes smaller.

The above boundary kernel generates a smaller variance than many other boundary kernels,

but a further variance reduction can be achieved by choosing a larger bandwidth close to 0 than

elsewhere. Müller and Wang (1994) therefore propose to use local data-adaptive bandwidths

b(t). Their hazard estimator combines the boundary kernel with varying degrees of smoothing

at different points in the distribution of duration t,

θ̃(t) =
1

b(t)

n∑
i=1

Kt

(
t− T(i)

b(t)

)
δ(i)

n− i+ 1
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where Kt is defined as

Kt (z) =

 K (1, z) if t ∈ I

K
(

t
b(t)

, z
)

if t ∈ B

That is, both the kernel function, Kt and the bandwidth b(t) depend on the point t where the

estimate is being computed.

The crucial building blocks of the data-adaptive boundary kernel estimator are the local

bandwidths. Their optimal choice is the one minimizing the asymptotic mean squared error

(MSE), but this solution is impractical since it depends on unknown quantities, like the hazard

rates themselves. Instead, the optimal local bandwidths can be consistently estimated by

minimizing an estimate of the local mean squared error (see Müller and Wang, 1990 and 1994

for a discussion). The following algorithm details the computational implementation stages of

the local data-adaptive kernel hazard estimator:

Step 1 Choose initial value of bandwidth and construct grids

1. The initial value of the bandwidth, b0, is to be used as global bandwidth to start-off

estimation. Müller and Wang (1994) propose b0 = R
/(

8n
1/5
u

)
if data is available

in the time interval [0, R], where nu is the number of uncensored observations.

2. Construct an equidistant grid for duration variable T in the domain A = [0, R], call

it T̃ =
{
t̃1, . . . , t̃M

}
. Computation time depends crucially on the size of this grid,

so one may start with a parsimonious choice of M .

3. If computation time is important and, as a consequence, T̃ is sparse, construct a

second, finer, equidistant grid for duration variable T in the domain A = [0, R] to

estimate the hazard functions. Call it
˜̃
T =

{̃
t̃1, . . . ,

˜̃tP}, where P > M .

4. Construct an equidistant grid for bandwidth b in
[
b, b
]
, call it B̃ =

{
b̃1, . . . , b̃L

}
.

Müller and Wang (1994) propose using b = 2b0/3 and b = 4b0. For the empirical

application discussed in section 4, we found that this interval was too tight as the

optimal choice often coincided with its boundaries. We used
[
b, b
]
= [b0/6, 6b0].
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Step 2 Obtain an initial estimate of the hazard rates in all points of the grid
˜̃
T using the

initial global bandwidth b0:

θ̂0

(̃
t̃p

)
=

1

b0

n∑
i=1

K˜̃tp
(˜̃tp − t(i)

b0

)
δ(i)

n− i+ 1

for p = 1, . . . P .

Step 3 For each point t̃m ∈ T̃ (m = 1, . . . ,M), estimate the optimal local bandwidth by

minimising the local MSE:

1. Compute the MSE at t̃m for each bandwidth b̃l ∈ B̃ (l = 1, . . . , L). This is

MSE
(
t̃m, b̃l

)
= Var

(
t̃m, b̃l

)
+ bias2

(
t̃m, b̃l

)
where the Var

(
t̃m, b̃l

)
and bias

(
t̃m, b̃l

)
are, respectively, the asymptotic variance

and bias of the hazard estimator at duration t̃m when using bandwidth b̃l. The

following are consistent estimators of these two quantities,

V̂ar
(
t̃m, b̃l

)
=

1

nb̃l

∫ R

0

K2
t̃m

(
t̃m − t

b̃l

)
θ̂0(t)

F n(t)
dt

b̂ias
(
t̃m, b̃l

)
=

∫ R

0

Kt̃m

(
t̃m − t

b̃l

)
θ̂0(t) dt− θ̂0

(
t̃m
)

where the function F is the empirical survival function of the uncensored observa-

tions. F can be estimated at each grid point ˜̃tp as follows:

F
(̃
t̃p

)
= 1− 1

n+ 1

n∑
i=1

1
(
ti ≤ ˜̃tp, δi = 1

)
.

The integrals can be approximated numerically. For a generic function g(t), a simple

numerical approximation over a grid
˜̃
T including the lower and upper boundaries

of the integrating interval (in this case 0 and R) is∫ R

0

g (t) dt ≃ R

P − 1


P−1∑
p=2

g
(̃
t̃p

)
+

g
(̃
t̃1

)
+ g

(̃
t̃P

)
2

 .

An alternative is to estimate the variance and bias by varying t (the integrating

variable) over the observations instead of over the grid.
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2. Select the bandwidth that minimizes the estimated MSE at point t̃m over the grid

B̃:

b∗
(
t̃m
)

= argminb̃l

{
M̂SE

(
t̃m, b̃l

)
, b̃l ∈ B̃

}
.

Step 4 Smooth the bandwidths b∗ to obtain the bandwidths b̂ over the grid on which the

hazard rates are to be estimated,
˜̃
T . The optimal data-adaptive local bandwidths (using

the initial bandwidth b0 to smooth the original estimates) are

b̂
(̃
t̃p

)
=

[
M∑

m=1

K˜̃tp
(˜̃tp − t̃m

b0

)]−1
M∑

m=1

K˜̃tp
(˜̃tp − t̃m

b0

)
b∗
(
t̃m
)

Step 5 Estimate the data-adaptive kernel hazard rates for points in
˜̃
T using the bandwidths

b̂
(̃
t̃p

)
for p = 1, . . . , P

θ̂
(̃
t̃p

)
=

1

b̂
(̃
t̃p

) n∑
i=1

K˜̃tp
˜̃tp − t(i)

b̂
(̃
t̃p

)
 δ(i)

n− i+ 1
.

As functions of the number of observations n, the optimal bandwidths satisfy the usual

conditions (somewhat loosely, b(t) → 0, nb(t) → ∞ as n increases). The asymptotic behavior

of the estimator is not fundamentally different from usual. The optimal bandwidths are such

that nb5(t) converges to a number smaller than infinity, so b(t) ∼ n− 1
5 .

Asymptotic normality allows for the estimation of a confidence interval for θ(0). Following

the line of reasoning in e.g. Härdle (1994) and Härdle et al. (2004), one could ignore the

asymptotic bias term to obtain an approximate 95% confidence interval (see Müller et al.

(2004) for an application of the idea of omitting the asymptotic bias in the related case of

boundary kernel density estimation). Conceptually, it is not difficult to include the asymptotic

bias term in the confidence interval, but in practice this involves non-parametric estimation

of the second derivative of the hazard at 0. An alternative that we follow in the empirical

application below is to use bootstrapping to obtain confidence intervals.

Müller and Wang (1994), Hess et al. (1999) and Jiang and Doksum (2003) provide Monte

Carlo simulation results for the above boundary kernel hazard estimator. They conclude that
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the estimator has an excellent performance in samples sizes n as small as 50 to 250. Hess et

al. (1999) compare the performance to that of other kernel estimators. The other estimators

perform worse, in particular at the left boundary, and they demonstrate that both the boundary

correction and the data-adaptive local bandwidth are important in this respect. Hess et al.

(1999) also provide useful details on the implementation of the estimator.

3.3 Implementation issues

We consider some alternatives for the above estimators, and some aggregate effect mea-

sures.

The “comparison” cohort(s). Consider the estimation of θ (t0 | X,S = t1) with some

t1 > t0. One could argue that this involves estimation in the interior of an interval around

t0 on which the hazard is smooth. In that case, standard kernel hazard (or local linear) esti-

mators can be used. However, one may not want to rule out that the individual hazard rates

θT (s) (t | X, V, S = s) are discontinuous at t = t0 even if S > t0. The application in the next

section is a case in point. In that case, one needs to resort to boundary correction methods.

Analogously, one may examine the left-hand limit of θ (t | X,S = t0) in order to estimate

the “control” hazard, but this also requires the assumption that there are no other disconti-

nuities at t0.

Note that one may widen the “comparison group” by taking θ (t0 | X,S > t0) instead

of θ (t0 | X,S = t1). This does come at a price, namely that the validity of assumption 1

needs to hold for all cohorts flowing in before τ ∗ − t0, thus ruling out cohort effects. Recall

that unobserved cohort effects must be absent, because otherwise S⊥⊥�V | X and assumption

1 would be violated. Observed cohort indicators may be included in X, but note that in

non-parametric analysis any addition to X adds to the curse of dimensionality.

Instead of enlarging the comparison group, one may use the availability of multiple com-
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parison cohorts in order to select the most similar cohort (or set of cohorts) among those

flowing in before τ ∗ − t0. We do not observe the distribution of V | X in a cohort, but we

observe outcomes that are informative on it, namely the duration distribution on the duration

interval [0, τ ∗) in the corresponding cohort. As a selection mechanism, one may match on the

survival probability in the cohort at duration τ ∗, or, even stronger, on the shape of the dura-

tion distribution in the cohort on the duration interval [0, τ ∗). The more similar this shape,

the more similar the composition of survivors at the duration τ ∗.

If one comparison cohort is to be selected, then one may tend to choose a cohort that

flowed in only marginally earlier than the “treated” cohort, following the line of thought that

any unobserved change of the entry composition of the cohorts is a smooth function of the

moment of entry. However, such a choice of t1 being almost equal to t0 has a practical disad-

vantage. To see this, note that θ (t | X,S = t1) may display a discontinuity at t1, so the value

θ (t0 | X,S = t1) at the elapsed duration t0 < t1 is to be estimated from observed realized

durations in an interval to the right of t0 that should not stretch beyond t1. Spells in the

comparison cohort with durations exceeding t1 should be treated as right-censored at t1. Con-

sequently, the number of realized duration outcomes providing information on θ (t0 | X,S = t1)

is very small if t1 is very close to t0.

Observed covariates. Including many elements in X raises a curse of dimensionality in

the non-parametric estimation. One may therefore choose to treat the observed covariates

X as unobservables and hence subsume them into V . Notice, however, that this involves a

strengthening of Assumptions 1 and 3. Now suppose that S⊥⊥X. This can be empirically

verified by examining the composition of the cohorts used to estimate the objects of interest.

It is not difficult to demonstrate that Assumption 1 and S⊥⊥X jointly imply that S⊥⊥V . So

in this case, treating X as unobservables in the estimation of the objects of interest does not

involve a strengthening of Assumption 1. In practice one may therefore verify that S⊥⊥X and,

if this holds, proceed by ignoring X in the duration analysis. The only remaining disadvantage

is that this does not provide estimates by X.
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With discrete X, non-parametric inference would typically lead to separate estimations

for each value of X. This would also allow for the selection of the most similar comparison

cohort for each value of X separately.

To aggregate the estimated average effects over X, one may average the estimated effects

given X over the relevant distribution of X.

Discrete time. Now let us reconsider the continuous nature of the duration variable. In

practice, a continuous-time analysis may sometimes be unfeasible. For example, the data may

be time-aggregated in the sense that events are recorded in time intervals (e.g. unemployment

duration is collected in months even though individuals may move to work on any given

workday). Alternatively, duration outcomes may be discrete due to institutional constraints

(e.g. in certain occupations a job can only start on the first day of a month).

Accordingly, we distinguish between two frameworks. In one, the model is in continuous-

time and the duration outcomes are in discrete time. In the other, both are in discrete time.

In the first framework, the results of Section 2 apply but we cannot estimate hazard rates.

However, we can estimate conditional survival probabilities and their differences, as outlined

in Section 2. In general, results obtained in this framework can be viewed as approximations

of those for hazard rates obtained in a genuine continuous-time framework. Because of the

ease with which survival probability outcomes can be estimated, this approach can be useful

from a practical point of view.

As for the second framework, the analysis of Section 2 is straightforwardly modified to

such settings by working with a genuine discrete-time framework. This is pursued in section 4

below.

Reduced form model estimation. The identification results in Section 2 are constructive

in that they can be translated into estimation methods. In duration analysis it has been

common to view identification results as a justification for the estimation of parameterized
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reduced-form model specifications, implicitly assuming that identification results that do not

rely on functional form assumptions imply that related estimates are also not fundamentally

driven by functional-form assumptions (see Van den Berg, 2001). We may follow this approach

as well, and specify classes of models to estimate the objects of interest. An obvious choice is

to estimate separate PH models by whether t ≷ τ ∗, using all available cohorts, including in

each case calender time as a time-varying regressor.

4 Empirical illustration

4.1 The New Deal for Young People

The New Deal was a flagship welfare-to-work program in the UK, first introduced in the

early years of the Labour government in the late 1990s. There were a myriad of New Deals

for different groups and addressing different employment problems, the largest being the New

Deal for the Young People (NDYP). The NDYP was targeted at the young unemployed, aged

18 to 24, who have claimed unemployment benefits (UB, known as Job Seekers’ Allowance in

the UK) for 6 months. Participation was compulsory upon reaching 6 months in the claimant

count, and refusal to participate was sanctioned by a temporary withdrawal from benefits.

Since entitlement to UB is not time-limited nor dependent on past working history in

the UK, and eligibility is constrained only by a means-test, the NDYP was effectively targeted

at all young long-term unemployed. Thus, and for simplicity, we use ‘unemployed’ to signify

those in the UB claiming count in what follows.

After enrollment, treatment was split into three stages. It comprised a first period of up

to 4 months of intensive job search assistance, with fortnight meetings between the participant

and a personal adviser. This was called the Gateway. For those still unemployed after the

Gateway, the NDYP offered four alternative treatments: subsidized employment, full-time

education or training, working on an organization in the voluntary sector and working in an
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environment-focused organization. Participation in one of these four options was compulsory

for individuals completing 4 months into the NDYP but could be arranged earlier. The options

would last for up to 6 months (or 12 months in the case of education), after which those still

unemployed would go through another period of intensive job-search assistance. This was

called the Follow Through. If perceived beneficial to the worker, repeated participation in the

four alternative options could be arranged.13

The NDYP treated millions of people before being replaced by another program in 2009,

the Flexible New Deal. In 2006, 172 thousand new participants enrolled in the NDYP and the

average number of participants at any month during that year was 93 thousand. According

to the UK Department for Work and Pensions statistics, the per-year expenditure of the

NDYP during the 2000s was in the order of GBP 200 million, excluding administrative costs.14

However, a large proportion of this concerns UB that would be due independently of the

program, for as long as individuals remain unemployed.

The NDYP was first introduced in a few small pilot areas on January 1, 1998, and

extended nation-wide on April 1, 1998. During the implementation stage, the existing stock of

long-term unemployed was gradually moved into the program. New participants were called as

their duration in unemployment reached 6 months or, for the stock of long-term unemployed

at the time of the reform, a multiple of 6 months. Enrollment happened during the intensive

job-focused interviews regularly scheduled to happen every 6 months during the unemployment

spells. Individuals at other durations could apply for early enrollment, but such behavior is

unlikely to be prevalent at the initial stages of the program, when information about the NDYP

was still limited.

This scheme is somewhat more complicated than the design considered in section 2.

However, it allows for the identification and non-parametric estimation of some average causal

13More details on the program can be found in White and Knight (2002), Blundell et al. (2004), Van Reenen

(2004), or Dorsett (2006).
14See DWP (Department for Work and Pensions), 2006, and the DWP website for recent official statistics

on the NDYP.
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effects of enrolling in the NDYP as well as of anticipating future enrolment. Indeed, from April

(or alternatively January in the pilot areas) 1998 onwards, those still ineligible may anticipate

future participation and react in advance. Our methodology will allow us to measure the size

of such anticipation responses.

Notably, anticipation effects of this type do not conflict with Assumption 2, and thus do

not represent a threat to the identification of the parameters of interest. Crucial to this is that

both the treated and comparison groups are drawn either at the time of the reform or before

it, having no prior information of the new policy. Section 4.3 below discusses the (potentially

more serious) consequences of anticipation when the treated and/or comparison groups are

drawn sometime after the reform.

4.2 Data

Data is from the JUVOS longitudinal dataset. This is a random sample of the register

data on all UB claiming spells. JUVOS contains information on 5% of the UK population,

recording the entire claiming histories of sampled individuals since 1982. Information includes

the start and ending dates of each claiming spell as well as the destination upon leaving

(only since 1996), and a small number of demographic variables such as age, gender, marital

status, geographic location, previous occupation and sought occupation. JUVOS contains no

information about what happens while off-benefits except for the destination upon leaving the

UB claimant count, but even this is plagued with missing values. In total, 5.7% of the spells

end in ‘unknown destination’ and almost 25% end in ‘failed to attend’. Subsequent transitions

are unobserved if they do not involve a claim of UB.

The estimation sample is formed of men aged between 20 to 24 when reaching 6 months

in the claimant count. We discard observations for younger individuals to avoid having to deal

with education decisions.
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4.3 The choice of treated and comparison groups

In terms of our identification strategy, the time of policy change (τ ∗) is January 1, 1998

for a small number of pilot regions, and April 1, 1998 for most of the UK. We aim to estimate

the ATS(t0) for t0 equal to 6 months, or 182 days. Estimation relies on comparing the survivals

among the cohort completing duration t0 at τ ∗ (the treatment group, or the treated) with a

similar sample of survivals from an earlier cohort (the comparison group).

The continuous-time framework must be reconciled with the requirement of a positive

sample size. In practice, we need samples of cohorts flowing in unemployment during two

time intervals rather than at two singular points in time. So instead of restricting attention to

those individuals completing 6 months in the claimant count in a particular day, we consider

a full monthly cohort. For instance, the treated sample includes all claiming spells starting

in October 1997 in non-pilot areas, and lasting for at least 6 months. Upon completion of

this time in unemployment, which happens during April 1998, these individuals will enrol in

the NDYP. We also add the sample of claiming spells starting in July 1997 in pilot areas and

lasting until January 1998, when the NDYP is locally available.

It is important to realize that expanding the inflow period may not be innocuous. In

particular, those starting a claiming spell towards the end of October will have some time to

react to the new information becoming available on April 1st, 1998, before gaining eligibility.

They may attempt to influence participation by anticipating or postponing their exit from

unemployment. This behavior violates Assumption 2, endogenously affecting the composition

of the treated group and leading to biased estimates of the impact of treatment. Such bias

should be negligible if the anticipatory effect of the new information is much smaller than the

effect of actual participation in the NDYP. We show in the next section that the distortion

may lead to an under-estimation of ATS(t0) at 6 months.

We define several comparison groups in an analogous way, to be formed of individuals

completing 182 days in the claimant account over an entire calendar month prior to April 1998.

Alternative groups were assessed based on two main outcomes: the distribution of T on days 1
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to 181 in the claimant count and the distribution of observed characteristics at 182 days. Close

resemblance to the treatment group along these two dimensions supports the randomization

hypotheses 1 and 2. Candidate groups varied by date of inflow. We considered the cohorts

moving into the claimant count during June 1997 (pilot areas) and September 1997 (non-pilot

areas), May 1997 and August 1997, July 1996 and October 1996 or the combination of June

and September 1997 with July and October 1996. For simplicity, we designate each alternative

cohort by the month of inflow in non-pilot areas as these represent a larger proportion of the

population. However, data includes data on both pilot and non-pilot regions in all that follows.

Figure 1 displays the survival functions for the treated and comparison groups up to 181

days into unemployment, prior to the release of NDYP. The survival curve for the combination

cohort can hardly be distinguished from the treated survival function, so close is the matching.

The survival function for the September 1997 diverges from that for the treatment cohort

during the December/January period but quickly returns to match it over the last 2 months

of the time window. For our analysis, the important aspect is that early selection ensures

treatment and comparison groups are similar at the time of enrolment. We cannot reject such

hypothesis for the September cohort. Similarly, the August 1997 cohort does converge towards

the treatment cohort curve in the last month before enrolment, but matching is not as close as

for the September 1997 cohort. The exception to this pattern is the October 1996 cohort. The

survival function for this cohort is systematically above that for the treatment group for the

whole duration of the period, suggesting aggregate conditions in the market may have changed

through the 1-year interval.

Table 1 compares the empirical distributions of observed variables among treatment and

comparison groups. The September 1997 cohort displays no discernible differences to the

treatment cohort (column 1 in the table). The combination cohort does not perform as well,

with systematic differences on the history of unemployment up to three years prior to inflow

(column 4 in the table).

We follow the empirical evidence in favor of the September 1997 cohort and confine the

discussion to estimates obtained with this comparison group. Spells in this cohort will not be
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Figure 1: Empirical survival functions between 0 and 6 months after inflow for treated and

alternative comparison groups
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drawn into the NDYP before reaching 12 months of elapsed duration as they are past the 6

months threshold at the time of the reform. But the behavior of this group may be affected

earlier by the information becoming available on April 1st, 1998, confounding the treatment

effects estimates. This source of bias can be simply eliminated by censoring comparison spells

at the time of the reform. In practice, however, one needs to balance the gains and losses

from such procedure. In our case, the instantaneous effect of the new information is likely

to be small, particularly as the NDYP is in its early days and the prospect of participation

among the non-treated is a long distance away. On the contrary, the right-censoring would

substantively reduce the information in the comparison cohort sample. Therefore, we chose

not to right-censor. But we did check the sensitivity of our results and it turns out that they
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Table 1: Treated versus comparison cohorts - p-values for Hotelling statistics comparing dis-

tribution of observables characteristics at completion of 181 days in claimant count

Control cohort

September 97 August 97 October 96 Sep97 + Oct96

(1) (2) (3) (4)

Nr observations 456 368 557 1013

(1) marital status 0.997 0.643 0.114 0.509

(2) age 0.307 0.299 0.916 0.942

(3) region 0.276 0.095 0.112 0.083

(4) occupation 0.767 0.575 0.302 0.532

(5) time U in the past 0.363 0.846 0.021 0.046

(6) U spells in the past 0.801 0.454 0.000 0.006

(7) Zero U spells in the past 0.353 0.747 0.020 0.164

Notes: Data on men aged 20 to 24 years old 6 months after enrolment. The treatment group is the October 1997

cohort. Variables being compared in rows 5 to 7 describe the claiming history in the 3 years preceding inflow into current

unemployment spells. Numbers in bold highlight statistically significant differences in the distribution of observables at

5% level.

are robust to both right-censoring and the choice of the comparison cohort.15

By varying the time of entrance in the claimant count, t0, we can also recover the impact

of introducing the NDYP on the hazard rates at different durations. Crucially, the arrival

of new information about the possibility of future participation can be used to estimate the

anticipatory effects of approaching enrolment. These effects are interesting per se. They are

also informative about the reliability of estimates of the impact of program participation by

exposing the significance of endogenous selection behavior prior to participation.

We estimate the anticipatory effects of introducing the NDYP at each duration x shorter

than 6 months (or 182 days). The treated and comparison groups are formed of individuals

aged 20 to 24 at 6 months into the claimant spell and completing elapsed duration x (below 6

15Estimates can be obtained from the authors upon request.
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months) during April 1998 and March 1998, respectively. In contrast with our earlier discussion

on the effects of participation, right censoring can be key to the identification of the parameters

of interest here. On the one hand, the comparison group will itself be exposed to the new

information on April 1st, 1998. Since their unemployment duration is itself approaching 6

months, they may as well react in advance to influence participation. On the other hand,

the treated group will enrol in the NDYP once they reach 6 months in unemployment, with

potential effects on their outflow rates from that time onwards. We deal with this two potential

sources of bias as explained below, in Section 4.5.

4.4 Results for the average causal effect of program participation

In what follows, the outcome of interest is “all exits from the claimant count”, indepen-

dently of destination, as exits by destination are plagued by missing information. We estimate

the impact of program participation in discrete and continuous time by varying the length of

the time unit. Estimates in discrete time measure the effects on aggregate monthly outflows

while estimates in continuous time do the same for daily outflows. Both sets of estimates are

based on the same treated and comparison samples. In total, the sample size of individuals

completing 182 days in the claimant account during March and April 1998 while aged 20 to 24

is 902, almost equally split between the treatment (April 1998) and comparison (March 1998)

cohorts.

Table 2 presents the main discrete time estimates. We now focus on the results in row (1)

and postpone the discussion of the remaining estimates to the next section. Row (1) compares

the effect of the NDYP on survivors at 6 months (column (1)) with intention to treat effects at

the same duration (columns (2) and (3)). The estimate in column (1) contrasts the one month

outflow rates for the treated (October 1997 cohort, completing 6 months in the claimant count

during April 1998) and comparison group just excluded from the program (September 1997

cohort, completing the same duration during March 1998). It suggests the outflows from the

claimant count increased by 4.5% in the first month after enrolment, representing a raise in
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the probability of leaving of about 35%. It is in line with earlier results.16 The intention to

treat effects contrast similar groups one year earlier (column (2)) or contemporaneous older

groups (column (3)). None of the estimates is statistically significant.

Table 2: Discrete time estimates - Effects on the treated and intention to treat on outflows

from UI claimant count at different elapsed durations; men only

Treatment effect Intention to treat

20-24 year olds 20-24 year olds 25-29 year olds

elapsed duration 1998 1997 1998

(1) (2) (3)

Effect at enrolment into treatment

(1) 6 months .045 .014 -.009

-inflow Sep (T) vs Oct (C) - (.023) (.022) .021

911 1118 1365

Effects in anticipation of enrolment

(2) 4 months -.015 .006 -.022

- inflow Nov (T) vs Dec (C) - (.021) (.022) (.020)

1328 1365 1826

(3) 5 months -.017 .057 .033

- inflow Oct (T) vs Nov (C) - (.021) (.021) (.020)

1098 1228 1571

Notes: T and C stand for treatment and comparison groups, respectively. Rows (1) to (3) display estimates of the effects

of the NDYP or intention to treat at different elapsed unemployment durations. Each row presents estimates, standard

errors and number of observations in the first, second and third lines, respectively. Values in columns (1) and (2) respect

to men aged 20 to 24 years old 6 months after inflow into the claimant count. Treatment effects in column (1) compare

ongoing spells at the specified elapsed duration in April 1998 and March 1998. Intention to treat effects in column (2)

compare ongoing spells at the specified elapsed duration in April 1997 and March 1997. Column (3) presents intention to

treat effects at completion of the specified elapsed durations in April and March 1998 for men aged 25 to 29 years old 6

months after inflow into the claimant count.

Estimates in bold are statistically significant at 5% level.

16See Blundell et al., 2004.
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Figure 2 displays the continuous time counterpart of the treatment effect in row (1)

column(1) of table 2. The plot contrasts the outcomes of the October 1997 and September

1997 cohorts using Müller and Wang estimator with optimal local bandwidths. Treatment

effects are displayed both in differences and ratios together with the 95% confidence intervals

using the analytic asymptotic variance without bias correction.17 We notice that although

t0 = 182 days is the minimum elapsed duration for job search assistance, it is conceivable

that the program requires a minimum length of time to act and exert any effect due to the

administrative procedures involved in enrolling individuals and passing on the information

about the treatment. Thus, figure 2 shows estimates for elapsed durations 182 to 212 days.

Zero effects at the start of the eligibility period support comparisons at higher durations

by suggesting that the selection process for those in the treatment and comparison groups

remains identical. Once the treatment and comparison hazards diverge, differential changes in

composition may undermine future comparisons.18

The pattern of results is almost identical whether these are estimated in differences or

ratios.19 We therefore discuss the former only. Clearly, the main interest is in the first set of

significant values after 182 days. Any features after that may be due to duration dependence,

dynamic selection, or both. We find significant effects of participation in the NDYP only after

about a week into the program, when the estimates quickly peak to a positive increase of about

0.6% on the rate at which claimants leave the claimant count. This amounts to more than

doubling the hazard rate in the absence of treatment as can be seen from the right hand side

graph. The effect then drops to a lower positive level that just misses the 96% significance level

given the wide confidence bands. However, at this stage we can no-longer separate causal and

17With bootstrapping we obtain virtually the same intervals.
18Estimates of treatment effects at durations beyond 182 days may be affected by an additional source of

bias as late September entrants in the comparison group may cross April 1, 1998 before their hazard being

assessed. As discussed before, reactions in anticipation of future eligibility (6 months into the future) may bias

estimates of the hazard rates for the comparison cohort. Correcting the comparison group to account for the

arrival of information on April 1, 1998 does not change the results. Robustness to the choice of the comparison

groups also suggests this source of bias may be irrelevant in estimation.
19Recall that the ratio estimate requires Assumption 3 to hold, whereas the difference estimate does not.
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Figure 2: Average impact of the NDYP on those eligible to treatment - October 1997 versus

September 1997 inflow into UI claimant count
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Notes: The treated (comparison) group is formed of spells flowing into unemployment during October

(September) 1997 and lasting for 6 months. For both treated and comparison groups, the average optimal

local bandwidth is 80 days with a standard deviation of 30 days.

confounding compositional effects. We conclude that, among those who enter the new policy

regime at 6 months of unemployment duration, the program has a significant and important

positive average causal effect on the exit rate at 6 months. This is a robust result, valid in the

presence of unobserved heterogeneity.
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4.5 Results for the average causal effect of receiving information on

the future treatment

We now consider spells with elapsed durations shorter than 182 days at the time of

the reform to estimate the anticipatory effects of the NDYP. The new comparison groups are

formed of individuals completing elapsed duration t0 during April 1998 (treatment group) or

March 1998 (comparison group).

To ensure comparability, we contrast the treated and comparison groups with respect

to earlier survival rates and the distribution of observables at elapsed durations of interest.

Figure 3 plots the survival functions for 4 sets of entry cohorts. There are some signs of

differential selection, apparently associated with the seasonal effects of December/January. For

later cohorts, crossing December/January earlier in their spells (panels B and C), the survival

functions continue diverging throughout the observed durations and especially at the end of the

period, when reaching April (treated) or March (comparison groups). Post December/January

cohorts (panel A), unaffected by this seasonal variation, exhibit very close survival functions.

Earlier cohorts (panel D) are also affected but return quickly to a common path and look

comparable towards the end of the period. The latter result is very similar to the observed

patterns for the October and September cohorts.

Table 3 compares the distribution of observed variables for entry cohorts one month apart

conditional on reaching elapsed durations 2 to 5 months during March or April 1998. Column

2 shows that the December 1997 and January 1998 cohorts are compositional different upon

reaching 3 months in the claimant count. The absence of statistical significant differences

in the distribution of observables among earlier cohorts further supports their comparability

(columns 3 and 4). On the light of these results, our analysis of anticipatory effects focuses

on durations from 4 to 6 months. In the presence of anticipatory effects, this is when they are

expected to peak.

Rows 2 and 3 in column 1 of table 2 present the discrete time anticipatory effects at 4

and 5 months of elapsed duration, respectively. Although both negative, none of the estimates
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Figure 3: Survival functions for cohorts reaching elapsed durations of 2 (panel A) to 5 (panel

D) months during April 1998 (treatment group) versus March 1998 (comparison group).
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Notes: Each graph title details the month of inflow of treatment and comparison groups constructed to reach 2 (panel A) to 5

(panel D) months of elapsed duration in April (treatment) versus March (comparison) 1998. Men only. Dash lines represent 95%

confidence intervals.

is statistically significant. This result is in line with other existing assessments of the NDYP

anticipatory effects (Blundell et al., 2004, de Giorgi, 2005). It suggests individuals do not react

in advance to the prospect of future treatment. Similar estimates for the effects on intention

to treat in columns 2 and 3 are also statistically zero except for the odd case of 20 to 24 years

old one year earlier.
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Table 3: Treatment versus comparison cohorts - p-values for Hotelling statistics comparing

distribution of observables at completion of 2 to 5 months in the UI claimant count

Month of inflow

(1) treatment cohort Feb 98 Jan 98 Dec 97 Nov 97

(2) comparison cohort Jan 98 Dec 97 Nov 97 Oct 97

(3) elapsed duration 2 months 3 months 4 months 5 months

(1) (2) (3) (4)

(4) marital status 0.471 0.339 0.790 0.656

(5) age 0.120 0.263 0.366 0.318

(6) region 0.425 0.304 0.671 0.858

(7) occupation 0.338 0.234 0.410 0.603

(8) time U in the past 0.188 0.015 0.439 0.921

(9) U spells in the past 0.303 0.021 0.242 0.387

(10) Zero U spells in the past 0.626 0.167 0.271 0.589

Notes: Treatment and comparison groups composed of men in the claimant count conditional on com-

pleting the elapsed duration of interest during April 98 (in the treatment group) or March 98 (in the

comparison group). Row 1 (2) details the enrolment date for the treatment (comparison) group in the

evaluation of the effect at the elapsed duration in row 3. All men aged 20 to 24 years of age 6 months af-

ter enrolment. The variables being compared in rows 8 to 10 describe the claiming history in the 3 years

preceding inflow into current unemployment spells. Numbers in bold highlight statistically significant

differences in the distribution of observables at 5% level.

However, our estimates of the anticipatory effects of treatment may be biased as the

one month time window used to estimate outflows crosses April 1, 1998 for the comparison

group. Thus, the comparison and treatment groups will be exposed to the same information

about the NDYP for part of the evaluation period. In these circumstances, one would expect a

bias towards zero if treatment and comparison groups react similarly to the prospect of future

treatment.

We deal with this form of bias in the continuous time approach by right censoring spells

in the comparison group at the time the NDYP is introduced. There is an additional prob-
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lem affecting continuous time estimates resulting from the eligibility rule at 182 days. Local

estimates close to that point result from the weighted average of hazard rates in the neigbour-

hood. Close to the eligibility point, estimates of the anticipatory effects are vulnerable to the

inclusion of hazards at durations above 182 days in the estimation procedure. We therefore

limit analysis of anticipatory effects to durations below 172 days and condition the choice of

the bandwidth to ensure hazard rates affected by the treatment are not considered. In fact,

we use our results from the previous section in conditioning the choice of the bandwidth and

consider 189 days to be the limit in duration before participation in the NDYP exerts some

effects.

Figure 4 shows the continuous time estimates of anticipatory effects. It is evident from the

graph that only late in the spell, within 15-20 days before gaining eligibility, does anticipation

gain importance. This result would not be noticed in a discrete time analysis. The treatment

effects on the hazard rates drop strongly from the beginning of the 5th month. Despite the

wide 95% interval bands towards the end of the period (due to the bias corrections discussed

above), the effect is statistically significant at high durations.

This result is new, as previous studies looking at anticipatory responses fail to consider

changes in behavior very close to the eligibility point.20 It suggests estimates of the impact of

the NDYP using spells reaching eligibility after the program has been running for some time

may be upward biased if those in the treatment group are more work-prone than those in the

comparison group.

5 Conclusions

We show that, even in the presence of dynamic selection, one can use RD to identify

the average impact of a new policy on the hazard rates at different durations in the state of

20De Giorgi (2005) estimates Pr(T < 6|X, inflow after Apr98) − Pr(T < 6|X, inflow before Oct97). This

method is only applicable for unconditional survival probabilities. Blundell et al. (2004) study anticipation

before April 1998 by exploiting regional and age discontinuities. Both studies find no evidence of anticipation.
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Figure 4: Anticipatory effects of the NDYP - difference in hazard rates by elapsed duration

prior to completion of 6 months in the claimant count
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Notes: Effects estimated on (sliding) inflow cohorts 1 month apart, conditional on completing x days in

the claimant count in April 1998 (treatment group) versus March 1998 (comparison group), where x is

the duration specified in the x-axis. Dash lines represent 95% confidence intervals.

interest. This is done in a completely non-parametric framework, without resorting to the

typical proportional hazard specification or exogeneity assumptions. Our results are most

useful in the presence of a policy reform when it is possible to explore variation in the time of

exposure to the new regime. Identification relies on the comparison of cohorts flowing in the

state of interest at different points in time prior to the reform. For a later cohort, survivors

at the time of the policy reform are exposed to the new regime when elapsed duration in the

state of interest is, say, s, while for an earlier cohort, survivors at duration s still face the old

regime. The assumptions required to ensure that the two cohorts are comparable at duration

s are generally satisfied in this empirical setting, implying that both cohorts experience the
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same dynamic selection up to s.

Our results also show that the implementation details framing the introduction of a new

policy have important consequences for the quality and timing of potential evaluation exercises.

Specifically, a policy that applies to all cases in the state of interest at the time of the reform

alleviates the need for strong identifying assumptions and supports the early production of

evaluation results. On the contrary, a policy reform that applies only to the new spells will

have to deal with differential dynamic selection, possibly differential selection at inflow once

the new regime is announced, and wait for at least t periods before the impact of the new

policy can be evaluated on the outcomes at duration t. The main drawback to our approach,

though, is that only it only applies in the short run, at the time of the reform. The average

treatment effects on the hazard rates cannot be assessed once the policy has matured.

We illustrate the use of our suggested method in the evaluation of the NDYP, using

non-parametric estimates of the hazard rates at the boundary as suggested by Müller and

Wang (1994). Our results on the impact of the program on the exit rates from unemployment

after enrolment are consistent with those of other studies (e.g. Blundell et al., 2004). However,

contrary to others, we find statistically significant anticipation effects. These effects are evident

when treating time as a continuous variable as they are important only 2 weeks prior to gaining

eligibility to the program.
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