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Abstract

Heterogeneity is likely to be an important determinant of the shape of optimal

tax schemes. This article addresses the issue in a model à la Mirrlees with a con-

tinuum of agents. The agents di�er in their productivities and opportunity costs

of work, but their labor supplies depend only on a unidimensional combination of

their two characteristics. Conditions are given under which the standard result

that marginal tax rates are everywhere non-negative holds. This is in particular

the case when work opportunity costs are distributed independently of income.

But one can also get negative marginal tax rates: economies where negative tax

rates are optimal at the bottom of the income distribution are studied, and a

numerical illustration is given, based on UK data.
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1 Introduction

The bulk of the theory of optimal taxation recommends that the marginal tax

rate be everywhere positive: labor supply is distorted downwards, compared

with laissez-faire. The conditions under which the result holds (continuous labor

supply or intensive margin, unobserved productivity, constant opportunity cost

of work, utilitarian planner with a redistributive motive towards lower incomes)

have been thoroughly investigated (Seade (1977), Seade (1982), Werning (2000),

Hellwig (2007)).

The purpose of the present paper is to describe how negative marginal tax

rates can be optimal, keeping with the intensive setup largely studied in the lit-

erature, when there are multiple dimensions of heterogeneity. Indeed Mirrlees

(1976) in its Section 4 indicates, along a line that will be pursued further here,

that the sign of the marginal tax rate cannot be predicted when the agents in

the economy di�er along several dimensions of heterogeneity. Workers di�er in

both their productivities and opportunity costs of work. Under utilitarianism,

heterogeneity comes into play through its impact on cardinal utilities. How social

weights, or marginal utilities of income, vary with income determines the shape

of the optimal tax scheme. Conditional on income, utility levels, and more im-

portantly directly their derivatives with respect to income, may either decrease or

increase with work opportunity costs. This may vary according to circumstances,

depending on whether the cost is associated with poor living conditions (i.e. a

handicap) or re�ects a taste for leisure or opportunities outside the labor market

(such as gardening at home or black market activities). For a given income, the

social weight is proportional to the expected marginal utilities, where the expec-

tation is taken over the distribution of work opportunity costs at this income

level. Therefore the social weight curve both depends on the speci�cation of the

cardinal utility function and on how the distribution of work opportunity costs

changes with income.

The fact that heterogeneity can blur the redistribution motive, through the

possible correlation between ability and onerousness of work, has been discussed

in models where agents have a �nite number of types. A pioneer work is that of

Stiglitz (1982) who shows that the high-skilled individual should face a negative

marginal tax rate if the low-skilled individual's upward incentive constraint binds,
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which is the case if social weights are increasing in type. The importance of

this observation for policy was pointed out in Cu� (2000), who is the �rst to

explicitly link social weights to the opportunity cost of work, using alternative

choices of cardinal utilities. In a model with four types, combining two values for

productivity and two values for the cost of work, Boadway, Marchand, Pestieau,

and Racionero (2002) showed how it can be optimal to have binding upward

incentive constraints when high opportunity costs are associated with small social

weights.

The present paper shows how intuitions derived from �nite types models ex-

tend to the standard optimal taxation framework with a continuum of types,

which is more appropriate to practical situations. In this setup, we revisit the

analysis of Saez (2002), making explicit the determinants of the social weights and

linking them to the agents' heterogenous characteristics. In particular, we build

on the result that negative marginal tax rates are only optimal at the bottom

of the skill distribution if these individuals have below average social weights, a

rather drastic condition. We show that this condition may hold rather naturally

if (i) there is heterogeneity in utilities, holding income constant, and (ii) the het-

erogeneity reduces the social weights put on the low income types, relatively to

those of the larger income types.

We consider a standard model à la Mirrlees where the workers' choices can be

represented by a utility function which is separable in consumption and leisure.1

Although agents di�er in productivity and work opportunity cost, their behavior

is assumed to only depend on a unidimensional combination of the two underlying

parameters, which avoids the technicalities that typically go with multidimen-

sional heterogeneity. A similar shortcut has been used by Brett and Weymark

(2003) in a continuum environment, while Beaudry, Blackorby, and Szalay (2006)

tackles the full multidimensional issue in a model where there are a �nite number

of types.

The paper is in three parts. First, without any a priori assumptions on the

relative weights given to the various agents in the economy, we describe the set

of second best allocations. Each allocation is associated with a tax schedule.

Under regularity assumptions, we show that the �rst order condition relating the

1Our framework is more general than some of the studies in the previous literature: we allow
for income e�ects, we do not assume linearity in leisure.
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marginal tax rate to the social weights of the agents, familiar from optimal tax

theory, also applies here with arbitrary exogenous social weights.

The second part of the paper relates the social weights to the underlying

distribution of characteristics in the economy. It describes situations where the

Mirrlees result, everywhere positive marginal tax rates, holds. This is the case,

for instance, when the distribution of opportunity costs is independent of that of

productivities, whatever the impact of these costs on the agents utilities.

The third part builds on Saez (2002) to show when negative tax rates are

optimal. We provide a theoretical example where agents with low productivities

exhibit a large spectrum of opportunity costs, and are better o�, the larger their

costs. We give a general formula for the social weight of the low skilled, as a func-

tion of the distribution of the heterogenous characteristics and of the derivative

of marginal utility with respect to the heterogeneity parameter. Finally we illus-

trate the potential importance of heterogeneity on a simulation exercise grounded

on UK data. We show that a small change in heterogeneity, from a standard error

of the work opportunity cost of ¿ 100 at the bottom of the earnings distribution

to ¿ 200 at the �rst quartile, is enough to warrant negative marginal tax rates.

This indicates that more work and attention should be devoted to heterogeneity

when designing optimal tax schemes.

2 Second best optimality in the Mirrlees model

We consider an economy with a continuum of agents. Agents di�er by their

opportunity costs of work and their abilities, respectively measured by the non-

negative numbers θc and θp. The overall utility U of an agent that earns a before

tax income y leading to a �nal consumption (or after tax income) c is

u(c) + ṽ(y, θ),

where θ = (θc, θp) designates the agent's type. The utility of consumption u(c)

is increasing and concave in c. The second term measures the disutility from

working. It is decreasing and concave in y, increasing in θp, decreasing in θc: the

larger productivity, the less work is needed to achieve a given production level;

given y, the larger the cost of work, the smaller the utility.

The government does not observe the agents' types θ and has to base redistri-
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bution solely on observed earnings, using a nonlinear tax scheme. A citizen who

earns a before tax income y is left with an after-tax income c = R(y) = y−T (y),

where T (y) denotes taxes net of bene�ts. A measurable function ỹ(θ) is called

an allocation. Given a consumption schedule R, an allocation such that ỹ(θ)

maximizes

u(R(y)) + ṽ(y, θ)

is incentive compatible. Such an allocation will be denoted ỹR(θ) to make explicit

its relationship with R.

An allocation is feasible when aggregate production, the sum of the ỹR(θ),

is equal to aggregate consumption, the sum of the R(ỹR(θ)). The government

problem is to choose the incentive compatible feasible allocation which is optimal

given his redistributive motives.

We restrict our analysis to the case where the consumers' behaviors depend

e�ectively on a unidimensional parameter α = A(θ). In general when there are

several dimensions of heterogeneity and the government has only one dimension

of observation (income), a major di�culty is to identify the shape of the set of

types that are associated with a given level of income, since this shape typically

depends on the tax schedule. Here, the shape is given by the level curves of the

function A, independently of R. Formally, the above utility function reduces to

u(c) + v(y, A(θ)) = u(c) + v(y, α), where v(y, A(θ)) ≡ ṽ(y, θ).2 The function A is

supposed to be increasing in productivity θp and decreasing in the onerousness

of work θc. Then v is increasing in its second argument. We assume that the

cross derivative vyα is everywhere positive, which implies that the indi�erence

curves of the agents in the (c, y) space are single-crossing.3 In this circumstance,

it is known that incentive compatibility is equivalent to a simple monotonicity

condition (for completeness we provide the proof in the Appendix). The value of

utility at the maximum, or indirect utility, is denoted UR(α).

Lemma 1. A necessary and su�cient condition for an allocation y to be incentive

compatible is that it be nondecreasing in α. Furthermore, the indirect utility UR(α)

2To distinguish the functions of α from those of θ, we put a tilde on the latter.
3It would be of interest to know whether our analysis extends to situations where utility is

not separable between consumption and leisure, as in Mirrlees (1971) or Hellwig (2007). This
would probably require a general version of the single-crossing assumption in the spirit of Edlin
and Shannon (1998).
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is di�erentiable at all but at most countably many points α, with

U ′R(α) = vα(y(α), α).

Both R(yR(α)) and UR(α) are nondecreasing functions of α.

Our formulation encompasses the standard model in the literature. The link

can be made precise as follows. Let the single heterogeneity parameter be α = θp,

and take the function v as −v̂(y/θp), where y/θp is the quantity of labor that

the agent must provide to get income y, given his ability θp. The function v̂

measures the cost of providing labor in utility terms. It is increasing and convex.

In general, when the agents not only have di�erent productivities but also di�er

in their costs of providing a given labor supply y/θp, the Mirrlees function v̂(y/θp)

becomes v̄(y/θp, θc). The unidimensional restriction here is the assumption that

in fact −v̄ reduces to some v as above.4 With a well designed incentive scheme,

the government may infer the characteristic α of an agent from his income y, but

it is unable, say for a large income and a large α, to know whether it comes from

a high productivity type or a low cost of work type.

Given the information available to the government, all the agents of type θ =

(θc, θp) with the same α = A(θ) must be treated equally. The second best optimal

allocations are incentive compatible allocations which maximize a weighted sum of

the agents utility functions, with positive weights π(α) summing up to 1, subject

to the government budget constraint.5 Let G be the cumulative distribution

function of the parameter α. We assume that G admits a density g which is

continuous and positive on the interior6 of the support [α, α], α < α < ∞. The

Lagrangian of the second best program is

L =

∫ α

α

{π(α)UR(α) + λ[y(α)−R(y(α))]} dG(α), (1)

4In an earlier version of the paper, we studied the situation where the disutility of work
is isoelastic, v̂(y) = y1+1/e and the two parameters θc and θp combine in a one-dimensional
parameter α as follows: v(y, α) = −v̂(y)/α with α = (θp)1+1/e/θc.

5To be precise, one gets all second best allocations when the weights describe the set of
probability measures on the space of types. For notational simplicity, we write the programs
below for probability measures that have a density with respect to the measure on types. The
results are valid in the general case.

6As pointed out by a referee, the multidimensional construction typically implies g(α) =
g(α) = 0. This is discussed in Brett and Weymark (2003), p.2565.
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where λ is the multiplier of the budget constraint, i.e. the marginal cost of public

funds.

A marginal admissible transformation, that does not change the tax pay-

ers' labor supplies, consists in uniformly increasing utility by some amount dU

through a change in consumption dR(y) = dU/u′(R(y)), for all y. Since the

Lagrangian should be left unchanged after this transformation, it follows that∫ α

α

λ

u′(R(yR(α)))
dG(α) = 1.

Therefore g∗(α) ≡ λg(α)/u′(R(yR(α))) is the density of a probability measure G∗.

To give a simple statement of the �rst order condition for second best optimality,

we associate with an allocation yR the modi�ed weights:

π∗(α) = π(α)u′(R(yR(α))). (2)

Computed with the probability measure G∗, the average modi�ed social weight

equals the cost of public funds:∫ α

α

π∗(α) dG∗(α) = λ

∫ α

α

π(α) dG(α) = λ.

Let p∗(α) be the average value of the social weights of all the agents with idio-

syncratic characteristics larger than α:

p∗(α) =
1

1−G∗(α)

∫ α

α

π∗(x) dG∗(x) = EG∗(π
∗(x)|x ≥ α). (3)

By construction, any second best allocation satis�es, for all α

[1−G∗(α)]EG∗(π
∗(x)|x ≥ α) +G∗(α)EG∗(π

∗(x)|x ≤ α) = λ.

If the average weights of the agents above α is smaller than λ, the weights of

the agents below is larger than λ, and conversely. Also, at the lower boundary,

p∗(α) = λ. The �rst order condition for the optimal tax rate at α, similar to

formula (21) of Mirrlees (1971), can then be expressed as follows.7

7In a previous version of this paper, Choné and Laroque (2007), in a setup where the utility
function is linear in consumption, we provide a full characterization of the set of second best
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Lemma 2. Let y be a second best allocation. Consider α in (α, α) where y is

continuous and there is no bunching. Then

λ
u′(R(yR(α)))

vyα(yR(α), α)
T ′(yR(α)) =

1−G∗(α)

g∗(α)
[λ− p∗(α)] . (4)

The proof in appendix derives the �rst order condition at all points, including

discontinuity points of y, and shows, under the additional assumption vαyy ≥ 0,

that any second best allocation is continuous in the region where marginal tax

rates are nonnegative.8

As a consequence of (4), the marginal tax rate supported by type α has

the same sign as λ − p∗(α). The formula, as discussed in Diamond (1998) for

an economy with quasi-linear preferences, is associated with an increase dT ′ in

the marginal tax rate on the interval [α− dα, α], which reduces consumption by

− dT ′ dα for α in [α, α]. The left hand side of (4), once multiplied by g∗(α) dT ′ dα,

corresponds to the distortion in labor supply that takes place in the interval

[α− dα, α]. The right hand side, multiplied by g∗(α) dT ′ dα, is the change in the

Lagrangian associated with the decrease in consumption above α: the government

collects (1−G∗(α)) dT ′ dα, which is valued at the marginal cost of public funds λ,

but the utilities of the concerned agents fall, which taking into account their social

weights reduces welfare by (1−G∗(α))p∗(α) dT ′ dα. This marginal transformation

must leave the Lagrangian unchanged, which yields (4).

The sign of the marginal tax rate indicates how the incentive constraints bind.

The intuition, largely taken from Boadway, Marchand, Pestieau, and Racionero

(2002), is as follows. There is no distortion at α, and the incentive constraints

are not binding when R′ = 1, i.e. from (4), when the average social weights of

the agents with a higher income is equal to that of the agents with a smaller

income, p∗(α) = EG∗(π
∗(x)|x ≤ α) = λ. When the weight of the agents with

lower α's is larger than the average weight (i.e., p∗(α) < λ < EG∗(π
∗(x)|x ≤ α)),

the optimal income tax redistributes in their favor, increasing after tax income

at the bottom, lowering it at the top: the slope of the after tax income curve

becomes smaller than 1, in e�ect creating a positive marginal tax rate. The

allocations, without the no-bunching condition of Lemma 2. Werning (2007) also studies the
set of second best allocations.

8We are grateful to an anonymous referee who urged us to investigate the continuity prop-
erties of the optimal allocations.
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redistribution is limited by the fact that the high skilled would fake being low

skilled: the incentive constraints binds downwards. Conversely when the social

weights of the agents above α is larger than λ, redistribution lowers after tax

incomes of types below α (compared to laissez faire) and increases that of types

above α: this gives the after tax income curve a slope larger than 1, the marginal

tax rate is negative and incentive constraints bind upwards.

3 Utilitarianism and positive marginal tax rates

Lemma 2 links the optimal tax rate with the social weights at a regular second

best allocation. From (4), the marginal tax rate supported by an agent of type

α0 depends on the average social weight of the agents of type α larger than α0.

Therefore, to study the sign of the marginal tax rate, we relate the values of

the social weights to the objective maximized by the government. Utilitarianism

requires a speci�cation of cardinal utilities. A priori the cardinal utility can be any

function K [U, θ].9 The only requirement for consistency with private choices is

that it increases in its �rst argument. Any di�erence between types can be taken

into account through the second argument of K. Since by Lemma 1, incentive

compatibility implies that the indirect utility function is nondecreasing in α, K is

nondecreasing in α through its �rst argument. To keep in line with the literature,

we assume that productivity θp only enters cardinal utility by its impact on U ,

through α: it is enough for our purpose to restrict ourselves to cardinal utilities

of the form K [U, θc].10

A utilitarian planner maximizes the sum of the cardinal utility functions∫∫
K [UR(α), θc] dF (θc|α) dG(α),

9We adopt a utilitarian viewpoint: the cardinal utility is an objective measure of the agents'
well being. All the results of course apply to a situation where the function K re�ects society's
value judgments.

10As pointed out by a referee, formally one does not need the extra degree of freedom given
by the parameter θc to reverse traditional conclusions. It is enough to have a utilitarian func-
tion K [U,α] with a �rst derivative KU [UR(α), α] which is su�ciently increasing in its second
argument to counteract the e�ect of the �rst argument, so that KU [UR(α), α] is increasing in
α. From an economic viewpoint, however, one would need some empirical justi�cation for this
unconvincing assumption. The shape of the (non-degenerate) distribution of θc conditional on
α may provide a rationale for the type of phenomena under study, as illustrated in the last
section of the paper.
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under its budget constraint, where F (θc|α) denotes the cumulative distribution

function of θc, conditional on the equality α = A(θ). Identifying the Lagrangian

with its second best counterpart (1), the associated weights π(α, θc) are equal, up

to a multiplicative normalization factor, to KU [UR(α), θc]. Under the assumption

that labor supply is driven by the one-dimensional parameter α, the optimal

schedule only depends on the aggregate weights

π(α) =

∫
π̃(α, θc) dF (θc|α). (5)

To account for income e�ects, we introduce the modi�ed weights as explained in

Section 2:

π̃∗(α, θc) = π̃(α, θc)u′(R(yR(α))), π∗(α) = π(α)u′(R(yR(α))). (6)

The above formulas make clear how the cardinal representation plays a role,

through its impact on the marginal social value of a change in utility KU [U, θc].

When KU is increasing in its second argument, large work opportunity costs,

holding α constant, go with large social weights: this can be interpreted as if

a large opportunity cost comes from a handicap that deserves some social com-

pensation. When KU is decreasing in its second argument, a large opportunity

cost of work reduces the social weight, perhaps because non-market time allows

enjoyable leisure. All things considered, the quantity of interest is the integral of

KU with respect to the conditional distribution F (θc|α).

3.1 The unidimensional case

Consider the standard Mirrlees case where θc is constant across the population,

and θp has a continuous distribution on [θp, θ
p
]. Productivity, as well as cardinal

utility, increases with θp. Then we recover the optimal taxation result of non-

negative marginal tax rates everywhere, provided the function K is concave.

Proposition 1. Assume that K[U ] is concave. Then the optimal utilitarian

optimum exhibits positive marginal tax rates, at any regular point below the top

productivity where there is no bunching.

Proof: From the de�nition of the weights (2) , since after tax income and the

indirect utility both increase with α along any incentive compatible allocation,
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social weights decrease with θp, and from (3), p∗(θp) decreases as well. Since

p∗(θp) = λ, p∗(θp) < λ for all θp < θ
p
, and (4) gives the standard result: the

marginal tax rate is always positive.

When K is concave in U , the cardinal utility speci�cation makes society more

redistributive than the initial separable U : the social weight K ′(U) is decreasing

in U . This is the situation considered in Mirrlees of a redistributive government.

Note that a regressive government would not implement positive tax rates.

Consider the case where K[U ] is strictly convex and where the original utility

function is linear in consumption (u(R(y)) = R(y)). Then the weight π∗a(α) =

K ′(UR(α)) is increasing in α, so that p∗(α) is increasing as well. The optimal

marginal tax rate is negative everywhere, except at the boundaries! Heterogeneity

is not necessary for negative marginal tax rates to be optimal.

3.2 Non-negative marginal tax rates and heterogeneity

There are a variety of cases where tax rates are non-negative, even in the pres-

ence of heterogeneity. As should be clear from the previous section, a su�cient

condition is that the average social weights of the agent of characteristics α de-

creases with α. If the only parameter entering the social utility function is α, this

is warranted by the concavity of the welfare index.11 Otherwise one must put

restrictions that bear simultaneously on how the social weight KU varies with θc

and on how the conditional distribution of θc given α changes with α.

Proposition 2. Assume that the cardinal utility K[U, θc] is concave in U . As-

sume furthermore that KU [U, θc] is nondecreasing in θc and that the distribution

of θc, conditional on α, is �rst order stochastically decreasing in α.

Then under utilitarianism, the weights π∗(α) are decreasing and marginal tax

rates are everywhere non-negative.

Proof: Let

Ψ(a, b) =

∫
π̃(a, θc) dF (θc|b).

11From the initial assumption of Section 1 and Lemma 1 labor supply only depends on α and
the indirect utility level is nondecreasing in α. Given α, the only e�ect of heterogeneity is to
change social valuations and social weights.
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Figure 1: Social weights and negative marginal tax rates

Then the function Ψ is decreasing in a, since π̃, proportional to KU , is. It

is decreasing in b by �rst order stochastic dominance. It follows that π(α) =

Ψ(α, α) is also decreasing in its argument. Multiplying by u′(R(yR(α))), which

is decreasing in α, yields a decreasing π∗(α).

The result also holds in the opposite situation: KU [U, θc] decreasing in θc, and

θc �rst order stochastically nondecreasing in α. It is simpler to state when the

opportunity cost, θc, is independent from the income level.

Corollary 1. Assume that the cardinal utility K[U, θc] is concave in U . When

θc is independent from α, marginal tax rates are non-negative.

Proof: The function Ψ de�ned above does not depend on its second argument.

As a result, π(α) = Ψ(α, α) is decreasing, irrespective of the way the opportunity

cost enters the cardinal utility.

4 Negative marginal tax rates

4.1 A simple theoretical example

The following example illustrates the analysis. At the lowest productivity θp, the

agents exhibit a variety of work opportunity costs θc, a continuous distribution

on [θc, θ
c
]. For all productivities above the minimum, a continuous distribution

on (θp, θ
p
], there is a unique value of θc, equal to θc. The labor supply of the
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agent of type (θp, θc) depends on a parameter α = A(θp, θc), where A is a function

increasing in θp and decreasing in θc. Therefore:

α = A(θp, θ
c
) < αm = A(θp, θc) < α = A(θ

p
, θc).

All the agents of the segment [αm, α] di�er only by their productivities. All the

agents in [α, αm] have the same low productivity θp, but have di�erent, decreasing,

opportunity costs.12

Suppose now that the cardinal utility is K[UR(α) + kθc], where K is concave

increasing and k is a well chosen scalar. With a positive k, holding α constant,

a larger θc yields a higher utility level, obtained for instance through activities

at home or on the black market, and therefore low marginal utilities of income.

With this parameterization, π∗(α) = K ′[UR(α) + kθc] is decreasing on [αm, α].

Suppose, possibly for a large enough k, that it increases on [α, αm]. One then gets

Figure 1. The agent with the largest social weight is the αm person with lowest

productivity and opportunity cost to work. The associated function p∗(α), which

measures the average height of π∗(x) for x larger than α, is represented on the

Figure: p∗(α) increases whenever it lies above the graph of π∗, decreases when it

is below the graph, and has an horizontal tangent when it crosses the π∗ curve.

Also, we know that p∗(α) = λ. From (4), in the situation depicted on Figure 1,

all the agents in the segment AB then face negative tax rates.

More generally, there are a number of cases where speci�c welfare functions

would lead to (locally) negative marginal tax rates. Suppose for simplicity that

the utility function u is linear in consumption. Consider a situation where pro-

ductivity θp is an increasing function of α while the opportunity cost of work θc

is a decreasing function of α: a larger income indicates a larger productivity and

a smaller opportunity cost of work. Assume that the cardinal utility puts a high

value on the willingness to work, meaning that the derivative KUθc dθc/ dα is neg-

ative and large in absolute value, larger than the absolute value of KUU dUR/ dα.

A high enough value would make the optimal income tax regressive.

12Technically, given α, the distribution of θc is degenerate: for α ≥ αm, θ
c is equal to θc

while for α ≤ αm, θc is equal to the unique root of the equation α = A(θp, θc).

12



4.2 May negative marginal tax rates be optimal for low

skilled workers?

While the preceding example is illustrative, the distribution of the work oppor-

tunity cost conditional on α is degenerate. It is interesting to more generally

identify the circumstances where negative marginal tax rates on low incomes are

likely to be optimal.

First a theoretical remark is useful. As noted by Saez (2002), p.1054, negative

marginal tax rates at the bottom of the income distribution can only occur if

the social weights of the concerned agents are smaller than the average social

weight. Indeed, to see negative marginal tax rates bearing on the low incomes,

i.e. in a neighborhood of α, from (4), in the absence of pooling13 p∗(α) has to be

larger than λ in this neighborhood. Since by construction p∗(α) = λ, assuming

di�erentiability, this amounts to

dp∗

dα
> 0 in a neighborhood of α.

Since by (3) dp∗/ dα = [p∗(α) − π∗(α)]g∗(α)/[1 − G∗(α)], this occurs when π∗,

the social weight of the agents, is smaller than λ, the average social weight in

the economy, in this neighborhood. In the absence of pooling, a necessary and

su�cient condition for the low income agents, with α close to α, to face negative

marginal tax rates at the optimum is that the social weight π∗(α) be smaller than

the average social weight in the economy. An expression for this condition can

be given, where both the dependence of the social weights on the heterogeneity

characteristics and the distribution of θc conditionally on α interact.

Proposition 3. When the functions π̃∗(α, θc), F (θc|α) and G∗(α) are twice con-

tinuously di�erentiable with respect to their arguments, one has

π∗(α)− λ =

∫∫
{∇F ×∇π̃∗} [1−G∗(α)] dθc dα, (7)

13Under the assumption that the marginal cost of work is zero at the origin, vy(0, α) =
0, it is easy to show that everybody works at an optimum. Indeed adapting the proof of
Lemma 2, a small increase dy in income at the origin does not change the utility but increases
the Lagrangian by λ dy. This assumption is satis�ed in the standard example described in
footnote 4.
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where

∇F ×∇π̃∗ =
∂π̃∗

∂θc
(α, θc)

∂F

∂α
(θc|α)− ∂π̃∗

∂α
(α, θc)

∂F

∂θc
(θc|α)

is the cross-product14 of the two gradient vectors ∇F and ∇π̃∗.

Proposition 3 gives an expression for the weight π∗(α) in the situation where

the distributions are smooth. There are two terms in the formula:

• The second term is positive, from the standard motive of aversion to in-

come inequality. Indeed, from (6), π̃∗(α, θc) = π̃(α, θc)u′(R(yR(α))) and

the derivative ∂π̃∗/∂α is typically negative. It is only equal to zero when

there are both no desire for redistribution across the α characteristic (the

cardinal utility is linear in U and π(α) is constant), and no income e�ect

(u is linear in c).

• The �rst term, ∂π̃∗/∂θc ∂F/∂α, cannot be signed in general. It is equal to

zero in a number of cases, for instance if the two parameters are indepen-

dently distributed (∂F/∂α = 0), or if the social weight does not depend on

θc. Then the marginal tax rate is positive at the bottom of the income dis-

tribution. When θc is �rst order stochastically decreasing in α (∂F/∂α ≥ 0)

and π̃∗ is nondecreasing in θc, then the term is positive, which yields the

analog to Proposition 2 at the point α.

In practice, for negative tax rates to be optimal, the �rst term must be neg-

ative and larger in absolute value than the second one. A special case where

this is easier to achieve is when society has no aversion to income inequality (u

linear in consumption and K linear in U). The only redistribution motive then

is linked to the θc parameter, i.e. K[U, θc] = K(θc)U . In this circumstance, for

all α π̃∗(α, θc) = K(θc) and

π(α)− λ =

∫ θ
c

θc

K(θc)f(θc|α) dθc −
∫ θ

c

θc

K(θc)φ(θc) dθc, (8)

where φ denotes the density of the marginal distribution of the parameter θc in

the economy. Suppose that K is increasing in the work opportunity cost, so that

14The cross-product of two vectors of IR2 is the product of their modulus, multiplied by the
sinus of their oriented angle. A simple diagram, noting that ∂F/∂θc > 0 and ∂π̃∗/∂α < 0,
shows that the angle is between 0 and π under the conditions of Proposition 2.
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the government wants to transfer income to the agents with the larger cost. Then

the marginal tax rate is negative at α when the conditional distribution of θc at

α is �rst order stochastically smaller than the unconditional distribution of θc.

4.3 An illustration using UK data

The following computations are based on UK data. We use annual earnings and

marginal tax rate information15 in the UK for the year 2003. Our starting point is

the speci�cation of Brewer, Saez, and Shephard (2008), which served to compute

optimal taxes in the Mirrlees review of the UK tax system. The basic utility

function is of the form

UR(α) = max
y
R(y)− y1+1/e

(1 + 1/e)α1/e
,

with e = .25, and the �rst order condition R′(y) = (y/α)1/e allows us to recover

the parameter α from earnings and the marginal tax rate. Note that with this

speci�cation α is equal to the income that would be observed under laissez-faire.

The density of α is obtained from standard kernel estimation, with a rather large

bandwidth (¿ 3000) to get smooth drawings. Let θc stand for a measure of the

work opportunity cost. We take as cardinal utility:

K[U, θc] = −exp[−(U − θc)],

so that the government objective is to maximize

−
∫∫

exp[−UR(α)+θc] dF (θc|α) dG(α) = −
∫ [∫

exp(θc) dF (θc|α)

]
exp[−UR(α)] dG(α).

With the exponential speci�cation the e�ect of heterogeneity factors out, and

the optimization is easy. Also the social weight of agent (α, θc) is proportional to

exp[−UR(α) + θc]: it is increasing in the work opportunity cost.

We have to make choices on the shape of the distribution of θc conditional

on α, for which we have no guidance from empirical observations. The results

that we present are the ones that we found most suggestive, out of a number of

experiments. We assume the distribution of θc, conditional on α, to be normal

15We thank Andrew Shephard for giving us access to the data set.
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Figure 2: Optimal tax schedules and heterogeneity in work opportunity costs
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with zero mean. In the baseline case, we take its standard error to be equal

to ¿ 200, independently of α. This is a small number (the median earnings in

2003 is equal to ¿ 16,500). In variants, we keep the conditional distribution of

θc unchanged for the top three quartiles, but we suppose that low α types, i.e.

wage earners in the �rst quartile of the distribution (α ≤ £ 11, 850), have less

dispersed opportunity costs:

σ(α) = 200k
(

1− α

11850

)
+ 200

( α

11850

)
,

where k takes the values 0, .25, .50, .75 and 1, corresponding to a standard error

σ(0) respectively equal to ¿ 0, 50, 100, 150 and 200.

It is not implausible that the dispersion of work opportunity costs increases

with earnings, but we have no evidence to support this assumption. It certainly

pushes towards negative marginal tax rates at the bottom of the income distrib-

ution. Since ∫
exp(θc) dF (θc|α) = exp

σ(α)2

2

increases with α for all k, k < 1, the weights π(α) will take the shape of Figure 1,

for well chosen parameters. Indeed, as shown in the upper panel of Figure 2, the

marginal tax rate increases with σ(0), and negative tax rates are optimal for σ(0)

equal to or smaller than ¿ 100. For small values of k and σ(0), lower weights

imply lower transfers to the low income population (R(0) is increasing with σ(0)

as shown in the lower panel).

This example makes clear how lowering the social weights π(α) at the bottom

of the income distribution modi�es the optimal tax schedule: it leads to redis-

tribute away from the bottom towards the middle and the top of the distribution.

This involves reducing the income level of the low α types while increasing the

slope of the after tax schedule (and therefore the labor supply of these agents)

to maintain or increase the incomes of the middle and upper class.

Notice that, in this example, the distribution of θc is symmetric (F increasing

with σ(α) for negative θc, decreasing for positive θc) and the derivative ∂π̃∗/∂θc

is increasing in θc. Under such circumstances, the �rst term of equation (7), once

integrated over θc, is negative for all α:∫ ∞
−∞

∂π̃∗

∂θc
(α, θc)

∂F

∂α
(θc|α)dθc =

∫ ∞
0

[
∂π̃∗

∂θc
(α, θc)− ∂π̃∗

∂θc
(α,−θc)

]
∂F

∂α
(θc|α)dθc < 0.
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Finally, while the numbers chosen for the dispersion of the work opportunity

costs look small (¿ 200), they are magni�ed through the expectation of the ex-

ponential of the normal variable: σ2/2 = 20000. Indeed, one would get identical

results in a model where θc would be a deterministic function of α, equal to

20000−σ2(α)/2. The certainty equivalent gain associated with the change in the

distribution of work opportunity costs in the �rst quartile is £ (20000−σ2(α)/2),

of the order of magnitude of average income. Further work is needed to better un-

derstand how to calibrate the e�ect of heterogeneity in the social choice function.

5 Conclusion

Even keeping with a setup where labor supply is driven by an exogenously prede-

termined unidimensional combination of the agents' characteristics, heterogeneity

in utilities may play an important role in the determination of optimal redistribu-

tive schemes. The optimal allocation depends on the average social weights of the

agents in the economy, computed conditionally on observable income. Hetero-

geneity enters through two channels: the individual social weight which depends

on the microeconomic characteristics, and the distribution of characteristics con-

ditional on income. We have spelled out this relationship, and applied it to �nd

conditions under which negative marginal tax rates may be optimal at the bottom

of the income distribution. A numerical example indicates that small variations

with income of (unobserved) heterogeneity may induce large changes in optimal

tax schedules.
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Appendix

Proof of Lemma 1

We adapt the simple argument of Rochet (1987). (The property holds more

generally under the single crossing condition.) First, suppose y is incentive com-

patible. Then, using the indirect utility UR, incentive compatibility implies for

α0 < α1:

v(y(α0), α1)−v(y(α0), α0) ≤ UR(α1)−UR(α0) ≤ v(y(α1), α1)−v(y(α1), α0). (9)

It follows that:

v(y(α1), α1)− v(y(α1), α0)− v(y(α0), α1) + v(y(α0), α0) =

∫ α1

α0

∫ y(α1)

y(α0)

vyα ≥ 0,

which yields y(α1) ≥ y(α0).

Conversely, suppose y is nondecreasing. Then de�ne UR(.) by its derivative

U ′R(α) = vα(y(α), α) and u(R(y(α))) = UR(α) − v(y(α), α), the general level of

UR and R being given by the government budget constraint. Then, for α0 < α1,
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using vyα > 0,

UR(α1)− UR(α0) =

∫ α1

α0

vα(y(x), x)dx

≥
∫ α1

α0

vα(y(α0), x)dx

= v(y(α0), α1)− v(y(α0), α0),

which yields incentive compatibility.

The allocation y(α) being nondecreasing admits a right and left limit at every

point α. These limits are noted y(α+) and y(α−) respectively. Dividing the right

inequality of (9) by α1 − α0 > 0 shows that the di�erence quotient [UR(α1) −
UR(α0)]/[α1 − α0] is bounded below vα(y(α+

0 ), α0) as α1 tends to α0 from above.

Now permuting the indexes 0 and 1 in the left inequality of (9) and dividing by

α0 − α1 > 0 shows that the di�erence quotient is bounded above vα(y(α−0 ), α0)

as α1 tends to α0 from below. It follows that the indirect utility function UR is

everywhere continuous and di�erentiable whenever y is continuous. But y being

a nondecreasing function is continuous everywhere except at most at countably

many α's. This yields the desired result.

It is worth examining discontinuity points α0 where y(α−0 ) < y(α+
0 ). Since

UR is continuous at α0, the agent α0 is indi�erent between y(α−0 ) and y(α+
0 ). So

the left inequality of (9) holds with y(α+
0 ) instead of y(α0). It follows that the

di�erence quotient tends to vα(y(α+
0 ), α0) as α1 tends to α0 from above. Similarly

the di�erence quotient tends vα(y(α−0 ), α0) as α1 tends to α0 from below. Thus,

the indirect utility everywhere admits a right and a left derivative, which coincide

at all but at most countably many points.

Finally, incentive compatibility and vy < 0 yield for α1 > α0

u(R(y(α1)))− u(R(y(α0))) ≥ v(y(α0), α1)− v(y(α1), α1) ≥ 0,

implying that R is nondecreasing in α (and in y).

Proof of Lemma 2

We present here a heuristic derivation of the �rst order condition (4). To

simplify notation, we denote the indirect utility by U rather than UR. According
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to Lemma 1, U ′(α) = vα(y(α), α) at all but at most countably many α's. As

explained in the above proof, discontinuity points of y correspond to kinks of U .

Since vα(y, α) is increasing in y, the inverse function Y (., α) = [vα(., α)]−1 is well

de�ned for all α. Except at discontinuity points of y, y(α) = Y (U ′(α), α) and

R(yR(α)) = R̄(U,U ′, α),

where R̄(U,U ′, α) = u−1[U − v(Y (U ′, α), α)]. Note that YU ′ = 1/vyα and R̄′U =

1/u′(R̄(U,U ′, α)). Using U as the unknown function, the Lagrangian can be

rewritten as

L =

∫ α

α

{
π(α)U(α) + λ[Y (U ′(α), α)− R̄(U(α), U ′(α), α)]

}
dG(α).

Consider small changes ∆U(x) and ∆U ′(x) to the optimal solution U(x) and U ′.

Pick a point α and keep U ′ unchanged outside a small interval [α, α + a] where

y is locally strictly increasing (no bunching). Let ∆U ′(x) be a small continuous

positive function on [α, α + a], with ∆U ′(α) = ∆U ′(α + a) = 0. De�ne then

∆U(x) =

∫ x

α

∆U ′(x) dG(x).

For su�ciently small a and ∆U ′, the variation ∆U is admissible, i.e. the allocation

Y (U ′+∆U ′, α) is increasing in α. At the �rst order, the change in the Lagrangian

is proportional to ∆U(α). Supposing y continuous at α, ∆L/∆U(α) tends to

λ
g(α)

vαy

[
1 +

vy(yR(α), α)

u′(R(yR(α)))

]
+

∫ α

α

(
π(x)− λ

u′(R(yR(x)))

)
dG(x) (10)

as a goes to 0. From the agent's �rst order condition u′R′ + v′y = 0, the term

in square brackets is equal to the marginal tax rate T ′(yR(α)). By de�nition,

g∗(α) = λg(α)/u′(R(yR(α))), so that using (2) the last term of 10 is equal to∫ α

α

(
π(x)u′(R(yR(x)))

λ
− 1

)
g∗(x) dx =

∫ α

α

(
π∗(x)

λ
− 1

)
dG∗(x).

Using (3) and rearranging terms, it is easy to check that lim ∆L/∆U(α) = 0 is

equivalent to (4).
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At a discontinuity point α of the allocation, the limits of ∆L/∆U(α) as a

tends to 0 from above and from below di�er: they are given by (10) where

yR(α+) and yR(α−) respectively replace yR(α). Since UR is continuous, as shown

in the proof of Lemma 1, the agent α is indi�erent between the two values of

y. The indi�erence curves in the plane (c, y) have a positive slope, equal to

−u′/vy, which decreases with y. Therefore the term in square brackets evaluated

at yR(α+) is lower than or equal to the same term evaluated at yR(α−). If this

term is nonnegative (that is, if the marginal tax rates at the two points are

nonnegative) and if vαyy ≥ 0, the same property holds for the �rst term of (10)

as a whole. Since the second term is continuous and the sum is zero, it must be

the case that the allocation yR is continuous: yR(α−) = yR(α+).16

Proof of Proposition 3

By integration by parts

π∗(α)− λ = π∗(α)−
∫
π∗(α) dG∗(α) = −

∫
∂π∗

∂α
(α)[1−G∗(α)] dα.

Di�erentiating π∗(α) =
∫
θc π̃

∗(α, θc) dF (θc|α) and integrating again by parts, we

get

∂π∗

∂α
(α) =

∫ {
∂π̃∗

∂α
(α, θc)f(θc|α) + π̃∗(α, θc)

∂f

∂α
(θc|α)

}
dθc

=

∫ {
∂π̃∗

∂α
(α, θc)f(θc|α)− ∂π̃∗

∂θc
(α, θc)

∂F

∂α
(θc|α)

}
dθc +[

π̃∗(α, θ
c
)
∂F

∂α
(θ
c|α)− π̃∗(α, θc)∂F

∂α
(θc|α)

]
.

Noting that the last line is equal to zero since F (θ
c|α) = 1 and F (θc|α) = 0 and

rearranging terms yield (7).

16It is easy to check that the assumption vαyy ≥ 0 yields the concavity of the Lagrangian with
respect to U ′ in the region where marginal tax rates are nonnegative. We thank an anonymous
referee for suggesting this property to us.
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