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Abstract

This paper considers non-linear panel data models with individual effects and a large number

of time periods T . For these models it is well-known that a fixed effect estimation approach

results in an incidental parameter bias of order 1/T . We show that under appropriate

assumptions this incidental parameter bias can be substantially reduced if instead of a

fixed effect approach one estimates the distribution of the individual effects jointly with

the parameter of interest by maximum likelihood, thereby treating the individual effect

distribution non-parametrically. The convergence rate of the incidental parameter bias in

this approach is shown to be only limited by the smoothness properties of the true individual

effect distribution. To allow inference on this distribution we make a “generalized random

effect” assumption, which requires the cross-sectional units to be partitioned into groups

and imposes a random effect assumption in each group. In Monte Carlo simulations we

consider the dynamic binary choice model, and we find the finite sample properties of our

estimator to be in accordance with the asymptotic results.

1 Introduction

This paper explores a new approach to higher order bias correction in non-linear

panel data models under an asymptotics where both the number of cross-sectional

units N and the number of timer periods T become large (referred to simply as
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“large T asymptotics” in the following). Instead of estimating the individual effects,

which parameterize the unobserved heterogeneity of each individual, as additional

parameters of the model (fixed effect approach), we propose to instead consistently

estimate the distribution of these individual effects conditional on the regressors in

a non-parametric way. Our main findings are, firstly, that as T grows the incidental

parameter bias of the parameters of interest vanishes at a rate that is determined by

the convergence rate of the estimator for the individual effect distribution (under the

Hellinger distance); and secondly, that these convergence rates can be much higher

than the ones obtained from the existing bias reduction techniques in the fixed effect

approach. This improvement, however, also comes at a cost: in order to allow for

consistent non-parametric inference on the individual effect distribution, we need to

impose assumptions that restrict the dependence of the individual effects ond the

regressors, and that require this distribution to be sufficiently smooth. Our results

are particularly important for applications in which the number of time periods T

is modestly large, while the number of cross-sectional units N is much larger than

T . In such a scenario the existing bias correction techniques may be insufficient

to achieve a reduction of the incidental parameter bias to a level where it can be

ignored relative to the standard error of the estimator, so that imposing additional

restrictions in order to further reduce the bias becomes a very attractive option.

We are now going to present a brief overview of the existing literature in order

to then give a more detailed comparison with the methods developed in this paper.

In general, the possibility to control for unobserved heterogeneity is a very attrac-

tive feature of panel data analysis. While there are well-established techniques for

handling the unobserved heterogeneity in linear panel data models this issue is still

a serious econometric challenge for many non-linear models. Broadly speaking, one

can distinguish three different approaches in the literature to meet this challenge:

Firstly, there is the “classic” panel data literature that considers point identifi-

cation and point estimation under an asymptotic where the number of time periods

T remains constant, while the cross-sectional size N goes to infinity. Obtaining a

consistent point estimator for the parameters of interest at fixed T is most desir-

able and can indeed be achieved for some non-linear models. However, at fixed T

a non-linear panel data model may not be point identified, or may not possess a√
N -consistent estimator, as discussed by Chamberlain (2010) for the binary choice

model. Furthermore, an incidental parameter problem (Neyman and Scott (1948),

see e.g. Lancaster (2000) for a review) usually appears in fixed T estimation of

non-linear panel data models since the number of incidental parameters (individual
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effects) grows with the sample size. Resolving this problem usually requires a model

specific augmentation of standard estimation procedures like maximum likelihood.

We refer e.g. to Chamberlain (1984) and Arellano and Honoré (2001) for reviews of

this branch of the literature.

Secondly, there is the “large T” panel data literature, which includes e.g. Phillips

and Moon (1999), Hahn and Kuersteiner (2002), Lancaster (2002), Woutersen (2002),

Hahn and Kuersteiner (2004), Hahn and Newey (2004), Carro (2007), Arellano and

Bonhomme (2009), Fernandez-Val (2009), Bester and Hansen (2009), Dhaene and

Jochmans (2010); a review is provided by Arellano and Hahn (2007). This literature

considers an asymptotic where both panel dimensions N and T go to infinity. This

large T asymptotics guarantees point identification of a very large class of models

under weak regularity conditions, and provides an asymptotic solution to the inci-

dental parameter problem. Namely, the (maximum likelihood) estimator is shown

to have a bias of order 1/T , which thus vanishes asymptotically, and bias correction

techniques are discussed that augment the convergence rate of the bias further.

Finally, there are a few papers that acknowledge the fact that many non-linear

panel data models are not point identified at fixed T and consequently discuss set

identification (bound analysis) for the parameters of interest or for certain policy

parameters like marginal effects. These include e.g. Chernozhukov, Hahn and

Newey (2005), Honoré and Tamer (2006), Chernozhukov, Fernández-Val, Hahn and

Newey (2009a) and Chernozhukov, Fernández-Val and Newey (2009b).

These three estimation approaches for non-linear panel data models should be

viewed as complements rather than substitutes. If for fixed T a (
√
N -) consistent

estimator is available for the particular model under consideration, then it probably

should be used. If this is not the case, then chances are that the model may not

be point identified at fixed T and in particular for small values of T one needs to

consider inference using bound analysis. However, the above cited papers on set

identification all point out that the bounds can be very tight and shrink rather

rapidly as T grows. Thus, if T is sufficiently large one can safely ignore the fact

that the model might only be set-identified and simply use the large T estimation

methodology.

As mentioned above, the large T approach, which is also used in the present

paper, is convenient since the alternative asymptoticN,T → ∞ guarantees existence

of a consistent point estimator for a large class of models, and provides an asymptotic

solution to the incidental parameter problem. Various techniques are developed to

decrease the order of the incidental parameter bias from 1/T to smaller orders (e.g.
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to 1/T 2). Whether the remaining bias is problematic depends on the relative size of

N and T . The standard error of the estimator is of order (NT )−1/2, i.e. it depends

on both N and T , while the bias only depends on T . For applications where N

is not too large relative to T one can thus ignore the bias relative to the standard

error, but for very large values of N relative to T the bias dominates the standard

error. In the latter case, getting additional data in the cross-sectional dimension,

i.e. increasing N without increasing T , does not improve the estimator further, and

in fact worsens the size properties of test statistics based on this biased estimator.

The main research problem in the large T panel data literature is thus to find ways

to decrease the incidental parameter bias further in order to make the estimation

methodology applicable for a larger range of sample sizes N , T .

With the exceptions discussed below, most of the large T panel literature uses

a “fixed effect” approach, in which the individual effects (which parameterize the

cross-sectional heteroscedasticity) are themselves estimated as incidental parame-

ters. In the present paper we consider a “random effect” approach, in which the

distribution of the individual effects is estimated instead. While we allow for corre-

lation between the individual effects and the observed regressors, we require some

constraints on the structure of this correlation, since otherwise inference on the

conditional distribution of the individual effects is infeasible due to the curse of

dimensionality (large dimensional support of the conditioning variables, i.e. the

regressors). For most of our results we need not specify the nature of these cor-

relation constraints, so that they are applicable to various ways of reducing the

dimensionality of the conditioning variables. As a concrete example for such a cor-

relation constraint we discuss the “generalized random effect” assumption, which

assumes that individuals can be grouped based on their observed regressor values

and imposes independence between the individual effects and the regressors within

each group. Apart from this generalized random effect assumption we impose no

further parametric constraints on the individual effect distribution. We estimate

the parameters of interest (parametric component) jointly with the individual effect

distribution (non-paramatric component) by maximum likelihood. The generalized

random effect assumption (or any other constraint that reduces the dimension of

the regressors as conditioning variables) is restrictive, but it also turns out to have

very powerful consequences for the incidental parameter bias.

We show that the rate at which the bias decreases with T depends on the smooth-

ness of the true individual effect distribution, and that the bias can decrease at an

arbitrary polynomial rate as long as the true individual effect distribution is suffi-
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ciently smooth. The bias may therefore be much smaller than the one obtained from

the existing methods in the large T panel literature. In particular in applications

where T is modestly large and N is much larger than T , one may therefore be will-

ing to impose the generalized random effect assumption together with a smoothness

assumption on the individual effect distribution, in order to avoid (or substantially

reduce) the incidental parameter problem.

The technical derivation of our result is done in two steps. Firstly, we derive

the properties of the maximum likelihood estimator for the parameters of interest,

assuming that some estimator for the individual effect distribution is given and

is used to integrate out the individual effects from the likelihood function. We

show that the resulting incidental parameter bias for the parameters of interest is

bounded by an expression that involves the Hellinger distance between the true

individual effect distribution and its estimator. The rate at which the incidental

parameter bias vanishes as T increases therefore depends on the rate at which the

individual effect distribution can be estimated. Secondly, we consider estimation of

the individual effect distribution by maximum likelihood and show how in this case

the convergence rate of the estimator in T depends on the smoothness properties

of the true distribution. Our first result on the incidental parameter bias of the

parameters of interest is also applicable to other estimators for the individual effect

distribution, and it would clearly be interesting to explore alternative estimation

approaches (beyond maximum likelihood) for this distribution in future research.

The purpose of this paper is not to replace the existing methods on bias correc-

tion in large T panel data, but to provide an interesting alternative with somewhat

complementary properties. For example, the Jackknife bias correction methods de-

veloped in Hahn and Newey (2004) and Dhaene and Jochmans (2010) also allow for

higher order bias correction (to order 1/T 2, 1/T 3, etc). Compared to this method,

we have to impose a restriction on the correlation structure between the individual

effects and the regressors, which is not required for the Jackknife. On the other

hand, the Jackknife method needs to impose a stationarity assumption on all ob-

served variables, and higher order Jackknife bias correction can significantly increase

the standard error of the estimator, which is both not the case in our approach.

Our estimation approach is based on the integrated likelihood function (inte-

grating over the individual effects) as opposed to the profile likelihood function

(maximizing over the individual effects) that appears in the fixed effect estimation.

Woutersen (2002) and Arellano and Bonhomme (2009) also use integration instead

of profiling for the purpose of bias correction in large T panel data model, but
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they only discuss how to reduce the bias to order 1/T 2 or o(1/T ), respectively. For

the most part these papers do not discuss consistent estimation of the individual

effect distribution, which we show to be the key tool to achieve higher order bias

correction. In the second part of Arellano and Bonhomme (2009), bias reduction

to o(1/T ) is discussed for a parametric random effect model using joint maximum

likelihood estimation of all parameters. The analysis in the present paper can be

viewed as an extension of their results to the semi-parametric generalized random

effect case and to higher order bias reduction. The econometric techniques used

here are however quite different from their work, and in particular the higher order

bias correction is crucial from an applied perspective.

Another related paper is Bester and Hansen (2007). They consider non-linear

panel data models with “flexible correlated random effects” and discuss semipara-

matric sieve estimation. The difference to the present paper is that they consider

fixed T asymptotics, starting from the assumption that the model is identified at

fixed T . Their paper is therefore complementary to our approach, just as the fixed

T and large T panel data literature are complementary in general.

As mentioned above, we consider joint maximum likelihood estimation of the

parameters of interest and the conditional distribution of the individual effects,

treating the latter non-parametrically. There is a large literature on semi- and

non-parametric estimation, including non-parametric density estimation (reviewed

e.g. in Härdle and Linton (1994), Chen (2007), and Ichimura and Todd (2007)).

We essentially employ a sieve approach, i.e. a different parameter set for the non-

parametric component is chosen for different sample sizes in such a way that asymp-

totically a very large class of individual effect distributions can be approximated.

Usually in sieve-estimation the parameter set is chosen sample size dependent for

the purpose of keeping the sampling error in check. However, in our case the param-

eter set is chosen sample size dependent in order to keep the fixed T identification

problem in check instead of controlling the sampling error, i.e. the role that is played

by the large T asymptotics is somewhat non-standard. This is also illustrated by

the fact that under the large T asymptotics the maximum likelihood estimator for

the parameters of interest (parametric component) is consistent even if we plug in

a fixed prior for the individual effect distribution (i.e. an inconsistent estimator for

the non-parametric component). This is usually not the case in semi-parametric

estimation problems, but is very intuitive in view of the existing large T panel

literature (since profiling out and integrating out nuisance parameters should yield

similar results for the parameters of interest). Our results are therefore more readily
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interpreted from the perspective of this latter literature.

For our Monte Carlo simulations we consider a dynamic binary choice model,

which is known not be identified at finite T , see e.g. Honoré and Tamer (2006).

The simulations confirm our asymptotic results in that they show that the bias of

our estimator for the parameters of interest is very small, as long as the true distri-

bution for the individual effects is sufficiently smooth. The finite sample variance

of our estimator is found to be very close to the the variance of the fixed effect

maximum likelihood estimator, which is a very important result, since most large

T bias correction techniques have a tendency to increase the finite sample variance

of the estimator relative to the fixed effect MLE.

For future research it would be interesting to consider alternative estimation

procedures for the individual effect distribution, both within the maximum likeli-

hood framework, where one could explore the choice of alternative parameter sets

for the non-parametric density estimation, but, as already mentioned above, also

alternatives to maximum likelihood, e.g. the predictive recursion method that is

considered recently in the statistics literature (Newton, Quintana and Zhang (1998),

Newton (2002), Martin and Tokdar (2010)). Furthermore, it would be fascinating

to explore more general ways to reduce the dimension of the conditioning vari-

ables in the individual effect distribution that go beyond our generalized random

effect assumption, and that allow for a more general correlation structure between

the individuals effects and the regressors. We formulated many of our results under

high-level assumptions, instead of directly considering the generalized random effect

case, exactly for the purpose of allowing these types of generalizations.

The paper is organized as follows. In Section 2 we introduce the model and

some additional notation. Section 3 defines the estimators for the parameters of

interest and the individual effect distribution, and provides a brief discussion of the

main conceptual ideas and results of the paper. Section 4 derives the asymptotic

distribution for the estimator of the parameters of interest under appropriate high-

level assumptions, which is the main technical contribution of the paper. In Section 5

we apply these general results to the special case of generalized random effects.

Monte Carlo simulations are presented in Section 6, and some concluding remarks

are given in Section 7. The appendix contains figures and tables for the Monte

Carlo simulations, and provides the regularity assumptions that are referred to in

the theorems of the main text, as well as the proofs of these theorems.
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2 Model

We consider a panel data model with N cross-sectional units and T time periods.

A dependent variable Yit, a vector of time-varying independent variables Xit and a

vector of time-invariant independent variables Zi are observed, where i = 1, . . . , N

and t = 1, . . . , T . Let Yi = (Yi1, . . . , YiT ) and Xi = (Xi1, . . . ,XiT ;Zi), i.e. all

independent variables are summarized by Xi. We assume that the unobserved

heterogeneity in the distribution of Yi conditional on Xi can be described by (a

vector of) individual specific effects αi. The random variables Yi, Xi and αi take

values in the sets YT , XT and A, where A ⊂ RM , and M is some finite positive

integer. For elements of YT , XT and A we use the notation yi, xi and αi, or simply

y, x and α, i.e. we distinguish non-random from random objects by using lower case

as opposed to capital letters and by not using bold face type for the fixed effects. We

assume cross-sectional independence and that for each i = 1, . . . , N the distribution

of Yi conditional on Xi is given by

fY |X(yi|xi; θ, π) =

∫

A
f(yi|xi, α; θ)π(α|xi) dα , (2.1)

where θ ∈ Θ ⊂ RK are the parameters of interest, f(yi|xi, α; θ) is the distribution

of Yi conditional on Xi and αi for given θ, and π(α|xi) is the distribution of the

individual effects conditional on the regressors. Since the individual effects are

unobserved they are integrated over in equation (2.1). In the following, when the

distribution of one generic cross-sectional unit is considered, we will often drop the

index i for notational convenience.

Equation (2.1) describes the distribution of Y given X as a mixture of distri-

butions f(y|x, α; θ) over the distribution of α. We impose a parametric model for

f(y|x, α; θ), i.e. we assume that f(y|x, α; θ) is known up to the finite dimensional

parameter θ. We furthermore assume that f(y|x, α; θ) has the structure

f(y|x, α; θ) =

T∏

t=1

ft(yt|x, y(t−1), α; θ) , (2.2)

with y(t) = (y1, . . . , yt). Here, ft(yt|x, y(t−1), α; θ) is the period likelihood function,

which describes the distribution of Yit conditional on Xi, lags of Yit and individual

effects αi.

Some Further Notation

We use θ0 and π0 = π0(α|x) to denote the true parameters of interest and the true

conditional distribution of the individual effects, i.e. we assume that fY |X(y|x; θ0, π0)
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describes the actual distribution of Yi conditional on the covariate value Xi = x.

Let ΠA
T be the set of all conditional probability densities π(α|x) with respect to

the Lebesgue measure, over α ∈ A and conditional on x ∈ XT . We only consider

conditional distributions for the individual effects α that are absolutely continuous

with respect to the Lebesgue measure on A, and we therefore use the terms distribu-

tion and density interchangeably, i.e. we often refer to π(α|x) as the distribution of

α. The following subsets of ΠA
T impose a lower respectively upper bound on π(α|x)

Πlow
T =

{

π ∈ ΠA
T

∣
∣
∣
∣
∀x ∈ XT ,∀α ∈ A : π(α|x) ≥ πlow

T (α|x)
}

,

Πup
T =

{

π ∈ ΠA
T

∣
∣
∣
∣
∀x ∈ XT ,∀α ∈ A : π(α|x) ≤ πup

T (α|x)
}

. (2.3)

Here, the bounds πlow
T (α|x) and πup

T (α|x) do not integrate to one. We define the

Hellinger distance between distributions π, π0 ∈ ΠA
T and between the distributions

of the outcome variable Y that are implied by π and π0 (at the true θ0) as follows

DH(π, π0) =

√
√
√
√ 1

N

N∑

i=1

∫

A

[√

π(α|Xi) −
√

π0(α|Xi)
]2
dα ,

DH(fY (π), fY (π0)) =

√
√
√
√ 1

N

N∑

i=1

∫

YT

[√

fY |X(y|Xi; θ0, π) −
√

fY |X(y|Xi; θ0, π0)
]2

dy,

(2.4)

The Kullback Leibler divergence measures between π, π0 ∈ ΠA
T and between their

implied distributions for the outcome Y read

DKL(π||π0) =
1

N

N∑

i=1

∫

A
log

[
π0(α|Xi)

π(α|Xi)

]

π0(α|Xi) dα ,

DKL(fY (π)||fY (π0)) =
1

N

N∑

i=1

∫

YT

log

[

fY |X(y|Xi; θ
0, π0)

fY |X(y|Xi; θ0, π)

]

fY |X(y|Xi; θ
0, π0) dy.

(2.5)

These two Hellinger distances and two Kullback Leibler divergences can all be viewed

as distance measures between the distributions π and π0. These distance measures

are random variables since sample averages over functions of covariates appear in

their definitions.

3 Description of Estimators and Main Results

The unknown parameters in the model (2.1) are the finite dimensional vector θ and

the conditional distribution function π = π(α|x). The (log-) likelihood function
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over these parameters is

LNT (θ, π) =
1

NT

N∑

i=1

log fY |X(Yi|Xi; θ, π). (3.1)

For given π, the maximum likelihood estimator for θ and the corresponding profile

likelihood function are

θ̂(π) = argmax
θ∈Θ

LNT (θ, π), LNT (π) = max
θ∈Θ

LNT (θ, π). (3.2)

The maximum likelihood estimator for π is obtained by maximizing the profile

likelihood LNT (π) over an appropriate set ΠT of individual effect distributions, i.e.

π̂ = argmax
π∈ΠT

LNT (π), θ̂ = θ̂(π̂). (3.3)

The choice of the parameter set ΠT crucially affects the properties of the joint

maximum likelihood estimators π̂ and θ̂. Clearly, we need ΠT ⊂ ΠA
T (the set of

all conditional distributions that integrate to one), but the discussion below makes

clear why it is important to constrain ΠT further. While a different set ΠT might

be chosen for different values of N and T , it is the T -dependence of the parameter

set that turns out to be decisive, which is why we make this dependence explicit in

the subscript T .

It is well known that the fixed effect maximum likelihood estimator for θ has an

incidental parameter bias of order 1/T (e.g. Hahn and Newey (2004)). Similarly,

the estimator θ̂ in general also possesses an incidental parameter bias. The main

objective of this paper is to show that the rate at which the bias of θ̂ vanishes with

T is only restricted by the properties of the true distribution π0, as long as the

parameter set ΠT is chosen appropriately.

There are different types of restrictions that have to be imposed on π0 and ΠT ,

which can be associated either with finite N sampling issues or finite T identification

issues, and we discuss those separately in the following.

3.1 Sampling Issues (Generalized Random Effect As-

sumption)

The incidental parameter problem in panel data (Neyman and Scott (1948)) is very

familiar when the individual effects αi are modeled as fixed effects, i.e. when a

separate parameter αi is introduced and estimated for each cross-sectional unit.

The problem occurs because the number of parameters αi grows with the sample
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size, which results in an inconsistency of the estimator (e.g. the maximum likelihood

estimator) for the parameters of interest under fixed T asymptotics.

Since we model the individual effects as correlated random effects, i.e. via their

conditional distribution π(α|x), the problem is somewhat less obvious. However,

the incidental parameter problem also arises in this approach whenever the support

XT of the regressors is “large” (i.e. either discrete with very many support points,

or continuous and high-dimensional), which is to be expected in particular for large

values of T . For example, if XT is discrete with cardinality much larger than the

sample size N , then we expect the realization of each Xi to be unique within the

sample, so that there is only one available observation for the estimation of π(α|x)
at x = Xi. In that case there is no difference between the unrestricted correlated

random effects approach and the standard fixed effects approach.

For the correlated random effects approach this incidental parameter problem is

resolved asymptotically for fixed T and N → ∞ (e.g. for discrete XT one eventually

has many units with the same Xi under this asymptotic). However, this asymptotic

consideration may not be relevant for the estimation problem at given finite sample

size N , T , in particular if T is (moderately) large.

In order to estimate the conditional distribution π(α|x) consistently we thus ei-

ther need the support XT to be “small” in the first place (small number of continuous

dimensions, or only few discrete support points, relative to N), or we have to make

further assumptions to overcome this curse of dimensionality in the conditioning

variables.

Various ways are conceivable to reduce the dimension of the conditioning vari-

ables. The restriction that we consider explicitly in this paper is what we call a

“generalized random effect” assumption. Namely, we assume that there exists a

partitioning of XT into a finite number of groups such that the conditional densities

π(α|x) and π(α|x̃) are identical if x and x̃ belong to the same group, i.e. we impose

a random effect assumption within each group. We assume that this partitioning

is known. The number of groups GT may increase with T , but not too rapidly.

This generalized random effect assumption solves the incidental parameter prob-

lem, since we only need to estimate a different distribution π(α|x) for each group

but not separately for each x ∈ XT .

The assumption that the true distribution π0 satisifies this generalized random

effect condition can also be written as

α ⊥ X
∣
∣ g, (3.4)
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i.e. the individual effects α are independent of the regressorsX once we condition on

the group g. An important generalization of this conditional independence assump-

tion is obtained by replacing the conditioning on the group g with a conditioning on

some more general observed variable Z, i.e. α ⊥ X
∣
∣Z. As long as the support of

Z is not too large this more general condition also resolves the incidental parameter

problem. The generalized random effect restriction which we consider in this paper

is simply the special case where Z has discrete support. For future research it would

clearly be interesting to consider the more general case as well. The existence for

such a conditioning variable Z is also the basis for the control function approach,

discussed e.g. in Imbens and Newey (2009). However, here we do not assume that

the model is point identified at fixed T , even after the conditional independence

assumption is imposed.

Example: The model which we consider explicitly in our Monte Carlo simula-

tions below is the single index dynamic binary choice model, for which Yit ∈ {0, 1},
i.e. YT = {0, 1}T , and

Yit = 1
{
θ Yi,t−1 + αi + εit ≥ 0

}
. (3.5)

Here, 1{.} is the indicator function, εit is a random shock that is independent and

identically distributed across i and t (with known distributions), and is independent

of αi. For simplicity we consider the case where no additional regressors Xit are

present, but we assume that the initial period outcome variable Yi0 is observed

(the total number of observed time-periods is thus T + 1), and we treat this initial

outcome as a conditioning variable, i.e. Zi = Yi0 and therefore XT = {0, 1} in the

above notation. In this example one thus needs to estimate the parameter θ ∈ R
and the two densities π(α|Yi0 = 0) and π(α|Yi0 = 1). Since XT is finite with a

constant number of elements (independent of T ), this model already satisfies the

generalized random effects assumption, without imposing any further constraints.

3.2 Identification Issues (Smoothness Assumption on π)

The motivation for the large T asymptotics in the panel data literature is to re-

solve the incidental parameter estimation problem, to overcome the potential fixed

T identification problem, and to do this in a way that is not model specific. We

have argued that the generalized random effect assumption already overcomes the

incidental parameter problem, but there may still remain an identification problem

at finite T . For example, under the random effects approach there is no incidental
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parameter problem in the dynamic binary choice model without additional regres-

sors, which we just introduced. Nevertheless the model is not fixed T identified,

as discussed in Honoré and Tamer (2006). It is this identification problem that

motivates the use of large T asymptotics in the present paper.

If the particular model of interest is point identified at fixed T once the gener-

alized random effect assumption is imposed, then one can use the sieve estimation

approach of Bester and Hansen (2007), which allows for semi-parametric estimation

at fixed T . However, to determine whether the model is point identified or not

requires (a potentially complicated) model specific analysis. When T is sufficiently

large we show that one can avoid this by considering the alternative asymptotics

N,T → ∞.

To discuss how the identification problem vanishes as T → ∞ we consider the

expected (log-) likelihood function

LNT (θ, π) = E [LNT (θ, π)
∣
∣X1, . . . ,XN

]
. (3.6)

This expected likelihood is not quite the population likelihood function, since we

still condition on the regressors Xi, i.e. LNT (θ, π) is still random, and for finite N

not all of the possible variation in Xi is already accounted for in LNT (θ, π). For

π ∈ ΠA
T we define1

θ(π) = argmax
θ∈Θ

LNT (θ, π). (3.7)

For sufficiently large values of N and T we assume that θ(π0) = θ0 with probabil-

ity one, i.e. if the true distribution for the individual effects is known, then θ is

point-identified. Our analysis in the next section shows that if π satisfies a certain

generalized Lipschitz condition with Lipschitz constant κT = o(
√
T ), then under

appropriate regularity conditions we have

θ(π) − θ(π0) = Op

(κT

T

)

DH(π, π0), (3.8)

where DH(π, π0) is the Hellinger distance introduced above. This result has two

important consequences:

Firstly, by choosing some fixed prior distribution π for each T we can achieve

κT = O(1) and DH(π, π0) ≤
√

2 (which always holds for the Hellinger distance). We

thus obtain θ(π) − θ0 = Op (1/T ), i.e. the identification problem for θ vanishes as

T becomes large, and the size of the identified set shrinks at least at the rate 1/T .2

1Note that π depends on T , but we suppress this dependence.
2 θ(π) has a given value for each T and we have θ0 = θ(π)+Op (1/T ), which implies that the identified

set for θ0 has to shrink at the rate 1/T .
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Secondly, the actual rate at which the identified set for θ0 shrinks may be much

faster, and depends on how fast the identified set for π0 shrinks in terms of the

Hellinger distance. This rate can be very high, depending on the smoothness as-

sumptions that are imposed on the allowed conditional densities π. We are going

to discuss this issue a little further now.

For simplicity, consider the case where θ0 is known (the conclusions for the case

where θ is estimated turn out to be equivalent), and define

π = argmax
π∈ΠT

LNT (θ0, π), (3.9)

for some appropriate parameter set ΠT . Here, the optimal π may not be unique,

but we assume that it exists and that one of the optimal values is chosen if there are

multiple ones. The rate at which DH(π, π0) vanishes as T → ∞ provides an upper

bound for the rate at which the identified set for π0 shrinks with T .

Maximizing LNT (θ0, π) is equivalent to minimizing DKL(fY (π)||fY (π0)), which

is the Kullback Leibler divergence of the outcome variable distributions that are

implied by π and π0 (see definition above). Thus, the rate at which DH(π, π0)

converges to zero as T → ∞ depends on3

(i) How fast DKL(fY (π)||fY (π0)) converges to zero, i.e. how well the distribution

of the outcome variable generated by an element in ΠT can approximate the

true distribution of the data.

(ii) Whether a small value of DKL(fY (π)||fY (π0)) for π ∈ ΠT also implies that

DH(π, π0) is small.

Note that the first point demands ΠT to be large enough, while the second point

requires it not to be too large. This is analogous to the problem one faces in non-

parametric sieve estimation (see e.g. Chen (2007)), only that our condition (ii) is

related to identification, while there it is about controlling the sample variation of

the non-parametric estimator.

To discuss condition (i) one can e.g. use the inequality DKL(fY (π)||fY (π0)) ≤
DKL(π||π0), which holds generally (chain rule for Kullback Leibler divergence). Sat-

isfying condition (i) is therefore mainly an exercise in approximation theory, with

the distance measure given by the Kullback Leibler divergence. There are many

possibilities to approximate an unknown function, summarized e.g. in the review of

Chen (2007). Since π is a probability density we also need to impose the constraints

3 Assumption 4.3 below provides a formal statement of these conditions.
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that the density is positive and integrates to one. The quality of the approximation

of π0 will strongly depend on how smooth π0 is as a function of α.

To satisfy condition (ii) we are going to choose the set ΠT such that it only

contains distributions that are sufficiently smooth in a well-defined sense, as will be

discussed extensively in Section 5.

3.3 Main Results

In Section 4 below we derive the asymptotic properties of the estimator θ̂ under high-

level assumptions on the parameter set ΠT and the true distribution π0. In Section 5

we then discuss the generalized random effect assumption as one particular example

how to satisfy these high-level assumptions. However, our asymptotic results for θ̂ in

Section 4 are applicable more generally. The high-level assumptions we impose there

reflect the restrictions discussed above, i.e. firstly that the dependence of α and X

needs to be restricted to avoid a curse of dimensionality problem when estimating

π(α|x), secondly that the true distribution π0(α|x) can be well-approximated by

an element in ΠT , and thirdly that distributions in ΠT are sufficiently smooth to

control for the fact that the model may not be identified at fixed T .

The method we use to control the asymptotic bias in θ̂ is to bound the difference

between θ̂ and θ̂(π0), namely we show that

θ̂ − θ̂(π0) = Op

(κT µT

T

)

+ op

(
1√
NT

)

, (3.10)

where κT is the generalized Lipschitz constant that describes the smoothness of

the functions in ΠT , and µT is the rate at which the true distribution π0 can be

approximated by an element of ΠT in terms of Hellinger distance as T → ∞. The

result (3.10) is very powerful since the infeasible estimator θ̂(π0) has no asymptotic

bias, i.e. the equation states that all terms that contribute to the asymptotic bias

of θ̂ are of the order κTµT /T , which can vanish very rapidly as T increases.

To describe the limiting distribution of θ̂ we note that under appropriate reg-

ularity conditions
√
NT (θ̂(π0) − θ0) is asymptotically normal with mean zero and

variance I−1
0 . Here, I0 is the large N , T limit of the appropriately scaled in-

formation matrix of the model for given π0. Thus, as long as N is not growing

too fast asymptotically, namely as long as N = o
(
T/(µ2

Tκ
2
T )
)
, we can conclude

that the right hand side of equation (3.10) is of order op(1/
√
NT ), and therefore√

NT (θ̂ − θ0) →d N (0,I−1
0 ) for N,T → ∞.

We then apply these general results to the special case of generalized random

effects, where the regressor domain XT is decomposed into GT groups and a random
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effect assumption is imposed in each group. We discuss how ΠT can be chosen

appropriately in that case. We then show that if π0(α|x) is r times continuously

differentiable in α with bounded derivatives and r ≥ 1, then under appropriate

regularity conditions we have

κT µT

T
=

1

T

(
log T

T

)(r−1)/2

. (3.11)

Thus, the rate at which the bias of θ̂ decreases in T is only restricted by the smooth-

ness of π0. This is a very powerful result: By imposing a generalized random effect

assumption together with a smoothness assumption on the distribution π0, we can

obtain an estimator θ̂ whose asymptotic bias vanishes very rapidly. The rate at

which the bias decreases in T can be substantially higher than the rates obtained

from other bias correction techniques. Consequently, the estimator θ̂ can be asymp-

totically unbiased under a much larger range of asymptotics, allowing N to grow

much faster than T . Our Monte Carlo simulations confirm this asymptotic result,

since we find θ̂ to have very little bias also in scenarios where N is much larger than

T , as long as π0 can be well-approximated by an element of ΠT .

4 Asymptotic Analysis of the Estimators

In this section we analyze the large N,T asymptotic properties of the estimator θ̂(π)

that was introduced in (3.2), and of which the joint maximum likelihood estimator

θ̂ = θ̂(π̂) is a special case. In subsection 4.1 we show uniform consistency of θ̂(π)

over all π ∈ Πlow
T , i.e. over all individual effect distributions π = π(α|x) that

are appropriately bounded from below. Having established uniform consistency we

then continue to analyze the local properties of the integrated likelihood function

LNT (θ, π) around θ0. In subsection 4.2 we derive uniform bounds on the difference

between the scores and the Hessians of LNT (θ, π) between two different individual

effect distributions. We then use these bounds for the score and Hessian to also

bound the difference θ̂(π̂)− θ̂(π0) in terms of the Hellinger distance between π̂ and

π0. In subsection 4.3 we then derive the convergence rate of π̂ to π0 in terms of the

Hellinger distance under appropriate assumptions. This also gives an upper bound

for the convergence rate of θ̂(π̂) to θ̂(π0). Since θ̂(π0) is asymptotically normal and

unbiased we can use this result to characterize the asymptotic distribution of θ̂(π̂).
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4.1 Uniform Consistency of θ̂(π)

We are going to show uniform consistency of θ̂(π) over a large class of distributions

π(α|x) for the asymptotics N,T → ∞. Our strategy for doing so is to relate the

integrated likelihood that was defined in (3.1) to the profile likelihood, which reads

Lp
NT (θ) =

1

NT

N∑

i=1

max
α∈A

log f(Yi|Xi, α; θ) =
1

NT

N∑

i=1

log f(Yi|Xi, α̂
p
i (θ); θ), (4.1)

where α̂p
i (θ) = argmaxα∈A f(Yi|Xi, α; θ). The profile likelihood is the one that is

maximized in the fixed effect approach and the corresponding fixed effect estimator

for the parameters of interest reads

θ̂p = argmax
θ∈Θ

Lp
NT (θ). (4.2)

Consistency of θ̂p is well-established in the literature on large T panel data. Our goal

is therefore to show θ̂(π) = θ̂p+op(1). In order for this to hold, the key condition on

π(α|x) is the existence of a lower bound πlow
T (α|x) > 0, i.e. we impose the condition

π(α|x) ≥ πlow
T (α|x), or equivalently π ∈ Πlow

T in the notation introduced above.

Further regularity conditions on the model and on πlow
T (α|x) are presented in the

appendix.

Theorem 4.1 (Consistency). Let assumption B.1 be satisfied and let N,T → ∞.

Then we have

sup
π∈Πlow

T

∥
∥
∥θ̂(π) − θ0

∥
∥
∥ = op(1).

The proof of the theorem is based on relating the integrated likelihood function

LNT (θ, π) to the profile likelihood function Lp
NT (θ). In general, as long as π(α|x)

integrates to one, we have LNT (θ, π) ≤ Lp
NT (θ) (by the mean value theorem for

integration). To prove the theorem we need to show that the opposite inequality

also holds up to op(1) in order to conclude that LNT (θ, π) = Lp
NT (θ)+ op(1), within

a neighborhood of θ0 and uniformly over π ∈ Πlow
T . For this step, the lower bound on

π(α|x) is required. Finally, under appropriate regularity conditions we know from

the fixed effect panel literature that Lp
NT (θ) has a well-seperated global maximum

close to θ0, so that the same must be true for LNT (θ, π), which leads us to conclude

θ̂(π) = θ0 + op(1), uniformly over π ∈ Πlow
T . For details we refer to the appendix.

Our assumptions allow the lower bound πlow
T (α|x) to converge to zero at an

arbitrary polynomial rate in T as T → ∞, i.e. the constraint to have a lower bound

for π(α|x) quickly becomes less and less restrictive as T increases.
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It is crucial that the consistency result for θ̂(π) holds uniformly over the set

Πlow
T , since ultimately we want to consider θ̂(π̂), where π̂ is an estimator for π0, i.e.

is random. The uniform consistency results then shows that θ̂(π̂) is consistent as

long as π̂ takes values in Πlow
T .

4.2 Score and Hessian of the Integrated Likelihood

Having established uniform consistency of θ̂(π), we are now going to study the local

properties of the integrated likelihood function LNT (θ, π) as a function of θ around

the true parameter θ0, in particular the score and the Hessian of LNT (θ, π) at θ0.

This local analysis of LNT (θ, π) can then be combined with the uniform consistency

result to derive the asymptotic properties of θ̂(π).

While it is sufficient for consistency of θ̂(π) to impose a lower bound on π(α|x) it

now becomes crucial to also impose a smoothness condition on the density π(α|x) in

the form of a generalized Lipschitz condition. To formulate the Lipschitz condition

we require a distance measure in the space of individual effects A. For each x ∈ XT

let dx : A×A → R be a measurable non-negative function, such that dx(α,α) = 0 for

all α ∈ A. In many applications one might simply set dx(α, β) = ‖α−β‖. However,

in general dx(α, β) need neither be symmetric nor satisfy a triangle inequality. We

define the following parameter set for π

Πlip
T,κ =

{

π ∈ ΠA
T

∣
∣
∣
∣
∀x ∈ XT , ∀α, β ∈ A : |π(α|x) − π(β|x)| ≤ κT π(α|x) dx(α, β)

}

.

(4.3)

This is the set of all conditional distributions that satisfy a Lipschitz type condition

with generalized Lipschitz constant κT . In contrast to a standard Lipschitz con-

dition, there also appears π(α|x) on the right hand side of the condition. This is

natural here, since it is important to control the magnitude of relative changes of

π(α|x) across α, as opposed to absolute changes. Locally the condition is simply a

standard Lipschitz condition on log π(α|x).

Theorem 4.2. Consider the limit N,T → ∞ and let assumption B.2(iii) and (vi)

be satisfied. Let κT > 0 be a series such that κ−1
T = O(1) and κT = O(T ). Then

sup
π1,π2∈Πlip

T,κ

∥
∥
∥
∥

∂LNT (θ0, π1)

∂θ
− ∂LNT (θ0, π2)

∂θ

∥
∥
∥
∥

= Op

(κT

T

)

.

sup
π1,π2∈Πlip

T,κ

∥
∥
∥
∥

∂2LNT (θ0, π1)

∂θ∂θ′
− ∂2LNT (θ0, π2)

∂θ∂θ′

∥
∥
∥
∥

= Op

(
κT√
T

)

.
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Again, it is crucial that the result of Theorem 4.2 holds uniformly over π, since we

are ultimately interested in applications where π is replaced by the estimator π̂. We

focus on the result for the score. The theorem implies that all scores ∂LNT (θ0, π)/∂θ

for different π(α|x) become asymptotically close to each other as long π(α|x) satisfies

a Lipschitz type condition with κT = o(T ). The most interesting application of the

theorem is obtained by setting π1 = π0. The score ∂LNT (θ0, π)/∂θ is unbiased for

π = π0. Assuming that π0 ∈ Πlip
T,κ, we can thus conclude from the theorem that

the bias of the score of the integrated likelihood is at most of order κT /T for all

π ∈ Πlip
T,κ.

The bound on the bias of the score provided by Theorem 4.2 is independent of

π. However, we clearly expect the bias of the score to be small whenever π is close

to the true distribution π0, and in the following we formalize this intuition. To do

so, we decompose the score of the integrated likelihood as follows

∂LNT (θ0, π)

∂θ
=
∂LNT (θ0, π0)

∂θ
+
∂LNT (θ0, π)

∂θ
+
νNT (π)√
NT

, (4.4)

where LNT (θ, π) is the expected likelihood conditional on the regressors X1,. . . ,XN ,

which was introduced in equation (3.6), and νNT (π) is given by

νNT (π) =
1√
NT

N∑

i=1

νNT,i(π)

νNT,i(π) =
∂ log fY |X(Yi|Xi; θ

0, π)

∂θ
− ∂ log fY |X(Yi|Xi; θ

0, π0)

∂θ

−E[∂ log fY |X(Yi|Xi; θ
0, π)

∂θ

∣
∣
∣
∣
Xi

]

. (4.5)

In equation (4.4) the first term of the decomposition is the score at π0, which

is unbiased, i.e. the bias of the integrated likelihood score originates from the

remaining two terms. In the following we provide bounds on these two terms.

Theorem 4.3. Let κT > 0 be a series such that κ−1
T = O(1) and κT = O(T ), and

assume that there exist an upper bound πup
T (α|x) such that π0(α|x) ≤ πup

T (α|x) for

all α ∈ A and x ∈ XT . Let assumption B.2(iv) be satisfied and consider the limit

N,T → ∞. Then there exists a series of random variables CT > 0 with CT = Op(1)

such that for all π ∈ Πlip
T,κ ∩ Πup

T

∥
∥
∥
∥

∂LNT (θ0, π)

∂θ

∥
∥
∥
∥
≤ CT

κT

T
DH(π, π0).
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Note that CT is independent of π, so that the theorem can also be applied when

an estimator π̂ is plugged in. The notation Πup
T for the set of all conditional proba-

bility densities that are bounded from above by πup
T (α|x) was introduced earlier.

At the true parameters we know that ∂LNT (θ0, π0)/∂θ = 0, and one expects

intuitively that the expected score ∂LNT (θ0, π)/∂θ should be close to zero whenever

π is close to π0. Theorem 4.3 formalizes this intuition and shows that an appropriate

distance measure for the individual effect distributions is the Hellinger distance.

Next, we discuss the asymptotic properties of νNT (π), which is the sum over the

difference of individual score functions minus the mean of this difference (the score

at π0 is mean zero, so this term does not appear explicitly in equation (4.5)).

Lemma 4.4. Let assumption B.2(i) and (ii) be satisfied, consider the limit N,T →
∞, and let κT > 0 be a series such that κ−1

T = O(1). For all series πT with πT ∈ Πlip
T,κ

we have E [(νNT (πT ))2
]

= O
(
κ2

T /T
)
, and therefore νNT (πT ) = Op

(

κT /
√
T
)

.

From this lemma we conclude that νNT (π) = op(1) for those π that satisfy a

generalized Lipschitz condition with κT = o(
√
T ).4 However, the lemma does not

make a uniform statement over all π that satisfy this condition. Therefore we cannot

apply the lemma when π is replaced by the estimator π̂. Another way of seeing that

there is a complication here is to realize that the result νNT (π) = Op

(

κT /
√
T
)

is derived in the lemma by evaluating the second moment of νNT (π), using the

fact that the νNT,i(π) are mean zero and independent across i conditional on the

regressors. This, however, only holds for non-stochastic π and the argument breaks

down when the estimator π̂ is plugged in. The problem of generalizing a pointwise

convergence or boundedness result to the corresponding uniform result is well-known

in the literature on empirical processes (see e.g. Andrews (1994) for a review). The

key in going from the pointwise to the uniform result is to impose a condition (e.g. a

stochastic equicontinuity condition) that guarantees that the parameter set (in our

case ΠT ) is sufficiently “small” in an appropriate sense. This problem is therefore

directly related to our discussion in Section 3.1, where we have argued that the

space of conditional densities π(α|x) is too “large” for our purposes and needs to

be restricted. Instead of making such a restriction explicit here, we impose the

following high-level assumption, which has the advantage that our results in this

section can be applied under various restrictions on ΠT that satisfy this assumption.

Assumption 4.1. supπ∈ΠT
‖νNT (π)‖ = op(1).

4 In Lemma 4.4 we make the T -dependence of the conditional densities π(α|x) explicit (note that

x ∈ XT , i.e. the dimension of x changes with T ), while we usually suppress this T -dependence.
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Using this assumption and applying the preceding results of this section, we

obtain the following corollary.

Corollary 4.5. Let κT > 0 be a series such that κ−1
T = O(1) and κT = o(

√
T ), and

assume that an upper bound πup
T (α|x) exists such that π0(α|x) ≤ πup

T (α|x) for all

α ∈ A and x ∈ XT . Let assumption B.2 and 4.1 be satisfied and consider the limit

N,T → ∞. Let π̂ be an estimator that takes values in ΠT ⊂ Πlip
T,κ ∩ Πup

T for all T .

Then we have

θ̂(π̂) − θ̂(π0) = Op

(κT

T

)

DH(π̂, π0) + op

(
1√
NT

)

.

This result holds independently of whether π̂ is the joint maximum likelihood

estimator introduced in equation (3.3), i.e. it can also be applied for alternative

estimation procedures for the individual effect distribution. It is interesting to

compare Corollary 4.5 to Theorem 4 in Arellano and Bonhomme (2009), which

makes a very similar statement. They use the L2 Kullback Leibler loss instead of

the Hellinger distance and they assume a parametric specification for π and impose a

random effect assumption. The key difference, however, is that they need to impose

that N/T converges to a constant, while we impose no restriction on how N and T

go infinity. This means that our result can be applied to discuss higher order bias

correction of θ̂(π̂).

Note that θ̂(π0) is asymptotically unbiased and that the term op

(

1/
√
NT

)

can

be ignored in the limiting distribution of θ̂(π̂) since it is small compared to the

asymptotic standard error of θ̂(π̂). Thus, according to corollary 4.5 the asymptotic

bias of θ̂(π̂) crucially depends on the asymptotics of DH(π̂, π0), i.e. how fast π̂

converges to the true distribution in terms of the Hellinger distance. This is what

we are going to study next.

4.3 Joint Maximum Likelihood Estimation of θ and π

We now want to study the properties of the joint maximum likelihood estimators θ̂

and π̂ that were introduced in (3.3). The profile likelihood LNT (π) was defined in

(3.2). A Taylor expansion in θ gives

LNT (π) = LNT (θ0, π) + (θ̂(π) − θ0)′
∂LNT (θ0, π)

∂θ

+
1

2
(θ̂(π) − θ0)′

∂LNT (θ0, π)

∂θ∂θ′
(θ̂(π) − θ0) + Op

(

‖θ̂(π) − θ0‖3
)

. (4.6)
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Using our results on θ̂(π) as well as the bounds on the score and Hessian from the

last subsection it is easy to provide appropriate bounds on the terms in LNT (π)

that involve θ̂(π). The new task here is to handle the term LNT (θ0, π). We have

LNT (θ0, π) = LNT (θ0, π0) − 1

T
DKL

(
fY (π)||fY (π0)

)
+

1

T
√
N
ψ(π), (4.7)

where we have defined

ψNT (π) =
√
NT

[
LNT (θ0, π0) − LNT (θ0, π) − LNT (θ0, π0) + LNT (θ0, π)

]

=
1√
N

N∑

i=1

{

log
fY |X(Yi|Xi; θ

0, π0)

fY |X(Yi|Xi; θ0, π)
−E[log fY |X(Yi|Xi; θ

0, π0)

fY |X(Yi|Xi; θ0, π)

∣
∣
∣
∣
Xi

]}

.

(4.8)

Note that ψNT (π) and νNT (π) are closely related, namely νNT (π) is obtained from

ψNT (π) by taking the derivative with respect to θ0 and multiplying with minus

T−1/2. Both are zero mean empirical processes with index π. Analogously to νNT (π)

we can bound ψNT (π) pointwise by evaluating the second moment, as stated in the

following lemma.

Lemma 4.6. Let assumption B.3 be satisfied, let π0 ∈ Πup
T and let πT ∈ Πlow

T . Then

we have ψNT (πT ) = Op(1)
√

DKL(fY (πT )||fY (π0).

However, just as we discussed for νNT (π) above the pointwise bound is not

sufficient for our purposes and we impose a high-level assumption to guarantee

the uniform bound. Satisfying this assumption again requires to constraint the

parameter set ΠT appropriately.

Assumption 4.2. Let there exist κT > 0 with κ−1
T = O(1) and κT = o(

√
T ), and

a series of random numbers cT = op(1) such that ΠT ⊂ Πlip
T,κ and ∀π ∈ ΠT :

|ψNT (π)| ≤ cT

√
T

κT

√

DKL(fY (π)||fY (π0)).

Apart from ψNT (π), the other term on the right hand side of equation (4.7)

which depends on π is DKL

(
fY (π)||fY (π0)

)
. If we consider the population level

in the cross-sectional dimension and assume θ0 is known, then maximizing the ex-

pected likelihood over π is equivalent to minimizing the Kullback Leibler divergence

DKL

(
fY (π)||fY (π0)

)
. However, the model may not be identified, i.e. minimizing

DKL

(
fY (π)||fY (π0)

)
may not necessarily give π = π0. It is, however, crucial for our

discussion that minimizing DKL

(
fY (π)||fY (π0)

)
over π ∈ ΠT yields a small value

of DH(π, π0) at least for sufficiently large values of T , because in the last section we
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have shown that the convergence rate of DH(π̂, π0) determines the rate at which the

bias of θ̂ converges to zero as T → ∞. This motivates the following assumption.

Assumption 4.3. Let there exists µT = o(1), and a series of random numbers

CT = Op(1), such that

(i) inf
π∈ΠT

DKL(fY (π)||fY (π0)) = Op(µ
2
T ).

(ii) ∀π ∈ ΠT : DH(π, π0) ≤ CT

[√

DKL(fY (π)||fY (π0)) + µT

]

.

Assumption 4.3(i) demands that the true distribution of the dependent variable

Y can be approximated better and better (as T → ∞) in terms of the Kullback

Leibler divergence by a distribution of Y that is implied by some π ∈ ΠT . This

assumption is trivially satisfied if π0 ∈ ΠT , but unless we are willing to assume a

parametric form for π it is not reasonable to expect π0 ∈ ΠT . For the semiparametric

approach we have to choose ΠT such that every distribution π0 that satisfies certain

regularity conditions can be approximated well by an element in ΠT . The rate of

convergence of this approximation of π0 is given by µT . This rate crucially depends

on the (smoothness) properties of π0.

In this sense Assumption 4.3(i) requires ΠT to be sufficiently “large”. In con-

trast, assumption 4.3(ii) demands ΠT to be sufficiently “small”, namely it should

not contain ill-behaved distributions for which DKL(fY (π)||fY (π0)) is small, while

DH(π, π0) is not. Note that µT appears on the right hand side of Assumption 4.3(ii),

i.e. the assumption allows for the possibility that DKL(fY (π)||fY (π0)) is (close to)

zero but DH(π, π0) is not, which is important since the model may not be identified

at finite T . However, as T becomes large the assumption requires this identification

problem to vanish at the rate µT .

We have DH(π, π0) ≤
√

DKL(π||π0), which is a general relation between Hellinger

distance and Kullback Leibler divergence. Thus, a slightly stronger form of Assump-

tion 4.3(ii) is obtained by replacing DH(π, π0) with
√

DKL(π||π0) on the left hand

side of the assumption. This is interesting, because by the “chain rule for the

Kullback Leibler divergence” we have DKL(fY (π)||fY (π0)) ≤ DKL(π||π0). Thus,

Assumption 4.3(ii) essentially requires that this general inequality can be reverted

for π ∈ ΠT , allowing for some random pre-factor CT and some “slackness” µT .

Theorem 4.7. Let assumption 4.1, 4.2, 4.3 and B.2 be satisfied. Then we have

(i) DH(π̂, π0) = Op(µT ) + op

(

1

κT

√

T

N

)

,
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(ii) θ̂ − θ̂(π0) = Op

(κT µT

T

)

+ op

(
1√
NT

)

.

We want to give some intuition on the proof of this theorem. Consider π =

argmaxπ∈ΠT
LNT (θ0, π), which is an infeasible “estimator” for π0 based on the

expected likelihood and on knowledge of θ0. It is easy to see that Assumption 4.3

implies DH(π, π0) = Op(µT ). Part (i) of Theorem 4.7 generalizes this result to

the feasible estimator π̂. The fact that π̂ is obtained from LNT (θ, π) instead of

the expected likelihood LNT (θ, π) can be controlled by the decomposition (4.7) and

assumption 4.2, and results in the additional term op

(

1
κT

√
T
N

)

. This terms also

accounts for the fact that θ0 is not known and θ̂(π) is used instead — the results of

the previous subsection are crucial to show this. The second part of Theorem 4.7

then follows directly from the first part and Corollary 4.5 above. For the details we

refer to the appendix.

Part two of Theorem 4.7 provides a bound on the difference between the feasible

maximum likelihood estimator θ̂ and the infeasible “miracle” maximum likelihood

estimator θ̂(π0) that could be obtained if the distribution of the individual effects

were known. Under appropriate regularity conditions one can show that θ̂(π0) is

asymptotically normal and unbiased. Unbiasedness stems from the fact that the

score ∂LNT (θ0, π)/∂θ is unbiased for π = π0. Asymptotic normality can, for exam-

ple, be shown by relating θ̂(π0) to the fixed effect estimator θ̂p, whose asymptotic

theory is well-studied in the large T literature. For the sake of generality, we for-

mulate this as an assumption, which can be justified in different ways.

Assumption 4.4. As N,T → ∞ we have
√
NT (θ̂(π0) − θ0) →d N

(
0, I−1

0

)
, for

a positive definite K ×K matrix I0.

From Theorem 4.7(ii) we then obtain the following corollary.

Corollary 4.8. Let the assumptions of Theorem 4.1 and 4.7 as well as Assump-

tion 4.4 be satisfied, and let N = o
(
T/(µ2

Tκ
2
T )
)

for N,T → ∞. Then we have

√
NT (θ̂ − θ0) →

d
N
(
0, I−1

0

)
.

Thus, as long as N does not grow too fast relative to T as N,T → ∞, we find

that θ̂ is asymptotically unbiased. How rapidly N is allowed to go to infinity relative

to T is specified by µT and κT , the details of which depend on the particular low-

level assumptions that are made to justify the high-level assumption in this section.

One concrete example for this is discussed in the following.
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5 Generalized Random Effects

To apply the results of the last section one needs to satisfy the high-level assumptions

4.1, 4.2 and 4.3. Assumptions 4.1 and 4.2 demand specific uniform bounds on the

empirical processes νNT (π) and ψNT (π). We gave conditions under which these

bounds are satisfied pointwise in Lemma 4.4 and 4.6, but in order to show the

uniform result over π ∈ ΠT one needs to impose restrictions on the parameter set of

allowed individual effect distributions ΠT . Since assumption 4.3(i) demands the true

distribution π0(α|x) to be well approximated by an element in ΠT ,5 the restrictions

on ΠT require us to also impose restrictions on π0. In particular, the unrestricted

correlated random effect model, where apart from basic regularity conditions no

restriction is imposed on π(α|x), is ruled out by these high-level assumptions, unless

the regressor domain XT is discrete and only contains a small number of elements

relative to N .6 If XT contains too many elements, then the set of conditional

distributions π(α|x) is too rich, so that the uniform bounds in assumption 4.1 and 4.2

cannot be satisfied. In other words, we are facing a curse of dimensionality problem

in estimating the conditional distribution π(α|x) if the domain of the conditioning

variables is too large.

In order to overcome this problem one needs to restrict the correlation structure

between the individual effects and the regressors. Different ways of doing this are

conceivable. Here, we want to explore the generalized random effect restriction,

which assumes a partitioning of XT into groups and imposes a random effect as-

sumption within each group. Let GT be a known partition of XT into GT groups.

We assume that the distributions π(α|x) and π(α|x̃) are identical if x and x̃ belong

to the same group, i.e. if x, x̃ ∈ g with g ∈ GT . The set of distributions for which

this constraint holds is given by

ΠG
T =

{
π ∈ ΠA

T

∣
∣∀g ∈ GT ,∀x, x̃ ∈ g,∀α ∈ A : π(α|x) = π(α|x̃)

}
. (5.1)

We assume π0 ∈ ΠG
T , i.e. the true distribution satisfied the generalized random

effect assumption, and we restrict the parameter set ΠT to be a subset of ΠG
T . The

generalized random effect assumption reduces the dimension of ΠT dramatically,

compared to the unrestricted correlated random effect case. Once this assumption

5 Actually, assumption 4.3(i) only requires the outcome variable distributions implied by π0 and the

one implied by some π ∈ ΠT to be close to each other, but the easiest way to satisfy this assumption is

to show that π0 itself can be approximated well by π ∈ ΠT in terms of Kullback Leibler distance.
6 A small dimensional continuous support XT can also be admissible, as long as a smoothness assump-

tion of π(α|x) as a function of x is imposed.

25



and some further regularity conditions on ΠT are imposed one can use methods

from empirical process theory to show that the uniform bounds in Assumption 4.1

and 4.2 are satisfied as long as the number of groups GT increases sufficiently slowly

as N,T → ∞.

5.1 Imposing an Appropriate Smoothness Assumption

We now want to discuss how to choose ΠT ⊂ ΠG
T such that Assumption 4.3 is

satisfied, and which rates µT and κT can be obtained. Assumption 4.3(ii) is an

approximate identification condition for π within ΠT . For given θ0,7 the assump-

tion demands π to be close to π0 (in terms of Hellinger distance) whenever the

distributions for the outcome variable Y that are implied by π and π0 are close to

each other (in terms of Kullback Leibler divergence). However, this identification of

π from the distribution of Y is only required approximately, since µT appears as a

slackness parameter in the assumption. Only as T becomes large the slackness µT

converges to zero, so that the individual effect distribution is identified in the limit

T → ∞.

Determining the distribution π(α|x) from the distribution of Y is an ill-posed

inverse problem for fixed T , as discussed e.g. in Bonhomme (2010). One way to

understand why this problem is solved asymptotically as T becomes large is to ask

how one could estimate π(α|x) within the fixed effect approach. The fixed effect

approach starts from the realizations α0
i for the individual effects of each cross-

sectional unit, which are distributed according to π(α|Xi). If the realizations α0
i

would be observed, then, once the generalized random effect assumption is imposed,

one could estimate π(α|x) consistently for fixed T as N → ∞ by using a standard

kernel density estimation within each group g ∈ GT . In reality the α0
i are not

observed, but the fixed effect approach provides estimators α̂p
i , which are obtained

from maximizing the profile likelihood jointly with the parameters of interest. As

T becomes large, we have α̂p
i = α0

i + Op(T
−1/2). Thus, a Kernel density estimator

over α̂p
i within each group provides an estimator for π(α|x) which is consistent as

both N and T become large.

We do not consider the Kernel density estimator over α̂p
i further, because it does

not allow for higher order bias correction (it gives some fixed convergence rate of

DH(π̂, π0) in T , which is not optimal). However, apart from the fact that π(α|x)
can be consistently estimated as N,T → ∞, this estimator illustrates another very

7 Note that θ0 enters in the definition of DKL(fY (π)||fY (π0).
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important point: For a given value of T , the model intrinsically determines the

“resolution” of the individual effects. In the fixed effect approach, this “resolution”

is described by the variance of α̂p
i . For large values of T the variance of α̂p

i is

approximated by T−1I−1(α0
i , θ

0,Xi), where I(α, θ, x) is the information matrix of

the model with respect to the individual effects, namely

I(α, θ, x) = −E [ 1

T

∂2 log f(Yi|Xi, α; θ)

∂α∂α′

∣
∣
∣
∣
Xi = x, α = α, θ

]

= − 1

T

∫

y∈YT

∂2 log f(y|x, α; θ)

∂α∂α′ f(y|x, α; θ) dy . (5.2)

This information matrix also plays an important role for our maximum likelihood

estimator of π(α|x), and for the question how to choose ΠT such that assump-

tion 4.3(ii) is satisfied. To understand this, consider a quadratic expansion of

log f(Yi|Xi, α; θ) in α around its maximum value α̂p
i = α̂p

i (θ) = argmaxα f(Yi|Xi, α; θ).

For large T we have

f(Yi|Xi, α; θ) ≈ f(Yi|Xi, α̂
p
i ; θ) exp

[
1

2
(α− α̂p

i )
′ ∂2 log f(Yi|Xi, α̂

p
i ; θ)

∂α∂α′ (α− α̂p
i )

]

≈ f(Yi|Xi, α̂
p
i ; θ) exp

[

−T
2

(α− α̂p
i )

′ I(α̂p
i , θ,Xi) (α− α̂p

i )

]

.

In the last line we used that under appropriate regularity conditions the Hessian

converges to its expected value as T becomes large. Thus, the functional form of

f(Yi|Xi, α; θ) in α approximates a non-normalized multivariate normal pdf with

mean α̂p
i and variance I−1(α̂p

i , θ,Xi)/T . This variance therefore describes how fast

f(Yi|Xi, α; θ) is varying as a function of α, which is important, since according to

equation (2.1) the distribution of Yi given Xi only depends on π(α|Xi) via integra-

tion over α, with f(Yi|Xi, α; θ) also appearing in the integrand. Therefore, variations

in π(α|Xi) over α that are more rapid than the variations in f(Yi|Xi, α; θ) over α

will tend to be “washed out” by the integration, i.e. very rapid fluctuations in

π(α|Xi) have very little effect on the distribution of Yi given Xi.

Thus, if we do not impose an appropriate smoothness assumption on π(α|x),
then DKL(fY (π)||fY (π0)) can be close to zero, while π and π0 are quite differ-

ent. How smooth π(α|x) needs to be at a particular value of α is determined by

I−1(α, θ0, x)/T .

To specify an appropriate parameter set ΠT that accounts for this smoothness

requirement, we first need to introduce some further notation. Let φ(α;β,Ω) be

the multivariate normal pdf with mean β and variance matrix Ω. For x ∈ XT and
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α, β ∈ A we define the kernel function

KΩ
T (α, β;x) =

φ(α;β,ΩT (β, x))
∫

A φ(γ;β,ΩT (β, x)) dγ
, (5.3)

where ΩT (β, x) is a positive definite M ×M matrix for all values of T , β and x. In

order to be compatible with the generalized random effect assumption we impose

the restriction ΩT (β, x) = ΩT (β, x̃) for all x, x̃ in the same group. When the kernel

KΩ
T is applied to π ∈ ΠG

T one obtains another conditional distribution in ΠG
T , namely

[
KΩ

T π
]
(α|x) =

∫

A
KΩ

T (α, β;x)π(β|x) dβ. (5.4)

Using this kernel function we now define the parameter set of individual effects

distributions as follows

ΠT = KΩ
T

(

ΠG
T ∩ Πup

T ∩ Πlow
T

)

. (5.5)

This is the set of all distributions that can be generated by applying the Kernel KΩ
T

to an element of ΠG
T ∩Πup

T ∩Πlow
T (the set of distribution that satisfy the generalized

random effect assumption as well as some appropriate upper and lower bound).

We assume π0 ∈ Πup
T ∩ Πlow

T . The parameter set satisfies ΠT ⊂ ΠG
T . Here we

impose upper and lower bound restrictions for technical reasons. In our Monte

Carlo simulations below we do not impose any upper or lower bound restriction on

π(α|x), i.e. we simply use ΠT = KΩ
T ΠG

T , which turns out not to affect the good

performance of the estimators.

Since applying KΩ
T is a Gaussian kernel smoothing with variance ΩT (α, x), the

smoothness of the distributions in ΠT depends on the choice of variance matrix

ΩT (α, x). The larger ΩT (α, x), the smoother are the distributions in ΠT . Motivated

by the above discussion, we choose

ΩT (α, x) =
ρT

T






1

Ng(x)

∑

{
i∈{1,...,N} :Xi∈g(x)

}
I(α, θ̃,Xi)






−1

, (5.6)

where θ̃ is some preliminary consistent estimator for θ0, e.g. the fixed effect max-

imum likelihood estimator, ρT > 0 is a scalar bandwidth parameter, g(x) ∈ GT

denotes to the group to which x ∈ XT belongs (i.e. x ∈ g(x)), and Ng(x) is the

number of observed individuals in this group, which is also the set of individuals

that are summed over in (5.6). For the bandwidth we require

ρT

log T
→ const. > 0, as N,T → ∞. (5.7)

28



We assume that π0(α|x) satisfied the generalized random effect assumption and

is r times continuously differentiable in α with bounded derivatives, where r ≥ 1.

Under appropriate further regularity conditions one can then show that Assumption

4.3 is satisfied for the above choice of ΠT and ΩT with

κT =

√

T

log T
, µT =

(
log T

T

)r/2

. (5.8)

By theorem 4.7 the bias of θ̂ converges at the rate κTµT /T , which now equals

T−1 [(log T )/T ](r−1)/2. Thus, the smoother π0 is, the faster the bias of θ̂ converges

to zero.

Alternative choices for the parameter set ΠT are conceivable. The advantage

of defining ΠT as the image of a Gaussian kernel smoothing operator is that the

smoothness properties of π(α|x) can be controlled separately for each value of α

and within each group in terms of the variance matrix ΩT (α, x), which is related to

the information matrix. The individual effect distributions in ΠT are simply infi-

nite mixtures of normal distributions with different means and specified variances.

Further technical details and motivation for this construction of ΠT are discussed

in the appendix.

5.2 Computation

In contrast to standard choices for a non-parametric sieve space, the parameter set

ΠT defined in (5.5) is still infinite dimensional. However, the numerical implemen-

tation of the estimator requires to discretize ΠT . A convenient method for doing

this is to discretize the support A of the individual effects. This discretization is

to be chosen such that it does not affect the properties of the estimator. As ex-

plained above, one can interpret the standard error of the fixed effect estimator for

the individual effects (which for large T is given by the square root of the diagonal

elements of T−1I−1(α, θ0, x)) as the “resolution” in the space A that is implied by

the model. The numerical error due to the discretization of A will be small as long

as the step-size for the discretization of A is chosen sufficiently small relative to this

standard error. In particular, it is natural here to choose a different discretization

step-size for different values of α and different groups g ∈ GT . For example, in our

Monte Carlo simulations below the set A is one-dimensional and we choose the dis-

cretization step-size for given α and x ∈ g equal to 1/6 of the approximate standard

error
√

T−1I−1(α, θ̃, x), using some preliminary consistent estimator θ̃ of θ0. We

verified that the choice of 1/6 did not affect the performance of the estimator in
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that case, i.e. a smaller discretization yields essentially the same estimator for the

parameters of interest.8 If the set A is unbounded, then the discretization requires

to impose some bounds, which can however be chosen very broadly.

The discretization of A and the calculation of the Kernel variance ΩT (α, x) both

require evaluation of the information matrix I(α, θ, x), which involves integration

over y ∈ YT . Unless the model allows for an analytical evaluation of I(α, θ, x), it will

often be easiest to perform a Monte Carlo integration to determine I(α, θ, x), i.e.

to draw many y from the distribution f(y|x, α; θ) and to use minus 1/T times the

sample average of the corresponding Hessians as an approximation of I(α, θ, x). It

is sufficient for our procedure to get a reasonable approximation of I(α, θ, x), i.e. a

small sampling error in I(α, θ, x) does not affect the performance of the estimation.

What can affect the performance, however, is the choice of bandwidth ρT that

enters into ΩT (α, x). In view of the resolution discussion in the space A it is natural

to choose ρT ≥ 1. We want to leave a rigorous treatment of the data dependent

bandwidth choice for future research. In our Monte Carlo simulations we choose

ρT = 4 everywhere, which seemed a reasonable compromise between being able to

approximate many density functions with ΠT (Assumption 4.3(i)) and making sure

that the model is approximately identified (Assumption 4.3(ii)).

After discretization of A and choice of ρT the parametrization of ΠT is deter-

mined and is finite dimensional. For ease of notation we consider in the rest of

this section the pure random effect case where the number of groups GT = 1, and

we assume that A is one-dimensional. The generalization to GT > 1 and higher-

dimensional A is straightforward. Let α∗
q , q = 1, . . . , Q, be the chosen discretization

of A, and let KΩ
qr, q, r = 1, . . . , Q be the corresponding discretization of KΩ

T (α, β, x),9

which in the pure random effect case does not depend on x. The discretized version

8 Note that we only discretized A for the estimation procedure, but not for data generating process

of the Monte Carlo simulation, i.e. the realizations α0
i were chosen from an unrestricted continuous

distributions, only restricted by the computer precision.
9 One can, for example, choose

KΩ
qr = Φ

(
α∗

q+1 + α∗
q

2
;α∗

r ,ΩT (α∗
r)

)

− Φ

(
α∗

q + α∗
q−1

2
;α∗

r ,ΩT (α∗
r)

)

,

for q = 2, . . . , Q − 1, where Φ(α;β,Ω) is the cdf of a normal distribution with mean β and variance Ω.

For q = 1 the second term is omitted, and for q = Q the first term is set to 1. This definition guarantees
∑

q KΩ
qr = 1.
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of the integrated likelihood function, defined in (3.1), then reads

Lapprox
NT (θ, πdisc) =

1

NT

N∑

i=1

log





Q
∑

q,r=1

f(Yi|Xi, α
∗
q ; θ) KΩ

qr π
disc
r



 , (5.9)

where πdisc
r , r = 1, . . . , Q, describes the distribution to which the Kernel smoothing

is applied in order to parameterize ΠT , and the superscript “disc” refers to dis-

cretization. The constraints
∑

r π
disc
r = 1 and πdisc

r ≥ 0, for all r = 1, . . . , Q, need

to be imposed, and further upper and lower bounds on πdisc
r can also be imposed

without difficulty.

The estimators θ̂ and π̂disc are obtained by joint maximization of Lapprox
NT (θ, πdisc)

over θ and πdisc. The number of parameter πdisc may be quite large, but this

is numerically unproblematic, since for given θ the objective function is smooth

and concave over πdisc and the constraints on πdisc are linear, i.e. the optimization

problem over πdisc is very well-behaved, and the corresponding gradient and Hessian

can be easily calculated analytically.

The structure of Lapprox
NT (θ, πdisc) as a function of both θ and πdisc may, however,

be more complicated. In principle, multiple local maxima could exist, and it may

therefore be necessary to repeat the joint maximization over LNT (θ, π) with multiple

starting values, or to perform an initial grid search over θ ∈ Θ.

An interesting alternative option — which we also make use of in our Monte

Carlo simulations — is to perform the optimization sequentially. Starting with

some consistent preliminary estimator for θ, one first optimizes over πdisc for given

θ, then takes the optimal value πdisc and optimizes over θ with πdisc fixed, and so

on. Asymptotically, one can show that already after a finite number of repetitions

this sequential approach yields an estimator for θ whose asymptotic bias decreases

at the same rate as the joint maximum likelihood estimator. In our Monte Carlo

setup this sequential approach turned out to converge quite rapidly. Note that once

the estimator π̂disc is found, one can obtain the actual estimator for the distribution

π by applying the Kernel function KΩ
rq.

6 Monte Carlo Simulations

In our simulation study we consider the dynamic binary choice model without ad-

ditional regressors, as introduced in equation (3.5). In this model only the binary

outcome variable Yit is observed for time periods t = 0, . . . , T and cross-sectional

units i = 1, . . . , N . The parameter of interest θ ∈ Θ = R and the individual effect
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αi ∈ A = R are both scalars. The initial period outcome Yi0 is used as a condi-

tioning variable. We consider a probit model, i.e. shocks εit are standard normally

distributed, iid across both i and t. The (log-) likelihood function of the model thus

reads

LNT (θ, π)

=
1

NT

N∑

i=1

log

∫R { T∏

t=1

[Φ(θ Yi,t−1 + α)]Yit [1 − Φ(θ Yi,t−1 + α)]1−Yit

}

π(α|Yi0)dα,

(6.1)

where Φ(.) is the cdf of the standard normal distribution. The unknown parameters

that enter the likelihood function are θ and the two densities π(α|Yi0 = 0) and

π(α|Yi0 = 1).

For the data generating process we choose the true parameter of interest θ0 = 1.

The conditional distribution α|Yi0 = 1 is chosen to be a t-distribution with 5 degrees

of freedom, centered at α = 0 and rescaled such that its standard error is σπ.

The conditional distribution α|Yi0 = 0 is chosen to be an equal mixture of two

t-distributions with 5 degrees of freedom, one centered at α = 1 and one centered

at α = −1, and both rescaled such that each has a standard error σπ. Thus, σπ

parameterizes the smoothness of the conditional density π(α|Yi0), and we consider

different values for σπ in the simulations below. Finally, we let Yi0 = 0 and Yi0 = 1

both occur with probability 0.5 in the data generating process.

To estimate the model, we discretize the set A = R by choosing a lower bound of

α = −9, an upper bound of α = 9, and a discretization step-size that is sufficiently

small relative to the variance of the fixed effect estimator for α, as described in the

computation section above.

In Figure 1 we plot
√

T−1I−1(α, θ0, Yi0) as a function of α for Yi0 = 0 and 1,

and for T = 12 and 24. We have argued that this quantity, which approximated the

standard error of the fixed effect estimator for α, can be viewed as the “resolution

scale” that the model provides for the estimation of the individual effect distribution.

The figure shows that we cannot expect to resolve much structure in π(α|Yi0) for say

α < −2.5 and α > 2, since
√

T−1I−1(α, θ0, Yi0) then becomes quickly very large.

The figure also shows that we can expect to resolve somewhat finer structures for

T = 24 than for T = 12. Note also that
√

T−1I−1(α, θ0, Yi0) is not symmetric

around α = 0 (it would only be for θ = 0) and that it is slightly different for Yi0 = 0

and Yi0 = 1.

We choose a bandwidth ρT = 4 for all simulations. According to our Kernel
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construction we approximate π(α|Yi0) as a mixture of normal distributions with

arbitrary means α, but given variances ΩT (α, Yi0) = ρTT
−1I−1(α, θ̃, Yi0). We plot

a few of these normal distributions that are used as “basis functions” in Figure 2

for T = 12 and in Figure 3 for T = 24, for θ̃ = θ0 (the dependence on θ̃ is not very

strong, i.e. using an estimator θ̃ — as we do in the actual estimation procedure

— does not change these plots much). As was expected from Figure 1, these basis

functions become more and more wide, corresponding to less and less resolution

power, as the absolute value of α becomes larger. One can also see that the basis

functions for T = 24 are more narrow, i.e. are able to resolve more structure in

π(α|Yi0). By choosing a smaller value for the bandwidth ρT one could resolve finer

structures in the individual effect distribution. However, smaller values of ρT also

mean that the identification of π(α|Yi0) from the distribution of Yit becomes more

problematic, and one needs to compromise between these two competing goals.

Once the bandwidth ρT and thus the basis functions are chosen, the key question

is whether the true distribution π0(α|Yi0) can be well-approximated by these basis

functions (i.e. by an element in the parameter set ΠT = KΩ
T ΠA

T ). This will crucially

depend on how smooth π0(α|Yi0) is, which in our setup is regulated by the param-

eter σπ. Note that we can only expect a good performance of our joint maximum

likelihood estimator for θ and π, if the true distribution π0 can be well-approximated

by an element in ΠT .

Figure 4 shows the maximum likelihood estimator for π(α|Yi0) obtained from a

sample of size T = 12 and N = 10000 (taking θ = θ0 as given) for different values

of σπ. Here, we have used N = 10000, which is larger than the sample sizes in the

actual Monte Carlo simulations below, in order to keep the sampling error small,

so that we can focus on the question of whether π0 can be well-approximated at

T = 12 for our bandwidth choice. The figure shows that the approximation of π0

is relatively good at σπ = 1.4, but rather bad at σπ = 0.7. Thus, we expect the

joint maximum likelihood estimator θ̂ to have little bias in the case σπ = 1.4 but

potentially large bias in the case σπ = 0.7. It turns out that the approximation of

π0 in the intermediate case σπ = 1 is still sufficiently good to obtain little bias of θ̂,

but from Figure 4 alone it would probably not be clear what to expect in that case.

Table 1 contains our actual Monte Carlo results for various estimators of the pa-

rameters of interest at T = 12, and for different values of N and σπ. We performed

1000 simulation repetitions for N = 100 and 500, and 500 repetitions for N = 2500.

The fixed effect estimators (based on the profile likelihood) for θ that we consider are

the fixed effect maximum likelihood estimator (FE-MLE), the first order split panel
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Jackknife estimator (FE-JACK-1), which eliminates the asymptotic bias of order

1/T , and the second order split panel Jackknife estimator (FE-JACK-2), which in

addition eliminates the asymptotic bias of order 1/T 2. These Jackknife estimators

are obtained by estimating two sub-panels of sample size T/2 (and also three sub-

panels of sample size T/3 for FE-JACK-2), and then appropriately forming linear

combinations of the estimators at different sample size, as described in Dhaene and

Jochmans (2010), and originally proposed by Hahn and Newey (2004) for panels

without time-correlation. Here, we use the Jackknife method, since to our knowl-

edge it is the only bias correction method in the literature so far that in principle

allows for arbitrary higher order bias correction, which makes it a natural object of

comparison for our random effect method. The random effect estimators (based on

the integrated likelihood) that we calculate are the random effect miracle estimator

θ̂(π0) (RE-MIR), which is infeasible since it assumes knowledge of π0, the random

effect estimator with fixed prior distribution θ̂(πprior) (RE-PRIOR), using a normal

prior distribution πprior(α|Yi0) with mean zero and standard error equal to 4 for

both values of Yi0, and finally our joint maximum likelihood estimator (RE-MLE)

that is obtained by maximizing the integrated likelihood over θ ∈ R and π ∈ ΠT .

Table 1 shows that, as expected, for T = 12 the FE-MLE is severely biased due

to the incidental parameter problem. The first order Jackknife bias correction elim-

inates around 90% of this bias, and the second order Jackknife correction reduces

the bias even further. However, the bias correction also increases the standard error

of the estimator, by around 20% for the first order correction and by around 100%

for the second order correction. Both Jackknife estimators are known to have the

same asymptotic variance as the MLE, but the phenomenon of finite sample vari-

ance inflation is also well-known. In terms of root mean square error the second

order Jackknife estimator performs worse than the first order Jackknife estimator

in all our simulations, due to the much larger standard error. In the following we

therefore concentrate on the comparison between the first order Jackknife estimator

and the RE-MLE.

The RE-MLE performs very well in the T = 12 simulations for σπ = 1.4 and σπ =

1. In those cases the RE-MLE is essentially unbiased at N = 500 and N = 2500 (the

bias is below 5% significance given the number of simulation repetitions), and it has

a bias at N = 100 which is still very small relative to the standard error at N = 100.

Furthermore, it has a standard error that is almost identical to the standard error

of the FE-MLE, and which is therefore smaller than the standard error of the FE-

JACK-1. Note that the bias of the FE-JACK-1 is essentially independent of N ,
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while its standard error decreases like N−1/2. In our simulation design at T = 12

we find that at N = 2500 the bias and the standard error of the FE-JACK-1 are

almost identical, i.e. for all values of N larger than 2500 the bias will dominate

the standard error of the FE-JACK-1. Even at N = 500 the bias is about half the

size of the standard error for the FE-JACK-1, which would be very problematic for

testing purposes. Thus, in particular for large values of N the RE-MLE therefore

performs much better than the FE-JACK-1 for σπ = 1.4 and 1.

However, as already anticipated from Figure 4, this is not true for σπ = 0.7.

In that case we find the bias of the RE-MLE to be around twice the bias of the

FE-JACK-1, which also results in a larger root mean square error for large values

of N . The properties of the FE-JACK-1 are essentially independent from σπ, since

in the fixed effect approach the properties of the individual effect distribution are

not important. In contrast, for our random effect approach it makes a big difference

whether σπ = 1 or σπ = 0.7, since in one case the true individual effect distribution

can be reasonably approximated, while in the other case it cannot. These results

very clearly show the tradeoff one faces between using the RE-MLE and using the

FE-JACK-1.

Given our bandwidth choice we thus found that we cannot properly resolve the

distribution π0 for σπ = 0.7 at T = 12. This problem is, however, automatically

resolved if T becomes larger. Figure 5 shows that at T = 24 one can already

approximate the true individual effects distribution for σπ = 0.7 relatively well, and

Table 2 shows the corresponding Monte Carlo results for the parameters of interest.

In that case, the bias of the RE-MLE is again very small relative to its standard

error, and for N = 500 and N = 2500 the RE-MLE therefore again performs much

better than the FE-JACK-1.10

10 It is also interesting that in all our simulations the standard errors of the FE-MLE, the RE-PRIOR

and the RE-MLE are very similar, while the infeasible RE-MIR has a somewhat smaller variance. Asymp-

totically all these standard errors will converge, but in finite sample knowing the true π0 not only results

in an insignificant bias of the RE-MIR estimator, but also in an increased efficiency in terms of standard

error. Finally, we want to point out that the performance of the FE-MLE and the RE-PRIOR estimator

is very similar not only in terms of standard error but also in terms of bias. Both estimators have a bias

of similar order that decreases at the rate of 1/T .
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7 Conclusions

This paper presents an alternative approach to higher order bias correction in non-

linear panel data model with large N and T . Instead of profiling out the individual

effects (fixed effect approach) we propose to integrate out the individual effects from

the likelihood function, and use the resulting integrated likelihood to estimate the

parameters of interest. We show that if a consistent estimator for the individual

effect distribution is used to integrate out the individual effects, then the rate at

which the bias of the estimator for the parameters of interest decreases with T is

proportional to the rate at which the estimator of the individual effect distribution

approaches the true distributions (in terms of Hellinger distance). Compared to the

fixed effect maximum likelihood estimator, which has a bias of order 1/T , we can

thus obtain a significant improvement in the convergence rate of the bias, as long as

a good estimator for the individual effects distribution is available. The bias that

results from our estimation approach can also be significantly lower than the one

obtained from existing bias correction techniques. This result on the bias correction

for the parameters of interest is applicable to all estimators of the individual effect

distribution that satisfy some weak regularity conditions.

The estimator for the distribution that we consider explicitly in this paper is the

joint maximum likelihood estimator, which maximizes the likelihood function jointly

with the estimator for the individual effects. The properties of this estimator are

crucially determined by the choice of parameter set of distributions over which the

estimation is performed. To allow for non-parametric estimation of the individual

effect distribution this parameter set needs to be chosen sample size dependent,

analogously to a semi-parametric sieve estimation approach. Under appropriate

high-level assumptions on this parameter set and on the true distribution of the

individual effects we then derive the convergence rates of the estimator for the

distribution (in terms of Hellinger distance) and thus also obtain (an upper bound

on) the convergence rate of the incidental parameter bias of the estimator for the

parameters of interest.

The high-level assumptions that are employed to derive these general results

require a restriction on the correlation structure between the regressors and the in-

dividual effects. As a concrete example of such a restriction we consider the case of

generalized random effects, which demands that individuals can be partitioned into

groups and imposes a random effect assumption in each group. No further paramet-

ric assumptions are made on the distribution of the individual effects. We discuss
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how to choose an appropriate parameter set for the individual effect distribution in

this case, and show that the convergence rate of the incidental parameter bias only

depends on the smoothness properties of the true individual effect distribution. As

long as this distribution is sufficiently smooth, the bias can decrease at an arbitrary

polynomial rate in T .

For future work it would be fascinating to discuss alternative choices for the es-

timator of the individual effect distribution. Furthermore, it would be interesting to

discuss alternative restrictions on the correlation structure between the regressors

and the individual effects, which go beyond the generalized random effect assump-

tion discussed explicitly in the present paper. An important extension would also

be the estimation of policy parameters like marginal effects. Finally, it is also im-

portant to develop a data dependent selection method for the bandwidth ρT that

enters in the non-parametric estimation of the individual effect distribution.
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A Figures and Tables
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Figure 1: For T = 12 (left diagram) and T = 24 (right diagram) we plot
√

T−1I−1(α, θ0, yi0) for θ0 = 1

and yi0 = 0 and 1. For large T this quantity approximates the standard error of the fixed effect estimator

for the individual effects α.
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Figure 2: For T = 12 some examples of the “basis functions” that are used to approximate the true

distributions are plotted for yi0 = 0 (left) and yi0 = 1 (right).
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Figure 3: Same as Figure 2, but for T = 24. Note the smaller width of “basis functions” compared to

the T = 12 case.
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• σπ = 1:
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• σπ = 0.7:
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Figure 4: For different values of σπ the true conditional distribution π0(α|yi0) is plotted as a dotted

line for both yi0 = 0 (left diagram) and yi0 = 1 (right diagram). The solid lines are the corresponding

maximum likelihood estimators for π(α|yi0) obtained from a sample with T = 12 and N = 10000. The

structure of the true distribution cannot be resolved very well for the case σπ = 0.7, given our particular

bandwidth choice ρT = 4.
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T = 12 , σπ = 1.4

N = 100 N = 500 N = 2500

bias std rmse bias std rmse bias std rmse

FE-MLE -0.313 0.124 0.336 -0.308 0.056 0.313 -0.3115 0.0243 0.3125

FE-JACK-1 0.029 0.151 0.153 0.037 0.067 0.077 0.0308 0.0299 0.0429

FE-JACK-2 -0.014 0.252 0.253 0.003 0.115 0.115 -0.0044 0.0516 0.0517

RE-MIR 0.003 0.109 0.109 0.003 0.050 0.050 -0.0003 0.0214 0.0214

RE-PRIOR -0.171 0.124 0.212 -0.169 0.056 0.178 -0.1728 0.0242 0.1745

RE-MLE -0.006 0.129 0.129 0.003 0.059 0.059 -0.0002 0.0257 0.0257

T = 12 , σπ = 1

N = 100 N = 500 N = 2500

bias std rmse bias std rmse bias std rmse

FE-MLE -0.320 0.112 0.339 -0.314 0.052 0.319 -0.3160 0.0253 0.3169

FE-JACK-1 0.025 0.138 0.141 0.029 0.063 0.069 0.0278 0.0290 0.0402

FE-JACK-2 -0.008 0.244 0.244 -0.004 0.106 0.106 -0.0059 0.0493 0.0497

RE-MIR 0.003 0.095 0.095 0.002 0.045 0.045 0.0012 0.0204 0.0204

RE-PRIOR -0.196 0.113 0.227 -0.194 0.052 0.201 -0.1948 0.0240 0.1963

RE-MLE -0.016 0.116 0.117 -0.002 0.055 0.055 -0.0005 0.0249 0.0249

T = 12 , σπ = 0.7

N = 100 N = 500 N = 2500

bias std rmse bias std rmse bias std rmse

FE-MLE -0.332 0.112 0.350 -0.323 0.050 0.327 -0.3237 0.0221 0.3244

FE-JACK-1 0.017 0.135 0.136 0.023 0.060 0.064 0.0225 0.0266 0.0349

FE-JACK-2 -0.017 0.230 0.230 -0.011 0.102 0.102 -0.0083 0.0449 0.0457

RE-MIR -0.005 0.090 0.090 0.002 0.040 0.040 0.0004 0.0179 0.0179

RE-PRIOR -0.223 0.112 0.250 -0.214 0.051 0.220 -0.2149 0.0223 0.2161

RE-MLE -0.049 0.113 0.124 -0.037 0.051 0.063 -0.0424 0.0223 0.0479

Table 1: Results for the bias, standard error (std) and root mean square error (rmse) of different

estimators for the parameter of interest θ in simulations at T = 12 and for different values of N and σπ .

The results are based on 1000 repetitions for N = 100 and N = 500, and on 500 repetitions for N = 2500.

The estimators are the fixed effect MLE (FE-MLE), first and second order split panel Jackknife (FE-

JACK-1 and 2), the infeasible random effect miracle estimator (RE-MIR), a random effect estimator with

fixed prior distribution (RE-PRIOR), and the random effect joint MLE over θ and π (RE-MLE).
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Figure 5: Same as Figure 4, but with T = 24 and only for σπ = 0.7.

T = 24 , σπ = 0.7

N = 100 N = 500 N = 2500

bias std rmse bias std rmse bias std rmse

FE-MLE -0.166 0.078 0.183 -0.1662 0.0334 0.1695 -0.1664 0.0164 0.1672

FE-JACK-1 0.008 0.087 0.087 0.0068 0.0373 0.0379 0.0062 0.0176 0.0187

FE-JACK-2 0.007 0.115 0.116 0.0061 0.0517 0.0520 0.0048 0.0226 0.0231

RE-MIR 0.003 0.066 0.066 -0.0003 0.0288 0.0288 0.0004 0.0143 0.0143

RE-PRIOR -0.116 0.079 0.140 -0.1178 0.0336 0.1226 -0.1180 0.0166 0.1192

RE-MLE -0.007 0.080 0.081 -0.0028 0.0349 0.0350 -0.0003 0.0170 0.0170

Table 2: Same as Table 1, but with T = 24 and only for σπ = 0.7.
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B Assumptions

B.1 Assumptions for Consistency

To state our assumption we first define

Ii = − 1

T

∂2 log f(Yi|Xi, α̂
p
i (θ0); θ0)

∂α∂α′ ,

Bc,i =

{

α ∈ RM

∣
∣
∣
∣

[
α− α̂p

i (θ
0)
]′ Ii

[
α− α̂p

i (θ0)
]
≤ c

T

}

. (B.1)

Assumption B.1. There exist c1, c2, c3, c4, c5 > 0 such that wpa1

(i) θ̂p = θ0 + op(1), Lp
NT (θ̂p) = Lp

NT (θ0) + op(1).

(ii) ∀θ ∈ Θ : Lp
NT (θ) ≤ Lp

NT (θ̂p) − min(c1, c2‖θ − θ̂p‖2).

(iii) ∀i ∈ {1, . . . , N}, ∀α ∈ Bc3,i ∩ A :

1

T
log f(Yi|Xi, α; θ0) ≥ 1

T
log f(Yi|Xi, α̂

p
i ; θ0) − c4

2
(α− α̂p

i )
′ Ii (α− α̂p

i ) ,

where α̂p
i = α̂p

i (θ0).

(iv) ∀i ∈ {1, . . . , N} : vol(Bc3,i ∩ A) ≥ c5vol(Bc3,i).

(v)
1

N

N∑

i=1

√

‖I−1
i ‖ = op(T

3/2).

(vi) The logarithm of πlow
T (α|x) is Lipschitz continuous in α with a Lipschitz con-

stant that is uniformly bounded over x ∈ XT . Furthermore, πlow
T (α|x) satisfies

1

N

N∑

i=1

log

√
detIi

πlow
T (α̂p

i (θ0)|Xi)
≤ op(T ).

Part (i) of this assumption demands consistency of the fixed effect effect estima-

tor and some continuity of the profile likelihood around θ0. Part (ii) requires that

Lp
NT (θ) has a properly isolated maximum at θ̂p with a non-degenerate Hessian. Part

(iii) is a similar assumption on the maximum of log f(Yi|Xi, α; θ0) in α. Part (iv)

demands that the boundary of A is well-behaved, where “vol” refers to the volume

of a set. Part (v) requires a lower bound on the eigenvalues of Ii, here ‖.‖ is the

operator norm. Part (vi) is a regularity condition on the lower bound πlow
T (α|x),

which still allows this lower bound to decrease in T at any polynomial rate.
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B.2 Further Regularity Conditions on the Model

Define

f
α|Y,X(α|y, x; θ, π) =

f(y|x, α; θ)π(α|x)
fY |X(y|x; θ, π)

, (B.2)

This is the posterior distribution of α for given Y = y under the prior π(α|x), for

given values of x and θ. Similarly, the posterior distribution of α under a uniform

prior reads

funif
α|Y,X(α|y, x; θ) =

f(y|x, α; θ)
∫

A f(y|x, β; θ)dβ
. (B.3)

It is convenient to introduce the following notation.

J (1)(y, x) =
1√
T

∫

A

∂ log f(y|x, α; θ0)

∂θ
funif

α|Y,X(α|y, x; θ0) dα,

J (2)(y, x) =
1

T

∫

A

∂ log f(y|x, α; θ0)

∂θ

∂ log f(y|x, α; θ0)

∂θ′
funif

α|Y,X(α|y, x; θ0) dα,

Hk1k2(y, x) =
1

T 2

∫

A

(

∂2 log f(y|x, α; θ0)

∂θk1∂θ
′
k2

+
∂ log f(y|x, α; θ0)

∂θk1

∂ log f(y|x, α; θ0)

∂θk2

)2

funif
α|Y,X(α|y, x; θ0) dα,

D(q)(y, x) =

∫

A

∫

A

[√
T dx(α, β)

]q
funif

α|Y,X(α|y, x; θ0) dα funif
α|Y,X(β|y, x; θ0) dβ,

(B.4)

where q = 2, 4. Note that in the definition of J (1)(y, x) the factor 1√
T

is the ap-

propriate normalization for the score function ∂ log f(y|x,α;θ0)
∂θk

, since the score at the

true parameters has zero mean, and since funif
α|Y,X(α|y, x; θ0) will be centered around

the realized value α0
i if evaluated at y = Yi and x = Xi. Similarly, for Hk1k2(y, x)

the expression ∂2 log f(y|x,α;θ0)
∂θk1

∂θ′
k2

+ ∂ log f(y|x,α;θ0)
∂θk1

∂ log f(y|x,α;θ0)
∂θk2

is mean zero at α0
i , so

that 1/T is the appropriate normalization for the square of this expression. Also,

in the definition of D(q)(y, x) it is natural to rescale dx(α, β) by
√
T , since the stan-

dard deviation of the distribution funif
α|Y,X(α|y, x; θ) is of order 1/

√
T . We make the

following high-level assumptions.

Assumption B.2. We assume that

(i) Yi and Xi are independently and identically distributed across i.

(ii) EJ (2)(Yi,Xi) = O(1), and ED(q)(Yi,Xi) = O(1), for q = 2, 4.

(iii) 1
N

∑N
i=1

[

J
(1)
k (Yi,Xi)

]2
= Op(1),

1
N

∑N
i=1

[

J
(2)
k1k2

(Yi,Xi)
]2

= Op(1),

1
N

∑N
i=1H(Yi,Xi) = Op(1), and 1

N

∑N
i=1

[
D(q)(Yi,Xi)

]2
= Op(1), for q = 2, 4.
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(iv)
1

N

N∑

i=1

∫

A

[E(J (1)(Y,X)
∣
∣
∣X = Xi, α = α

)]2
πup

T (α|X) dα = Op(1/T ),

1

N

N∑

i=1

∫

A

[E(J (2)(Y,X)
∣
∣
∣X = Xi, α = α

)]2
πup

T (α|X) dα = Op(1),

1

N

N∑

i=1

∫

A

[E(D(q)(Y,X)
∣
∣
∣X = Xi, α = α

)]2
πup

T (α|X) dα = Op(1), q = 2, 4.

(v)
√
NT

∂LNT (θ0, π0)

∂θ
= Op(1), and ∃c > 0 such that

∂2LNT (θ0, π0)

∂θ∂θ′
> c, wpa1.

(vi)
∂3LNT (θ, π)

∂θk1∂θk2∂θk3

= Op(1), uniformly in a neighborhood of θ0 and over π ∈ Πlip
T,κ

with κT =
√
T .

These regularity assumptions look complicated. However, a key advantage of our

analysis of the integrated likelihood is that it does not involve a Laplace approxi-

mation and therefore allows the distributions π(α|x) to be e.g. non-differentiable in

α — only a Lipschitz condition is imposed.

Assumption B.3. πup
T (α|x)/πlow

T (α|x) is uniformly bounded over α ∈ A, x ∈ XT

and T .

Assumption B.3 is a convenient technical condition, but can probably relaxed

without affecting the validity of our conclusions. For the moment, we leave this

generalization for future work.

C Proofs

C.1 Proofs for Section 4.1

Proof of Theorem 4.1. By the mean value theorem for integration there exist

α̃i(θ, π, Yi,Xi) ∈ A such that

LNT (θ, π) =
1

NT

N∑

i=1

log f(Yi|Xi, α̃i(θ, π, Yi,Xi); θ), (C.1)

and therefore LNT (θ, π) ≤ Lp
NT (θ). We have thus obtained an upper bound on

LNT (θ, π). Next, we derive a lower bound on LNT (θ0, π). Let α̂p
i = α̂p

i (θ0). We
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have wpa1 that

LNT (θ0, π)

=
1

NT

N∑

i=1

log

∫

A
f(Yi|Xi, α; θ0)π(α|Xi) dα

≥ 1

NT

N∑

i=1

log

∫

Bc3,i∩A
f(Yi|Xi, α̂

p
i ; θ0) exp

[

−c4 T
2

(α− α̂p
i )

′ Ii (α− α̂p
i )

]

πlow
T (α|Xi)dα

≥ Lp
NT (θ0) +

1

NT

N∑

i=1

log

[

exp
[

−c3c4
2

]

inf
α∈Bc3,i∩A

πlow
T (α|Xi)

(∫

Bc3,i∩A
dα

)]

= Lp
NT (θ0) − c3c4

2T
+

1

NT

N∑

i=1

inf
α∈Bc3,i∩A

log πlow
T (α|Xi) +

1

NT

N∑

i=1

log vol(Bc3,i ∩A)

≥ Lp
NT (θ0) +

1

NT

N∑

i=1

log πlow
T (α̂p

i |Xi) −
b

NT

N∑

i=1

√

c3 ‖I−1
i ‖
T

+
1

NT

N∑

i=1

log
[
c5 vol(Bc3,i)

]
+ op(1)

= Lp
NT (θ0) +

1

NT

N∑

i=1

log
πlow

T (α̂p
i |Xi)

TM/2
√

det Ii

≥ Lp
NT (θ0) + op(1), (C.2)

uniformly over π ∈ Πlow
T . Here, b > 0 is the Lipschitz constant of log πlow

T . Then we

have uniformly over π ∈ Πlow
T

Lp
NT (θ̂(π)) ≥ LNT (θ̂(π), π) ≥ LNT (θ0, π) ≥ Lp

NT (θ0) + op(1) = Lp
NT (θ̂p) + op(1).

(C.3)

Applying our assumption on the shape of Lp
NT (θ) we thus obtain

c2

∥
∥
∥θ̂(π) − θ̂p

∥
∥
∥

2
≤ Lp

NT (θ̂p) − Lp
NT (θ̂(π)) = op(1), (C.4)

which implies ‖θ̂(π) − θ̂p‖ = op(1), and therefore ‖θ̂(π) − θ0‖ = op(1), uniformly

over π ∈ Πlow
T . �

C.2 Proofs for Section 4.2

Lemma C.1. For all κT > 0, y ∈ YT and x ∈ XT we have

(i) sup
π1,π2∈Πlip

κ

(

∂ log fY |X(y|x; θ0, π1)

∂θk
−
∂ log fY |X(y|x; θ0, π2)

∂θk

)2

≤ 8κ2
T J

(2)
kk (y, x)

(

D(2)(y, x) +
κ2

T

2T
D(4)(y, x)

)

.
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(ii) sup
π∈Πlip

κ

(

∂ log fY |X(y|x; θ0, π)

∂θk
−
∫

A

∂ log f(y|x, α; θ0)

∂θk
funif

α|Y,X(α|y, x; θ0)dα

)2

≤ 4κ2
T J

(2)
kk (y, x)

(

D(2)(y, x) +
κ2

T

2T
D(4)(y, x)

)

.

In addition, either let Ẽ be a (conditional) expected value over the random variable

Ỹ = Y and X̃ = X, or let Ẽ = 1
N

∑N
i=1 be a sample average over the sample Ỹ = Yi

and X̃ = Xi. Then we have

(iii) sup
π1,π2∈Πlip

κ

[Ẽ(∂ log fY |X(Ỹ |X̃ ; θ0, π1)

∂θk
− ∂ log fY |X(Ỹ |X̃; θ0, π2)

∂θk

)]2

≤ 8κ2
T

(ẼJ (2)
kk (Ỹ , X̃)

) [(ẼD(2)(Ỹ , X̃)
)

+
κ2

T

2T

(ẼD(4)(Ỹ , X̃)
)]

.

(iv) sup
π1,π2∈Πlip

κ

[Ẽ(∂ log fY |X(Ỹ |X̃ ; θ0, π1)

∂θk
−
∫

A

∂ log f(Ỹ |X̃, α; θ0)

∂θk
funif

α|Y,X(α|Ỹ , X̃ ; θ0)dα

)]2

≤ 4κ2
T

(ẼJ (2)
kk (Ỹ , X̃)

) [(ẼD(2)(Ỹ , X̃)
)

+
κ2

T

2T

(ẼD(4)(Ỹ , X̃)
)]

.

Proof. Part (i): Applying Chebyshev’s inequality one gets

(

∂ log fY |X(y|x; θ0, π1)

∂θk
−
∂ log fY |X(y|x; θ0, π2)

∂θk

)2

=

(∫

A

∂ log f(y|x, α; θ0)

∂θk
f(y|x, α; θ0)

[
π1(α|x)

fY |X(y|x; θ0, π1)
− π2(α|x)
fY |X(y|x; θ0, π2)

]

dα

)2

≤
∫

A

[
∂ log f(y|x, α; θ0)

∂θk

]2
f(y|x, α; θ0)

∫

A f(y|x, β; θ0)dβ
dα

︸ ︷︷ ︸

=T J(2)(y,x)

∫

A

[
π1(α|x)

∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π1)
− π2(α|x)

∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π2)

]2
f(y|x, α; θ0)

∫

A f(y|x, β; θ0)dβ
dα

︸ ︷︷ ︸

≡b(y,x)

.

(C.5)

For the integrand in the second term we have

[
π1(α|x)

∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π1)
− π2(α|x)

∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π2)

]2

=

[(
π1(α|x)

∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π1)
− 1

)

−
(
π2(α|x)

∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π2)
− 1

)]2

≤ 2

(
π1(α|x)

∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π1)
− 1

)2

+ 2

(
π2(α|x)

∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π2)
− 1

)2

.

(C.6)
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Furthermore
∣
∣
∣
∣

π1(α|x)
∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π1)
− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

A

f(y|x, β; θ0) [π1(α|x) − π1(β|x)]
fY |X(y|x; θ0, π1)

dβ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

A

f(y|x, β; θ0) |π1(α|x) − π1(β|x)|
fY |X(y|x; θ0, π1)

dβ

∣
∣
∣
∣

≤ κT

∫

A

f(y|x, β; θ0)π1(β|x)dx(β, α)

fY |X(y|x; θ0, π1)
dβ

= κT

∫

A
dx(β, α)f

α|Y,X(β|y, x; θ0, π1)dβ. (C.7)

Therefore, also applying Jensen’s inequality (namely [EZ]2 ≤ E[Z2]), we obtain

A1 ≡
∫

A

(
π1(α|x)

∫

A f(y|x, β; θ0)dβ

fY |X(y|x; θ0, π1)
− 1

)2
f(y|x, α; θ0)

∫

A f(y|x, β; θ0)dβ
dα

≤ κ2
T

∫

A

∫

A
d2

x(β, α)f
α|Y,X(β|y, x; θ0, π1)

f(y|x, α; θ0)
∫

A f(y|x, γ; θ0)dγ
dβdα

≤ κ2
T

∫

A

∫

A
d2

x(β, α)
f(y|x, β; θ0)

∫

A f(y|x, γ; θ0)dγ

f(y|x, α; θ0)
∫

A f(y|x, γ; θ0)dγ
dβdα

+ κ2
T

∫

A

∫

A
d2

x(β, α)

∣
∣
∣
∣
f

α|Y,X(β|y, x; θ0, π1) −
f(y|x, β; θ0)

∫

A f(y|x, γ; θ0)dγ

∣
∣
∣
∣

f(y|x, α; θ0)
∫

A f(y|x, γ; θ0)dγ
dβdα

≤ κ2
T

∫

A

∫

A
d2

x(β, α)
f(y|x, β; θ0)

∫

A f(y|x, γ; θ0)dγ

f(y|x, α; θ0)
∫

A f(y|x, γ; θ0)dγ
dβdα

+ κ2
T

√

A1

∫

A

∫

A
d4

x(β, α)
f(y|x, β; θ0)

∫

A f(y|x, γ; θ0)dγ

f(y|x, α; θ0)
∫

A f(y|x, γ; θ0)dγ
dβdα, (C.8)

where in the last step we applied Chebyshev’s inequality. This implies

A1 ≤ 2κ2
T

∫

A

∫

A
d2

x(β, α)
f(y|x, β; θ0)

∫

A f(y|x, γ; θ0)dγ

f(y|x, α; θ0)
∫

A f(y|x, γ; θ0)dγ
dβdα

+ κ4
T

∫

A

∫

A
d4

x(β, α)
f(y|x, β; θ0)

∫

A f(y|x, γ; θ0)dγ

f(y|x, α; θ0)
∫

A f(y|x, γ; θ0)dγ
dβdα

=
2κ2

T

T
D(2)(y, x) +

κ4
T

T 2
D(4)(y, x). (C.9)

By symmetry we obtain the same results for π2, and we denote the corresponding

term by A2. Combining the above inequalities we find

b(y, x) ≤ 2A1 + 2A2 ≤ 8κ2
T

T
D(2)(y, x) +

4κ4
T

T 2
D(4)(y, x). (C.10)

Combining the above results gives part (i) of the lemma.

Part (ii) of the lemma is obtained analogously, but in that case there is no A2

term, so that the bound is a factor two smaller.

Part (iii) and (iv) are also obtained by following the same arguments, but with

Ẽ taken into account whenever Chebyshev’s inequality is applied. �
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Proof of Theorem 4.2. # Part I (Score): Applying part (iii) of Lemma C.1

yields

sup
π1,π2∈Πlip

κ

(
∂LNT (θ0, π1)

∂θ
− ∂LNT (θ0, π2)

∂θk

)2

= sup
π1,π2∈Πlip

κ

[

1

NT

N∑

i=1

(

∂ log fY |X(Yi|Xi; θ
0, π1)

∂θk
−
∂ log fY |X(Yi|Xi; θ

0, π2)

∂θk

)]2

≤ 8κ2
T

T 2

(

1

N

N∑

i=1

J
(2)
kk (Yi,Xi)

) [(

1

N

N∑

i=1

D(2)(Yi,Xi)

)

+
κ2

T

2T

(

1

N

N∑

i=1

D(4)(Yi,Xi)

)]

.

(C.11)

Together with the assumptions, this shows the result.

# Part II (Hessian): We have

∂2LNT (θ0, π)

∂θ∂θ′
=

1

NT

N∑

i=1

∂2 log fY |X(Yi|Xi; θ
0, π)

∂θ∂θ′

=
1

NT

N∑

i=1

{∫

A

[
∂2 log f(Yi|Xi, α; θ0)

∂θ∂θ′
+
∂ log f(Yi|Xi, α; θ0)

∂θ

∂ log f(Yi|Xi, α; θ0)

∂θ′

]

f
α|Y,X(α|Yi,Xi; θ

0, π) dα − ∂ log fY |X(Yi|Xi; θ
0, π)

∂θ

∂ log fY |X(Yi|Xi; θ
0, π)

∂θ′

}

(C.12)

Thus, we have

∂2LNT (θ0, π1)

∂θ∂θ′
− ∂2LNT (θ0, π2)

∂θ∂θ′
= A1 −A2, (C.13)

where

A1 =
1

NT

N∑

i=1

∫

A

[
∂2 log f(Yi|Xi, α; θ0)

∂θ∂θ′
+
∂ log f(Yi|Xi, α; θ0)

∂θ

∂ log f(Yi|Xi, α; θ0)

∂θ′

]

f
α|Y,X(α|Yi,Xi; θ

0, π1) − f
α|Y,X(α|Yi,Xi; θ

0, π2) dα, (C.14)

and

A2 =
1

NT

N∑

i=1

[
∂ log fY |X(Yi|Xi; θ

0, π1)

∂θ

∂ log fY |X(Yi|Xi; θ
0, π1)

∂θ′

−
∂ log fY |X(Yi|Xi; θ

0, π2)

∂θ

∂ log fY |X(Yi|Xi; θ
0, π2)

∂θ′

]

(C.15)

Analogous to the proof of Lemma C.1 that was used in Part I we obtain the following

bound for A1:

A2
1,k1k2

≤ 8κ2
T

T

(

1

N

N∑

i=1

Hk1k2(Yi,Xi)

) [(

1

N

N∑

i=1

D(2)(Yi,Xi)

)

+
κ2

T

2T

(

1

N

N∑

i=1

D(4)(Yi,Xi)

)]

.

(C.16)
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Therefore, A1 = Op(κT /
√
T ) under our assumptions, uniformly over π1 and π2.

Applying part (ii) of Lemma C.1 we obtain

|A1,k1k2| ≤
2

N
√
T

N∑

i=1

[

J
(1)
k1

(Yi,Xi)

√

4κ2
T J

(2)
k2k2

(Yi,Xi)

(

D(2)(Yi,Xi) +
κ2

T

2T
D(4)(Yi,Xi)

)

+ same term with k1 ↔ k2

+ 4κ2
T J

(2)
k2k2

(Yi,Xi)

(

D(2)(Yi,Xi) +
κ2

T

2T
D(4)(Yi,Xi)

)]

≤ 8κ2
T√
T

√
√
√
√ 1

N

N∑

i=1

[

J
(1)
k1

(Yi,Xi)
]2

√
√
√
√ 1

N

N∑

i=1

J
(2)
k2k2

(Yi,Xi)

(

D(2)(Yi,Xi) +
κ2

T

2T
D(4)(Yi,Xi)

)

+ same term with k1 ↔ k2

+
8κ2

T√
T

1

N

N∑

i=1

J
(2)
k2k2

(Yi,Xi)

(

D(2)(Yi,Xi) +
κ2

T

2T
D(4)(Yi,Xi)

)]

.

(C.17)

Furthermore, we have

1

N

N∑

i=1

J
(2)
kk (Yi,Xi)

(

D(2)(Yi,Xi) +
κ2

T

2T
D(4)(Yi,Xi)

)

≤

√
√
√
√ 1

N

N∑

i=1

[

J
(2)
kk (Yi,Xi)

]2





√
√
√
√ 1

N

N∑

i=1

[
D(2)(Yi,Xi)

]2
+
κ2

T

2T

√
√
√
√ 1

N

N∑

i=1

[
D(4)(Yi,Xi)

]2



 .

(C.18)

Thus, our assumptions also guarantee A2 = Op(κT /
√
T ), uniformly over π1 and π2,

so that the same holds for the difference of the Hessians. �

Proof of Theorem 4.3. We have

∂LNT (θ0, π)

∂θ
=

1

NT

N∑

i=1

{∫

A
EY |Xi,α

[
∂ log fY |X(Y |Xi; θ, π)

∂θ

]

π0(α|Xi) dα

}

=
1

NT

N∑

i=1

{∫

A
EY |Xi,α

[
∂ log fY |X(Y |Xi; θ, π)

∂θ

]
[
π0(α|Xi) − π(α|Xi)

]
dα

}

=
1

NT

N∑

i=1

{∫

A
EY |Xi,α

[
∂ log fY |X(Y |Xi; θ, π)

∂θ

] [√

π0(α|Xi) +
√

π(α|Xi)
]

[√

π0(α|Xi) −
√

π(α|Xi)]
]

dα

}

. (C.19)
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Applying Chebyshev’s inequality we find

∣
∣
∣
∣

∂LNT (θ0, π)

∂θk

∣
∣
∣
∣

≤ 1

T
DH(π, π0)

√
√
√
√ 1

N

N∑

i=1

∫

A

[EY |Xi,α

∂ log fY |X(Y |Xi; θ0, π)

∂θk

]2 [√
π0(α|Xi) +

√

π(α|Xi)
]2
dα

≤
√

2

T
DH(π, π0)

√
√
√
√
√
√
√

1

N

N∑

i=1

∫

A

[EY |Xi,α

∂ log fY |X(Y |Xi; θ
0, π)

∂θk

]2
[
π0(α|Xi) + π(α|Xi)

]
dα

︸ ︷︷ ︸

=B(π)

.

(C.20)

Using the upper bound on π0(α|Xi) and π(α|Xi) we find

B(π) ≤ 2

N

N∑

i=1

∫

A

[EY |Xi,α

∂ log fY |X(Y |Xi; θ
0, π)

∂θk

]2

πup
T (α|Xi) dα (C.21)

For the integrand in the last expression we have

[EY |Xi,α

∂ log fY |X(Y |Xi; θ
0, π)

∂θk

]2

≤
[EY |Xi,α

∫

A

∂ log f(Y |Xi, α; θ0)

∂θk
funif

α|Y,X(α|Y,Xi; θ
0)dα

︸ ︷︷ ︸

=TEY |Xi,αJ
(1)
k

(Y,Xi)

+EY |Xi,α

(

∂ log fY |X(Y |Xi; θ
0, π)

∂θk
−
∫

A

∂ log f(Y |Xi, α; θ0)

∂θk
funif

α|Y,X(α|Y,Xi; θ
0)dα

)]2

≤ 2T
[EY |Xi,αJ

(1)
k (Y,Xi)

]2

+ 2

[EY |Xi,α

(

∂ log fY |X(Y |Xi; θ
0, π)

∂θk
−
∫

A

∂ log f(Y |Xi, α; θ0)

∂θk
funif

α|Y,X(α|Y,Xi; θ
0)dα

)]2

≤ 2T
[EY |Xi,αJ

(1)
k (Y,Xi)

]2

+ 4κ2
T

(EY |Xi,α J
(2)
kk (Y,Xi)

) [(EY |Xi,αD
(2)(Y,Xi)

)

+
κ2

T

2T

(EY |Xi,αD
(4)(Y,Xi)

)]

,

(C.22)

where we applied part (iv) or Lemma C.1. By Chebyshev’s inequality and applying
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the assumptions, we thus obtain

B(π) ≤ 4T
1

N

N∑

i=1

∫

A

[EY |Xi,αJ
(1)
k (Y,Xi)

]2
πup

T (α|Xi)dα

+ 8κ2
T

√
√
√
√ 1

N

N∑
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∫

A
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(2)
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]2
πup

T (α|Xi)dα

√
√
√
√ 1

N
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∫

A
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(2)(Y,Xi)

]2
πup

T (α|Xi)dα

+
4κ4

T

T

√
√
√
√ 1

N

N∑
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∫

A

[EY |Xi,α J
(2)
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]2
πup
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√
√
√
√ 1

N

N∑
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∫

A

[EY |Xi,αD
(4)(Y,Xi)

]2
πup

T (α|Xi)dα

= Op(1) + Op(κ
2
T ) (C.23)

Combining the above results gives the statement in the theorem. �

Proof of Lemma 4.4. Applying part (iii) of Lemma C.1 we findEν2
NT (πT ) =

1

NT

N∑

i=1

Eν2
NT,i(πT )

≤ 1

T
E[∂ log fY |X(Y |X; θ0, π)

∂θ
− ∂ log fY |X(Y |X; θ0, π0)

∂θ

]2

≤ 8κ2
T

T

(EJ (2)
kk (Y,X)

) [(ED(2)(Y,X)
)

+
κ2

T

2T

(ED(4)(Y,X)
)]

≤ O
(
κ2

T

T

)

, (C.24)

and therefore νNT (πT ) = Op(κT /
√
T ), uniformly over π ∈ Πlip

T,κ. �

Proof of Corollary 4.5. Consistency of θ̂(π0) and θ̂(π̂) together with Assumption

B.2(v) and (vi) and Theorem 4.2 imply that

(

θ̂(π0) − θ0
)

=

(
∂2LNT (θ0, π0)

∂θ∂θ′

)−1
∂LNT (θ0, π0)

∂θ
+ op

(

(NT )−1/2
)

,

(

θ̂(π̂) − θ0
)

=

(
∂2LNT (θ0, π̂)

∂θ∂θ′

)−1
∂LNT (θ0, π̂)

∂θ
+ op

(

(NT )−1/2
)

. (C.25)
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Therefore

θ̂(π̂) − θ̂(π0) =

(
∂2LNT (θ0, π0)

∂θ∂θ′

)−1 [
∂LNT (θ0, π̂)

∂θ
− ∂LNT (θ0, π0)

∂θ

]

+

[(
∂2LNT (θ0, π̂)

∂θ∂θ′

)−1

−
(
∂2LNT (θ0, π0)

∂θ∂θ′

)−1
]

∂LNT (θ0, π̂)

∂θ

+ op

(

(NT )−1/2
)

(C.26)

By Assumption B.2(v) and Theorem 4.3 we find the first term on the right hand

side of (C.26) to be of order Op(κT /T )DH(π̂, π0). By Theorem 4.2 and again As-

sumption B.2(v) we find the second term on the right hand side to be of order

op

(
(NT )−1/2

)
. For this last step we need to bound the difference between the in-

verse of two matrices, which can e.g. by done by using the general matrix relation

A−1−B−1 = A−1(B−A)B−1, which implies ‖A−1−B−1‖ ≤ ‖A−1‖‖B−A‖‖B−1‖,
where the norm is the operator norm. The statement of the corollary thus follows

from (C.26). �

C.3 Proofs for Section 4.3

Proof of Lemma 4.6. Cross-sectional independence implies thatE(ψ2
NT (πT )|X1, . . . ,XN ) ≤

[

D(2)
KL(fY (πT )||fY (π0))

]2
, (C.27)

where

D(2)
KL(fY (π)||fY (π0)) =

√
√
√
√ 1

N

N∑

i=1

∫

YT

(

log

[
fY |X(y|Xi; θ0, π0)

fY |X(y|Xi; θ0, π)

])2

fY |X(y|Xi; θ0, π0) dy.

(C.28)

Therefore

ψNT (πT ) = Op(1)D(2)
KL(fY (πT )||fY (π0). (C.29)

By assumption π0(α|x)/πT (α|x) ≤ πup
T (α|x)/πlow

T (α|x) is bounded. This also im-

plies that
fY |X(y|x;θ0,π0)

fY |X(y|x;θ0,π)
is bounded. Note that for all 0 < z ≤ b we have (log z)2 ≤

d2(log z+ 1/z− 1), with d2 = b2/(b− 1). Thus, there exists a constants d such that

D(2)
KL(fY (π)||fY (π0)) ≤ d

√

DKL(fY (π)||fY (π0)) . (C.30)

This proofs the lemma. �
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Proof of Theorem 4.7. Assumption 4.3(i) guarantees that there exists π̃T ∈ ΠT

such that DKL(fY (π̃)||fY (π0)) = Op(T
−2µ). For such a π̃T we have

T
[
LNT (π̃T ) − LNT (θ0, π0)

]
≥ T

[
LNT (θ0, π̃T ) − LNT (θ0, π0)

]

= Op(T
−2µ) + op

(√

T

N

T−µ

κT

)

. (C.31)

Here, we have also used assumption 4.2. The optimal π̂ needs to satisfy LNT (π̂) ≥
LNT (θ0, π̃T ). Therefore

T
[
LNT (π̂) − LNT (θ0, π0)

]
≥ Op(T

−2µ) + op

(√

T

N

T−µ

κT

)

. (C.32)

Using the expansion (4.6) and our results from on the score and Hessian and on

θ(π), the last inequality yields

DKL

(
fY (π̂)||fY (π0)

)

≤ Op(T
−2µ) + op

(√

T

N

T−µ

κT

)

+ op

(

1

κT

√

T

N

)
√

DKL (fY (π̂)||fY (π0))

+ T

[

Op

(
1√
NT

)

+ Op

(κT

T

)

DH(π̂, π0)

]2

≤ Op(T
−2µ) + op

(√

T

N

T−µ

κT

)

+ op

(

1

κT

√

T

N

)
√

DKL (fY (π̂)||fY (π0))

+ Op

(
1

N

)

+ Op

(
κT√
NT

)[√

DKL(f(π̂)||f(π0)) + T−µ
]

+ Op

(
κ2

T

T

)[√

DKL(f(π̂)||f(π0)) + T−µ
]2
. (C.33)

From this we can conclude that

√

DKL(f(π̂)||f(π0)) = Op(T
−µ) + op

(

1

κT

√

T

N

)

+ Op

(
1√
N

)

+ op





√
√

T

N

T−µ

κT





= Op(T
−µ) + op

(

1

κT

√

T

N

)

. (C.34)

By assumption 4.3(ii) this implies part (i) of the theorem. Part (ii) of the theorem

follows from part (i) by applying Corollary 4.5. �

D Further Discussions for Section 5

We now present the technical justification for the choice of parameter set ΠT in

equation (5.5).

53



D.1 Approximating Unknown Distributions

For simplicity we consider the case where A = R, i.e. the number of dimensions of

the incidental parameter space is M = 1, and there are no additional restrictions on

A. In that case we have KΩ
T (α, β;x) = φ(α;β,ΩT (β, x), which is a standard normal

pdf with mean β and variance ΩT (α, x) = ρT

T ΛT (α, x), where we denote the inverse

that appears in equation (5.6) by ΛT (α, x). In the rest of this subsection we drop

the dependence on the regressor value x for notational convenience.

We have to show that an unknown density π0(α) can be approximated well by

πapprox(α) =
∫R φ(α;β,ΩT (β))π(β)dβ for some appropriate choice of density π(β).

First we note that if both π0(α) and ΩT (α) are arbitrarily often differentiable, then

we can achieve π0 = πapprox by choosing

π(α) =
1

∑∞
q=0

1
2q q!

d2q

dα2q [ΩT (α)]q
π0(α). (D.1)

This expression has to be understood as a formal power expansion, which can be

rewritten as

π(α) =
1

1 +
∑∞

q=1
1

2q q!
d2q

dα2q [ΩT (α)]q
π0(α) =

∞∑

r=0



−
∞∑

q=1

1

2q q!

d2q

dα2q
[ΩT (α)]q





r

π0(α)

= π0(α) − 1

2

d2

dα2

[
ΩT (α)π0(α)

]
+

1

4

d2

dα2

[

ΩT (α)
d2

dα2

[
ΩT (α)π0(α)

]
]

+ . . .

=

∞∑

q=0

(ρT

T

)q
Aq(α) , (D.2)

where the first few expansion coefficients Aq(α) read

A0(α) = π0(α) ,

A1(α) = −1

2

d2

dα2

[
ΛT (α)π0(α)

]
,

A2(α) =
1

4

d2

dα2

[

ΛT (α)
d2

dα2

[
ΛT (α)π0(α)

]
]

− 1

8

d4

dα4

[
[ΛT (α)]2π0(α)

]
, (D.3)

and the expression for all higher Aq(α) can be obtained by expanding the first

line of equation (D.2) and sorting terms by powers of ΩT (α).11 Under appropriate

regularity conditions we have
∫RAq(α)dα = 0 for all q ≥ 1. For example, we have

∫RA1(α)dα = limα→−∞
1
2

d
dα

[
ΛT (α)π0(α)

]
− limα→+∞

1
2

d
dα

[
ΛT (α)π0(α)

]
, and we

assume that these limits are both zero.

11 In the special case where ΛT (α) does not depend on α one obtains the simple general formula

Aq(α) = (−2qq!)−1 Λq

T d
2q/dα2qπ0(α).
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The highest derivatives of π0(α) and ΛT (α) that appear in Aq(α) are of order 2q.

Thus, if π0(α) is r times differentiable, and assuming that ΛT (α) is also sufficiently

often differentiable, we can choose

π(α) =

⌊r/2⌋
∑

q=0

(ρT

T

)q
Aq(α), (D.4)

where ⌊r/2⌋ denotes the largest integer smaller or equal to r/2. For large T

this choice of π(α) is close to π0(α), so that π(α) ≥ 0 is satisfied asymptoti-

cally. For this choice of π(α) one can show that under appropriate regularity

conditions DKL(πapprox, π0) = Op[(ρT /T )r]. Since DKL(fY (πapprox)||fY (π0)) ≤
DKL(πapprox||π0) this implies that Assumption 4.3(i) is satisfied with µT = (ρT /T )r/2.

D.2 Approximate Identification of π(α|x)

Assumption 4.3(ii) is an approximate identification condition of π = π(α|x) within

the set ΠT . The identification is approximate since the “slackness” µT appears on

the right hand side of the inequality in the assumption. We are going to define an

infeasible parameter set that satisfies Assumption 4.3(ii) with µT = 0 for algebraic

reasons and then show that the kernel construction of Section 5.1 provides a feasible

parameter set that approximates the infeasible one sufficiently well. We define

f
α|Y,X(α|y, x; θ, π) =

f(y|x, α; θ)π(α|x)
fY |X(y|x; θ, π)

,

K0
T (α, β;x) =

∫

YT

f
α|Y,X

(
α|y, x; θ0, π0

)
f(y|x, β; θ0)dy. (D.5)

This is not a Bayesian paper, but f
α|Y,X(α|y, x; θ, π) clearly has a Bayesian inter-

pretation, namely it is the posterior distribution of α for given Y = y under the

prior π(α|x), for given values of x and θ. In K0
T (α, β;x) this posterior distribution

is integrated over the true distribution of Y , i.e. K0
T (α, β;x) is the expected poste-

rior distribution under the prior π0 conditional on the individual effect equal to β.

K0
T (α, β;x) is a kernel function that defines an endomorphism of distributions over

A for each x ∈ XT . Namely, for π ∈ ΠA
T we have

[
K0

T π
]
(α|x) =

∫

A
K0

T (α, β;x)π(β|x)dβ. (D.6)

For given q ∈ N an infeasible parameter set is defined by

Π
(q)
T = (K0

T )q
(

Πup
T ∩ Πlow

T

)

. (D.7)
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This is the set of all distributions that can be generated by q consecutive applications

of the kernel K0
T to an element of Πup

T ∩ Πlow
T (the set of distribution that satisfy

some appropriate upper and lower bound). The parameter set Π
(q)
T is infeasible,

since π0 and θ0 enter into the definition of K0
T . We assume π0 ∈ Πup

T ∩ Πlow
T . Then

we have π0 ∈ Π
(q)
T for all q ∈ N because π0 is a fix point of K0

T .

The main motivation for defining Π
(q)
T is the following algebraic result: for every

q there exists a constant cq such that for all π ∈ Π
(q)
T

DH(π, π0) ≤ cq
[
DH(f(π), f(π0))

]
“

1− 1
2q+1

”

. (D.8)

The proof is given below. Since DH(f(π), f(π0)) ≤
√

DKL(f(π)||f(π0)) this means

that if q becomes large the set Π
(q)
T approximately satisfies Assumption 4.3(ii).

In order to approximate this infeasible parameter set by a feasible one, we note

that K0
T (α, β;x) has generic properties as T becomes large. Namely, under some

regularity conditions on π0 one can apply a Laplace approximation argument to show

that the distribution of α whose probability density function is given by K0
T (α, β;x)

becomes a Gaussian distribution with mean β and variance 2I−1(β, θ0, x)/T as

T → ∞, where the variance contains the inverse of the information matrix.

Thus, applying K0
T to a distribution becomes asymptotically equivalent to ap-

plying a Gaussian kernel smoothing with variance 2I−1(β, θ0, x). This suggests to

define a feasible parameter set by replacing (K0
T )q with a Gaussian kernel of ap-

propriate variance, which is exactly the construction of section 5.1, with q → ∞ as

N,T → ∞.

We now want to prove inequality (D.8). Note that for π ∈ Π
(1)
T there exist f̃(y|x)

and π̃(α|x) such that

f̃(y|x) =

∫

A
f(y|x, α; θ0) π̃(α|x)dα, π(α|x) =

∫

YT

f(y|x, α; θ)π0(α|x)
fY |X(y|x; θ, π0)

f̃(y|x)dy.

(D.9)
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Therefore

D2
H(π, π0) =

1

N

N∑

i=1

∫

A

[√

π(α|Xi) −
√

π0(α|Xi)
]2
dα

= 2 − 2

N

N∑

i=1

∫

A

√

π0(α|Xi)

π(α|Xi)
π(α|Xi)dα

= 2 − 2

N

N∑

i=1

∫

A

∫

YT

1
√

π(α|Xi)
π0(α|Xi)

f
α|Y,X(α|y, x; θ0, π0) f̃(y|x)dydα

≤ 2 − 2

N

N∑

i=1

∫

YT

1
√
∫

A
π(α|Xi)
π0(α|Xi)

f
α|Y,X(α|y, x; θ0, π0)dα

f̃(y|x)dy

= 2 − 2

N

N∑

i=1

∫

YT

√

fY |X(y|x; θ0, π0)

fY |X(y|x; θ0, π)
f̃(y|x)dy

= D2
H(fY |X(π), fY |X(π0))

+
2

N

N∑

i=1

∫

YT

[

1 −
√

fY |X(y|x; θ0, π0)

fY |X(y|x; θ0, π)

]
[

f̃(y|x) − fY |X(y|x; θ0, π)
]

dy

= D2
H(fY |X(π), fY |X(π0))

− 2

N

N∑

i=1

∫

YT

[

1 −
√

fY |X(y|x; θ0, π0)

fY |X(y|x; θ0, π)

][

1 −
√

f̃(y|x)
fY |X(y|x; θ0, π)

]

[

1 +

√

f̃(y|x)
fY |X(y|x; θ0, π)

]

fY |X(y|x; θ0, π)dy

≤ D2
H(fY |X(π), fY |X(π0))

+ 2
√

2DH(fY |X(π), fY |X(π0))DH(fY |X(π), f̃)

[

1 + sup
y,x

√

f̃(y|x)
fY |X(y|x; θ0, π)

]

(D.10)

Here we have used Jensen’s inequality in the fourth line and Chebychev’s inequality

in the last step. Note that

sup
y,x

f̃(y|x)
fY |X(y|x; θ0, π)

= sup
y,x

fY |X(y|x; θ0, π̃)

fY |X(y|x; θ0, π)
≤ sup

α,x

π̃(α|x)
π(α|x) . (D.11)

Applying the triangle inequality DH(fY |X(π), f̃) ≤ DH(fY |X(π), fY |X(π0))+DH(f̃ , fY |X(π0))

we thus obtain

D2
H(π, π0) ≤ a1 D2

H(fY |X(π), fY |X(π0)) + a2 DH(fY |X(π), fY |X(π0))DH(f̃ , fY |X(π0)),

(D.12)
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for suitable constants a1 and a2. Next, we use f̃(y|x) = fY |X(y|x; θ0, π̃) to obtain

D2
H(f̃ , fY |X(π0)) = 2 − 2

N

N∑

i=1

∫

YT

√

fY |X(y|x; θ0, π0)

f̃(y|x)
fY |X(y|x; θ0, π̃)dy

= 2 − 2

N

N∑

i=1

∫

YT

∫

A

√

fY |X(y|x; θ0, π0)

f̃(y|x)
f(y|x, α; θ0) π̃(α|x)dαdy

≤ 2 − 2

N

N∑

i=1

∫

A

1
√
∫

YT

f̃(y|x)
fY |X(y|x;θ0,π0)

f(y|x, α; θ0)dy

π̃(α|x)dα

= 2 − 2

N

N∑

i=1

∫

A

√

π0(α|x)
π(α|x) π̃(α|x)dα

= D2
H(π, π0) +

2

N

N∑

i=1

∫

A

[

1 −
√

π0(α|x)
π(α|x)

]

[π̃(α|x) − π(α|x)] dα

= D2
H(π, π0) + 2

√
2DH(π, π0)DH(π̃, π)

[

1 + sup
α,x

√

π̃(α|x)
π(α|x)

]

(D.13)

Again, using the triangle inequality for the Hellinger distance, we thus obtain

D2
H(f̃ , fY |X(π0)) ≤ a3D2

H(π, π0) + a4DH(π, π0)DH(π̃, π0) , (D.14)

for suitable constants a3 and a4. Combining this with the above result gives

D2
H(π, π0) ≤ a1 D2

H(fY |X(π), fY |X(π0)) + a2a3 DH(fY |X(π), fY |X(π0))DH(π, π0)

+ a2a4 DH(fY |X(π), fY |X(π0))
√

DH(π, π0)DH(π̃, π0).

(D.15)

From this, we can conclude

DH(π, π0) ≤ c1[DH(fY |X(π), fY |X(π0))]2/3 , (D.16)

for a suitable constant c1. By iterating the above proof for π ∈ Π
(1)
T one obtains the

result for general Π
(q)
T .
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bution. Sankhyā: The Indian Journal of Statistics, Series A, 64(2):306–322.

Newton, M., Quintana, F., and Zhang, Y. (1998). Nonparametric Bayes methods us-

ing predictive updating. Practical nonparametric and semiparametric Bayesian

statistics, 133:45–61.

Neyman, J. and Scott, E. (1948). Consistent estimates based on partially consistent

observations. Econometrica, 16(1):1–32.

Phillips, P. C. B. and Moon, H. (1999). Linear regression limit theory for nonsta-

tionary panel data. Econometrica, 67(5):1057–1111.

Woutersen, T. (2002). Robustness against incidental parameters. Unpublished

manuscript.

60


	Introduction
	Model
	Description of Estimators and Main Results
	Sampling Issues (Generalized Random Effect Assumption)
	Identification Issues (Smoothness Assumption on )
	Main Results

	Asymptotic Analysis of the Estimators
	Uniform Consistency of ()
	Score and Hessian of the Integrated Likelihood
	Joint Maximum Likelihood Estimation of  and 

	Generalized Random Effects
	Imposing an Appropriate Smoothness Assumption
	Computation

	Monte Carlo Simulations
	Conclusions
	Figures and Tables
	Assumptions
	Assumptions for Consistency
	Further Regularity Conditions on the Model

	Proofs
	Proofs for Section 4.1
	Proofs for Section 4.2
	Proofs for Section 4.3

	Further Discussions for Section 5
	Approximating Unknown Distributions
	Approximate Identification of (|x)


