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Abstract

Fixed effects estimators of panel models can be severely biased because of the

well-known incidental parameters problem. We develop analytical and jackknife

bias corrections for nonlinear models with both individual and time effects. Under

asymptotics where the time-dimension (T ) grows with the cross-sectional dimen-

sion (N), the time effects introduce additional incidental parameter bias. As the

existing bias expressions apply to models with only individual effects, we derive the

appropriate corrections. The basis for the corrections are asymptotic expansions of

fixed effects estimators with incidental parameters in multiple dimensions. These

expansions apply to M-estimators with concave objective functions, which cover

fixed effects estimators of the most popular limited dependent variable models such

as logit, probit, Tobit and Poisson models. We consider specifications with additive

or interactive individual and time effects, therefore extending the use of large-T bias

adjustments to an important class of models.
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1 Introduction

Fixed effects estimators of panel models can be severely biased because of the well-

known incidental parameters problem (Neyman and Scott (1948), Heckman (1981),

Lancaster (2000), and Greene (2004)). A recent literature, surveyed in Arellano

and Hahn (2007) and including Phillips and Moon (1999), Hahn and Kuersteiner

(2002), Lancaster (2002), Woutersen (2002), Hahn and Kuersteiner (2011), Hahn

and Newey (2004), Carro (2007), and Fernandez-Val (2009), provides a range of

solutions, so-called large-T bias corrections, to reduce the incidental parameters

problem in long panels. These papers derive the analytical expression of the bias

(up to a certain order of the time dimension T ), which can be employed to adjust

the biased fixed effects estimators. While the existing large-T methods cover a

large class of models with individual effects, they do not apply to panel models

with individual and time effects. Time effects are important for economic modeling

because they allow the researcher to control for aggregate common shocks.

We develop analytical and jackknife bias corrections for nonlinear models with

both individual and time effects. We consider asymptotics where T grows with the

cross-sectional dimension N , as an approximation to the properties of the estimators

in econometric applications where T is moderately large relative to N . Examples

include applications that use U.S. state or country level panel data. Under these

asymptotics, the incidental parameter problem becomes a finite-sample bias prob-

lem in the time dimension and the presence of time effects introduce additional

sources of finite-sample bias in the cross sectional dimension. As the existing bias

expressions apply to models with only individual effects, we derive the appropri-

ate correction. This correction does not correspond to a sequential application of

the existing corrections to each dimension. In addition to model parameters, we

provide bias corrections for average partial effects, which are functions of the data,

parameters and individual and time effects in nonlinear models. These effects are

often the ultimate quantities of interest.

The basis for the bias corrections are asymptotic expansions of fixed effects es-

timators with incidental parameters in multiple dimensions. Bai (2009) and Moon

and Weidner (2010) derive similar expansions for quasi-likelihood estimators of lin-

ear models with interactive individual and time effects. We consider non-linear

single index models with additive or interactive individual and time effects. In

our case, the nonlinearity of the model introduces nonseparability between the es-

timators of the model parameters and incidental parameters. Moreover, even in
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the additive case, we need to deal with an infinite dimensional non-diagonal Hes-

sian matrix for the incidental parameters. We focus on M-estimators with concave

objective functions in the index, which cover fixed effects estimators of the most

popular limited dependent variable models such as logit, probit, Tobit and Poisson

models (Olsen (1978), and Pratt (1981)). Our analysis therefore extends the use of

large-T bias adjustments to an important class of models.

Our corrections eliminate the leading term of the bias from the asymptotic ex-

pansions. Under asymptotic sequences where N and T grow at the same rate, we

find that this term has two components: one of order O(T−1) coming from the

estimation of the individual effects; and one of order O(N−1) coming from the es-

timation of the time effects. We consider analytical methods similar to Hahn and

Newey (2004) and Hahn and Kuersteiner (2011), and suitable modifications of the

leave one observation out and split panel jackknife methods of Hahn and Newey

(2004) and Dhaene and Jochmans (2010). However, the theory of the previous pa-

pers do not cover the models that we consider because they assume either identical

distribution or stationarity of the observed variables over the time series dimension,

conditional on the unobserved effects. These assumptions are violated in our case

due to the presence of the time effects. We therefore extend the validity of the

bias corrections to heterogenous processes in multiple dimensions under weak time

series dependence conditions. The corrections can be implemented over the objec-

tive function, score or estimator. Simulation evidence indicates our approach works

well in finite samples and an empirical example illustrates the applicability of our

estimator.

The large-T panel literature on models with individual and time effects is sparse.

Hahn and Moon (2006) consider bias corrected fixed effects estimators in panel lin-

ear AR(1) models with additive individual and time effects. Charbonneau (2011)

extends the conditional fixed effects estimators to logit and Poisson models with ex-

ogenous regressors and additive individual and time effects. She differences out the

individual and time effects by conditioning on sufficient statistics. This conditional

approach completely eliminates asymptotic bias, but does not permit estimation

of average partial effects and has not been developed for models with interactive

effects. We consider estimators of model parameters and average partial effects in

nonlinear models with predetermined regressors and additive or interactive individ-

ual and time effects.

Notation: We write A′ for the transpose of a matrix or vector A. We use 1n for

the n × n identity matrix, and 1n for the column vector of length n whose entries
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are all unity. For a n×m matrix A, we define the projectors PA = A(A′A)−1A′ and

MA = 1n − A(A′A)−1A′, where (A′A)−1 denotes a generalized inverse if A is not

of full column rank. For square n× n matrices B, C, we use B > C (or B ≥ C) to

indicate that B−C is positive (semi) definite. We use the vector norms ‖v‖ =
√
v′v

and ‖v‖∞ = maxi |vi|, the matrix infinity norm ‖A‖∞ = maxi
∑

j |Aij |, and the

matrix maximum norm ‖A‖max = maxij |Aij |. We write wpa1 for “with probability

approaching one”. All the limits are taken as N,T →∞ jointly.

2 Model and Estimators

The data consist of N × T observations Y = {Yit : i = 1, ..., N ; t = 1, ..., T} and

X = {Xit : i = 1, ..., N ; t = 1, ..., T}, for an outcome variable of interest Yit and a

vector of explanatory variables Xit. We assume that the outcome for individual i

at time t is generated by the sequential process:

Assumption 2.1 (Model). For Xt
i = {Xis : s = 1, ..., t} and γt = (γs : s =

1, ..., t),

Yit | Xt
i , αi, γ

t d
= Yit | Xit, αi, γt ∼ fY |X(· | Xit, αi, γt, β), i = 1, ..., N ; t = 1, ..., T ;

where fY |X is a known probability function and β is a finite dimensional parameter

vector.

The variables αi and γt are unobserved individual and time effects that in eco-

nomic applications capture individual heterogeneity and aggregate shocks, respec-

tively. The model is semiparametric because we do not specify the distribution of

these effects nor their relationship with the explanatory variables. The conditional

distribution fY |X represents the parametric part of the model. The vector Xit con-

tains predetermined variables with respect to Yit. Note that Xit can include lags of

Yit to accommodate dynamic models.

We consider two illustrative examples throughout the analysis:

Example 1 (Binary choice model). Let Yit be a binary outcome and F be a CDF,

e.g. the standard normal or logistic distribution. We can model the conditional

distribution of Yit using the single-index specification

fY |X(y | Xit, αi, γt, β) = F (X ′itβ+g(αi, γt))
y[1−F (X ′itβ+g(αi, γt))]

1−y, y ∈ {0, 1},

where g is a known function.
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Example 2 (Count data model). Let Yit be a non-negative discrete outcome, and

f(·;λ) be the pmf of a Poisson random variable with mean λ > 0. We can model

the conditional distribution of Yit using the single index specification

fY |X(y | Xit, αi, γt, β) = f(y; exp[X ′itβ + g(αi, γt)]), y ∈ {0, 1, 2, ....},

where g is a known function.

The leading specifications for the function g are the additive effects with g(αi, γt) =

αi + γt, and the interactive effects with g(αi, γt) = αiγt.

For estimation, we adopt a fixed effects approach treating the unobserved in-

dividual and time effects as parameters to be estimated. We collect all these ef-

fects in the vector φNT = (α1, ..., αN , γ1, ..., γT )′. The model parameter β usually

includes regression coefficients of interest, while the unobserved effects φNT are

treated as nuisance parameters. The true value of the parameters, denoted by β0

and φ0
NT = (α0

1, ..., α
0
N , γ

0
1 , ..., γ

0
T )′, are a solution to the population problem

max
β,φNT

L∗NT (β, φNT ), L∗NT (β, φNT ) := (NT )−1
∑
i,t

Et

[
log fY |X(Yit | Xit, αi, γt, β)

]
,

(2.1)

for every N,T . Here Et denotes the expectation with respect to the true conditional

distribution fY |X(· | Xit, α
0
i , γ

0
t , β

0). We also use below the notation E to denote

the expectation over both Yit and Xit, conditional on the unobserved effects φ0
NT

and parameter β0.1 The solution to the problem (2.1) is often not unique in φNT .

In the description of the estimator below, we propose several normalizations that

identify φ0
NT .

Other quantities of interest involve averages over the data and nuisance param-

eters

δ0
NT = E[∆NT (β0, φ0

NT )], ∆NT (β, φNT ) = (NT )−1
∑
i,t

∆(Xit, β, φNT ). (2.2)

These include average partial effects, which are often the ultimate quantities of

interest in nonlinear models. Here are some examples of these effects motivated by

the numerical examples of Sections 6 and 7.

Example 1 (cont.) If Xit,k, the kth element of Xit, is binary, its partial effect on

the conditional probability of Yit is

∆(Xit, β, φNT ) = F (βk +X ′it,−kβ−k + g(αi, γt))− F (X ′it,−kβ−k + g(αi, γt)), (2.3)

1Since the inference is conditional on the realization of the unobserved effects, all the probability

statements should be qualified with a.s. We omit this qualifier for notational convenience.
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where βk is the kth element of β, and Xit,−k and β−k include all elements of Xit

and β except for the kth element. If Xit,k is continuous and F is differentiable, the

partial effect of Xit,k on the conditional probability of Yit can be approximated by

the derivative

∆(Xit, β, φNT ) = βkf(X ′itβ + g(αi, γt)), (2.4)

where f is the derivative of F .

Example 2 (cont.) If Xit includes Zit and H(Zit) with coefficients βk and βj, the

partial effect of Zit on the conditional expectation of Yit can be approximated by

∆(Xit, β, φNT ) = [βk + βjh(Zit)] exp(X ′itβ + g(αi, γt)), (2.5)

where h is the derivative of H.

The parameters are estimated by solving the sample version of problem (2.1),

i.e.

max
β,φNT

L∗NT (β, φNT ), L∗NT (β, φNT ) := (NT )−1
∑
i,t

log fY |X(Yit | Xit, αi, γt, β),

(2.6)

Depending on the specification of the unobserved effects, there might be ambiguity

in the solution for φNT . For instance, adding a constant ρ to all αi, while sub-

tracting it from all γt, does not change αi + γt. This implies that the objective

function LNT has a singular direction with respect to φNT at vNT = (1′N ,−1′T )′, i.e.

L∗NT (β, φNT ) = L∗NT (β, φNT + ρvNT ). To eliminate this ambiguity, we normalize

φNT to satisfy v′NTφNT = 0, i.e.
∑

i αi =
∑

t γt, by modifying the objective function

LNT (β, φNT ) = L∗NT (β, φNT )− b(v′NTφNT )2/(2NT ), (2.7)

where b > 0 is an arbitrary constant. The maximizer of L∗NT (β, φNT ) automatically

satisfies v′NTφNT = 0, and we choose v′NTφ
0
NT = 0 for the true value. A similar

issue arises in the interactive model. Here, we use the modification

LNT (β, φNT ) = L∗NT (β, φNT )(NT )−1 − b[v′NT (φNT � φNT )]2/(8NT ), (2.8)

where b > 0 is an arbitrary constant and � denotes Hadamard (entry-wise) product.

The maximizer of LNT (β, φNT ) automatically satisfies v′NT (φNT � φNT ) = 0, and

we choose v′NT (φ0
NT � φ0

NT ) = 0 for the true value, i.e.
∑

i(α
0
i )

2 =
∑

t(γ
0
t )2.

To analyze the properties of the estimator of β it is convenient to first concentrate

out the nuisance parameter φNT . For given β, we define the optimal φ̂NT (β) as

φ̂NT (β) ∈ argmax
φNT∈RdimφNT

LNT (β, φNT ) ,
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The fixed effects estimators of β0 and φ0
NT are

β̂ = argmax
β∈Rdim β

LNT (β, φ̂NT (β)) , φ̂NT = φ̂NT (β̂) .

Estimators of averages over the data and nuisance parameters can be formed by

plugging-in the estimators of the model parameters in the sample version of (2.2),

i.e.

δ̂NT = ∆NT (β̂, φ̂NT ). (2.9)

3 Asymptotic Expansions

In this section, we derive asymptotic expansions for the score of the profile ob-

jective function LNT (β, φ̂NT (β)) and for the fixed effects estimators of parameters

and average effects. We do not employ the panel structure of the model, nor the

particular form of the objective function given in Section 2. Instead, we consider

the estimation of an unspecified model based on a sample of size NT and a generic

objective function LNT (β, φNT ), which depends on the parameter of interest β and

the incidental parameter φNT . In the sequel, we suppress the dependence on NT

of all the sequences of functions and parameters to lighten the notation, e.g. we

write L for LNT and φ for φNT . To derive the results, we make use of a set of

high-level assumptions. These assumptions might appear somewhat abstract, but

we will justify them by more primitive conditions in the context of panel models in

the next section. There, we will also apply the expansions to obtain the limiting dis-

tribution of estimators of parameters and average effects. This section includes the

key technical tools used in the paper, but readers only interested in the application

to panel data models can skip directly to Section 4.

It is convenient to introduce some notation that will be extensively used in the

analysis. Let

S(β, φ) = ∂φL(β, φ), H(β, φ) = −∂φφ′L(β, φ), (3.1)

where ∂xf denotes the partial derivative of f with respect to x, and additional

subscripts denote higher-order partial derivatives. We refer to the dimφ-vector

S(β, φ) as the incidental parameter score, and to the dimφ× dimφ matrix H(β, φ)

as the incidental parameter Hessian. We omit the arguments of the functions when

they are evaluated at the true parameter values (β0, φ0), e.g. H = H(β0, φ0). We

use a bar to indicate expectations over Yit and Xit, e.g. ∂βL = E[∂βL], and a tilde

to denote that the variables are in deviation with respect to their expectations, e.g.

∂βL̃ = ∂βL − ∂βL.
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For c ≥ 0, we also define the sets B(c, β0) =
{
β : ‖β − β0‖∞ ≤ c

}
, and B(c, β0, φ0) ={

(β, φ) : ‖β − β0‖∞ < c, ‖φ− φ0‖∞ < c
}

, which are closed balls of radius c around

the true parameters β0 and (β0, φ0), respectively, under the infinity norm.

We impose the following high-level conditions.

Assumption 3.1 (Regularity Conditions for Asymptotic Expansion).

(i) dimφ√
NT
→ a, 0 < a <∞.

(ii) For all deterministic series η ↘ 0, we assume that L(β, φ) is four times

continuously differentiable with respect to (β, φ) in B(η, β0, φ0), and for all

integers p ≥ 0 and q > 0 with 2 ≤ p+ q ≤ 4 and k1, . . . , kp ∈ {1, . . . ,dimβ}2

sup
(β,φ)∈B(η,β0,φ0)

max
g1∈{1,...,dimφ}

dimφ∑
g2,...,gq=1

∣∣∣∂βk1
...βkp ,φg1

...φgq
L(β, φ)

∣∣∣ = OP
(

dimφ

NT

)
,

and also supβ∈B(η,β0) ∂βk1βk2βk3L(β, φ) = OP (1).

(iii) There exists ε, with 0 < ε < 1/6, such that

‖S‖∞ = OP

(
(dimφ)1/2+ε

NT

)
,

∥∥∥∂ββ′L̃
∥∥∥

max
= oP (1),

∥∥∥H̃∥∥∥
∞

= OP

(
(dimφ)1/2+ε

NT

)
,

∥∥∥∂βφ′L̃∥∥∥
max

= OP

(
(dimφ)1/2+ε

NT

)
,

and

dimφ∑
g=1

∥∥∥∂φφ′φg L̃
∥∥∥
∞

= OP
(

(dimφ)1/2+ε

NT

)
, max

g∈{1,...,dimφ}

∥∥∥∂βφ′φg L̃
∥∥∥
∞

= OP
(

(dimφ)1/2+ε

NT

)
.

Assumption 3.2 (Order of H−1
).∥∥∥H−1
∥∥∥
∞

= O
(
NT

dimφ

)
.

Assumption 3.3 (Uniform Consistency of φ̂(β)). For all deterministic series

η ↘ 0,

sup
β∈B(η,β0)

∥∥∥φ̂(β)− φ0
∥∥∥
∞

= oP (1).

We state Assumptions 3.2 and 3.3 separately because the primitive conditions

to verify them in panels models depend on the specification of the individual and

time effects. The following theorem is the main result of this section. All the proofs

are given in the Appendix.

2For q = 1 we have no sum, but take the maximum over g1.
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Theorem 3.1 (Asymptotic Expansions of φ̂(β) and dβL(β, φ̂(β))). Let As-

sumptions 3.1, 3.2 and 3.3 hold. Then

φ̂(β)− φ0 = H−1S −H−1H̃H−1S +H−1
[∂βφ′L]′(β − β0)

+ 1
2H
−1

dimφ∑
g=1

[∂φφ′φgL]H−1S[H−1S]g + r(β),

and

√
NT dβL(β, φ̂(β)) = T −W

√
NT (β − β0) +R(β),

where T = T (0) + T (1) and

W = −
(
∂ββ′L+ [∂βφ′L] H−1

[∂φβ′L]
)
,

T (0) =
√
NT

(
∂βL+ [∂βφ′L]H−1S

)
,

T (1) =
√
NT

(
[∂βφ′L̃]H−1S − [∂βφ′L]H−1 H̃H−1 S

)
+
√
NT

dimφ∑
g=1

(
∂βφ′φgL+ [∂βφ′L]H−1

[∂φφ′φgL]
)

[H−1S]gH
−1S/2.

The remainder terms of the expansions satisfy, for all series η ↘ 0

sup
β∈B(η,β0)

√
NT ‖r(β)‖∞

1 +
√
NT‖β − β0‖

= oP (1) , sup
β∈B(η,β0)

‖R(β)‖
1 +
√
NT‖β − β0‖

= oP (1) .

Theorem 3.1 provides asymptotic expansions for the incidental parameter esti-

mator φ̂(β) and the score of the profile objective function ∂βP(β). These are joint

expansions in β − β0 up to linear order, and in the incidental parameter score S
up to quadratic order.3 The theorem provides bounds on the the remainder terms

r(β) and R(β), which make the expansions applicable to consistent estimators of β0

that take values within a shrinking neighborhood of β0 with probability approach-

ing one. Depending on the model, consistency of β̂ (and φ̂) can be established in

different ways, as discussed for concrete panel models in the next section. Once we

have established consistency of β̂, the asymptotic expansion of the profile objective

score can be applied to the first order condition for β̂, dβL(β̂, φ̂(β̂)) = 0. This gives

rise to the following corollary of Theorem 3.1 . Let W∞ := limN,T→∞W .

3The terms T (0) and T (1) do not exactly correspond to the zero and first order components of the

expansion. We separate the expansion in these terms, however, because it facilitates interpretation. In

particular, T (0) is a variance term, while T (1) is a bias term.
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Corollary 3.2 (Stochastic expansion of β̂). Let the assumptions of Theorem 3.1

be satisfied. If W∞ exists, W∞ > 0, and ‖β̂ − β0‖ = oP (1),

√
NT (β̂ − β0) = W

−1
∞ T + oP (1).

Using this corollary we can derive the first order asymptotic theory of β̂ from the

limit average Hessian W∞ and the limiting distribution of the approximated score

T . In particular, assuming orders in probability correspond to orders in expectation,

the first order asymptotic bias of β̂ is

lim
N,T→∞

√
NT E[β̂ − β0] = W

−1
∞ lim

N,T→∞
ET (1).

We illustrate the calculation of this asymptotic bias with two simple panel mod-

els. The first example is convenient analytically because the fixed effects estimator

and its exact bias have closed form. We can therefore compare the exact bias with

its first order asymptotic approximation. We consider more general models in the

next section.

Example 3 (Neyman-Scott model with additive effects). Consider the model:

Yit = α0
i + γ0

t + εit, εit ∼ i.i.d. N (0, β0), (i = 1, . . . , N ; t = 1, . . . , T ),

where the parameter of interest is β0 > 0 and the effects α0
i ’s and γ0

t ’s are treated

as nuisance parameters. This is a version of the classical Neyman-Scott (1948)

example with time effects in addition to the individual effects. We normalize the

true value of these effects to satisfy
∑N

i=1 α
0
i =

∑T
t=1 γ

0
t for all N,T . The fixed

effects estimator of β0 is

β̂ =
1

NT

N∑
i=1

T∑
t=1

(Yit − Ȳi· − Ȳ·t − Ȳ··)2,

where Ȳi· =
∑T

t=1 Yit/T , Ȳ·t =
∑N

i=1 Yit/N , and Ȳ·· =
∑N

i=1

∑T
t=1 Yit/(NT ). The

exact finite-sample bias of β̂ is

√
NT E[β̂ − β0] = −β0N + T − 1√

NT
. (3.2)

We turn now to the derivation of the first order asymptotic bias. The objective

function is, for some constants c and b > 0:

L(β, φ) = c−(1/2) log β−
∑
i,t

(Yit−αi−γt)2/(2βNT )−b

(
N∑
i=1

αi −
T∑
t=1

γt

)2

/(2β0NT ),
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with corresponding incidental parameters score and Hessian evaluated at the true

parameter values

S =
1

β0

(
ε̄N/N

ε̄T /T

)
,H =

1

β0NT

(
T1N + b1N1′N (1− b)1N1′T

(1− b)1T 1′N N1T + b1T 1′T

)
,

where ε̄N = [ε̄i·]i=1,...,N for ε̄i· =
∑T

t=1 εit/T , and ε̄T = [ε̄·t]t=1,...,T for ε̄·t =
∑N

i=1 εit/N .

The matrix H is deterministic so that H = H, with inverse

H−1
= β0

(
N [1N − 1N1′N/(T +N)] 0

0 T [1T − 1T 1′T /(T +N)]

)
+ kβ0R, (3.3)

where k = NT (1 − b)/[b(T + N)2], and R = (1′N ,−1′T )′(1′N ,−1′T ). Note that

‖H−1‖∞ = O(N ∨ T ), which satisfies Assumption 3.2 if dimφ/
√
NT = (N +

T )/
√
NT → a, 0 < a <∞.

Substituting (3.3) in the expressions for T and W in Theorem 3.1,

E[T ] =
1

2β0

N + T − 1√
NT

, W = − 1

2(β0)2
,

where we use that ∂βL = −1/(2β0) +
∑

i,t ε
2
it/[2(β0)2NT ], ∂ββL = −1/2(β0)2,

∂βφ′LNT = −S ′/β0, ∂βφ′LNT = 0, ∂βφ′L̃NT = −S ′/β0, ∂βφφ′L = [H−{b/(β0NT )}R]/β0,

and RH−1S = 0. Since W∞ = W , the first order asymptotic bias of β̂ is:

W
−1
∞ lim

N,T→∞
E[T ] = −β0 lim

N,T→∞

N + T − 1√
NT

= −β0a,

which gives a first order approximation to the exact bias in equation (3.2).

For the second example, we consider again the Neyman-Scott model but making

the individual and time effects interactive instead of additive. The fixed effects

estimator in this case does not have closed form, what makes difficult to derive the

exact bias. We find that the first order asymptotic bias is the same as in the additive

case. The characterization of the first order bias for this model appears to be new.

Example 4 (Neyman-Scott model with interactive effects). Consider the

model:

Yit = α0
i γ

0
t + εit, εit ∼ i.i.d. N (0, β0), (i = 1, . . . , N ; t = 1, . . . , T ),

where the parameter of interest is β0 > 0 and the effects α0
i ’s and γ0

t ’s are treated as

nuisance parameters. We normalize the true value of the individual and time effects

to satisfy ‖α0‖2 =
∑N

i=1(α0
i )

2 =
∑T

t=1(γ0
t )2 for all N,T . The fixed effects estimator

of β0 does not have closed form in this case.
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To derive the first order bias, we follow the same steps as in the previous example.

The objective function is, for some constants c and b > 0:

L(β, φ) = c− (1/2) log β−
∑
i,t

(Yit−αiγt)2/(2βNT )− b(
N∑
i=1

α2
i −

T∑
t=1

γ2
t )2/(8β0NT ),

with corresponding incidental parameters score and Hessian evaluated at the true

parameter values

S =
‖α0‖
β0

(
ε̃N/N

ε̃T /T

)
,H =

‖α0‖2

β0NT

(
1N + b α̃0α̃

′
0 (1− b)α̃0γ̃

′
0

(1− b)γ̃0α̃
′
0 1T + b γ̃0γ̃

′
0

)
, (3.4)

where ε̃N = [ε̃i·]i=1,...,N for ε̃i· =
∑T

t=1 γ̃
0
t εit/T , ε̃T = [ε̃·t]t=1,...,T for ε̃·t =

∑N
i=1 α̃

0
i εit/N,

γ̃0
t = γ0

t /‖α0‖, α̃0
i = α0

i /‖α0‖, γ̃0 = (γ̃0
1 , . . . , γ̃

0
T ), and α̃0 = (α̃0

1, . . . , α̃
0
N ). The ma-

trix H is fixed conditional on the nuisance parameters, so that H = H, with inverse

H−1
= β0 NT

‖α0‖2

(
1N − α̃0α̃

′
0/2 0

0 1T − γ̃0γ̃
′
0/2

)
+ kβ0 NT

‖α0‖2
R̃,

where k = (1 − b)/(4b), and R̃ = (α̃′0,−γ̃′0)′(α̃′0,−γ̃′0). Note that ‖H−1‖∞ =

O(NT/‖α0‖2), which satisfies Assumption 3.2 if ‖α0‖2 = O(dimφ) = O(N + T ).

Substituting (3.4) in the expressions for T and W in Theorem 3.1,

E[T ] =
1

2β0

N + T − 1√
NT

, W = − 1

2(β0)2
,

where we use that ∂βL = −1/(2β0) +
∑

i,t ε
2
it/[2(β0)2NT ], ∂ββL = −1/2(β0)2,

∂βφ′LNT = −S ′/β0, ∂βφ′LNT = 0, ∂βφ′L̃NT = −S ′/β0, ∂βφφ′L = [H−{b‖α0‖2/(β0NT )}R̃]/β0,

and R̃H−1S = 0. Since W∞ = W , the first order asymptotic bias of β̂ is:

W
−1
∞ lim

N,T→∞
E[T ] = −β0 lim

N,T→∞

N + T − 1√
NT

= −β0a,

which is the same as the first order bias for the additive effects model in the previous

example.

Expansion for Average Effects

In nonlinear models, the quantities of interest are often averages of the data and

parameters, including average partial effects. We derive asymptotic expansions

for the fixed effects estimators of these quantities defined in (2.9). We invoke the

following high-level assumption, which is verified under more primitive conditions

for panel data models in the next section.
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Assumption 3.4 (Regularity Conditions for Asymptotic Expansion of δ̂).

(i) For all deterministic series η ↘ 0, we assume that ∆(β, φ) is three times

continuously differentiable with respect to (β, φ) in B(η, β0, φ0), and for all

integers p ≥ 0, q > 0 with 2 ≤ p+ q ≤ 3 and k1, . . . , kp ∈ {1, . . . ,dimβ}

sup
(β,φ)∈B(η,β0,φ0)

max
g1∈{1,...,dimφ}

dimφ∑
g2,...,gq=1

∣∣∣∂βk1
...βkpφg1

...φgq
∆(β, φ)

∣∣∣ = OP
(

dimφ

NT

)
,

and also supβ∈B(η,β0)

∥∥∂ββ′∆(β, φ)
∥∥

max
= OP (1).

(ii) There exists ε, with 0 < ε < 1/6, such that

∥∥∥∂β∆̃
∥∥∥

max
= oP (1),

∥∥∥∂φφ′∆̃∥∥∥
∞

= OP

(
(dimφ)1/2+ε

NT

)
.

The following result gives the asymptotic expansion for the estimator of the

average effects.

Theorem 3.3 (Asymptotic Expansion of ∆(β, φ̂(β))). Let Assumptions 3.1,

3.2, 3.3 and 3.4 hold. Then

∆(β, φ̂(β))−∆ = [∂β∆]′(β − β0) + [∂φ∆]′(φ̂(β)− φ0)

+ 1
2 S
′H−1

[∂φφ′∆]H−1S + r∆(β).

The remainder term of the expansions satisfies for all series η ↘ 0

sup
β∈B(η,β0)

√
NT

∥∥r∆(β)
∥∥

1 +
√
NT‖β − β0‖

= oP (1) .

As in Theorem 3.1, the remainder term of the asymptotic expansion is bounded

in an shrinking neighborhood of β0. We can therefore apply the expansion directly

to characterize the asymptotic distribution of average effects estimators constructed

from consistent estimators of β0. The next corollary formalizes this observation.

Corollary 3.4 (Stochastic expansion of δ̂). Let the assumptions of Theorem 3.1

be satisfied. If W∞ exists, W∞ > 0, and ‖β̂ − β0‖ = oP (1),

√
NT (δ̂ − δ0) =

√
NT ∆̃ + [∂β∆]′W

−1
∞ T + [∂φ∆]′H−1

(S − H̃H−1S)

+ [∂φ∆]′H−1

dimφ∑
g=1

[∂φφ′φgL]H−1S[H−1S]g/2 + [∂βφ′L]′W
−1
∞ T


+ 1

2 S
′H−1

[∂φφ′∆]H−1S + oP (1).
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4 Application to Panel Models

We provide primitive conditions for the validity of the asymptotic expansions of

the previous section in panel models, and characterize the limiting distributions

of fixed effects estimators of parameters and average effects in these models. We

focus on linear single-index models with additive or interactive individual and time

effects. These models are commonly used in applied economics and include the

probit and Poisson specifications of Examples 1 and 2. Moreover, under concavity

of the objective function in the index, we can establish the consistency of the fixed

effects estimator.

In panel linear index models the conditional distributions of Yit depends on the

explanatory variables and unobserved effects through a single index function, i.e.

log fY |X(y | Xit, αi, γt, β) = `(Yit, Zit(β, αi, γt)),

where Zit(β, αi, γt) = X ′itβ + g(αi, γt) ∈ R is the linear index, and g is a known

function. For the derivatives of z 7→ `it(z) := `(Yit, z) we use the notation ∂zq`it(z) =

∂q`it(z)/∂z
q, and we drop the argument z when the derivatives are evaluated at

the true index Zit := Zit(β
0, α0

i , γ
0
t ), i.e. ∂zq`it = ∂zq`it(Zit). Let Y, X , and

B × A × G ⊂ R
dimβ+2 be the supports of Yit, Xit, and (β0, α0

i , γ
0
t ), respectively.

Define the support of the index as Z = {z ∈ R : z = x′β + α+ γ, x ∈ X , β ∈ B, α ∈
A, γ ∈ G}. In all the panel models that we consider dimφ = N + T .

We make the following assumptions.

Assumption 4.1. (Primitive Conditions for Panel Index Models)

(i) Asymptotics: we consider limits of sequences where N/T → κ2, 0 < κ <∞.

(ii) Sampling: (Y,X) is independent across i conditional on φ0, and alpha mixing

across t, with mixing coefficient that decrease at an exponential rate, that is

supi ai(m) ≤ Cεm for some ε such that 0 < ε < 1 and some C > 0, where

ai(m) := sup
t

sup
A∈Ait,B∈Bit+m

|P (A ∩B)− P (A)P (B)|,

for Ait := σ(α0
i , γ

0
t , Xit, γ

0
t−1, Xi,t−1, . . .) and Bit := σ(α0

i , γ
0
t , Xit, γ

0
t+1, Xi,t+1, . . .).

(iii) Mean zero score: Et[∂z`it] = 0, for all i, t,N, T , where `it = `(Yit, X
′
itβ

0 +

g(α0
i , γ

0
t )), and ` and g are known functions.

(iv) Objective function: For all y ∈ Y, the function z 7→ `(y, z) is four times

continuously differentiable over R. For q = 0, 1, 2, 3, 4, there exists a function
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Mit(z) such that |∂zq`it(z)| ≤ Mit(z), and we assume that maxi,tE[Mit(z)
16]

is uniformly bounded over z ∈ Z and N,T .

(v) Index: the function (αi, γt) 7→ g(αi, γt) is four times continuously differentiable

over R2 with bounded partial derivatives up to fourth order uniformly over

A× G. Uniformly over N,T , maxi,t E[‖Xit‖16] <∞.

(vi) Average effects: the function (β, αi, γt) 7→ ∆it(β, αi, γt) = ∆(Xit, β, αi, γt) is

four times continuously differentiable over B ×A× G. The partial derivatives

of ∆it(β, αi, γt) with respect to the elements of (β, αi, γt) up to fourth order are

bounded by a function M∆
it (β, αi, γt) , and we assume that maxi,tE[M∆

it (β, αi, γt)
16]

is uniformly bounded over B ×A× G and N,T .

[Note: Continuity of the highest order derivative in (v)–(vii) can be replaced

by a Lipschitz condition]

Remark 1. Assumption 4.1(ii) does not impose identical distribution nor station-

arity over the time series dimension, conditional on the unobserved effects, unlike

most of the large-T panel literature, e.g., Hahn and Newey (2004) and Hahn and

Kuersteiner (2011). This type of assumption is violated in the models we consider

due to the presence of the time effects.

Remark 2. Assumption 4.1(iii) covers quasi-likelihood estimators where we only

need specify some characteristic of the conditional distribution such as the mean.

We verify that the previous conditions guarantee that Assumptions 3.1 and 3.4

hold.

Lemma 4.1. Assumption 4.1 guarantees that Assumption 3.1 holds for the panel

objective functions (2.6), (2.7) and (2.8). It also guarantees that Assumption 3.4 is

satisfied by the average effects defined in (2.2).

To verify Assumptions 3.2 and 3.3, we impose additional assumptions on the

objective function ` and the specification of the effects g. We treat separately the

additive and interactive effects specifications. In both cases we impose concavity

assumptions on the objective function with respect to the index. Probit, logit, tobit

and Poisson models have strictly concave objective functions in the index.

4.1 Linear single index with additive effects

We first consider models with additive individuals and time effects. Let Xk denote

the N × T matrix with elements {Xit,k : i = 1, ..., N, t = 1, ..., T} corresponding to

all the observations of the k’th regressor of Xit.
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Assumption 4.2 (Additive effects and concavity).

(i) Additive effects: g(αi, γt) = αi + γt.

(ii) Non-collinearity: The matrix with elements (k1, k2)

lim
N,T→∞

(NT )−1
ETr(M1NXk1M1TX

′
k2), k1, k2 ∈ {1, ...,dimXit},

exists and is positive definite.

(iii) Concavity: For all y ∈ Y the function z 7→ `(y, z) is strictly concave over

R. Furthermore, there exist constants bmin and bmax such that 0 < bmin ≤
−E [∂z2`it] ≤ bmax uniformly over i, t,N, T .

Remark 3. With additive effects the first part of Assumption 4.1(v) holds trivially

because ∂αig(αi, γt) = ∂γtg(αi, γt) = 1, and the higher order derivatives are zero.

We now verify Assumptions 3.2 and 3.3 and derive the asymptotic expansion for

the fixed effects estimators in this model. The objective function is given by (2.7),

which can also be written as

L(β, φ) = (NT )−1

∑
i,t

`(Yit, X
′
itβ + αi + γt)−

b

2

(∑
i

αi −
∑
t

γt

)2
 .

Recall that the second term is a penalty that deals with the degenerate direction of

the parameter space corresponding to adding a constant to all αi and subtracting

the same constant from all γt. The incidental parameter score evaluated at the true

parameters is

S = (NT )−1


[∑T

t=1 ∂z`it

]
i=1,...,N[∑N

i=1 ∂z`it

]
t=1,...,T

 ,

and the expected incidental parameter Hessian is

H = (NT )−1

{(
Dα {−E[∂z2`it]}i,t

{−E[∂z2`it]}t,i Dγ

)
+ b vv′

}
,

where Dα and Dγ are diagonal N ×N and T × T matrices, namely

Dα = diag

{− T∑
t=1

E[∂z2`it]

}
i=1,...,N

 , Dγ = diag

{− N∑
i=1

E[∂z2`it]

}
t=1,...,T

 ,

and v = (1′N , 1
′
T )′.
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In panel models with only individual effects, it is straightforward to determine

the order of magnitude of H−1
in Assumption 3.2, because H contains only the

diagonal matrix Dα. Here, H is no longer diagonal, but it has a special structure.

The diagonal terms are of orders T−1 and N−1, whereas the off-diagonal terms

are of order (NT )−1. Moreover,
∥∥H−D∥∥

max
= O((NT )−1) by Assumption 4.2,

where D = (NT )−1diag(Dα,Dγ). These observations, however, are not sufficient to

establish the order of H−1
because the number of non-zero off-diagonal terms is of

much larger order than the number of diagonal terms; compare O(NT ) to O(N+T ).

The following lemma shows that indeed the diagonal terms of H dominate in the

determination the order of the inverse.

Lemma 4.2. Under Assumptions 4.1 and 4.2,∥∥∥H−1 −D−1
∥∥∥

max
= O(1)

This result establishes that H−1
can be uniformly approximated by the diagonal

matrix D−1
, which is given by the inverse of the diagonal terms of H without the

penalty. The non-zero elements of D−1
are of order N and T , respectively, i.e. the

order of the difference established by the lemma is relatively small. This technical

intermediate result is key to determine the order of H−1
in Assumption 3.2, and to

simplify the terms in the asymptotic expansion of β̂.

Remark 4. The choice of penalty in the objective function (4.1) is important to

obtain the result. Different penalties, corresponding to other normalizations (e.g. a

penalty proportional to α2
1, corresponding to the normalization α0

1 = 0), would fail

to deliver Lemma 4.2, although these choices would not affect the estimators β̂ or

∆̂.

The following lemma verifies Assumptions 3.2 and 3.3, proves the consistency of

β̂, and shows that W∞ exists and is positive definite. The concavity assumption

helps show the consistency of β̂ and φ̂, and together with non-collinearity guarantees

the results for W∞.

Lemma 4.3. Under Assumptions 4.1 and 4.2, Assumption 3.2 and 3.3 hold, β̂ =

β0 + oP (1), and W∞ exists and is positive definite.

We have now all the ingredients to apply the asymptotic expansions of Section 3

in the panel model. In the rest of this section, we use these expansions to characterize

the asymptotic distribution of β̂ and ∆̂.
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We start the analysis introducing some additional notation. Let

H−1
=

 H−1
αα H−1

αγ

H−1
γα H−1

γγ

 ,

where the blocks H−1
αα, H−1

αγ , H−1
γα , and H−1

γγ are N ×N , N × T , T ×N and T × T
matrices, respectively. Let

Xit = − 1

NT

N∑
j=1

T∑
τ=1

(
H−1
αα,ij +H−1

γα,tj +H−1
αγ,iτ +H−1

γγ,tτ

)
E (∂z2`jτ Xjτ ) .

This matrix can be interpreted as the population projection of Xit on the space

spanned by the incidental parameters under a metric given by ∂z2`it, namely, for

k = 1, . . . ,dimXit,

Xit,k = α∗i,k + γ∗t,k, (α∗k, γ
∗
k) = argmin

αi,k,γt,k

∑
i,t

E

[
−∂z2`it (Xit,k − αi,k − γt,k)2

]
. (4.1)

Finally, let

Λit = −
N∑
j=1

T∑
τ=1

(
H−1
αα,ij +H−1

γα,tj +H−1
αγ,iτ +H−1

γγ,tτ

)
∂z`jτ .

Substituting these definitions in the expressions of Theorem 3.1 yields

W = − 1

NT

N∑
i=1

T∑
t=1

E
[
∂z2`it (Xit −Xit) (Xit −Xit)′

]
,

T (0) =
1√
NT

N∑
i=1

T∑
t=1

∂z`it (Xit −Xit) ,

T (1) = − 1√
NT

N∑
i=1

T∑
t=1

{
Λit ∂z2`it (Xit −Xit) +

1

2
Λ2
itE [∂z3`it (Xit −Xit)]

}
,

The following result uses these expressions to chacterize the asymptotic distribution

of β̂ and ∆̂.

Theorem 4.4 (Asymptotic Distribution of β̂ and ∆̂ with Additive Effects).

Let Assumptions 2.1, 4.1, and 4.2 be satisfied, and furthermore assume that the

following limits exist

B∞ = − lim
N,T→∞

1

N

N∑
i=1

∑T
t=1

∑T
τ=tE [(∂z`it∂z2`iτ + 1(τ = t)∂z3`it/2) (Xiτ −Xiτ )]∑T

t=1E (∂z2`it)
,

D∞ = − lim
N,T→∞

1

T

T∑
t=1

∑N
i=1E [(∂z`it∂z2`it + ∂z3`it/2) (Xit −Xit)]∑N

i=1E (∂z2`it)
.
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Then, T
(0)
NT →d N (0, W∞), T

(1)
NT →P κB∞ + κ−1D∞, and therefore

√
NT

(
β̂ − β0

)
→d W

−1
∞ N (κB∞ + κ−1D∞, W∞).

Also,
√
NT (δ̂ − δ0)→d N (κB

δ
∞ + κ−1D

δ
∞, V

δ
∞)

where [TBA: expressions of B
δ
∞, D

δ
∞, and V

δ
∞]

Remark 5. The expressions of the bias terms use that

Λit =

∑T
τ=1 ∂z`iτ∑T

τ=1 E (∂z2`iτ )
+

∑N
j=1 ∂z`jt∑N

j=1 E (∂z2`jt)
+ terms of smaller order,

by Lemma 4.2. Moreover, under Assumption 2.1 all the score functions evaluated at

the true parameter values follow martingale differences and we apply Bartlett iden-

tities to simplify further the expressions. Without Assumption 2.1 the expressions

for the biases are

B∞ = − lim
N,T→∞

1

N

N∑
i=1

∑T
t=1

∑T
τ=tE [∂z`it∂z2`iτ (Xiτ −Xit)]∑T

t=1E (∂z2`it)

+
1

2
lim

N,T→∞

1

N

N∑
i=1

∑T
t=1E[(∂z`it)

2]
∑T

t=1E[∂z3`it (Xit −Xit)][∑T
t=1E (∂z2`it)

]2 ,

D∞ = − lim
N,T→∞

1

T

T∑
t=1

∑N
i=1E [∂z`it∂z2`it (Xit −Xit)]∑N

i=1E (∂z2`it)

+
1

2
lim

N,T→∞

1

T

T∑
t=1

∑N
i=1E[(∂z`it)

2]
∑N

i=1E[∂z3`it (Xit −Xit)][∑N
i=1E (∂z2`it)

]2 .

Remark 6. The structure of B∞ is similar to the expression of the bias when the

model has only individual effects, but the expression of the projected regressor Xit is

different. The structure of D∞ is symmetric to that of B∞, with the role of time and

cross-sectional dimensions interchanged and using cross-sectional independence.

[TBA: explanation of the components of the bias]

We apply the expressions of the bias of Theorem 4.4 to the Poisson model of

Example 2. We find that the fixed effects estimator of the model parameters do

not have first order asymptotic bias if all the regressors are strictly exogenous. This

finding extends the Hausman, Hall and Griliches (1984) result of zero bias in models

with individual effects to models with individual and time effects. Chabornneau

(2011) has recently found an alternative conditional fixed effects estimator that
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conditions on sufficient statistics of the individual and time effects. Unlike in the

model with only individual effects, this conditional estimator does not seem to be

equivalent to the fixed effects estimator that concentrates out the effects.

Example 2 (cont.) In the Poisson model, `(y, z) = zy − exp z − log y!, so that

∂z`(y, z) = y − exp z, and ∂z2`(y, z) = ∂z3`(y, z) = − exp z. Substituting in the

expressions of the bias of Theorem 4.4,

B∞ = − lim
N,T→∞

1

N

N∑
i=1

∑T
t=1

∑T
τ=t+1E [(Yit − expZit) expZit (Xiτ −Xiτ )]∑T

t=1E (expZit)
,

and D∞ = 0. Here, we use that Et[∂z`it∂
2
z `it] = 0, and E[∂3

z `it(Xit − Xit)] = 0

by the first order conditions of program (4.1) since ∂z3`it = ∂z2`it. If in addition

all the components of Xit are strictly exogenous, the score (Yit − expZit) expZit is

uncorrelated to past, present and future values of Xiτ and therefore B∞ = 0.

4.2 Linear single index model with interactive effects

[TBA]

5 Bias Corrections

The results of the previous section show that the asymptotic distribution of the

fixed effects estimator of the model parameters and average effects have a bias of

the same order as the asymptotic variance under sequences where T grows at the

same rate as N . This is the large-T version of the incidental parameters problem

that invalidates any inference based on the asymptotic distribution. In this section

we consider analytical and jackknife bias corrections. We focus the discussion on a

generic parameter θ with true value θ0 and fixed effects estimator θ̂. For example,

θ = β for the model parameters or θ = δ for an average partial effect.

To understand how the bias corrections work, it is useful to start from the

following expansion for the expected value of the fixed effect estimator:

E[θ̂] = θNT = θ0 +B∞/T +D∞/N + o(T−1 ∨N−1). (5.1)

Note also that by the properties of the maximum likelihood estimator

√
NT (θ̂ − θNT )→d N(0, V∞).

The analytical bias correction consists of removing an estimate of the leading

terms of the bias from the fixed effect estimator of θ0. Let B̂ and D̂ be estimators

20



of B∞ and D∞, respectively. The bias corrected estimator can be formed as

θ̃A = θ̂ − B̂/T − D̂/N. (5.2)

If
√
NT (B̂ −B∞)/T →P 0,

√
NT (D̂ −D∞)/N →P 0, and N/T → κ2, then

√
NT (θ̃A − θ0) =

√
NT (θ̂ − θNT ) +

√
NT (B̂ −B∞)/T

+
√
NT (D̂ −D∞)/N +

√
NT o(T−1 ∨N−1)→d N(0, V∞).

The analytical corrections therefore centers the asymptotic distribution at the true

value of the parameter, without increasing asymptotic variance.

We also consider two different jackknife bias correction methods that do not do

require explicit estimation of the bias, but are computationally more intensive. The

first method is based on applying the leave one observation out panel jackknife of

Hahn and Newey (2004) to the individual dimension, and the split panel jackknife

of Dhaene and Jochmans (2010) to the time dimension. The second method is

based on applying the split panel jackknife to both dimensions, and allows for cross

sectional dependencies.

To describe the first jackknife correction, let θ̄N−1,T be the average of the N

jackknife estimators that leave out one individual, θ̄N,T/2 be the average of the 2

split jackknife estimators that leave out the first and second halves of the time

periods, and θ̄N−1,T/2 be the average of the 2N split jackknife estimators that leave

out one individual and one half of the time periods. The bias corrected estimator is

θ̃J1 = 2Nθ̂ − 2(N − 1)θ̄N−1,T −Nθ̄N,T/2 + (N − 1)θ̄N−1,T/2.

To give some intuition about how the corrections works, note that

E[θ̃J1] = [2N − 2(N − 1)−N + (N − 1)]θ0

+ [2N/T − 2(N − 1)/T − 2N/T + 2(N − 1)/T ]B∞ + [2− 2− 1 + 1]D∞

+ [2N − 2(N − 1)−N + (N − 1)]o(T−1 ∨N−1) = θ0 + o(T−1 ∨N−1).

where we use the expansion (5.1) under suitable assumptions on the remainder term.

To describe the second jackknife correction, let θ̄N/2,T/2 be the average of the

four split jackknife estimators that leave out half of the cross-sectional units and

the first or second halve of the time periods. In choosing the cross sectional division

of the panel, we might want to take into account clustering structures to preserve

and account for cross sectional dependencies. The bias corrected estimator is

θ̃J2 = 2θ̂ − θ̄N/2,T/2.
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To give some intuition about how the corrections works, note that

E[θ̃J2] = (2− 1)θ0 + [2/T − 1/(T/2)]B∞ + [2/N − 1/(N/2)]D∞ + o(T−1 ∨N−1)

= θ0 + o(T−1 ∨N−1).

where we use the expansion (5.1) under suitable assumptions on the remainder term.

The following result shows that the analytical and jackknife bias corrections

center the asymptotic distribution of the fixed effects estimator without increasing

asymptotic variance.

Theorem 5.1. Under the conditions of Theorem 4.4, for C ∈ {A, J1, J2}

√
NT (θ̃C − θ0)→d N (0, V∞).

6 Monte Carlo Experiments

This section reports evidence on the finite sample behavior of the bias correction

methods in binary choice and count data models. We compare the performance

of uncorrected and bias-corrected estimators in terms of bias, dispersion and mean

squared error. We focus on Jackknife bias corrections because they are easy to

implement using standard software routines. All the results are based on 500 repli-

cations.

6.1 Example 1: binary choice models

The designs correspond to static and dynamic probit models with additive individual

and time effects. We consider panels with a cross sectional size of 52 individuals,

motivated by applications with U.S. states.

6.1.1 Static probit model

The data generating process is

Yit = 1
{
Xitβ

0 + α0
i + γ0

t > εit
}
, (i = 1, ..., N ; t = 1, ..., T ),

where α0
i ∼ N (0, 1/16), γ0

t ∼ N (0, 1/16), εit ∼ N (0, 1), and β0 = 1. We consider

two alternative designs for Xit: correlated and uncorrelated with the individual and

time effects. In the first design, Xit = Xi,t−1/2 + α0
i + γ0

t + υit, υit ∼ N (0, 1/2),

and Xi0 ∼ N (0, 1). In the second design, Xit = Xi,t−1/2 + υit, υit ∼ N (0, 3/4),
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and Xi0 ∼ N (0, 1). The unconditional variance of Xit is one in both designs. The

variables α0
i , γ

0
t , εit, υit, and Xi0 are independent and i.i.d. across individuals and

time periods. We generate panel data sets with N = 52 individuals and three

different numbers of time periods T : 14, 26 and 52.

Table 1 reports bias, standard deviation and root mean squared error for uncor-

rected and bias corrected estimators of the probit coefficient β0, and the average

partial effect of Xit. We compute the average effect using the derivative approxi-

mation of equation (2.4) for g(αi, γt) = αi + γt. Throughout the table, MLE-FETE

corresponds to the probit maximum likelihood estimator with individual and time

fixed effects, Jackknife 1 is the bias corrected estimator that uses leave-one-out

jackknife in the individual dimension and split jackknife in the time dimension; and

Jackknife 2 is the bias corrected estimator that uses split panel jackknife in both the

individual and time dimension. The cross-sectional division in Jackknife 2 follows

the order of the observations. All the results in the tables are reported in percentage

of the true parameter value.

The results of the table show that the bias is of the same order of magnitude

as the standard deviation for the uncorrected estimator of the probit coefficient.

This result holds for both designs and all the sample sizes considered. The bias

corrections, specially Jackknife 1, remove a large proportion of the bias without

increasing dispersion, and produce substantial reductions in rmse. For example,

Jackknife 1 reduces rmse by about 30 % in the correlated design. As in Hahn

and Newey (2004) and Fernandez-Val (2009), despite the large bias in the probit

coefficients, we find very little bias in the uncorrected estimates of the average

marginal effect.

6.1.2 Dynamic probit model

The data generating process is

Yit = 1
{
Yi,t−1β

0
Y + Zitβ

0
Z + α0

i + γ0
t > εit

}
, (i = 1, ..., N ; t = 1, ..., T ),

Yi0 = 1
{
Zi0β

0
Z + α0

i + γ0
0 > εi0

}
,

where α0
i ∼ N (0, 1/16), γ0

t ∼ N (0, 1/16), εit ∼ N (0, 1), β0
Y = 0.5, and β0

Z = 1.

We consider two alternative designs for Zit: correlated an uncorrelated with the

individual effects. In the first design, Zit = Zi,t−1/2+α0
i +γ0

t +υit, υit ∼ N (0, 1/2),

and Zi0 ∼ N (0, 1). In the second design, Zit = Zi,t−1/2 + υit, υit ∼ N (0, 3/4),

and Zi0 ∼ N (0, 1). The unconditional variance of Zit is one in both designs. The

variables α0
i , γ

0
t , εit, υit, and Zi0 are independent and i.i.d. across individuals and
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time periods. We generate panel data sets with N = 52 individuals and three

different numbers of time periods T : 14, 26 and 52.

Table 2 reports bias, standard deviation and root mean squared error for un-

corrected and bias corrected estimators of the probit coefficient β0
Y and the average

partial effect of Yi,t−1. We compute the partial effect of Yi,t−1 using the expression

in equation (2.3) for Xit,k = Yi,t−1 and g(αi, γt) = αi + γt. This effect is commonly

reported as a measure of state dependence for dynamic binary processes. Table 3

reports the same statistics for the estimators of the probit coefficient β0
Z and the

average partial effect of Zit. We compute the partial effect using the derivative ap-

proximation of equation (2.4) for Xit,k = Zit and g(αi, γt) = αi+γt. Throughout the

tables, MLE-FETE corresponds to the probit maximum likelihood estimator with

individual and time fixed effects, Jackknife 1 is the bias corrected estimator that

uses leave-one-out jackknife in the individual dimension and split jackknife in the

time dimension; and Jackknife 2 is the bias corrected estimator that uses split panel

jackknife in both the individual and time dimension. The cross-sectional division in

Jackknife 2 follows the order of the observations. All the results in the tables are

reported in percentage of the true parameter value.

The results in table 2 show important biases toward zero for both the probit

coefficient and the average effect of Yi,t−1 in both designs. This bias can indeed

be substantially larger than the corresponding standard deviation for short pan-

els. Jackknife 1 reduces bias with little increase of dispersion, reducing the rmse

between 23 and 38 % for the coefficient and between 24 and 43 % for the average

marginal effect. The results for the effects of Zit in table 3 are similar to the static

probit model. There is significant bias in the estimator of the coefficient, which

is removed by the corrections, whereas there is little bias in the estimator of the

average marginal effects. Jackknife 2 increases dispersion and is not very effective

in short panels.

6.2 Example 2: count data models

The designs correspond to static and dynamic Poisson models with additive in-

dividual and time effects. Motivated by the empirical example in next section, we

calibrate all the parameters and exogenous variables using the dataset from Aghion,

Bloom, Blundell, Griffith and Howitt (2005) (ABBGH). They estimate the relation-

ship between competition and innovation using an an unbalanced panel dataset of

17 industries over the 22 years period 1973–1994. The dependent variable is number
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of patents.

6.2.1 Static Poisson model

The data generating process is

Yit | X,φ0 ∼ P(exp[Zitβ
0
1 + Z2

itβ
0
2 + α0

i + γ0
t ]), (i = 1, ..., N ; t = 1, ..., T ),

where P denotes the Poisson distribution. The variable Zit is fixed to the values of

the competition variable in the dataset and all the parameters are set to the fixed

effect estimates of the model. We generate unbalanced panel data sets with T = 22

years and two different numbers of industries N : 17 and 34. In the second case,

we double the cross-sectional size by merging two independent realizations of the

panel.

Table 4 reports bias, standard deviation and root mean squared error for uncor-

rected and bias corrected estimators of the coefficients β0
1 and β0

2 , and the average

partial effect of Zit. We compute the average effect using the expression (2.5) for

H(Zit) = Z2
it and g(αi, γt) = αi + γt. Throughout the table, MLE corresponds

to the pooled Poisson maximum likelihood estimator (without individual and time

effects), MLE-TE corresponds to the Poisson estimator with only time effects pro-

bit, MLE-FETE corresponds to the Poisson maximum likelihood estimator with

individual and time fixed effects, Jackknife 1 is the bias corrected estimator that

uses leave-one-out jackknife in the individual dimension and split jackknife in the

time dimension; and Jackknife 2 is the bias corrected estimator that uses split panel

jackknife in both the individual and time dimension. The cross-sectional division

in Jackknife 2 follows the order of the observations. The choice of these estimators

is motivated by the empirical analysis of ABBGH. All the results in the table are

reported in percentage of the true parameter value.

The results of the table agree with the theoretical finding of Section 4.1 for

the Poisson model. Thus, the bias of MLE-FETE for the coefficients and average

marginal effect is negligible relative to the standard deviation. The bias correc-

tions increase dispersion and rmse, specially for the small cross-sectional size of the

application. The estimators that do not control for individual effects are clearly

biased.
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6.2.2 Dynamic Poisson model

The data generating process is

Yit | X,φ0 ∼ P(exp[βY log(1 + Yi,t−1) + Zitβ
0
1 + Z2

itβ
0
2 + α0

i + γ0
t ]),

(i = 1, ..., N ; t = 1, ..., T ). The competition variable Zit and the initial condition

for the number of patents Yi0 are fixed to the values in the dataset and all the

parameters are set to the fixed effect estimates of the model. To generate panels,

we first impute values to the missing observations of Zit using forward and backward

predictions from a panel AR(1) model with individual and time effects. We then

draw panel data sets with T = 21 years and two different numbers of industries N :

17 and 34. In the second case, we double the cross-sectional size by merging two

independent realizations of the panel. We make the generated panels unbalanced

by dropping the values corresponding to the missing observations in the original

dataset.

Table 5 reports bias, standard deviation and root mean squared error for uncor-

rected and bias corrected estimators of the coefficient β0
Y and the average partial

effect of Yi,t−1. We compute the partial effect of Yi,t−1 using the derivative approx-

imation in expression (2.5) for Zit = Yi,t−1, H(Zit) = log(1 + Zit), dropping the

linear term, and g(αi, γt) = αi + γt. This effect is commonly reported as a measure

of state dependence for dynamic processes. Table 6 reports the same statistics for

the estimators of the coefficients β0
1 and β0

2 , and the average partial effect of Zit. We

compute the partial effect using the derivative approximation in expression (2.5) for

H(Zit) = Z2
it and g(αi, γt) = αi + γt. Throughout the tables, we compare the same

estimators as for the static model. Again, all the results in the tables are reported

in percentage of the true parameter value.

The results in table 5 show biases of the same order of magnitude as the standard

deviation for the fixed effects estimators of the coefficient and average effect of Yi,t−1.

Jackknife 1 reduces bias with little increase of dispersion, reducing the rmse for both

sample sizes. The results for the coefficient of Zit in table 6 are similar to the static

model. There is no significant bias and the corrections increase dispersion and

rmse, less so for the larger sample size. The results for the average effect of Zit are

imprecise, because of the large variability of the partial effects.
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7 Empirical Example

To illustrate the results we revisit the empirical application of Aghion, Bloom,

Blundell, Griffith and Howitt (2005) that estimates a count data model to analyze

the relationship between innovation and competition. They use an unbalanced panel

of seventeen U.K. industries followed over the 22 years between 1973 and 1994. The

dependent variable, Yit, is innovation as measured by a citation-weighted number

of patents, and the explanatory variable of interest, Zit, is competition as measured

by one minus the Lerner index in the industry-year. Following ABBGH we consider

a quadratic static Poisson model with industry and year effects where

Yit ∼ P(exp[β1Zit + β2Z
2
it + αi + γt]), (i = 1, ..., 17; t = 1973, ..., 1994);

and extend the analysis to a dynamic Poisson model with industry and year effects

where

Yit ∼ P(exp[βY log(1+Yi,t−1)+β1Zit+β2Z
2
it+αi+γt]), (i = 1, ..., 17; t = 1974, ..., 1994).

In the dynamic model we use the year 1973 as the initial condition for Yit.

Table 7 reports the results of the analysis. Columns (3) and (4) for the static

model replicate the empirical results of Table I (p. 708) in ABBGH, adding estimates

for the average partial effects. The bias corrected estimates in columns (5) and

(6), while significantly different from the uncorrected estimates in column (3), agree

with the inverted-U pattern in the relationship between innovation and competition.

The difference between uncorrected and bias corrected estimates might be due to

lack of strict exogeneity of the competition variable. The results for the dynamic

model show substantial positive state dependence on the innovation process that is

not explained by industry heterogeneity. Uncorrected fixed effects underestimates

the coefficient and average partial effect of lag patents relative to the Jackknife

bias corrections. Controlling for state dependence does not change the inverted-U

pattern, but flattens the relationship between innovation and competition.
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Bias Std. Dev. RMSE Bias Std. Dev. RMSE

 

MLE-FETE 13 12 17  1 8 8

Jackknife 1 -3 12 12  1 9 9

Jackknife 2 -11 12 16  0 9 9

MLE-FETE 8 8 11  0 6 6

Jackknife 1 -1 7 7  0 6 6

Jackknife 2 -4 7 8  0 6 6

MLE-FETE 5 5 7   0 4 4

Jackknife 1 0 5 5  0 4 4

Jackknife 2 -1 5 5  0 4 4

 

MLE-FETE 12 9 15  0 5 5

Jackknife 1 -3 10 10  0 7 7

Jackknife 2 -10 10 14  -2 7 7

MLE-FETE 7 6 10  0 4 4

Jackknife 1 -1 6 6  0 4 4

Jackknife 2 -3 6 7  -1 4 4

MLE-FETE 5 4 6  0 2 2

Jackknife 1 0 4 4  0 2 2

Jackknife 2 -1 4 4  0 2 2

Notes: All the entries are in percentage of the true parameter value. 500 

repetitions.  Data generated from the probit model: Yit = 1(βXit + αi + γt > εit), with 

εit ~ i.i.d. N(0,1),  αi ~ i.i.d. N(0,1/16), γt ~ i.i.d. N(0, 1/16) and β = 1. In design 

1, Xit = Xi,t-1 / 2 + αi + γt + νit, νit ~ i.i.d. N(0, 1/2), and Xi0 ~ N(0,1). In design 2, 

Xit = Xi,t-1 / 2 + νit, νit ~ i.i.d. N(0, 3/4), and Xi0 ~ N(0,1), independent of αi y γt . 

Average marginal effect is β E[φ(βXit + αi + γt)], where φ() is the PDF of the 

standard normal distribution. MLE-FETE is the probit maximum likelihood estimator 

with individual and time fixed effects; Jackknife 1 is the bias corrected estimator 

that uses leave-one-out panel jackknife in the individual dimension and split panel 

jackknife in the time dimension; Jackknife 2 is the bias corrected estimator that 

uses split panel jackknife in both the individual and time dimension. 

Table 1: Finite sample properties of static probit estimators (N = 52)

Coefficient Average Marginal Effect

Design 1: correlated individual and time effects

T = 14

T = 26

T = 52

Design 2: uncorrelated individual and time effects

T = 14

T = 26

T = 52
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Bias Std. Dev. RMSE Bias Std. Dev. RMSE

 

MLE-FETE -44 30 53  -52 26 58

Jackknife 1 8 32 33  -5 32 33

Jackknife 2 16 38 42  -4 33 33

MLE-FETE -23 21 30  -29 19 35

Jackknife 1 1 21 21  -1 22 22

Jackknife 2 3 22 22  -1 23 23

MLE-FETE -9 14 17  -14 14 20

Jackknife 1 1 14 14  1 15 15

Jackknife 2 1 14 14  1 15 15

 

MLE-FETE -35 28 44  -44 24 50

Jackknife 1 11 28 30  1 29 29

Jackknife 2 16 29 33  1 29 29

MLE-FETE -19 18 26  -26 17 31

Jackknife 1 1 18 18  -1 19 19

Jackknife 2 2 18 18  -1 19 19

MLE-FETE -7 13 15  -12 13 17

Jackknife 1 1 13 13  1 13 13

Jackknife 2 1 13 13  1 13 13

Table 2: Finite sample properties of dynamic probit estimators (N = 52)

T = 52

Design 1: correlated individual and time effects

T = 52

Notes: All the entries are in percentage of the true parameter value. 500 

repetitions.  Data generated from the probit model: Yit = 1(βYYi,t-1 + βZZit + αi + γt 

> εit), with  Yi0 = 1(βZZi0 + αi + γ0 > εi0), εit ~ i.i.d. N(0,1),  αi ~ i.i.d. N(0,1/16), γt 

~ i.i.d. N(0, 1/16), βY = 0.5, and βZ = 1. In design 1, Zit = Zi,t-1 / 2 + αi + γt + νit, 

νit ~ i.i.d. N(0, 1/2), and Zi0 ~ N(0,1). In design 2, Zit = Zi,t-1 / 2 + νit, νit ~ i.i.d. 

N(0, 3/4), and Zi0 ~ N(0,1), independent of αi y γt.  Average marginal effect is β 

E[Φ(βY + βZZit + αi + γt) - Φ(βzZit + αi + γt)], where Φ() is the CDF of the standard 

normal distribution. MLE-FETE is the probit maximum likelihood estimator with 

individual and time fixed effects; Jackknife 1 is the bias corrected estimator that 

uses leave-one-out panel jackknife in the individual dimension and split panel 

jackknife in the time dimension; Jackknife 2 is the bias corrected estimator that 

uses split panel jackknife in both the individual and time dimension. 

Design 2: uncorrelated individual and time effects

T = 14

T = 26

T = 14

Coefficient Yi,t-1 Average Marginal Effect Yi,t-1

T = 26

31



Bias Std. Dev. RMSE Bias Std. Dev. RMSE

 

MLE-FETE 20 13 23  4 10 10

Jackknife 1 -2 14 14  4 11 12

Jackknife 2 -22 83 86  1 12 12

MLE-FETE 10 8 13  2 7 7

Jackknife 1 -1 8 8  1 7 7

Jackknife 2 -6 8 10  0 7 7

MLE-FETE 6 5 8  1 5 5

Jackknife 1 0 5 5  1 5 5

Jackknife 2 -2 5 5  0 5 5

 

MLE-FETE 17 11 20  3 6 7

Jackknife 1 -3 12 12  2 8 8

Jackknife 2 -15 14 20  0 8 8

MLE-FETE 10 7 12  2 4 4

Jackknife 1 -1 7 7  0 5 5

Jackknife 2 -5 7 9  0 5 5

MLE-FETE 6 4 7  1 3 3

Jackknife 1 -1 4 4  0 3 3

Jackknife 2 -2 4 5  0 3 3

Notes: All the entries are in percentage of the true parameter value. 500 

repetitions.  Data generated from the probit model: Yit = 1(βYYi,t-1 + βZZit + αi + γt 

> εit), with  Yi0 = 1(βZZi0 + αi + γ0 > εi0), εit ~ i.i.d. N(0,1),  αi ~ i.i.d. N(0,1/16), γt 

~ i.i.d. N(0, 1/16), βY = 0.5, and βZ = 1. In design 1, Zit = Zi,t-1 / 2 + αi + γt + νit, 

νit ~ i.i.d. N(0, 1/2), and Zi0 ~ N(0,1). In design 2, Zit = Zi,t-1 / 2 + νit, νit ~ i.i.d. 

N(0, 3/4), and Zi0 ~ N(0,1), independent of αi y γt .Average marginal effect is β 

E[φ(βYYi,t-1 + βZZit + αi + γt)], where φ() is the PDF of the standard normal 

distribution. MLE-FETE is the probit maximum likelihood estimator with individual 

and time fixed effects; Jackknife 1 is the bias corrected estimator that uses leave-

one-out panel jackknife in the individual dimension and split panel jackknife in the 

time dimension; Jackknife 2 is the bias corrected estimator that uses split panel 

jackknife in both the individual and time dimension. 

Table 3: Finite sample properties of dynamic probit estimators (N = 52)

Coefficient Zit Average Marginal Effect Zit

Design 1: correlated individual and time effects

T = 14

T = 26

T = 52

Design 2: uncorrelated individual and time effects

T = 14

T = 26

T = 52
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Bias Std. Dev. RMSE Bias Std. Dev. RMSE Bias Std. Dev. RMSE

MLE -59 14 60 -58 14 60 222 113 248

MLE-TE -62 14 64 -62 14 64 -9 139 139

MLE-FETE -2 17 17 -2 17 17 -15 226 226

Jackknife 1 -2 23 23 -3 23 23 -37 332 334

Jackknife 2 -4 27 27 -4 27 27 -9 339 339

MLE -58 10 59 -57 10 58 226 81 240

MLE-TE -61 10 62 -61 10 62 -3 97 97

MLE-FETE 0 12 12 0 13 13 -6 158 158

Jackknife 1 -1 14 14 -1 14 14 -15 213 213

Jackknife 2 -1 14 14 -1 14 14 -14 206 206

Notes: All the entries are in percentage of the true parameter value. 500 repetitions. The data 

generating process is: Yit ~ Poisson(exp{β1Xit + β2Xit
2
 + αi + γt}) with all the variables and coefficients 

calibrated to the dataset of ABBGH. Average marginal effect is  E[(β1 + 2β2 Xit)exp(β1Xit + β2Xit
2
 + αi + 

γt)]. MLE is the Poisson maximum likelihood estimator without individual and time fixed effects; MLE-TE 

is the Poisson maximum likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum 

likelihood estimator with individual and time fixed effects; Jackknife 1 is the bias corrected estimator 

that uses leave-one-out panel jackknife in the individual dimension and split panel jackknife in the time 

dimension; Jackknife 2 is the bias corrected estimator that uses split panel jackknife in both the 

individual and time dimension. 

Table 4: Finite sample properties of static Poisson estimators

Coefficient Zit Average Marginal Effect

N = 17, T = 22, unbanced

N = 34, T = 22, unbalanced

Coefficient Zit
2
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Bias Std. Dev. RMSE Bias Std. Dev. RMSE

MLE 135 3 135 158 2 158

MLE-TE 142 3 142 163 3 163

MLE-FETE -17 15 23 -17 15 22

Jackknife 1 2 20 20 2 20 20

Jackknife 2 6 21 22 7 20 22

MLE 135 2 135 158 2 158

MLE-TE 141 2 141 162 2 162

MLE-FETE -16 11 19 -16 10 19

Jackknife 1 2 13 14 2 13 13

Jackknife 2 4 13 14 4 13 14

Notes: All the entries are in percentage of the true parameter value. 500 

repetitions.  The data generating process is: Yit ~ Poisson(exp{βY log(1 + Yi,t-1) + 

β1Zit + β2Zit
2
 + αi + γt}), where all the exogenous variables, initial condition and 

coefficients are calibrated to the application of ABBGH.  Average marginal effect is 

βY E[exp{(βY log(1 + Yi,t-1) + β1Zit + β2Zit
2
 + αi + γt}]. MLE is the Poisson 

maximum likelihood estimator without individual and time fixed effects; MLE-TE is 

the Poisson maximum likelihood estimator with time fixed effects;  MLE-FETE is 

the Poisson maximum likelihood estimator with individual and time fixed effects; 

Jackknife 1 is the bias corrected estimator that uses leave-one-out panel jackknife 

in the individual dimension and split panel jackknife in the time dimension; 

Jackknife 2 is the bias corrected estimator that uses split panel jackknife in both 

the individual and time dimension. 

Table 5: Finite sample properties of dynamic Poisson estimators

Coefficient Yi,t-1 Average Marginal Effect Yi,t-1

N = 17,T = 21, unbalanced

N = 34, T = 21, unbalanced
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Bias Std. Dev. RMSE Bias Std. Dev. RMSE Bias Std. Dev. RMSE

MLE -76 27 81 -76 27 80 760 351 837

MLE-TE -65 28 71 -65 29 71 541 356 647

MLE-FETE 9 40 41 9 41 42 -3 1151 1150

Jackknife 1 3 54 54 4 54 54 43 1659 1658

Jackknife 2 1 63 63 1 63 63 -44 1682 1681

MLE -75 19 77 -74 19 77 777 252 817

MLE-TE -65 19 67 -64 19 67 534 248 589

MLE-FETE 6 28 28 6 28 29 -68 734 736

Jackknife 1 3 32 32 3 33 33 -25 1029 1028

Jackknife 2 2 31 31 2 32 32 -30 1012 1011

Average Marginal Effect Zit

Notes: All the entries are in percentage of the true parameter value. 500 repetitions.  The data 

generating process is: Yit ~ Poisson(exp{βY log(1 + Yi,t-1) + β1Zit + β2Zit
2
 + αi + γt}), where all the 

exogenous variables, initial condition and coefficients are calibrated to the application of ABBGH. Average 

marginal effect is E[(β1 + 2β2Zit) exp{βYlog(1 + Yi,t-1) + β1Zit + β2Zit
2
 + αi + γt}]. MLE is the Poisson 

maximum likelihood estimator without individual and time fixed effects; MLE-TE is the Poisson maximum 

likelihood estimator with time fixed effects; MLE-FETE is the Poisson maximum likelihood estimator with 

individual and time fixed effects; Jackknife 1 is the bias corrected estimator that uses leave-one-out 

panel jackknife in the individual dimension and split panel jackknife in the time dimension; Jackknife 2 is 

the bias corrected estimator that uses split panel jackknife in both the individual and time dimension. 

Table 6: Finite sample properties of dynamic Poisson estimators

Coefficient Zit Coefficient Zit
2

N = 17, T = 21, unbalanced

N = 34, T = 21, unbalanced
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Table 7: Poisson model for patents

Static model
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