Semiparametric Estimation of Random Coefficients in Structural Economic Models

Stefan Hoderlein¹ Lars Nesheim² Anna Simoni³

¹Boston College

²CeMMAP, UCL and IFS

³Università Bocconi

MIT May 28, 2011.

Heterogeneous population is characterized by the following first order condition

$$\partial_{c} u(c_{t}, \gamma) = \beta \mathbb{E} \left[R_{t+1} \partial_{a} v_{t}(W_{t+1}, Z_{t+1}, \theta) | W_{t}, Z_{t} \right]$$
(1)

where

- ct is consumption,
- R_{t+1} is the interest rate,
- (W_t, Z_t) are state variables,
- $heta = (eta, \gamma)$ is a finite dimensional parameter vector, and
- (u, v_t) are **known** functions.
 - e.g., a CRRA utility function and the corresponding value function.

- Solution of (1) implicitly defines consumption function $c = \varphi(w, z, \theta)$.
- Suppose φ is **known**.
- Suppose data on $(C_t | W_t, Z_t)$ are generated from composition of φ and an **unknown distribution** $f_{\theta | W}$.
- Question. Given data and knowledge of φ , can one identify and estimate $f_{\theta|W}$ nonparametrically?
 - Knowledge of φ and f_{θ|W} necessary to predict distribution of impacts of counterfactual changes in interest rates, income tax, pension and savings policy, etc.
 - Economic theory provides information/structure on φ ; does not have much power to constrain $f_{\theta|W}$.
 - In general, economic logic implies θ and W are correlated.

Answer

- Answer: We show that:
 - For Z_t exogenous,

$$f_{C_t|W_tZ_t} = T_g f_{\theta|W}$$

where T_g is an integral operator.

- The **identified set** is the **set of solutions** of the previous equation that are densities.
- Estimation can be based on regularization of the pseudo-inverse of T_g and computation of null space of T_g .
- In Euler equation case, can be much more flexible about φ .
- Our approach applies to **general non-separable structural models** of the form

 $\Psi(C, W, Z, \theta, \varepsilon) = 0.$

- Nonparametric Random Coefficient Models: Beran, Hall, Feuerverger (1994), Hoderlein, Klemela, Mammen (2004, 2009), Gautier and Kitamura (2010), Hoderlein (2010).
- Nonparametric IV Models: Florens (2002), Darolles, Florens, Renault (2002), Newey and Powell (2003), Hall and Horowitz (2005), Blundell, Chen, Kristensen (2007)....
- Identification in Nonlinear Random Coefficient Models: Bajari, Fox, Kim and Ryan (2009), Fox and Gandhi (2010)

- Mixture Models: Heckman and Singer (1984), Henry, Kitamura, Salanie (2010), Kasahara and Shimotsu (2009), Bonhomme (2010).
- Parametric Consumption Models: Deaton (1992), Alan and Browning (2009), Blundell, Browning and Meghir (1994), Browning and Lusardi (1996), Attanasio and Weber (2010), Gourinchas and Parker (2002)...

Contributions relative to literature I

Identification in Nonlinear Random Coefficient Models

- Provide general identification results using different assumptions (continuum of types vs. finite number).
- Provide formal statement of difficulty of identification making use of inverse problem literature.
- Introduce regularization bias to make estimation feasible and provide large sample theory.
- Make clear how results relate to economic features of the model and provide additional insights about source of identification.

Contributions relative to literature II

Parametric Consumption Models

- Most of literature allows either for no heterogeneity or only observed heterogeneity.
- We focus on quite flexible unobserved heterogeneity.
- Alan and Browning (2010): Nonparametric vs parametric.
- Provide results on identification.

Contributions relative to literature III

Relative to Nonparametric Random Coefficient Models:

• Extends work of Beran et al.(1994), Hoderlein et al.(2009), Gautier and Kitamura (2010) to general non-separable models.

Contributions relative to literature IV

Relative to Nonparametric IV Models:

- Very different objects of interest.
- Very close in terms of tools.

Contributions relative to literature V

Relative to Mixture Models:

• Very different models. Similarity: estimating equation

$$f_Y(y) = \int f_{Y| heta}(y; heta) f_{ heta}(heta) d heta.$$

- Heckman and Singer (1984), $f_{Y|\theta}(y;\theta) = f_{Y|\theta}(y;\theta,\sigma)$ parametric with finite parameter of interest σ , f_{θ} nuisance parameter.
- Henry, Kitamura, Salanie (2010), Bonhomme (2010) same objective as HS, nonparametric extension, place finite mixture structure on f_θ.
- We: f_{θ} parameter of interest, structure *e.g.* through CRRA model on $f_{Y|\theta}$.

General model

• Assumption 1. (Structural Model). The random variables $(C, W, Z, \theta, \varepsilon)$ satisfy

$$\Phi(C, W, Z, \theta, \varepsilon) = 0 \text{ almost surely}$$
(2)

where Φ is a Borel measureable function. In addition, equation (2) has a unique solution in ${\cal C}$ implicitly defining the Borel measureable consumption function

$$C = \varphi(W, Z, heta, arepsilon).$$

- *C* is an outcome variable; $C \in \mathbb{R}$, observed.
- W are endogenous variables; $W \in \mathbb{R}^k$, observed.
- Z are exogenous variables; $Z \in \mathbb{R}^{l}$, observed.
- θ are random parameters; $\theta \in \mathbb{R}^d$, unobserved.
- ε is a random scalar, not of primary interest; $\varepsilon \in \mathbb{R}$ unobserved:
 - measurement error
 - unobserved state variable.

- In the Euler equation example,
 - C is consumption,
 - W is assets and lagged income,
 - Z is current labor income,
 - ε is private information about future income, and
 - θ are parameters that represent heterogeneity in preferences or beliefs.

• Assumption 2. (Differentiability). Ψ is C¹ in a neighborhood of the set of solutions of (2) and

$$\begin{aligned} \partial_{c} \Psi \left(c, w, z, \theta, \varepsilon \right) & \neq & 0 \\ \partial_{\varepsilon} \Psi \left(c, w, z, \theta, \varepsilon \right) & \neq & 0 \end{aligned}$$

almost everywhere on the solution set of (2).

- Assumption 3.(Distribution of ε). The variable ε has a known continuous distribution conditional on (θ, W, Z) with Radon-Nikodym derivative $f_{\varepsilon|\theta WZ}$.
- Assumption 4. (Conditional independence of Z). The variables $(C, Z, \theta | W)$ have a joint continuous distribution and $Z \perp \theta | W$.

• Assumption 5. The densities $f_{C|WZ}$ and $f_{\theta|W}$ are strictly positive and bounded on their supports for almost every (W, Z). The support of $f_{\theta|W}$ does not depend on W.

Example 1

- Finite horizon Euler equation with CARA utility.
- Given assets a_t , income z_t and a shock to permanent income ε_t , consumer chooses consumption c_t .
- Consumer's value function defined by

$$v_t(a_t, z_t, \varepsilon_t) = \max_{\{c_t\}} \left\{ \begin{array}{c} -\frac{e^{-\gamma c_t}}{\gamma} + \beta \mathbb{E}[v_{t+1}(a_{t+1}, z_{t+1}, \varepsilon_{t+1}, \theta) | z_t] \\ \text{subject to} \\ a_{t+1} = R(a_t - c_t) \\ z_{t+1} = z_t + \varepsilon_t + \nu_{t+1} \end{array} \right\}$$

where

•
$$\varepsilon_t \sim N\left(0, \sigma_{\varepsilon}^2\right)$$
, $\nu_t \sim N\left(0, \sigma_{\eta}^2\right)$,
• $\varepsilon_t \perp \nu_t$ and $(\varepsilon_t, \nu_t, z_0) \perp (\theta, a_0)$, and
• $\theta = (\beta, \gamma)$.

Consumption function I

• Optimal consumption function takes the form:

$$c_t = \phi_{1t} a_t + \phi_{2t} (z_t + \varepsilon_t) + M_t(\gamma, \beta)$$

where

$$M_t(\beta,\gamma) = \frac{\phi_{3t}(\ln\beta + \ln R)}{\gamma} + \phi_{4t} + 0.5\phi_{5t}\gamma.$$
(3)

- Trivial but illuminating example.
- a_t and $\theta = (\beta, \gamma)$ statistically dependent because a_t determined by past savings decisions.
 - Dependence changes with age.
- Income process is independent of preferences.
- Defining $W_t = (A_t, Z_{t-1})$, this implies

$$Z_t \perp \theta \mid W_t.$$

Consumption function II

- Innovations to income Z_t move consumption around through known function φ . These movements are independent of θ .
 - In this example, due to linearity, this is not very helpful.
 - More generally, φ_t is not *additively separable* (non-normal disturbances, CRRA utility, stochastic interest rates).
- (β, γ) affect outcome only through single index $m = M_t \left(eta, \gamma
 ight)$.
 - Joint distribution of $(\beta, \gamma) | W$ not point-identified but distribution of $M_t | W_t$ is.
 - Stochastic variation in interest rates, can point-identify joint distribution.
- Estimation method can be applied to a more general Euler equation model.
 - See Hoderlein, Nesheim and Simoni (2011).

Notation

- Let (π_{θ}, π_{cz}) be nonnegative weighting functions on spt (Θ) and spt $(\mathcal{C} \times \mathcal{Z})$ respectively.
- Consider the spaces

$$L^{2}_{\pi_{\theta}} = \left\{ h: \int_{\Theta} h(\theta, w)^{2} \pi_{\theta} d\theta < \infty, \ P^{W} - a.e. \right\}$$

and

$$L^{2}_{\pi_{cz}} = \left\{ \psi : \int_{\mathcal{C} \times \mathcal{Z}} \psi(c, z, w)^{2} \pi_{cz} dc dz < \infty, \ P^{W} - a.e. \right\}$$

Let *F*_{θ|W} ⊂ *L*²_{πθ} and *F*_{C|WZ} ⊂ *L*²_{πcz} be the subsets of densities on Θ and conditional densities on C × Z that are strictly positive and bounded on their supports.

Characterization of $f_{\theta|W}$

Theorem (1.i.)

Let $f_{C|WZ} \in \mathcal{F}_{C|WZ} \subset L^2_{\pi_{cz}}$. Under Assumptions 1-5, $f_{\theta|W}$ is a solution of the nonlinear problem

$$f_{C|WZ} = T_g f_{\theta|W} \text{ subject to } f_{\theta|W} \in \mathcal{F}_{C|WZ} P^W - a.s.$$
(4)

where $T_g: L^2_{\pi_{\theta}} \to L^2_{\pi_{cz}}$ is defined for all $h \in L^2_{\pi_{\theta}}$ as $(T_g h)(c, w, z) = \int_{\theta} \frac{f_{C|WZ\theta}(c, w, z, \theta)}{\pi_{\theta}} h(\theta, w) \pi_{\theta} d\theta.$ (5)

• Kernel of operator is

Hoder

$$g(c, w, z, \theta) = \frac{f_{C|WZ\theta}(c, w, z, \theta)}{\pi_{\theta}}$$

$$= \frac{\sum_{i=1}^{s} f_{\varepsilon|\theta WZ}(\varphi_{i}^{-1}, \theta, w, z) \left| \frac{\partial_{c}\Psi(c, w, z, \theta, \varphi_{i}^{-1})}{\partial_{\varepsilon}\Psi(c, w, z, \theta, \varphi_{i}^{-1})} \right|}{\pi_{\theta}} \mathbf{1}_{\mathsf{spt}_{C|WZ\theta}}$$
lein - Nesheim - Simoni (CeMMAP) Semiparametric Random Coefficients May 28, 2011 21 / 43

- Equation (5) is classical *mixture of probability densities* or *Fredholm integral of the first kind*.
- If $f_{C|WZ\theta} \equiv f(c \theta, w, z)$ we recover the *convolution formula*.
- If F_{ε} is degenerate with a point mass only at $\varepsilon = 0$, can define the operator as

$$(T_g h)(c, z, w) = \int_{\Theta} 1\{\varphi(w, z, \theta) \leq c\} h(\theta, W) d\theta.$$

- Simple inversion of T_g does not work since $\mathcal{R}(T_g)$ is non-closed and in general $\hat{f}_{C|WZ} \notin \mathcal{R}(T_g)$.
- Pseudo-inverse T_g^{\dagger} is also unbounded.

Hilbert-Schmidt

• Assumption 6. It is possible to choose π_{θ} and π_{cz} such that for P^{W} -a.e. w we have:

$$\int_{\mathcal{C}\times\mathcal{Z}}\int_{\Theta}\left[f_{C|WZ\theta}(c;w,z,\theta)\right]^{2}\frac{\pi_{cz}}{\pi_{\theta}}dcdzd\theta<\infty.$$

- *Hilbert-Schmidt assumption* is sufficient to guarantee the compactness of *T_g*.
- Compact operator T_g has at most a countable number of singular values accumulating only at 0.
- Let $\left\{\lambda_j, \varphi_j, \psi_j\right\}_{j=1}^{\infty}$ be the SVD of T_g .
- How fast $\lambda_j \downarrow 0$ depends on smoothness of T_g .
 - This determined by smoothness of $\Psi,$ distribution of ε and the support of $({\it C}, {\it Z}, \theta)$.

Identification I

Theorem (1.ii.)

Under Assumptions 1-5, a solution of (4) exists since $f_{C|WZ} \in T_g \mathcal{F}_{\theta|W}$. The identified set is

$$\Lambda = \{h \in \mathcal{F}_{\theta|W} : T_{g}h = f_{C|WZ}, P^{W}a.e.\}$$

$$= \left(f_{\theta|W}^{\dagger} \oplus \mathcal{N}(T_{g})\right) \cap \mathcal{F}_{\theta|W}$$

$$= \begin{cases} h = f_{\theta|W}^{\dagger} + \sum_{j \ge 1; \lambda_{j} = 0} z_{j} \varphi_{j} \text{ for some } \{z_{j}\} \\ h > 0 \\ \int h = 1 \\ \Theta \end{cases}$$

where $f_{\theta|W}^{\dagger}$ is the solution of minimal norm of $||T_g h - f_{C|WZ}||$ and φ_j are the eigenfunctions of $T_g^* T_g$ corresponding to the zero eigenvalues λ_j .

Three situations are possible:

•
$$T_g$$
 one-to-one: $\mathcal{N}(T_g) = \{0\} \Rightarrow f^{\dagger}_{\theta|W} \in \mathcal{F}_{\theta|W}$.

•
$$T_g$$
 not one-to-one on $\mathcal{F}_{\theta|W} \Rightarrow$ many possible values of $\{z_1, z_2, \ldots\}$.

Theorem (2.)

Under Assumptions 1-5, the following are equivalent sufficient conditions for point identification of $f_{\theta|W}$.

- The operator T_g is one-to-one. *i.e.* $\mathcal{N}(T_g) = \{0\}$.
- **2** The distribution of θ conditional on (C, W, Z) is complete.

 $\begin{array}{l} \textcircled{O} \quad \forall (c,z) \in \mathcal{C} \times \mathcal{Z}, \ \frac{f_{C \mid WZ\theta}(c;w,z,\theta)}{\pi_{\theta}(\theta)} \ \text{belongs to a complete subset } \mathcal{C} \ \text{in} \\ L^2_{\pi_{\theta}}, \ \mathcal{P}^W - a.s. \end{array}$

• *i.e.* the only element in $L^2_{\pi_{\theta}}$ which is orthogonal to $\mathcal C$ is 0.

- $\mathcal{R}(T_g^*)$ is dense in $L^2_{\pi_{\theta}}$, *i.e.* $\overline{\mathcal{R}(T_g^*)} = L^2_{\pi_{\theta}}$.
- If Assumption 6 holds, the singular values of T_g are strictly positive.

• *i.e.* $\lambda_j > 0$ for all *j*.

• In this case, the inverse T_g^{-1} exists and

$$f_{ heta \mid W}(heta; { extsf{w}}) = T_g^{-1} f_{ extsf{C} \mid WZ}(extsf{c}; { extsf{w}}, extsf{z}), \quad P^W - extsf{a.e.}$$

- Properties of the operator T_g (like smoothness) are determined by smoothness properties of φ and f_{ε} .
- Identified set is smaller than the identified set of the equation $T_g h = f_{C|WZ}$.
- Point-identification requires $\dim(C, Z) \ge \dim(\theta)$.

- Sufficient condition for point-identification of $f_{\theta|W}$.
- Lemma 3.1: Assume that $f_{C|\theta WZ}(c, \theta, w, z)$ takes the form

$$\exp\left[\tau(c,w,z)^{\mathsf{T}}m(\theta)\right]k(c,w,z)h(\theta)$$

where **spt** $(\tau(C, W, Z)) = \mathbb{R}^d$, $h(\cdot)$ is a positive function, and *m* is globally invertible. Then, $f_{\theta|W}$ is point-identified.

• Note exponential interactions between $m(\theta)$ and $\tau(c, w, z)$ and support condition.

• Operator equation is

$$f_{C|WZ}(c,w,z) = \int_{\Theta} \frac{\exp(-\frac{1}{2}(\frac{c-\phi_1w-M(\beta,\gamma)-z}{\phi_2\sigma_{\varepsilon}})^2)}{\sqrt{2\pi\phi_2^2\sigma_{\varepsilon}^2}} f_{\beta\gamma|W}(\beta,\gamma,w)d\beta d\gamma.$$
(6)

- Joint density of (β, γ) not point identified.
- To see this, use

$$m = M(\beta, \gamma)$$

to make change of variables.

Example 1: Identification II

• Change of variables implies

$$\begin{split} f_{C|WZ}(c,w,z) &= \int_{M} \int_{\Gamma} \frac{\exp(-\frac{1}{2}(\frac{c-\phi_{1}w-m-z}{\phi_{2}\sigma_{\varepsilon}})^{2})}{\sqrt{2\pi\phi_{2}^{2}\sigma_{\varepsilon}^{2}}} \widetilde{f}_{M\gamma|W}(m,\gamma,w) dm(\mathcal{F}) \\ &= \int_{M} \frac{\exp(-\frac{1}{2}(\frac{c-\phi_{1}w-m-z}{\phi_{2}\sigma_{\varepsilon}})^{2})}{\sqrt{2\pi\phi_{2}^{2}\sigma_{\varepsilon}^{2}}} \widetilde{f}_{M|W}(m,w) dm \end{split}$$

where

$$\widetilde{f}_{M\gamma|W}(m,\gamma,w) = f_{\beta\gamma|W}(M^{-1}(m,\gamma),\gamma) \left| \frac{\partial M^{-1}(m,\gamma)}{\partial m} \right|.$$

Example 1: Identification III

- Conditional on M, γ has no impact on consumption.
 - No interactions between (C, Z) and γ .
- Nevertheless, marginal density $\tilde{f}_{M|W}$ is point-identified.
- To see this, use Lemma 3.1 framework and note

$$\tau(c, w, z) = \frac{c - \phi_1 w - z}{\phi_2 \sigma_{\varepsilon}}$$
$$h(\theta) = \exp\left(-\frac{1}{2}\left(\frac{m(\theta)}{\phi_2 \sigma_{\varepsilon}}\right)^2\right)$$
$$k(c, w, z) = \frac{\exp\left(-\frac{1}{2}\left(\frac{c - \phi_1 w - z}{\phi_2 \sigma_{\varepsilon}}\right)^2\right)}{\sqrt{2\pi\phi_2^2\sigma_{\varepsilon}^2}}$$

Example 1: Identification IV

• Identified set of densities $f_{\beta\gamma|W}$ is the set

$$\left\{h: h = \widetilde{f}_{M|W} \, \widetilde{f}_{\gamma|MW} \, \cdot \left|\frac{\partial M}{\partial \gamma}\right| \text{ for some } \widetilde{f}_{\gamma|MW} \, \in \mathcal{F}_{\gamma|MW} \right\}$$

• Null space of operator is

$$N(T_{g}) = \{h : h_{1}(m) \cdot \Delta h_{2}(\gamma | m)\}$$

wheres h_1 solves (7) and Δh_2 is the difference between two arbitrary conditional densities.

- Data provide no restrictions on conditional density; other than support restrictions.
- Nevertheless, data do provide some restrictions on the joint density.
- See simulation results to follow.
- First, how do we estimate the model?

Estimation I

• First estimate $\hat{f}_{C|WZ}$.

Then solve constrained problem

$$\min_{\{h\}} \left\| T_g h - \widehat{f}_{C|WZ} \right\| + \alpha \left\| h \right\|_s^2$$

subject to

$$\begin{array}{rcl} h & \geq & 0 \\ \int _{\Theta} h \left(\theta, w \right) d \theta & = & 1. \end{array}$$

● Paper contains results for case where f[†]_{θ|W} ∉ F_{θ|W}, (solve the constrained minimization numerically, no closed-form for the estimator and slower rate of convergence).

2 Here, assume
$$f^{\dagger}_{\theta|W} \in \mathcal{F}_{\theta|W}$$
.

• Ill-posed inverse problem. Regularization required because T_g^{\dagger} is unbounded.

Estimation II

Two-step procedure to solve problem.

• Compute $\widehat{f}_{\theta|W}^{\alpha,s}$ to solve

$$\min_{\{h\}} \left\| T_g h - \widehat{f}_{C|WZ} \right\| + \alpha \left\| h \right\|_s^2.$$

Compute projection 2

$$\Pi_{c}\widehat{f}^{lpha,s}_{ heta|W} = \max\left(0,\widehat{f}^{lpha,s}_{ heta|W} - rac{c}{\pi_{ heta}}
ight)$$

where c satisfies

$$\int_{\Theta} \prod_{c} \widehat{f}^{\alpha,s}_{\theta|W} \, d\theta = 1.$$

Algorithm by Gajek (1986).

Estimation of $f_{\theta|W}$

• Assumption 7. $\{c_i, w_i, z_i\}_{i=1}^N$ is an i.i.d. sample used to construct an estimator $\hat{f}_{C|WZ}^N$ of $f_{C|WZ}$ such that

$$\lim_{N\to\infty} E\left(\left\|\widehat{f}_{C|WZ}^N-f_{C|WZ}\right\|^2\right)=0.$$

- First replace f_{C|WZ} with a (nonparametric) estimator f_{C|WZ}.
 Kernel density estimator.
- 2 Second, compute regularized version of T_g^{\dagger} .
 - Tikhonov regularization $(\hat{f}^{\alpha}_{\theta|W}(\theta; w)).$
 - Tikhonov regularization in Hilbert scales (generalized Tikhonov).
- S Third, project onto space of densities.
- Finally, compute eigenfunctions of null space.
- Alternatively, replace steps 2. and 3. with one-step constrained minimization.

• Assumption 8. For some $\beta > 0$ and $0 < M < \infty$ the structural density $f^{\dagger}_{\theta|W}$ is an element of the β -regularity space $\Phi_{\beta}(M)$ defined as

$$\Phi_{\beta}(M) = \left\{ f \in \mathcal{N}(T_g)^{\perp}; \quad \sum_{j} \frac{\langle f, \varphi_j \rangle^2}{\lambda_j^{2\beta}} < M \right\}.$$

- Smoothness condition. $f^{\dagger}_{\theta|W}$ is more smooth when β is larger.
- When $M = \infty$ then, $\Phi_{eta} = \mathcal{R}[(T_g^*T_g)^{rac{eta}{2}}].$

Rate of convergence II

Theorem

Given Assumptions 1-5 and 8, the MISE associated with $\mathcal{P}_c \hat{f}^{\alpha}_{\theta|W}$ with s = 0 is

$$\mathbb{E}\left(\left\|\mathcal{P}_{c}\hat{f}_{\theta|W}^{\alpha}-f_{\theta|W}^{\dagger c}\right\|\right)^{2}=\mathcal{O}\left(\alpha^{\beta\wedge2}+\frac{1}{\alpha}\mathbb{E}\left(\left\|\hat{f}_{C|WZ}-f_{C|WZ}\right\|\right)^{2}\right)$$

Moreover, if $\alpha \asymp (\mathbb{E} \left(\left\| \hat{f}_{C|WZ} - f_{C|WZ} \right\| \right)^2)^{-\frac{1}{\beta \wedge 2 + 1}}$ then,

$$\mathbb{E}\left(\left\|\mathcal{P}_{c}\hat{f}_{\theta|W}^{\alpha}-f_{\theta|W}^{\dagger c}\right\|\right)^{2}=\mathcal{O}\left(\left[\mathbb{E}\left(\left\|\hat{f}_{C|WZ}-f_{C|WZ}\right\|\right)^{2}\right]^{\frac{\beta\wedge2}{\beta\wedge2+1}}\right).$$

• For s = 0, there is no benefit from $\beta > 2$.

- In the paper, we present analysis of rates of convergence using regularization for s > 0 (Hilbert scales).
 - When $f_{\theta|W}^{\dagger}$ is highly smooth, these have faster rates of convergence.

Rates of convergence III

• Suppose $\hat{f}_{C|WZ}$ is estimated as

$$\hat{f}_{C|WZ}(c;w,z) = \frac{\frac{1}{nh^{1+k+l}}\sum_{i=1}^{n}K_{h}(c_{i}-c,c)K_{h}(w_{i}-w,w)K_{h}(z_{i}-z,z)}{\frac{1}{nh^{k+l}}\sum_{l=1}^{n}K_{h}(w_{l}-w,w)K_{h}(z_{l}-z,z)}$$
(8)

where K_h is a (generalised) kernel of order r and h is a vector of bandwidths.

• Under mild regularity conditions on the kernel and the operator T_g , the optimal rate of the Tikhonov estimator is

$$\inf_{\alpha,h} \mathbb{E} || \hat{f}^{\alpha}_{\theta|W} - f^{\dagger}_{\theta|W} ||^2 \asymp n^{-\frac{2\rho(\beta \wedge 2)}{(2\rho+k)(\beta \wedge 2+1)}}$$

where

- ρ is the number of derivatives in W of $f_{C|WZ}$.
- Optimal values of α and h are: $h \asymp n^{-\frac{1}{2\rho+k}}$ and $\alpha \asymp n^{-\frac{2\rho}{(2\rho+k)(\beta\wedge 2+1)}}$.
- Curse of dimensionality only in the dimension of the endogenous variables *W*.

Pointwise asymptotic normality

Lemma (pointwise asymptotic normality): Let $\hat{f}^{\alpha}_{\theta|W}$ be the Tikhonov regularized estimator described above. If $\alpha \simeq n^{-\frac{2\epsilon\rho}{(2\rho+k)(\beta\wedge2+1)}}$ for $\epsilon > 1$ and $h \simeq n^{-\frac{1}{2\rho+k}+\epsilon_h}$, $\epsilon_h < 0$, then (under mild assumptions) for P^W -a.e. W

$$\sqrt{nh^{k}}\frac{\hat{f}_{\theta|W}^{\alpha}(\theta,w) - f_{\theta|W}^{\dagger}(\theta,w)}{\Omega(\theta,w)} \Rightarrow \mathcal{N}(0,1)$$

where

$$\Omega(\theta, w) = \sum_{j=1}^{\infty} \frac{\lambda_j^2}{(\alpha + \lambda_j^2)^2} \Omega_1(j) \varphi_j^2 + 2 \sum_{j$$

• Require α and h to converge faster than optimal to guarantee asymptotic bias of $\hat{f}^{\alpha}_{\theta|W}(\theta; w)$ is negligible.

- Simulate data from CARA model.
- Estimate and plot the PDF of $M \mid W$.
- Estimate and plot the CDF of $M \mid W$.
- Display implications for identified set for (β, γ) .
 - Using $m = M(\beta, \gamma)$, plot level sets of M.
 - For each $u \in [0,1]$, plot "quantile level sets" such as

$$\Pr(M(\beta,\gamma) \leq m) = u.$$

Example 1: Estimation I

Example 1: Estimation II

Quantile setseon Mylog()) conditional on w = 0.52507