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Motivation

Heterogeneous population is characterized by the following first order
condition

∂cu(ct ,γ) = βE [Rt+1∂avt (Wt+1,Zt+1, θ)|Wt ,Zt ] (1)

where

ct is consumption,

Rt+1 is the interest rate,

(Wt ,Zt ) are state variables,

θ = (β,γ) is a finite dimensional parameter vector, and

(u, vt ) are known functions.

e.g., a CRRA utility function and the corresponding value function.
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Question

Solution of (1) implicitly defines consumption function
c = ϕ (w , z , θ) .

Suppose ϕ is known.
Suppose data on (Ct |Wt ,Zt ) are generated from composition of ϕ
and an unknown distribution fθ|W .
Question. Given data and knowledge of ϕ, can one identify and
estimate fθ|W nonparametrically?

Knowledge of ϕ and fθ|W necessary to predict distribution of
impacts of counterfactual changes in interest rates, income tax,
pension and savings policy, etc.
Economic theory provides information/structure on ϕ; does not
have much power to constrain fθ|W .
In general, economic logic implies θ and W are correlated.
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Answer

Answer: We show that:

For Zt exogenous,
fCt |WtZt = Tg fθ|W

where Tg is an integral operator.
The identified set is the set of solutions of the previous equation
that are densities.
Estimation can be based on regularization of the pseudo-inverse of
Tg and computation of null space of Tg .

In Euler equation case, can be much more flexible about ϕ.

Our approach applies to general non-separable structural models
of the form

Ψ (C ,W ,Z , θ, ε) = 0.
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Contributions relative to literature I
Identification in Nonlinear Random Coeffi cient Models

Provide general identification results using different assumptions
(continuum of types vs. finite number).

Provide formal statement of diffi culty of identification making use of
inverse problem literature.

Introduce regularization bias to make estimation feasible and provide
large sample theory.

Make clear how results relate to economic features of the model and
provide additional insights about source of identification.
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Contributions relative to literature II
Parametric Consumption Models

Most of literature allows either for no heterogeneity or only observed
heterogeneity.

We focus on quite flexible unobserved heterogeneity.

Alan and Browning (2010): Nonparametric vs parametric.

Provide results on identification.
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Contributions relative to literature III
Relative to Nonparametric Random Coeffi cient Models:

Extends work of Beran et al.(1994), Hoderlein et al.(2009), Gautier
and Kitamura (2010) to general non-separable models.
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Contributions relative to literature IV
Relative to Nonparametric IV Models:

Very different objects of interest.

Very close in terms of tools.
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Contributions relative to literature V
Relative to Mixture Models:

Very different models. Similarity: estimating equation

fY (y) =
∫
fY |θ(y ; θ)fθ(θ)dθ.

Heckman and Singer (1984), fY |θ(y ; θ) = fY |θ(y ; θ, σ) parametric
with finite parameter of interest σ, fθ nuisance parameter.

Henry, Kitamura, Salanie (2010), Bonhomme (2010) same objective
as HS, nonparametric extension, place finite mixture structure on fθ.

We: fθ parameter of interest, structure e.g. through CRRA model on
fY |θ.
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General model

Assumption 1. (Structural Model). The random variables
(C ,W ,Z , θ, ε) satisfy

Φ(C ,W ,Z , θ, ε) = 0 almost surely (2)

where Φ is a Borel measureable function. In addition, equation (2)
has a unique solution in C implicitly defining the Borel measureable
consumption function

C = ϕ(W ,Z , θ, ε).

C is an outcome variable; C ∈ R, observed.
W are endogenous variables; W ∈ Rk , observed.
Z are exogenous variables; Z ∈ Rl , observed.
θ are random parameters; θ ∈ Rd , unobserved.
ε is a random scalar, not of primary interest; ε ∈ R unobserved:

measurement error
unobserved state variable.
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Euler equation example

In the Euler equation example,

C is consumption,
W is assets and lagged income,
Z is current labor income,
ε is private information about future income, and
θ are parameters that represent heterogeneity in preferences or beliefs.
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Differentiability

Assumption 2. (Differentiability). Ψ is C1 in a neighborhood of
the set of solutions of (2) and

∂cΨ (c,w , z , θ, ε) 6= 0

∂εΨ (c,w , z , θ, ε) 6= 0

almost everywhere on the solution set of (2) .
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Dependence conditions

Assumption 3.(Distribution of ε). The variable ε has a known
continuous distribution conditional on (θ,W ,Z ) with Radon-Nikodym
derivative fε|θWZ .

Assumption 4. (Conditional independence of Z ). The variables
(C ,Z , θ|W ) have a joint continuous distribution and Z ⊥⊥ θ|W .
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Support conditions

Assumption 5. The densities fC |WZ and fθ|W are strictly positive and
bounded on their supports for almost every (W ,Z ). The support of
fθ|W does not depend on W .
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Example 1

Finite horizon Euler equation with CARA utility.

Given assets at , income zt and a shock to permanent income εt ,
consumer chooses consumption ct .

Consumer’s value function defined by

vt (at , zt , εt ) = max
{ct}


− e−γct

γ + βE[vt+1(at+1, zt+1, εt+1, θ)|zt ]
subject to

at+1 = R(at − ct )
zt+1 = zt + εt + νt+1


where

εt ∼ N
(
0, σ2ε

)
, νt ∼ N

(
0, σ2η

)
,

εt ⊥⊥ νt and (εt , νt , z0) ⊥⊥ (θ, a0) , and
θ = (β,γ) .
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Consumption function I

Optimal consumption function takes the form:

ct = φ1tat + φ2t (zt + εt ) +Mt (γ, β)

where

Mt (β,γ) =
φ3t (ln β+ lnR)

γ
+ φ4t + 0.5φ5tγ. (3)

Trivial but illuminating example.
at and θ = (β,γ) statistically dependent because at determined by
past savings decisions.

Dependence changes with age.

Income process is independent of preferences.
Defining Wt = (At ,Zt−1) , this implies

Zt ⊥⊥ θ|Wt .
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Consumption function II

Innovations to income Zt move consumption around through known
function ϕ. These movements are independent of θ.

In this example, due to linearity, this is not very helpful.
More generally, ϕt is not additively separable (non-normal
disturbances, CRRA utility, stochastic interest rates).

(β,γ) affect outcome only through single index m = Mt (β,γ) .

Joint distribution of (β,γ)|W not point-identified but distribution of
Mt |Wt is.
Stochastic variation in interest rates, can point-identify joint
distribution.

Estimation method can be applied to a more general Euler equation
model.

See Hoderlein, Nesheim and Simoni (2011).

Hoderlein - Nesheim - Simoni (CeMMAP) Semiparametric Random Coeffi cients May 28, 2011 19 / 43



Notation

Let (πθ,πcz ) be nonnegative weighting functions on spt (Θ) and
spt (C × Z) respectively.
Consider the spaces

L2πθ
=

h :
∫
Θ

h(θ,w)2πθdθ < ∞, PW − a.e.


and

L2πcz =

ψ :
∫
C×Z

ψ(c , z ,w)2πczdcdz < ∞, PW − a.e.

 .
Let Fθ|W ⊂ L2πθ

and FC |WZ ⊂ L2πcz be the subsets of densities on Θ
and conditional densities on C × Z that are strictly positive and
bounded on their supports.
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Characterization of fθ|W

Theorem (1.i.)

Let fC |WZ ∈ FC |WZ ⊂ L2πcz . Under Assumptions 1-5, fθ|W is a solution of
the nonlinear problem

fC |WZ = Tg fθ|W subject to fθ|W ∈ FC |WZ PW − a.s. (4)

where Tg : L2πθ
→ L2πcz is defined for all h ∈ L2πθ

as

(Tgh) (c ,w , z) =
∫
θ

fC |WZ θ(c,w , z , θ)

πθ
h(θ,w)πθdθ. (5)

Kernel of operator is

g (c ,w , z , θ) =
fC |WZ θ (c ,w , z , θ)

πθ

=
∑s
i=1 fε|θWZ

(
ϕ−1i , θ,w , z

) ∣∣∣ ∂cΨ(c ,w ,z ,θ,ϕ−1i )
∂εΨ(c ,w ,z ,θ,ϕ−1i )

∣∣∣
πθ

1sptC |WZ θ

where 1sptC |WZ θ denotes support of C |WZθ and s is number of
solutions in ε for equation c = ϕ(w , z , θ, ε).
In contrast to the non-parametric IV literature g is known.
Evaluating g is a computational problem, not an estimation
problem.
When constraints are binding, the problem is non-linear.
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Comments

Equation (5) is classical mixture of probability densities or Fredholm
integral of the first kind.

If fC |WZ θ ≡ f (c − θ,w , z) we recover the convolution formula.

If Fε is degenerate with a point mass only at ε = 0, can define the
operator as

(Tgh) (c, z ,w) =
∫
Θ

1 {ϕ (w , z , θ) ≤ c} h(θ,W )dθ.

Simple inversion of Tg does not work since R(Tg ) is non-closed and
in general f̂C |WZ /∈ R(Tg ).
Pseudo-inverse T †

g is also unbounded.
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Hilbert-Schmidt

Assumption 6. It is possible to choose πθ and πcz such that for
PW -a.e. w we have:∫

C×Z

∫
Θ

[
fC |WZ θ(c;w , z , θ)

]2 πcz
πθ
dcdzdθ < ∞.

Hilbert-Schmidt assumption is suffi cient to guarantee the
compactness of Tg .

Compact operator Tg has at most a countable number of singular
values accumulating only at 0.

Let
{

λj , ϕj ,ψj

}∞

j=1
be the SVD of Tg .

How fast λj ↓ 0 depends on smoothness of Tg .
This determined by smoothness of Ψ, distribution of ε and the support
of (C ,Z , θ) .
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Identification I

Theorem (1.ii.)

Under Assumptions 1-5, a solution of (4) exists since fC |WZ ∈ TgFθ|W .
The identified set is

Λ = {h ∈ Fθ|W : Tgh = fC |WZ , P
W a.e.}

=
(
f †
θ|W ⊕N (Tg )

)
∩ Fθ|W

=

h ∈ L
2
πθ

:

h = f †
θ|W +∑j≥1;λj=0 zj ϕj for some {zj}

h > 0∫
Θ

h = 1


where f †

θ|W is the solution of minimal norm of
∥∥Tgh− fC |WZ ∥∥ and ϕj are

the eigenfunctions of T ∗g Tg corresponding to the zero eigenvalues λj .
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Identification II

Three situations are possible:

1 Tg one-to-one: N (Tg ) = {0} ⇒ f †
θ|W ∈ Fθ|W .

2 Tg one-to-one on Fθ|W ⇒
(
f †
θ|W ⊕N (Tg )

)
∩ Fθ|W = {f †

θ|W }.
3 Tg not one-to-one on Fθ|W ⇒ many possible values of {z1, z2, . . .}.
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Identification III

Theorem (2.)
Under Assumptions 1-5, the following are equivalent suffi cient conditions
for point identification of fθ|W .

1 The operator Tg is one-to-one. i.e. N (Tg ) = {0}.
2 The distribution of θ conditional on (C ,W ,Z ) is complete.

3 ∀(c , z) ∈ C ×Z , fC |WZ θ(c ;w ,z ,θ)
πθ(θ)

belongs to a complete subset C in
L2πθ
, PW − a.s.
i.e. the only element in L2πθ

which is orthogonal to C is 0.

4 R(T ∗g ) is dense in L2πθ
, i.e. R(T ∗g ) = L2πθ

.
5 If Assumption 6 holds, the singular values of Tg are strictly positive.

i.e. λj > 0 for all j .
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Discussion

In this case, the inverse T−1g exists and

fθ|W (θ;w) = T
−1
g fC |WZ (c ;w , z), PW − a.e.

Properties of the operator Tg (like smoothness) are determined by
smoothness properties of ϕ and fε.

Identified set is smaller than the identified set of the equation
Tgh = fC |WZ .

Point-identification requires dim(C ,Z ) ≥ dim(θ).
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Identification IV

Suffi cient condition for point-identification of fθ|W .

Lemma 3.1: Assume that fC |θWZ (c, θ,w , z) takes the form

exp
[
τ(c ,w , z)Tm(θ)

]
k(c ,w , z)h(θ)

where spt (τ (C ,W ,Z )) = Rd , h(·) is a positive function, and m is
globally invertible. Then, fθ|W is point-identified.

Note exponential interactions between m (θ) and τ (c ,w , z) and
support condition.
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Example 1: Identification I

Operator equation is

fC |WZ (c,w , z) =
∫
Θ

exp(− 12 (
c−φ1w−M (β,γ)−z

φ2σε
)2)√

2πφ22σ
2
ε

fβγ|W (β,γ,w)dβdγ.

(6)

Joint density of (β,γ) not point identified.
To see this, use

m = M (β,γ)

to make change of variables.
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Example 1: Identification II

Change of variables implies

fC |WZ (c,w , z) =
∫
M

∫
Γ

exp(− 12 (
c−φ1w−m−z

φ2σε
)2)√

2πφ22σ
2
ε

f̃Mγ|W (m,γ,w)dmdγ(7)

=
∫
M

exp(− 12 (
c−φ1w−m−z

φ2σε
)2)√

2πφ22σ
2
ε

f̃M |W (m,w)dm

where

f̃Mγ|W (m,γ,w) = fβγ|W (M
−1(m,γ),γ)

∣∣∣∣∂M−1(m,γ)∂m

∣∣∣∣ .
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Example 1: Identification III

Conditional on M, γ has no impact on consumption.

No interactions between (C ,Z ) and γ.

Nevertheless, marginal density f̃M |W is point-identified.

To see this, use Lemma 3.1 framework and note

τ (c,w , z) =
c − φ1w − z

φ2σε

h (θ) = exp

(
−1
2

(
m (θ)
φ2σε

)2)

k (c ,w , z) =

exp
(
− 12

(
c−φ1w−z

φ2σε

)2)
√
2πφ22σ

2
ε
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Example 1: Identification IV

Identified set of densities fβγ|W is the set{
h : h = f̃M |W f̃γ|MW ·

∣∣∣∣∂M∂γ

∣∣∣∣ for some f̃γ|MW ∈ Fγ|MW

}
.

Null space of operator is

N (Tg ) = {h : h1 (m) · ∆h2 (γ |m )}

wheres h1 solves (7) and ∆h2 is the difference between two arbitrary
conditional densities.

Data provide no restrictions on conditional density; other than
support restrictions.

Nevertheless, data do provide some restrictions on the joint density.
See simulation results to follow.

First, how do we estimate the model?
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Estimation I

1 First estimate f̂C |WZ .
2 Then solve constrained problem

min
{h}

∥∥∥Tgh− f̂C |WZ ∥∥∥+ α ‖h‖2s

subject to

h ≥ 0∫
Θ

h (θ,w) dθ = 1.

1 Paper contains results for case where f †
θ|W /∈ Fθ|W , (solve the

constrained minimization numerically, no closed-form for the estimator
and slower rate of convergence).

2 Here, assume f †
θ|W ∈ Fθ|W .

3 Ill-posed inverse problem. Regularization required because T †
g is

unbounded.
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Estimation II

1 Two-step procedure to solve problem.

1 Compute f̂ α,s
θ|W to solve

min
{h}

∥∥∥Tg h− f̂C |WZ ∥∥∥+ α ‖h‖2s .

2 Compute projection

Πc f̂
α,s

θ|W = max
(
0, f̂ α,s

θ|W −
c

πθ

)
where c satisfies ∫

Θ

Πc f̂
α,s

θ|W dθ = 1.

1 Algorithm by Gajek (1986).
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Estimation of fθ|W

Assumption 7. {ci ,wi , zi}Ni=1 is an i.i.d. sample used to construct an
estimator f̂ NC |WZ of fC |WZ such that

lim
N→∞

E
(∥∥∥f̂ NC |WZ − fC |WZ ∥∥∥2) = 0.

1 First replace fC |WZ with a (nonparametric) estimator f̂C |WZ .
Kernel density estimator.

2 Second, compute regularized version of T †
g .

Tikhonov regularization (f̂ α
θ|W (θ;w)).

Tikhonov regularization in Hilbert scales (generalized Tikhonov).

3 Third, project onto space of densities.
4 Finally, compute eigenfunctions of null space.

Alternatively, replace steps 2. and 3. with one-step constrained
minimization.
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Rate of convergence I

Assumption 8. For some β > 0 and 0 < M < ∞ the structural
density f †

θ|W is an element of the β-regularity space Φβ(M) defined as

Φβ(M) =

{
f ∈ N (Tg )⊥; ∑

j

< f , ϕj >
2

λ
2β
j

< M

}
.

Smoothness condition. f †
θ|W is more smooth when β is larger.

When M = ∞ then, Φβ = R[(T ∗g Tg )
β
2 ].
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Rate of convergence II

Theorem

Given Assumptions 1-5 and 8, the MISE associated with Pc f̂ α
θ|W with

s = 0 is

E
(∥∥∥Pc f̂ α

θ|W − f
†c

θ|W

∥∥∥)2 = O(αβ∧2 +
1
α

E
(∥∥f̂C |WZ − fC |WZ ∥∥)2) .

Moreover, if α � (E
(∥∥f̂C |WZ − fC |WZ ∥∥)2)− 1

β∧2+1 then,

E
(∥∥∥Pc f̂ α

θ|W − f
†c

θ|W

∥∥∥)2 = O([E (∥∥f̂C |WZ − fC |WZ ∥∥)2] β∧2
β∧2+1

)
.

For s = 0, there is no benefit from β > 2.
In the paper, we present analysis of rates of convergence using
regularization for s > 0 (Hilbert scales).

When f †
θ|W is highly smooth, these have faster rates of convergence.
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Rates of convergence III

Suppose f̂C |WZ is estimated as

f̂C |WZ (c;w , z) =
1

nh1+k+l ∑n
i=1 Kh(ci − c , c)Kh(wi − w ,w)Kh(zi − z , z)
1

nhk+l ∑n
l=1 Kh(wl − w ,w)Kh(zl − z , z)

.

(8)
where Kh is a (generalised) kernel of order r and h is a vector of
bandwidths.
Under mild regularity conditions on the kernel and the operator Tg ,
the optimal rate of the Tikhonov estimator is

inf
α,h

E||f̂ α
θ|W − f

†
θ|W ||2 � n

− 2ρ(β∧2)
(2ρ+k )(β∧2+1)

where
ρ is the number of derivatives in W of fC |WZ .

Optimal values of α and h are: h � n−
1

2ρ+k and α � n−
2ρ

(2ρ+k )(β∧2+1) .

Curse of dimensionality only in the dimension of the endogenous
variables W .
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Pointwise asymptotic normality

Lemma (pointwise asymptotic normality): Let f̂ α
θ|W be the Tikhonov

regularized estimator described above. If α � n−
2ερ

(2ρ+k )(β∧2+1) for ε > 1 and

h � n−
1

2ρ+k +εh , εh < 0, then (under mild assumptions) for PW -a.e. W

√
nhk

f̂ α
θ|W (θ,w)− f

†
θ|W (θ,w)

Ω(θ,w)
⇒ N (0, 1)

where

Ω(θ,w) =
∞

∑
j=1

λ2j

(α+ λ2j )
2

Ω1 (j) ϕ2j + 2
∞

∑
j<l

λjλl

(α+ λ2j )(α+ λ2l )
Ω2 (j , l) ϕj ϕl .

Require α and h to converge faster than optimal to guarantee
asymptotic bias of f̂ α

θ|W (θ;w) is negligible.
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Estimation of Example 1

Simulate data from CARA model.

Estimate and plot the PDF of M |W .

Estimate and plot the CDF of M |W .

Display implications for identified set for (β,γ) .

Using m = M (β,γ) , plot level sets of M.
For each u ∈ [0, 1] , plot "quantile level sets" such as

Pr (M (β,γ) ≤ m) = u.
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Simulated data
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Example 1: Estimation I
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Example 1: Estimation II
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