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Motivation

Heterogeneous population is characterized by the following first order
condition

dcu(ce,v) = BE [Re10ave (Wig1, Ze11,0) | Wh, Z4] (1)

where

C: is consumption,

R:y1 is the interest rate,

°

°

o (W, Z;) are state variables,

e 0 = (B,7) is a finite dimensional parameter vector, and
°

(u, v¢) are known functions.

e e.g., a CRRA utility function and the corresponding value function.
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Question

Solution of (1) implicitly defines consumption function
c=¢(w,z0).

Suppose ¢ is known.

Suppose data on (G| W, Z;) are generated from composition of ¢
and an unknown distribution fyy .

Question. Given data and knowledge of ¢, can one identify and
estimate fy;,, nonparametrically?

o Knowledge of ¢ and fyy necessary to predict distribution of
impacts of counterfactual changes in interest rates, income tax,
pension and savings policy, etc.

e Economic theory provides information/structure on ¢; does not
have much power to constrain fy .

e In general, economic logic implies 8 and W are correlated.
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Answer

@ Answer: We show that:
e For Z; exogenous,
feaw,z, = Tefow

where Tg is an integral operator.
e The identified set is the set of solutions of the previous equation
that are densities.
e Estimation can be based on regularization of the pseudo-inverse of
Tg and computation of null space of Tg.
@ In Euler equation case, can be much more flexible about ¢.

@ OQur approach applies to general non-separable structural models

of the form
Y (C,W,Z,0,¢e) =0.
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Contributions relative to literature |

Identification in Nonlinear Random Coefficient Models

@ Provide general identification results using different assumptions
(continuum of types vs. finite number).

@ Provide formal statement of difficulty of identification making use of
inverse problem literature.

@ Introduce regularization bias to make estimation feasible and provide
large sample theory.

@ Make clear how results relate to economic features of the model and

provide additional insights about source of identification.
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@ Most of literature allows either for no heterogeneity or only observed
heterogeneity.

@ We focus on quite flexible unobserved heterogeneity.
e Alan and Browning (2010): Nonparametric vs parametric.

@ Provide results on identification.



e Extends work of Beran et al.(1994), Hoderlein et al.(2009), Gautier
and Kitamura (2010) to general non-separable models.



@ Very different objects of interest.

@ Very close in terms of tools.



Contributions relative to literature V

Relative to Mixture Models:

o Very different models. Similarity: estimating equation

fy (v) Z/fym(y;G)fb(G)dO.

o Heckman and Singer (1984), fy4(y;6) = fyjg(y; 0, o) parametric
with finite parameter of interest o, fy nuisance parameter.

@ Henry, Kitamura, Salanie (2010), Bonhomme (2010) same objective
as HS, nonparametric extension, place finite mixture structure on fy.

o We: fy parameter of interest, structure e.g. through CRRA model on
fyjo-
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General model

e Assumption 1. (Structural Model). The random variables
(C,W,Z,0,¢) satisfy

d(C,W,Z,0,¢e) =0 almost surely (2)

where @ is a Borel measureable function. In addition, equation (2)
has a unique solution in C implicitly defining the Borel measureable
consumption function

C=oq(W, Z0e).

C is an outcome variable; C € R, observed.

W are endogenous variables; W € R¥, observed.

Z are exogenous variables; Z € R, observed.

0 are random parameters; 6 € RY, unobserved.

€ is a random scalar, not of primary interest; ¢ € IR unobserved:

@ measurement error
e unobserved state variable.
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@ In the Euler equation example,

e C is consumption,

W is assets and lagged income,

Z is current labor income,

€ is private information about future income, and

]
]
-]
e 0 are parameters that represent heterogeneity in preferences or beliefs.



e Assumption 2. (Differentiability). ¥ is C! in a neighborhood of
the set of solutions of (2) and

oY (c,w,z,0,e) # 0
0¥ (c,w,z,0,e) # 0

almost everywhere on the solution set of (2).



Dependence conditions

e Assumption 3.(Distribution of €). The variable € has a known
continuous distribution conditional on (8, W, Z) with Radon-Nikodym
derivative fygpz-

e Assumption 4. (Conditional independence of Z). The variables
(C,Z,0|W) have a joint continuous distribution and Z 1 6| W.
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© Assumption 5. The densities ¢,z and fyy are strictly positive and
bounded on their supports for almost every (W, Z). The support of
fojw does not depend on W.



Example 1

o Finite horizon Euler equation with CARA utility.

@ Given assets a;, income z; and a shock to permanent income &,
consumer chooses consumption c¢;.

@ Consumer’s value function defined by

_ e::ct + BE[vey1(ae41, Ze41, €041, 0)| 2t
subject to
Vel at, Z¢, € = max
t(ar, zt, &) {et} ary1 = R(ar — ct)

Zi11 = Zt + €& + Vg1

where
° stNN(O,Ug),vtNN 0,(7)
o & L vy and (er,ve,29) L (6,39), and

o 0=(B17).
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Consumption function |

@ Optimal consumption function takes the form:

Ct = ¢y ar + 4’2t(zt +&t) + Me(7, B)

where

(InB+1InR)
M. (B,v) = b ‘i + ¢4y +0.5¢5,7. (3)
@ Trivial but illuminating example.
@ a; and 6 = (B, ) statistically dependent because a; determined by
past savings decisions.

e Dependence changes with age.

@ Income process is independent of preferences.
e Defining W; = (A, Z;—1), this implies

Z: 16| W,.
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Consumption function Il

@ Innovations to income Z; move consumption around through known
function @. These movements are independent of 6.
e In this example, due to linearity, this is not very helpful.

o More generally, @, is not additively separable (non-normal
disturbances, CRRA utility, stochastic interest rates).

e (B, ) affect outcome only through single index m = M; (B, ) .

e Joint distribution of (B, )| W not point-identified but distribution of
Mt| Wt is.
e Stochastic variation in interest rates, can point-identify joint
distribution.
@ Estimation method can be applied to a more general Euler equation
model.

o See Hoderlein, Nesheim and Simoni (2011).
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Notation

o Let (79, 7c,) be nonnegative weighting functions on spt (®) and
spt (C x Z) respectively.

o Consider the spaces
Lig =< h: /h(Q, w)?medf < 00, PV — ae.
®
and

LETCZ =¥ / ¥(c z, W)27TCZdCdz < oo, PV — ae.
CxZ
o Let Fyw C Lig and Feywz C L%CZ be the subsets of densities on @

and conditional densities on C x Z that are strictly positive and
bounded on their supports.
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Characterization of fy 1y
Theorem (1.i.)

Let foywz € Feywz C L%CZ. Under Assumptions 1-5, fgy is a solution of
the nonlinear problem

fejwz = Tglow subject to fo € Fejwz pPW _ 4

(4)

where T, : L%G — L%CZ is defined for all h € L%G as

(T,h) (c,w,z) = /fCWZ"(;W‘ 2:8) 10, w)ede. (5)

0
o Kernel of operator is

fclwze (c,w,z,0)
Yz

Y1 fowz (97 1,0, w, 2)

g(c,w,z0)

BC‘I’(c,w,z,G,q)fl)
&‘P(c,w,z,@,(pfl)

]-Spt
7-[6 Cclwze
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Comments

Hoderlein -

Equation (5) is classical mixture of probability densities or Fredholm
integral of the first kind.

If fejwze = f(c— 0, w,z) we recover the convolution formula.

If F; is degenerate with a point mass only at ¢ = 0, can define the
operator as

(T,h) (c.z, w) = /1 {9 (w,2,8) < c} h(8, W)de.
(C)
Simple inversion of T, does not work since R(T,) is non-closed and

in general ?C\WZ ¢ R(Ty).

Pseudo-inverse Tg is also unbounded.
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Hilbert-Schmidt

Hoderlein -

Assumption 6. It is possible to choose 71y and 71, such that for
PW_a.e. w we have:

/ / fewzo(ciw, z, 9)} Ticz dcdzd@ < oo.
CxZ0O

Hilbert-Schmidt assumption is sufficient to guarantee the
compactness of T,.

Compact operator T, has at most a countable number of singular
values accumulating only at 0.

Let {1, 9;.4;} _ be the SVD of T,.

How fast A; | 0 depends on smoothness of T,.

e This determined by smoothness of ¥, distribution of & and the support
of (C,Z,0).
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Identification |

Theorem (1.ii.)

Under Assumptions 1-5, a solution of (4) exists since fc|ywz € TgFow -
The identified set is
A={he Fow: Tgh=fowz, PVae}
= <f97vv @N(Tg)) N Fow
h = feﬁW + Yj>1:0,—0 Zip; for some {z;}
) h>0
= el -

=1
(C]

fJW is the solution of minimal norm of H Tgh— fC|WZH and @; are
the eigenfunctions of T, T, corresponding to the zero eigenvalues A;.

where

Hoderlein - Nesheim - Simoni (CeMMAP) Semiparametric Random Coefficients May 28, 2011 24 / 43



Three situations are possible:
@ T, one-to-one: N (T,) = {0} = f;’TW € Foyw-
@ T; one-to-one on Fyy = (@TW @N(Tg)) NFow = {@TW}

© T; not one-to-one on Fy,y = many possible values of {z1,20,...}.



Identification |l

Theorem (2.)

Under Assumptions 1-5, the following are equivalent sufficient conditions
for point identification of fyy .

Hoderlein -

The operator T, is one-to-one. i.e. N'(T,) = {0}.
The distribution of 6 conditional on (C, W, Z) is complete.

f w,z,0 .
V(c,z) eCx Z, M belongs to a complete subset C in

0(0)
L%G, PW — as.

e i.e. the only element in L%G which is orthogonal to C is 0.

R(T}) is dense in L2, ie. R(T}) = L%
If Assumption 6 holds, the singular values of T, are strictly positive.
o ie Aj >0 forallj.
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Discussion

Hoderlein -

In this case, the inverse Téfl exists and
f9|W(9; w) = TéflfqWZ(c; w, z), PV _ae.

Properties of the operator T, (like smoothness) are determined by
smoothness properties of ¢ and f.

Identified set is smaller than the identified set of the equation
Tgh — fC‘WZ'
Point-identification requires dim(C, Z) > dim(6).
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Identification 1V

e Sufficient condition for point-identification of fyy .

o Lemma 3.1: Assume that fcgpz(c, 0, w, z) takes the form
exp [T(c, w, z)Tm(e)} k(c, w, z)h(8)

where spt (T (C, W, Z)) = RY, h(-) is a positive function, and m is
globally invertible. Then, f )y is point-identified.

e Note exponential interactions between m (0) and 7 (¢, w, z) and
support condition.
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Example 1: Identification |

o Operator equation is

exp(— (R )2
feywz (¢, w, 2) :/ ; 4’22 A foyw (B, v, w)dBdy.
(S} TP;,0%
(6)

e Joint density of (B, y) not point identified.

@ To see this, use
m=M(B,7)

to make change of variables.
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Example 1: Identification Il

e Change of variables implies

clwz(c,w,z) = // \/7 Myw (m, v, w)dm
2502
exp(—3 (“H5"))
— / 2 ¢2U€ fM‘W(m, W)dm
i 2g30?

where

1, - oM—1 m,

fuaiw (m. 7, w) = foyw (M l(mw),v)‘afnw"
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Example 1: Identification Il

e Conditional on M, 7 has no impact on consumption.

o No interactions between (C, Z) and 7.
o Nevertheless, marginal density ?M‘W is point-identified.
@ To see this, use Lemma 3.1 framework and note
c—pw—z

$,0¢

o - o 3(22)
2

T(c,w,z) =
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Example 1: Identification IV

o ldentified set of densities fg, |}y is the set

~ = oM
h:h=f f =
{ MW Ty MW 'a'y

for some E}/|MW S f’y\MW } .

@ Null space of operator is
N (Tg) = {h:hi(m)-Dhy(y[m)}

wheres h; solves (7) and Ahy is the difference between two arbitrary
conditional densities.

@ Data provide no restrictions on conditional density; other than
support restrictions.

@ Nevertheless, data do provide some restrictions on the joint density.
@ See simulation results to follow.
o First, how do we estimate the model?
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Estimation |

@ First estimate /f\C‘WZ.
© Then solve constrained problem

. 7 2
min Tgh—quzHerHhHs
subject to
h > 0
/h(@,w)df) - 1
®

i t
@ Paper contains results for case where fG\W ¢ FQ‘W, (solve the

constrained minimization numerically, no closed-form for the estimator
and slower rate of convergence).
t
@ Here, assume f9|W € Fow-

© lll-posed inverse problem. Regularization required because Tg is
unbounded.
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@ Two-step procedure to solve problem.
@ Compute /f;”f‘fv to solve
: = 2
min H Tgh—feywz H +afhls.

® Compute projection
where ¢ satisfies
/ T 7% do = 1.
(C)
@ Algorithm by Gajek (1986).



Estimation of fp

e Assumption 7. {c;, w;, z,-},N:1 is an i.i.d. sample used to construct an

Hoderlein -

estimator ?C’\"WZ of fcjwz such that

N—oo

First replace f¢|yz with a (nonparametric) estimator ?C‘WZ.

o Kernel density estimator.
Second, compute regularized version of Tg*.

e Tikhonov regularization (?é’l‘W(G; w)).

e Tikhonov regularization in Hilbert scales (generalized Tikhonov).

Third, project onto space of densities.
Finally, compute eigenfunctions of null space.

Alternatively, replace steps 2. and 3. with one-step constrained
minimization.
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Rate of convergence |

@ Assumption 8. For some f > 0 and 0 < M < oo the structural
density fJ‘W is an element of the B-regularity space ®g(M) defined as

2
TAF

Pp(M) = {f e N(Tp)h ZW < M}.

@ Smoothness condition. feJTW is more smooth when S is larger.

o When M = co then, &3 = R[(T; T5)"].
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Hoderlein - Nesheim - Simoni (CeMMAP)

Rate of convergence |l

Theorem

Given Assumptions 1-5 and 8, the MISE associated with P.f,
s=01s

E (|| Pefiw — 5

6|W with

2 R
) :O<(x5/\2—|—ilE(

Moreover, if a < (IE (quwz — fC|WZH)2)_ﬁAéﬁ then,

>2 = ([IE (H?C\WZ — fc|WzH)2]ﬁﬁ§il> :

@ For s =0, there is no benefit from g > 2.

@ In the paper, we present analysis of rates of convergence using
regularization for s > 0 (Hilbert scales).

e When f o|w is highly smooth, these have faster rates of convergence.

—fCWZ||)2)-

E (|| Pefiw — iF
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Rates of convergence Il

@ Suppose ?C‘WZ is estimated as

ﬁ Y Kn(ci—c c)Kn(w; —w, w)Kp(z — z, 2)

feowz(cw, z) = .
" #lel Kh(W/_ w, W)Kh(Z/—Z,Z)

(8)
where K}, is a (generalised) kernel of order r and h is a vector of
bandwidths.

@ Under mild regularity conditions on the kernel and the operator Ty,
the optimal rate of the Tikhonov estimator is

. 2 t 2 _ _%
|n’fIEHf6‘W—f0‘W|| = n_ @p+k)(BAZFT)
a

where

o p is the number of derivatives in W of fc 7.
1 - %
e Optimal values of & and h are: h < n 2%k and o < n Ce+A(EA2+1)
@ Curse of dimensionality only in the dimension of the endogenous

variables W.
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Pointwise asymptotic normality

Lemma (pointwise asymptotic normality): Let f 9|W be the Tikhonov

2ep
regularized estimator described above. If a < n @+0®2+1) for € > 1 and

1 . .
h=n %" & <0, then (under mild assumptions) for PW-a.e. W

Fa (0, w) — (0, w)
Vnhk AW e Vj')W = N(0,1)
where
©  )\? Ai)
QO w) =Y —2L—0n (j) ¢? +2 ! D (. 1) 99,
J; («X+Af->2 = ( «x+A?)(«x+A?) s

@ Require & and h to converge faster than optimal to guarantee
asymptotic bias of feﬁ‘W(G; w) is negligible.
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Estimation of Example 1

Simulate data from CARA model.

Estimate and plot the PDF of M |W .

Estimate and plot the CDF of M |W .

Display implications for identified set for (B, ) .

e Using m= M (B, ), plot level sets of M.
e For each u € [0, 1], plot "quantile level sets" such as

Pr(M(B,v) <m)=u.
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