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Abstract

We propose a method to correct for sample selection in quantile regression models.
Selection is modelled via the cumulative distribution function, or copula, of the per-
centile error in the outcome equation and the error in the participation decision. Copula
parameters are estimated by minimizing a method-of-moments criterion. Given these
parameter estimates, the percentile levels of the outcome are re-adjusted to correct for
selection, and quantile parameters are estimated by minimizing a rotated “check” func-
tion. We apply the method to correct wage percentiles for selection into employment,
using data for the UK for the period 1978-2000. We also extend the method to account
for the presence of equilibrium effects when performing counterfactual exercises.
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1 Introduction

Non-random sample selection is a major issue in empirical work. Most selection-correction

approaches focus on estimating conditional mean models.1 In many applications, however,

a flexible specification of the entire distribution of outcomes is of interest. In this paper we

propose a selection correction method for quantile models.

Quantile regression is widely used to estimate conditional distributions. In a linear quan-

tile model, each percentile is associated with a percentile-specific parameter. Conveniently,

quantile parameters can be estimated by minimizing a convex (“check”) function (Koenker

and Bassett, 1978). Quantile regression has proved to be a valuable tool to analyze changes in

distributions. However, to our knowledge there is yet no widely accepted quantile regression

approach in the presence of sample selection.

A classic example where sample selection features prominently is the study of wages and

employment (Gronau, 1974, Heckman, 1974). Only the wages of employed individuals are

observed, so conventional measures of wage gaps or wage inequality may be biased. For

example, in our empirical application we study the evolution of wage inequality and employ-

ment in the UK. Over the past three decades wage inequality has sharply increased. This

change in the wage distribution, similar to the one experienced in the US, has motivated a

large literature.2 At the same time, employment rates have also varied during the period,

especially for males. In this context, our method to correct for selection allows document-

ing the evolution of distributions of latent wages, and to separate them from changes in

employment composition.

In regression models, correcting for sample selection involves adding a selection factor as

a control. In quantile regression models, we show that selection-corrected estimates can be

obtained by suitably shifting the percentile levels as a function of the amount of selection. In

practice, this amounts to rotating the “check” function that is optimized in standard quantile

regression. This preserves the linear programming structure, and thus the computational

simplicity, of quantile regression methods.

In our quantile model, sample selection is modelled via the bivariate cumulative distri-

1A very short list of references includes the parametric approaches of Heckman (1979) and Heckman and
Sedlacek (1985), and the semi/nonparametric approaches of Heckman (1990), Ahn and Powell (1993), and
Das, Newey, and Vella (2003).

2Gosling, Machin, and Meghir (2000) use quantile regression to study the evolution of wage inequality
in the UK. Some studies for the US are Autor, Katz and Kearney (2005), Chamberlain (1993), Buchinsky
(1994), and Angrist, Chernozhukov and Fernández-Val (2006).
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bution function, or copula, of the errors in the outcome and the selection equation. Our

identification analysis covers the case where the copula is left unrestricted. However, in

practice, one may wish to let the copula depend on a low-dimensional vector of parameters.3

As in linear sample selection models, excluded variables (e.g., determinants of employment

that do not affect wages directly) are key to achieve credible identification. We show how

to estimate the parameters of the copula by minimizing a method-of-moments criterion that

exploits variation in excluded regressors.

Our estimation algorithm consists of three steps: estimation of the propensity score of

participation, the copula parameter, and the quantile parameters, in turn. We derive the

asymptotic distribution of the estimator. We also analyze a number of extensions of the

method. In particular, we propose a bounds method to assess the influence on the quantile

estimates of the parametric restrictions imposed on the copula.

We apply the method to study the evolution of wage inequality in the UK in the last

quarter of the twentieth century, and find that correcting for selection into employment

strongly affects male wages at the bottom of the distribution. This is consistent with low-

skilled males being progressively driven out of the labor market. Sample selection has smaller

effects for females. As a result, correcting for sample selection accentuates the decrease in

the gender wage gap at the bottom (though not at the top) of the distribution. We also

perform several robustness checks, in particular regarding the specification of the copula.

Lastly, we propose a method to account for the presence of equilibrium effects and apply it

to a counterfactual exercise.

Literature and outline. Our approach connects with two complementary approaches

that have been used to deal with sample selection: bounds methods (Manski, 1994, Blun-

dell, Gosling, Ichimura, and Meghir, 2007), and parametric and semiparametric versions of

the Heckman (1979) sample selection model. It allows one to perform distributional decom-

position exercises (e.g., DiNardo, Fortin and Lemieux, 1996, Firpo, Fortin and Lemieux,

2011) while accounting for sample selection.

The paper also connects to the large literature on quantiles, distributions, and treatment

effects. Chernozhukov and Hansen (2005, 2006) develop an instrumental variables quantile

3Copulas have been extensively used in statistics and financial econometrics (e.g., Joe, 1997, and Nelsen,
1999). Single-parameter copula families have been shown to yield satisfactory fit to empirical data in various
contexts. For example, Bonhomme and Robin (2009) use a Plackett copula to model year-to-year earnings
mobility.
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regression approach. Unlike in this paper, they need to observe outcomes for the treated

and non-treated, and rely on a rank invariance or similarity assumption. See also Torgovit-

sky (2015) and D’Haultfoeuille and Février (2015) for models with continuous endogenous

regressors. Imbens and Rubin (1997) study identification and estimation of unconditional

distributions of potential outcomes in a treatment effects model with a binary instrument,

and achieve identification for compliers (as in Abadie, 2003, and in Abadie, Angrist and

Imbens, 2002). Carneiro and Lee (2009) uses the framework of Heckman and Vytlacil (2005)

to identify and estimate distributions of potential outcomes.

The literature on quantile selection models, in contrast, is scarce. Buchinsky (1998, 2001)

proposes an additive approach to correct for sample selection in quantile regression. Huber

and Melly (2015) consider a more general, non-additive quantile model, as we do. They focus

on testing for additivity. In contrast, our focus is on providing a practical estimation method.

Also related are Neal (2004), who develops imputation methods to correct the black/white

wage gap among women, Olivetti and Petrongolo (2008), who apply similar methods to

the gender wage gap, and Picchio and Mussida (2010), who propose a parametric model to

correct the gender wage gap for selection into employment.

The rest of the paper is as follows. In Section 2 we present the quantile selection model

and discuss identification. In Section 3 we construct the estimator and derive its asymptotic

properties. The empirical analysis is shown in Section 4. Lastly, Section 5 concludes.

2 Model and identification

2.1 Model and assumptions

We consider the following sample selection model:

Y ∗ = q (U,X) , (1)

D = 1 {V ≤ p (Z)} , (2)

Y = Y ∗ if D = 1, (3)

where Y ∗ is the latent outcome (e.g., market wage), D is the participation indicator (em-

ployment), and Z = (B,X) strictly contains X, so B are the excluded covariates. Potential

outcomes Y ∗ = Y are observed only when D = 1 (e.g., if the individual is a labor market

participant).

We make four assumptions.
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Assumption 1

A1 (exclusion restriction) (U, V ) is jointly statistically independent of Z given X.

A2 (unobservables) The bivariate distribution of (U, V ) given X = x has uniform marginals.

We denote its cumulative distribution function (cdf) as Cx (u, v).

A3 (continuous outcomes) The conditional cdf FY ∗|X (y|x) is strictly increasing in y. In

addition, Cx(u, v) is strictly increasing in u.

A4 (propensity score) p (Z) ≡ Pr (D = 1|Z) > 0 with probability one.

Assumption A1 is satisfied if Z = (B,X) strictly contains X, and (U, V ) is jointly

independent of B given X. In the example of wages and employment, B may measure

opportunity costs of participation in the labor market. Following Blundell et al. (2003), our

empirical application will use a measure of potential out-of-work welfare income as exclusion

restriction.

Model (1)-(3) depends on two sources of unobserved heterogeneity: the outcome rank

U and the percentile rank V . In Assumption A2 we normalize their marginal distributions

to be uniform on the unit interval, independent of Z. In particular, τ 7→ q (τ , x) is the

conditional quantile function of Y ∗ given X = x. A special case is the linear quantile model

Y ∗ = X ′βU , which is widely used in applied work since Koenker and Bassett (1978). The

Skorohod representation (1) is without loss of generality.4

Joint independence between (U, V ) and Z given X, as stated in Assumption A2, is

stronger than marginal independence. This requires the conditional cdf (that is, the copula)

of the pair (U, V ) given (B,X) to solely depend on X. The presence of dependence between

U and V is the source of sample selection bias.

Lastly, A3 restricts the analysis to absolutely continuous outcomes, and A4 is a support

assumption on the propensity score often made in sample selection models.

Examples. Before discussing identification of model (1)-(3) we briefly outline two special

cases. In Appendix F we also describe an extension to a treatment effects setup with selection

on unobservables.

A first special case is obtained when outcomes are additive in unobservables: Y ∗ =

g (X) + ε, where (ε, V ) is independent of Z. Note that Assumption A1 is satisfied, with

4Indeed, U = FY ∗|X (Y ∗|X), where FY ∗|X is the conditional cdf of Y ∗ given X. Moreover, U being
independent of Z given X is equivalent to potential outcomes Y ∗ being independent of Z given X.
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U = Fε (ε), for Fε the cdf of ε. Moreover, the following restrictions hold (as in Das et al.,

2003):

E (Y |D = 1, Z) = g (X) + E (ε |Z, V ≤ p (Z)) = g (X) + λ (p (Z)) ,

where λ (p) ≡ E (ε |V ≤ p).

As a second special case suppose the following reservation rule:

D = 1 {Y ∗ ≥ R(Z) + η} , (4)

where (Y ∗, η) is statistically independent of Z given X. In a labor market application, (4)

may represent the participation decision of an individual, who compares her potential wage

Y ∗ with a reservation wage R(Z) + η. Note that (4) may equivalently be written as:

D = 1
{
V ≤ Fη−Y ∗|Z (−R(Z)|Z)

}
,

where V ≡ Fη−Y ∗|Z (η − Y ∗|Z) is uniformly distributed on the unit interval, and independent

of Z. Letting Y ∗ = q (U,X), (U, V ) is independent of Z given X, so Assumption A1 is

satisfied. At the same time, however, U and V are not jointly independent of X. Thus, in

this reservation value model the copula Cx(·, ·) depends on x in general.

2.2 Main restrictions and identification

We have, conditional on participation and for all τ ∈ (0, 1):

Pr (Y ∗ ≤ q (τ , x) |D = 1, Z = z) = Pr (U ≤ τ |V ≤ p(z), Z = z) ,

= Gx (τ , p(z)) , (5)

where Gx (τ , p) ≡ Cx (τ , p) /p, and we have used Assumptions A1 to A4. The conditional

copula Gx(·, ·) measures the dependence between U and V , which is the source of sample

selection bias. As a special case, if U and V are conditionally independent given X = x

then Gx(τ , p(z)) = τ . More generally, (5) shows that Gx maps ranks τ in the distribution of

latent outcomes (given X = x) to ranks Gx(τ , p(z)) in the distribution of observed outcomes

conditional on participation (given Z = z).

An implication of (5) is that, for each τ ∈ (0, 1), the conditional τ -quantile of Y ∗ coin-

cides with the conditional Gx (τ , p(z))-quantile of Y given D = 1. Hence, if we knew the

mapping Gx from latent to observed ranks, one could recover q(τ , x) as a quantile of observed
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outcomes, at a suitably shifted percentile rank. Figure 1 illustrates the effect of selection on

latent and observed wage quantiles. The shaded areas under the dashed density correspond

to latent outcomes, and have probability mass 10% each. In contrast, the masses under the

solid density, which corresponds to observed selected outcomes, generally differ from 10%.

Equation (5) is instrumental to correct quantile functions from selection. Given knowl-

edge of the mapping Gx, latent quantiles can readily be recovered. Moreover, the exclusion

restriction provides information about Gx. The intuition for this is that (5) holds for all z

in the support of Z given X = x, thus generating restrictions on Gx.

The following result spells out the restrictions on the conditional copula Gx. We denote as

X the support of X, and as Zx the support of Z given X = x. G−1
x and F−1

Y |D=1,Z denote the

inverses of Gx and FY |D=1,Z with respect to their first arguments, which exist by Assumption

A3. Proofs are given in Appendix A.

Lemma 1 Let x ∈ X . Then, under Assumptions A1 to A4:

FY |D=1,Z

(
F−1
Y |D=1,Z

(
τ
∣∣z2
) ∣∣z1

)
= Gx

(
G−1

x (τ , p(z2)) , p(z1)
)
, for all (z1, z2) ∈ Zx ×Zx.

(6)

Moreover, for any Gx satisfying (6), one can find a distribution of latent outcomes FY ∗|X

such that Gx

(
FY ∗|X(y|x), p(z)

)
= FY |D=1,Z(y|z) for all (z, y) in the support of (Z, Y ) given

X = x.

Note that the restrictions in (6) are uninformative in the absence of an exclusion restric-

tion. They become informative as soon as the conditional support of Z given X = x contains

two or more values. Moreover, the second part of Lemma 1 shows that these are the only

restrictions on Gx, in the sense that, for any Gx satisfying (6), one can find a distribution of

latent outcomes that rationalizes the data.

Nonparametric point-identification. Two simple conditions lead to nonparametric point

identification of Gx, and hence to point-identification of q(·, x) as well. We denote as Px the

conditional support of the propensity score p(Z) given X = x.

Proposition 1 Let Assumptions A1 to A4 hold. Let x ∈ X . Suppose that one of the two

following conditions holds:

i) (identification at infinity) There exists some zx ∈ Zx such that p(zx) = 1.
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ii) (analytic extrapolation) Px contains an open interval and, for all τ ∈ (0, 1), the

function p 7→ Gx(τ , p) is real analytic on Px.

Then the functions (τ , p) 7→ Gx(τ , p) and τ 7→ q(τ , x) are nonparametrically identified.

Both conditions in Proposition 1 allow to point-identify the dependence mapping Gx

and the quantile function q(·, x) using an extrapolation strategy. Under i), identification is

achieved at the boundary of the support of the propensity score (“at infinity”). Under ii),

extrapolation is based on the property that real analytic functions that coincide on an open

neighborhood coincide everywhere. Absent conditions i) and ii) of Proposition 1, the model

is nonparametrically partially identified in general.

Partial identification Let x ∈ X and z̃ ∈ Zx. Using the worst-case Fréchet bounds (e.g.,

Heckman, Smith and Clements, 1997) on the copula Cx we can bound:

max

(
τ + p(z̃)− 1

p(z̃)
, 0

)
≤ Gx (τ , p(z̃)) ≤ min

(
τ

p(z̃)
, 1

)
, for all τ ∈ (0, 1). (7)

Let now z ∈ Zx. Evaluating (6) at (z1, z2) = (z, z̃), and using (7) to bound Gx (τ , p(z̃)),

we obtain the following bounds on Gx (τ , p(z)):

Gx (τ , p(z)) ≤ inf
z̃∈Zx

FY |D=1,Z

[
F−1
Y |D=1,Z

(
min

(
τ

p(z̃)
, 1

) ∣∣∣ z̃
) ∣∣∣ z

]
(8)

Gx (τ , p(z)) ≥ sup
z̃∈Zx

FY |D=1,Z

[
F−1
Y |D=1,Z

(
max

(
τ + p(z̃)− 1

p(z̃)
, 0

) ∣∣∣ z̃
) ∣∣∣ z

]
. (9)

Moreover, using (5) and (7) we have the following bounds on the quantiles of latent

outcomes:

q(τ , x) ≤ inf
z̃∈Zx

F−1
Y |D=1,Z

(
min

(
τ

p(z̃)
, 1

) ∣∣∣ z̃
)

(10)

q(τ , x) ≥ sup
z̃∈Zx

F−1
Y |D=1,Z

(
max

(
τ + p(z̃)− 1

p(z̃)
, 0

) ∣∣∣ z̃
)
. (11)

The quantile bounds in (10) and (11) were first derived by Manski (1994, 2003) in a

slightly more general selection model. In related work, Kitagawa (2009) provides a com-

prehensive study of the role of independence and first-stage monotonicity restrictions in a

LATE context. The quantile bounds in (10) and (11) coincide with the choice of the upper

or lower Fréchet bounds for the copula of (U, V ). In this sense, these are worst-case bounds.5

In Appendix B we show that these bounds cannot be improved upon.

5Note however that the Fréchet copula bounds do not satisfy (6) in general. By (8) and (9), the bounds
on Gx are generally tighter than the Fréchet bounds.
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3 Estimation

We adopt a flexible semi-parametric specification. Following a large literature on quantile

regression, we assume that quantile functions are linear, that is:

q (τ , x) = x′βτ , for all τ ∈ (0, 1) and x ∈ X . (12)

Although our estimation strategy could conceptually be extended to deal with nonlinear

specifications, the linear quantile model is convenient for computation.

We assume that the copula function, and hence the functionGx, is indexed by a parameter

vector ρ; that is:

Gx(τ , p) ≡ G(τ , p; ρ) =
C(τ , p; ρ)

p
.

The statistical literature offers a number of convenient parsimonious specifications, includ-

ing the Gaussian, Frank, or Gumbel copulas. See Nelsen (1999) and Joe (1997) for com-

prehensive references. Flexible families may be constructed, for example by relying on the

Bernstein family of polynomials (Sancetta and Satchell, 2004). In all these examples, one

may let the vector ρ depend on x. For example, for scalar ρ ∈ (−1, 1) one may specify

ρ(x) =
(
ex

′γ − 1
)
/
(
ex

′γ + 1
)
, where γ is a vector of parameters. For simplicity we omit the

dependence of ρ on x in the following.

The parametric assumptions on the copula are substantive. Restricting the analysis to a

finite-dimensional ρ allows us to focus on the case where ρ is point-identified and to propose

a simple estimation method. In addition, below we propose a bounds approach to assess the

influence on quantile estimates of the parametric assumptions made on the copula.

Lastly, the propensity score p(z; θ) is specified as a known function of a parameter θ. This

assumption may be relaxed, at the cost of making the asymptotic analysis more involved;

see the extensions at the end of this section.

The functional form of selected quantiles. Before describing the estimator, we first

comment on the form of the conditional quantiles given participation, when quantile functions

of latent outcomes are linear as in (12). The τ -quantile of outcomes of participants given

z = (b, x) is, by (5):

qd (τ , z) ≡ F−1
Y |Z,D=1 (τ |z) = x′βG−1(τ ,p(z);ρ). (13)

Equation (13) makes it clear that sample selection affects all quantiles, and that quantile

functions of observed outcomes are generally non-additive in x and p(z). We have the
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following result, where it is assumed that ρ does not depend on x.

Proposition 2 Let τ ∈ (0, 1). Suppose that ρ does not depend on x. Then z 7→ qd(τ , z) is

non-additive in x and p (z), unless:

i) All coefficients of βτ but the intercept are independent of τ , or

ii) U and V are statistically independent.

Additive specifications such as qd (τ , z) = x′βτ + λτ (p (z)), for a smooth function λτ (p),

are sometimes used in applied work (e.g., Buchinsky, 2001, Albrecht et al., 2009). In contrast,

in our framework, conditional quantiles of participants are non-additive. Huber and Melly

(2015) make a related point in a testing context. Correcting for sample selection thus requires

shifting the percentile ranks of individual observations. We now explain how this can be done

in estimation.

3.1 Three-step estimation strategy

Let (Yi, Di, Bi, Xi), i = 1, ..., N , be an i.i.d. sample, with Zi ≡ (Bi, Xi). We propose to

compute selection-corrected quantile regression estimates in three steps. In the first step, we

compute θ̂, a consistent estimate of the propensity score parameter θ. In the second step, we

compute a consistent estimator ρ̂ of the copula parameter vector ρ. Lastly, given θ̂ and ρ̂,

for any given τ ∈ (0, 1) we compute β̂τ , a consistent estimator of the τth quantile regression

coefficient.

The first step can be done using maximum likelihood. We now present the third and

second steps in turn.

Step 3: quantile regression. Let us suppose that consistent estimators θ̂ and ρ̂ are

available. Then, for any given τ ∈ (0, 1) we compute:

β̂τ = argmin
b∈B

N∑

i=1

Di

[
Ĝτi (Yi −X ′

ib)
+
+
(
1− Ĝτi

)
(Yi −X ′

ib)
−
]
, (14)

where B is the parameter space for βτ , a
+ = max(a, 0), a− = max(−a, 0), and:

Ĝτi ≡ G
(
τ , p

(
Zi; θ̂

)
; ρ̂
)
.

Solving (14) amounts to minimizing a rotated check function. As with standard quantile

regression, the optimization problem takes the form of a simple linear program, and can
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thus be solved in a fast and reliable way. It is instructive to compare the rotated quantile

regression estimate β̂τ with the following infeasible quantile regression estimate based on the

latent outcomes:

β̃τ = argmin
b∈B

N∑

i=1

[
τ (Y ∗

i −X ′
ib)

+
+ (1− τ) (Y ∗

i −X ′
ib)

−
]
.

We see that, in order to correct for selection in (14), τ is replaced by the selection-corrected,

individual-specific percentile rank Ĝτi.

Step 2: copula parameter. From (5), we obtain the following conditional moment re-

strictions:

E

[
1 {Y ≤ X ′βτ} −G (τ , p(Z; θ); ρ)

∣∣∣D = 1, Z = z
]

= 0.

We propose to estimate the copula parameter ρ as:

ρ̂ = argmin
c∈C

∥∥∥∥∥

N∑

i=1

L∑

ℓ=1

Diϕ (τ ℓ, Zi)
[
1
{
Yi ≤ X ′

iβ̂τℓ
(c)
}
−G

(
τ ℓ, p(Zi; θ̂); c

)]∥∥∥∥∥ , (15)

where τ 1 < τ 2 < ... < τL is a finite grid on ]0, 1[, ϕ (τ , Zi) are instrument functions with

dimϕ ≥ dim ρ, and:

β̂τ (c) ≡ argmin
b∈B

N∑

i=1

Di

[
G
(
τ , p(Zi; θ̂); c

)
(Yi −X ′

ib)
+

+
(
1−G

(
τ , p(Zi; θ̂); c

))
(Yi −X ′

ib)
−
]
. (16)

Effectively, in this step we are estimating ρ together with βτ1 , ..., βτL
.

This step is computationally more demanding than Step 3. In particular, the objective

function in (15) is not continuous, due to the presence of the indicator functions, and gen-

erally non-convex. In practice, for low-dimensional ρ one may use grid search, as in our

application. For higher-dimensional ρ, simulation-based methods such as simulated anneal-

ing (see, e.g., Judd, 1998), or the pseudo-Bayesian approach of Chernozhukov and Hong

(2003), could be used. Importantly, evaluating the objective function is usually fast and

straightforward. The reason is that (16) is a linear programming problem, for which there

exist fast algorithms.6

6For example, the Matlab version of Morillo, Koenker and Eilers is directly applicable to the problem at
hand. Available at: http://www.econ.uiuc.edu/∼roger/research/rq/rq.m
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In addition, in experiments we observed that using a large number of percentile values

τ ℓ in (15) tends to smooth the objective function. In Appendix C we consider a model with

discrete covariates, and show that in this case an integrated version of the objective function

in (15), with a continuum of τ values, is differentiable with respect to the copula parameter

c under weak conditions.

Finally, solving (15) is only one possibility to estimate the copula parameter. In Appendix

D we describe an alternative estimator of ρ that relies on the copula restrictions (6). The

method provides a fast and straightforward way to obtain good starting values to minimize

the objective function in (15). Another possibility would be to estimate ρ using a likelihood

approach, based on the semi-parametric structure of the model. An interesting question,

which we do not address in this paper, would be to construct a semi-parametric efficient

estimator for ρ by exploiting the continuum of moment restrictions in (6).

Remark: unconditional quantiles. Once θ and ρ have been estimated, the param-

eters βτ are estimated by simple quantile regression using the rescaled percentile levels

Ĝτi = G
(
τ , p

(
Zi; θ̂

)
; ρ̂
)
in place of τ . So, the techniques developed in the context of or-

dinary quantile regression can be used in the presence of sample selection. As an example,

counterfactual distributions may be constructed as explained in Machado and Mata (2005)

and Chernozhukov, Fernández-Val and Melly (2013). Specifically, the unconditional cdf of

Y ∗ may be estimated as a discretized or simulated version of:

F̂Y ∗(y) =
1

N

N∑

i=1

∫ 1

0

1
{
X ′

iβ̂τ ≤ y
}
dτ ,

and unconditional quantiles can be estimated as q̂(τ) = inf
{
y, F̂Y ∗(y) ≥ τ

}
. Also, a perva-

sive problem in quantile regression is that estimated quantile curves may cross each other

because of sampling error. The approach proposed by Chernozhukov, Fernández-Val and

Galichon (2010), based on quantiles rearrangement, may also be applied in our context.7

3.2 Properties and extensions

Asymptotic properties. In Appendix E we derive the asymptotic distributions of ρ̂ and

β̂τ for given τ ∈]0, 1[. We show that, under standard conditions for quantile regression

7A difference with standard quantile regression concerns inference, as one needs to take into account that
ρ and θ have already been estimated when computing asymptotic confidence intervals.
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estimators (as in Koenker, 2005), and under suitable differentiability conditions on G, the

estimators satisfy:

√
N

(
β̂τ − βτ

ρ̂− ρ

)
d→ N (0, Vτ ) , (17)

where ρ and βτ denote true parameter values. We provide an explicit expression for the

asymptotic variance Vτ , and show that it can be estimated using an approach similar to

the one in Powell (1986). Alternatively, given the distributional characterization in (17),

confidence intervals may be estimated using subsampling (Politis, Romano and Wolf, 1999).

We will use subsampling in the empirical application.

Estimating bounds. The above method to estimate the copula parameter ρ relies on

the assumption that the copula, and hence the quantile functions, are point-identified. In

the absence of functional form assumptions on the copula, both G and q(τ , x) are partially

identified in general. In particular, the quantiles of latent outcomes are bounded by (10)

and (11).8 In practice, a simple way to informally assess the influence of functional form

assumptions on the results is to compute estimates of the bounds in (10) and (11), obtained

from the semi-parametric model.

Denoting px = supb p(x, b) the supremum of the support of the excluded variable B for

given X = x, the model implies the following bounds:9

q(τ , x) ≡ x′β
G−1

(
max

(
τ+px−1

px
,0
)
,px;ρ

) ≤ q(τ , x) ≤ x′β
G−1

(
min

(
τ
px

,1
)
,px;ρ

) ≡ q(τ , x). (18)

Under the assumption that the support of B given X = x is independent of x, px can be

consistently estimated by p̂x = supi∈{1,...,N} p(x,Bi; θ̂). As these estimates may be sensitive

to outliers, in the application we will also consider alternative estimates based on a trimming

approach. Consistent estimates of q(τ , x) and q(τ , x) are then obtained by replacing px, βτ ,

and ρ, by p̂x, β̂τ , and ρ̂, respectively.

We are thus using our model as a semi-parametric specification for the self-selected con-

ditional quantiles, and therefore for the bounds, which themselves are nonparametrically

identified. An alternative strategy, robust to violation of the parametric assumptions on the

8Note that (10) and (11) do not impose a linear representation of the quantile functions as in q(τ ,X) =
X ′βτ . Under linearity one could in principle derive tighter bounds.

9In fact, one can show that, given that G(·, ·; ρ) is a conditional copula, p 7→ G−1

(
min

(
τ
p
, 1
)
, p
)

is

non-increasing, and p 7→ G−1

(
max

(
τ+p−1

p
, 0
)
, p
)
is non-decreasing, for all τ ∈ (0, 1).
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copula, would be to construct estimators and confidence sets for the identified sets of the

copula and quantile functions. We will return to this possibility in the conclusion.

Extensions. Finally, in Appendix F we outline several extensions of the framework. The

first one is to allow for a nonparametric propensity score, instead of a parametric specifica-

tion. The second one is the construction of a test statistic to test for the absence of sample

selection. We also outline how to adapt the method to allow for some regressors to be en-

dogenous (as in Chernozhukov and Hansen, 2005, 2006), and for outcomes to be partially

censored (as in Powell, 1986).

4 Wages and labor market participation in the UK

In this section, we apply our method to measure market-level changes in wage inequality in

the UK. Moreover, we compare wages of males and females in the UK at different quantiles,

correcting for selection into work. Due to changes in employment rates, wage inequality

for those at work may provide a distorted picture of market-level inequality. Our exercise

decomposes actual changes in the aggregate wage distribution into different interpretable

sources (selection and non-selection components). Our procedure could be standardized into

building economic statistics, similar to other decomposition-based statistics such as price

indices adjusted for changes in quality.

In this application, the latent variable Y ∗ represents the opportunity cost of working for

each person, whether employed or not, at given employment rates. It is not a potential

outcome in the conventional treatment-effect sense, because Y ∗ depends on the market price

of skill, which may be affected by changes in participation rates. In order to account for

equilibrium effects on skill prices we also propose an extension of the method, and we apply

it to a counterfactual exercise.

4.1 Data and methodology

We use data from the Family Expenditure Survey (FES) from 1978 to 2000. To construct the

sample, we closely follow previous work using these data: Gosling et al. (2000) and Blundell

et al. (2003), who focus on males, and Blundell et al. (2007), who consider both males

and females. We select individuals aged 23 to 59 who are not in full-time education, and

drop observations for which education is not reported, or for which wages are missing but
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the individual is working. Hourly wages are constructed by dividing usual weekly pre-tax

earnings by usual weekly hours worked. In addition, we drop the self-employed from the

sample. We end up with 77, 630 observations for males, and 89, 848 observations for females.

During the period of analysis, wage inequality increased sharply in the UK. For example,

in our sample, the logarithm of the 90/10 percentile ratio of male hourly wages increased

from .90 in 1978 to 1.34 in 2000. This is in line with previous evidence on wage inequality

(Gosling et al., 2000). Moreover, a comparison of mean log-wages between males and females

shows a mean log-wage gap of .44 in 1978, and a mean gap of .30 in 2000. During the same

period the overall employment rate of males fell from 92% to 80%. The mean employment

rate of females also changed over the period, though not in a monotone way. This suggests

that correcting for selection into employment might be important. We now use our approach

to provide selection-corrected measures of wage inequality and gender wage gaps.

We use the quantile selection model to model log-hourly wages Y and employment status

D. Our controls X include linear, quadratic, and cubic time trends, four cohort dummies

(born in 1919-34, 1935-44, 1955-64, and 1965-77, the baseline category being 1945-54), two

education dummies (end of schooling at 17 or 18, and end of schooling after 18), and 11

regional dummies. In addition, we include as regressors the marital status and the number

of kids split by age categories (six dummies, from 1 year old to 17-18 years old). Our sample

contains 75% of married men and 74% of married women.

We follow Blundell et al. (2003) and use their measure of potential out-of-work (welfare)

income, interacted with marital status, as our excluded regressor B. This variable is con-

structed for each individual in the sample using the Institute of Fiscal Studies (IFS) tax and

welfare-benefit simulation model. We estimate the propensity score using a probit model. In

Table 1 we report several descriptive statistics on the distribution of log-wages, and on the

distribution of the estimated propensity score, by gender and marital status. Out-of work

income is a strong determinant of labor market participation. For example, in the sample

of married (respectively, single) males the likelihood of the probit model of participation

increases from −21, 454 to −20, 438 (resp., −10, 480 to −10, 275) when out-of-work income

is added.

The main sources of variation in out-of-work income are the demographic composition

of households (age, household size) and the housing costs that households face, as well as

changes in policy over time. Our maintained assumption is that those determinants are
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exogenous to the latent wage equation. Though not uncontroversial,10 out-of-work income

provides a natural choice for an excluded variable in this context. Moreover, variations in out-

of-work income over time are partly due to changes in policy, motivating the counterfactual

analysis that we will present at the end of this section.

Implementation. We specify the copula C (., .; ρ) as a member of the one-parameter Frank

family (Frank, 1979). We provide details on Frank copulas in Appendix G. We let the

copula parameter be gender and marital-status specific. We will return to the choice of the

copula below. In addition, to compute ρ̂ in (15) we take τ ℓ = ℓ/10 for ℓ = 1, ..., 9, and

ϕ (τ ℓ, Zi) = ϕ (Zi) = p
(
Zi; θ̂

)
.11 Finally, we use grid search for computation of ρ̂, and take

200 grid points.

4.2 Selection-corrected wage distributions

On the nine panels of Figure 2 we plot the evolution of the log-wage deciles for men (thick

lines), and women (thin lines). The solid lines show the deciles of observed log-wages,

conditional on employment. The dashed lines show the selection-corrected deciles, by gender.

To compute the latter, we estimated the selection-corrected quantile regression coefficients

using our method, and we then simulated the wage distribution using the method of Machado

and Mata (2005), re-adjusting the percentile levels in order to correct for sample selection.

Focusing first on male wages, we see that correcting for sample selection makes a strong

difference at the bottom of the wage distribution. For example, at the 10% percentile male

wages increased by 10% conditional on employment, while latent wages remained broadly

flat. We also see sizable differences between latent and observed wages at the 20% and 30%

percentiles. There are smaller differences in the middle and at the top of the distribution.

In addition, differences across quantiles illustrate the sharp increase in male wage inequality

in the UK over the period.

The results for male wages are consistent with low-skilled individuals being progressively

10For example, as argued by Blundell et al. (2007), the way the out-of-work income variable operates may
imply a positive correlation with potential wages, if individuals who earn more on the labor market have
better housing, hence a higher out-of-work income.

11When considering a two-parameter copula we take p
(
Zi; θ̂

)
and p

(
Zi; θ̂

)2
as instrument functions. We

also estimated the model with ϕ (τ ℓ, Zi) =
√
τ ℓ(1− τ ℓ) p

(
Zi; θ̂

)
, in order to give more weight to central

quantiles, and obtained very similar results. As already mentioned, here we do not attempt to address the
question of efficient estimation of ρ.
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driven out of the labor market. Our estimated copula has a rank correlation of −.24 for

married males, and of −.79 for singles,12 which means that individuals with higher wages

(higher U) tend to participate more (lower V ). Thus, associated with the fall in participa-

tion over time, positive selection into employment implies that individuals at the bottom

of the latent wage distribution tend to become increasingly non-employed. Selection into

employment is stronger for singles than for married males. The 95% confidence intervals

for the rank correlation coefficients are (−.35,−.06) for married males, and (−.84,−.42) for
singles, respectively.13

Looking now at female wages, we observe less difference between wages conditional on

employment and latent wages. Indeed, we estimate a copula with rank correlation of −.17 for
married females, and of −.08 for singles, suggesting that there is less positive selection into

employment for women than for men. A tentative explanation could be that for females non-

economic factors play a bigger role in participation decisions. The confidence intervals for

the correlation coefficients are (−.30,−.01) for married females, and (−.24, .16) for singles.
As a result of this evolution, the selection-corrected gender wage gap tends to decrease

over time. This is especially true at the bottom of the wage distribution. For example, at

the 10% percentile, the difference in log wages between men and women decreases from 43%

at the beginning of the period to 28% at the end. A comparable decrease can be seen at the

20% and 30% percentiles. Hence, correcting for sample selection magnifies the reduction in

the wage gap in this part of the distribution. However, at the top of the distribution the gap

seems to decrease less, from 38% to roughly 32% at the end of the period, and it is virtually

unaffected by the selection correction.

Model fit. Figure 3 shows the model fit to the wage percentiles of employed workers.

To predict wage percentiles, we simulated wages using our parameter estimates. The results

show that the fit to wage quantiles is accurate at the top of the distribution for both genders.

At the bottom of the distribution we observe some discrepancies, particularly for females.

In addition, we estimated the model allowing the Frank copula parameter to vary with

calendar time, on subsamples before and after 1990, in addition to gender and marital status

12The rank (or “Spearman”) correlation of a copula C is given by: 12
∫ 1

0

∫ 1

0
uvdC (u, v)− 3.

13We computed the confidence intervals using subsampling. Following Chernozhukov and Fernández-Val
(2005) we chose the subsample size as a constant plus the square-root of the sample size, where the constant
(≈ 1000) was taken to ensure reasonable finite sample performance of the estimator. In our application
subsampling is an attractive option given the large sample sizes.
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(not reported). We found some evidence of increasingly positive selection into employment

for females.14 The fit to the selected wage quantiles improved slightly. At the same time,

quantiles of latent wages were comparable to the ones in Figure 2.

Choice of copula. We then investigate the robustness of our results to the choice of the

copula. The symmetry properties of the Frank copula are apparent in the first two rows of

Figure 4, which shows the contour plots of the copula densities that we estimated on the

FES data.15 As a specification check, we consider an encompassing two-parameter family,

which we call the “generalized Frank copula”. This family may capture different degrees

of dependence in different regions of the (U, V ) plane, as we explain in Appendix G. The

estimated copula densities in the generalized Frank family are shown in the last two rows

of Figure 4. We see that, for both males and females, the differences between the estimated

Frank and generalized Frank copulas are relatively small. Moreover, as shown by Figure 5,

the quantiles of latent wages are similar for both genders when using a Frank or a generalized

Frank copula.

Bounds estimates. As a further check of the influence of functional forms on the esti-

mates, in Figure 6 we report estimates of the bounds derived in equation (18). We see that

bounds on wage quantiles for males (in dashed lines) are essentially on top of each other. The

bounds for females are wider, though still informative. However, the results for females are

sensitive to the estimator of the supremum of the propensity score (px) that we use. Larger

participation rates are associated with smaller values of out-of-work income. In Figure 7 we

report estimates of the bounds when trimming 1% of extreme observations in out-of-work

income. We see that, while the results for males are very stable, those for females are very

different, showing extremely wide bounds throughout the wage distribution. This reflects

the fact that the selection problem is more severe for females, as their employment rates are

lower.

14On US data, Mulligan and Rubinstein (2008) document that women’s selection into participation shifted
from being negative in the 1970s to being positive in the 1990s.

15As a graphical convention (common in the literature on copulas), we plot the copula density by rescaling
the margins so that they are standard normal. That is, if C(u, v) denotes the copula, we plot the contours
of:

(x, y) 7→ φ (x)φ (y)
∂2C

∂u∂v
(Φ (x) ,Φ(y)) ,

where φ and Φ denote the standard normal density and cdf, respectively.
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In Figure 8 we compare the bounds, for males, for two education groups: statutory

schooling (71% of the sample, in thin lines) and high-school and college (29%, in thick

lines). We use a trimmed estimator of the supremum of the propensity score. We see that

the bounds are narrow for more educated individuals, and that they are wider for the low

educated whose employment rates are lower. We observe some evidence of an increase in the

education gap over time, particularly at the median, although the evidence after correcting

for selection is more mixed. The graphs also show evidence of an inequality increase within

the education groups that we consider (similarly as in Blundell et al., 2007).

4.3 Counterfactuals in the presence of equilibrium effects

In this section we consider a simple equilibrium model of wage quantile functions and non-

random selection into work as a flexible tool for examining changes in the distribution of

wages over time. We show how the simplicity of linear quantiles can be essentially preserved

while embedding wage functions in a model of human capital, employment decisions, and

labor demand. We then use the model to recompute wage and employment distributions in

a counterfactual scenario where potential out-of-work income is kept at its 1978 value.

Wages and participation. We abstract from hours of work and dynamics. Let rst be the

skill price of a worker of education level s in time period t. Let also h (s, x, u) be the amount

of human capital of a worker with education (or “skill level”) s, observed characteristics x

(such as cohort and gender), and unobserved ability u. The wage rate for an individual i of

schooling level Si in period t is:

Wit = rSi

t · h (Si, Xit, Uit) ,

where there are two skill levels (Si ∈ {1, 2}). Note that the human capital function h is

time-invariant. This assumption is called the “proportionality hypothesis” in Heckman and

Sedlacek (1985).

The individual work decision is:

Dit = 1
{
rSi

t h (Si, Xit, Uit) ≥ WR (Si, Zit, ηit)
}
,

where Zit = (Bit, Xit). We mimic the setting of standard selection models consisting of an

outcome equation and a participation equation.
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LetX it ≡ (Si, Xit). The log-human capital function and log-reservation wage are specified

as: lnh (Si, Xit, Uit) ≡ X
′

itβ(Uit), and: lnWR (Si, Zit, ηit) ≡ X
′

itγ (ηit) + B′
itϕ, so that the

participation decision is:

Dit = 1
{
X

′

itγ (ηit)−X
′

itβ (Uit) ≤ ln rSi

t − B′
itϕ
}
= 1

{
Vit ≤ F

(
ln rSi

t − B′
itϕ,X it

)}
,

where the composite error X
′

it (γ (ηit)− β (Uit)) is assumed independent of Zit given X it = x

with cdf F (., x), and Vit is its uniform transformation. In practice, we approximate the

propensity score by a single-index (probit) model of the form F
(
ln rSi

t − Z ′
itψ
)
.

Using wage and participation equations, our quantile selection approach allows one to

perform partial equilibrium counterfactual exercises where skill prices rst are kept constant.

In order to allow for equilibrium responses in skill prices, we now introduce a model for labor

demand. See Heckman, Lochner and Taber (1998) and Lee and Wolpin (2006) for related

approaches in structural settings.

Labor demand. Consider a one-sector economy with one physical capital input (which we

assume fixed) and two types of human capital. We assume a standard aggregate production

function: Ft (Lt, Kt) = AtL
α
tK

1−α
t , where Lt is a CES aggregator of the human capital inputs:

Lt =
[
atH

φ
1t + (1− at)H

φ
2t

]1/φ
. If φ = 1 the two labor skills are perfect substitutes, in which

case an increase in the supply of one type of human capital does not affect the relative skill

prices. The scope for equilibrium effects critically depends on the structure of production.

From the first-order conditions we obtain:

ln

(
r1t
r2t

)
= ln

(
at

1− at

)
+ (φ− 1) ln

(
H1t

H2t

)
. (19)

In Appendix H we discuss how to recover estimates of H1t, H2t, φ, and at from micro-data

based on (19). In practice, due to weak identification from our time-series, we calibrate

φ = .4 using Card and Lemieux (2001)’s estimate on UK data. We also import α = .6 from

the literature.

Counterfactual equilibrium skill prices. Suppose we are interested in estimating the

counterfactual equilibrium skill prices, ln r̃st say, that would have prevailed under technology

conditions in period t and the labor force composition or the welfare policy in some other

period.
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Equilibrium log skill prices satisfy the equations:

ln rst = lnAt + lnα + (1− α) ln

(
Kt

Lt

)
+ ln ast + (φ− 1) ln

(
Hst

Lt

)
,

where a1t ≡ at and a2t ≡ 1− at. In addition, the labor supply equations imply:

Hst (r
s
t ) =

∑

Si=s

F (ln rst − Z ′
itψ)

∫ 1

0

eX
′

itβ(u)dG [u, F (ln rst − Z ′
itψ) ; ρ] , s = 1, 2, (20)

Lt =
(
a1t
[
H1t

(
r1t
)]φ

+ a2t
[
H2t

(
r2t
)]φ)1/φ

. (21)

The log-difference between observed and counterfactual skill prices is given by:

ln r̃st − ln rst = (1− α) ln

(
Lt

L̃t

)
+ (φ− 1)

[
ln

(
H̃st

L̃t

)
− ln

(
Hst

Lt

)]
, s = 1, 2, (22)

where the counterfactual skill aggregates H̃st and L̃t satisfy (20)-(21) at prices (r̃1t , r̃
2
t ). Note

that capital (which is fixed) and neutral technical progress are common to both sets of prices

and thus cancel out in (22).

Counterfactual log-skill prices ln r̃1t and ln r̃2t are then obtained as the solution to the

two nonlinear equations in (22), using (20)-(21). This fixed-point problem depends on the

following inputs: the parameters β, ψ, ρ, and rst (estimated using our quantile selection

method), the aggregate quantities Hst and Lt and the technological shocks at (estimated as

explained in Appendix H), and the parameters φ and α (which we take from the literature).

As starting value for the counterfactual r̃st we take the estimated rst , and we solve for the

fixed point iteratively.

Results. Figure 9 shows the estimates of latent wage quantiles in two scenarios: when

out-of-work income is as in the data (solid lines), and in a counterfactual scenario when

out-of-work income is kept at its 1978 value (dashed). The specification that we use has

some differences compared to the one in Figure 2. In particular, here the two education

groups are college and non-college, the specification is pooled across genders, and controls

are interacted with gender.16 We present the results by gender.

We see that accounting for general equilibrium responses tends to lower latent counterfac-

tual quantiles throughout the distribution. This is due to the fact that in the counterfactual

scenario out-of-work income is lower, thus increasing employment rates, and as a result

16The fit of the model used in this subsection is shown in Figures 12 and 13.
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pushing skill prices down. General equilibrium effects appear to be relatively small for both

genders, although they seem more sizable at the bottom of the distribution.

Figure 11 shows actual employment rates (as predicted by the model), and employment

rates in the partial equilibrium and general equilibrium counterfactuals. We see that in the

counterfactual employment rates tend to increase (dashed lines). The dampening effect on

employment that comes from the general equilibrium response of skill prices is quantitatively

small (dotted lines).

Lastly, Figure 11 shows the actual evolution of wages conditional on employment as

predicted by the model (solid lines), and the evolution in the counterfactual scenario where

out-of-work income is kept at its 1978 value, with skill prices fixed (dashed) and with skill

prices adjusting through general equilibrium (dotted). We see that, in the partial equilibrium

counterfactual, wages of male workers tend to be lower at the bottom of the distribution,

due to positive selection into employment. In addition, general equilibrium responses imply

further reduction in wages. In the middle and at the top of the distribution, and for females,

differences between actual and counterfactual evolution appear to be smaller.

5 Conclusion

We have presented a three-step method to correct quantile regression estimates for sample

selection. In a first step, the parameters of the participation equation are estimated. In a

second step, the parameters of the copula linking the percentile error of the outcome equa-

tion to the participation error are computed by minimizing a method-of-moments objective

function. In a third step, quantile parameters are computed by minimizing a weighted check

function, using a fast linear programming routine. The method provides a simple and in-

tuitive way to compute selection-adjusted quantile parameters. Moreover, our application

shows that such selection corrections for quantiles may be as empirically relevant as in the

standard regression context of the popular Heckman (1979) sample selection model.

An important issue is the choice of the copula. An approach that treats the copula

nonparametrically is conceptually attractive, for example a sieve approach based on con-

ditional moment restrictions as in Chen and Pouzo (2009, 2012). It would be desirable to

allow the copula to be partially identified, and to conduct inference on the identified set of

quantile functions. The empirical application suggests that nonparametric bounds might be

informative when selection is not too severe (as in the case of men in the application).
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APPENDIX

A Proofs

Proof of Lemma 1. Equation (6) is a direct application of (5), using the fact that by A3 both
Gx and FY |D=1,Z are strictly increasing in their first argument.

To show the second part, let x ∈ X and let Gx satisfy (6). Pick a zx ∈ Zx, and define:

FY ∗|X(y|x) ≡ G−1
x

(
FY |D=1,Z(y|zx), p(zx)

)
.

For all (z, y) in the support of (Z, Y ) given X = x we have:

Gx

(
FY ∗|X(y|x), p(z)

)
= Gx

(
G−1

x

(
FY |D=1,Z(y|zx), p(zx)

)
, p(z)

)

= FY |D=1,Z

(
F−1
Y |D=1,Z

(
FY |D=1,Z(y|zx)

∣∣zx
) ∣∣z
)

= FY |D=1,Z

(
y
∣∣z
)
,

where we have used (6) to obtain the second equality.

Proof of Proposition 1. Let us start with i). Evaluating (6) at z1 = z and z2 = zx, and

noting that G−1
x (τ , 1) = τ , we have that Gx (τ , p(z)) = FY |D=1,Z

(
F−1
Y |D=1,Z

(
τ
∣∣zx
) ∣∣z
)
. Hence Gx

is identified. The identification of q then comes from (5) and Assumption A3.
Let us now suppose ii). Let Gx and G̃x satisfy model (1)-(3), and let Assumptions A1 to A4

hold. Then, by (6) we have:

Gx

[
G−1

x (τ , p2) , p1
]
− G̃x

[
G̃−1

x (τ , p2) , p1

]
= 0, for all (p1, p2) ∈ Px × Px.

Hence, for each τ ∈ (0, 1), the function:

(p1, p2) 7→ Gx

[
G−1

x (τ , p2) , p1
]
− G̃x

[
G̃−1

x (τ , p2) , p1

]
,

which is real analytic, is zero on a product of two open neighborhoods. As a result it is zero
everywhere on (0, 1)× (0, 1), and evaluating it at p2 = 1 leads to:

Gx (τ , p1)− G̃x (τ , p1) = 0, for all p1 ∈ Px.

Hence, as Gx and G̃x are real analytic in their second argument, they coincide on (0, 1) × (0, 1).
This implies that Gx, and hence q (as in the first part of the proof), are identified.

Proof of Proposition 2. For clarity here we denote x = (x̃, 1), where x̃ contains all covariates
but the constant term. Let also β̃ contain all β coefficients except the intercept. Finally, let
q̃d (x, p) = x′βG−1(τ ,p;ρ). For q̃d (x, p) to be additive in x̃ and p, it is necessary and sufficient that

β̃G−1(τ ,p;ρ) does not depend on p. This happens only if β̃τ does not depend on τ , or if G−1 (τ , p; ρ)

does not depend on p. In the second case, taking p = 1 implies that G−1 (τ , p; ρ) = τ for all (τ , p),
so U and V are independent.
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B Bounds analysis

We show that the quantile bounds (10) and (11) cannot be improved upon. In the analysis we omit
the x subscript for conciseness. We start by noting that, as the model is correctly specified, there
exists a copula C0 (with conditional copula G0) and a cdf F0, which are the true copula and cdf of
(U, V ) and Y ∗, respectively. Let P denotes the support of p(Z), and let p = supP p.

Let G̃ be a conditional copula strictly increasing in its first argument, and let us define the
following subcopula:

C(τ , p) ≡ C0

(
G−1

0

(
G̃ (τ , p) , p

)
, p
)
, for all (τ , p) ∈ (0, 1)× P. (B1)

It is simple to see that C is a subcopula.17 It can thus be extended to a copula on (0, 1) × (0, 1)
(e.g., Lemma 2.3.5. in Nelsen, 1999). With some abuse of notation we denote the extension as C,
and denote G(τ , p) = C(τ , p)/p.

Lastly, we assume that the supports of Y ∗ and Y coincide, denote the support as Y, and we
let:

F (y) ≡ G̃−1 (G0 (F0(y), p) , p) , for all y ∈ Y. (B2)

Note that F is a cdf.
Let (Ũ , Ṽ ) be a bivariate random variable drawn from C, independently of Z. Let D̃ = 1{Ṽ ≤

p(Z)}, Ỹ ∗ = F−1(Ũ), and Ỹ = Ỹ ∗ if D̃ = 1. We start by showing that the distributions of (Ỹ , D̃, Z)
and (Y,D,Z) coincide. To see this, note that:

Pr
(
Ỹ ≤ y | D̃ = 1, Z = z

)
= G (F (y), p(z))

= G
(
G̃−1 (G0 (F0(y), p) , p) , p(z)

)

= G0 (F0(y), p(z))

= Pr (Y ≤ y |D = 1, Z = z) ,

where we have used (B2) and (B1) in the second and third equalities, respectively.
Finally, to see that F in (B2) can get arbitrarily close to the bounds in (10) and (11), we take G̃

to be arbitrarily close to the lower and upper Fréchet copula bounds. For the upper bound, we take

a conditional copula G̃ that satisfies Assumption A3 and is arbitrarily close to (τ , p) 7→ min
(
τ
p , 1
)
.

Similarly, for the lower bound we take a G̃ that satisfies Assumption A3 and is arbitrarily close to

(τ , p) 7→ max
(
τ+p−1

p , 0
)
.18

C Estimation with discrete covariates

Consider a model where covariates X and Z are discrete, with a saturated quantile specification:

q(τ ,X) = X ′βτ =
K∑

k=1

βτk1 {X = xk} ,

17This is because C(τ , 0) = C(0, p) = 0, and C is two-increasing; that is: C(τ2, p2)−C(τ2, p1)−C(τ1, p2)+
C(τ1, p1) ≥ 0 for τ1 ≤ τ2 and p1 ≤ p2.

18For example, one may take G̃(τ , p) = Cθ(τ , p)/p for θ > 0, where:

Cθ(τ , p) ≡
1

2(θ − 1)

(
1 + (τ + p)(θ − 1)−

√
(1 + (τ + p)(θ − 1))

2 − 4τpθ(θ − 1)

)

is the Plackett copula family (e.g., Smith, 2003). Lower and upper Fréchet bounds correspond to θ → 0 and
θ → +∞, respectively.
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with xk denoting the points of support of X. Let Gk(τ , c) denote the mean of G
(
τ , p(Zi; θ̂); c

)
for

participants in cell Xi = xk. Let also r̂i denote the empirical rank of Yi in the outcome distribution,
conditional on (Di = 1, Xi). By (16), x′kβ̂τk (c) is simply the empirical Gk(τ , c)-quantile of Yi
conditional on (Di = 1, Xi = xk). It follows that, conditional on (Di = 1, Xi = xk), Yi ≤ X ′

iβ̂τ (c)
is equivalent to r̂i ≤ Gk(τ , c).

Let us replace the finite sum in (15) by an integral with respect to a continuous function κ(τ).
The above shows that, in the model with discrete covariates, ρ̂ minimizes:

∥∥∥∥∥

N∑

i=1

K∑

k=1

∫ 1

0
Di1 {Xi = xk}ϕ (τ , Zi)

[
1
{
r̂i ≤ Gk(τ , c)

}
−G

(
τ , p(Zi; θ̂); c

)]
κ(τ)dτ

∥∥∥∥∥ .

Using the change in variables u ≡ Gk(τ , c) we equivalently have that ρ̂ minimizes the following
objective:

∥∥∥∥∥

N∑

i=1

K∑

k=1

∫ 1

0
Di1 {Xi = xk}ϕ

(
G

−1
k (u, c) , Zi

)
×

[
1 {r̂i ≤ u} −G

(
G

−1
k (u, c) , p(Zi; θ̂); c

) ]
κ(G

−1
k (u, c))

∂G
−1
k (u, c)

∂u
du

∥∥∥∥∥,

which is continuously differentiable with respect to c as soon as ϕ, κ, G, and G
−1
k , ∂G

−1

k

∂u , are
continuously differentiable with respect to τ and c, respectively.

D An alternative estimator for the copula parameter

From (6) we have, for all x ∈ X and (z1, z2) ∈ Zx ×Zx:

E

(
1
{
Y ≤ qd (τ , z2)

} ∣∣∣ D = 1, Z = z1

)
= G

[
G−1 (τ , p(z2; θ); ρ) , p(z1; θ); ρ

]
,

where qd (τ , z2) denotes the τ -quantile of Y conditional on (D = 1, Z = z2).
Given consistent estimates q̂d (τ , z) and θ̂, we thus propose estimating ρ by minimizing the

following objective with respect to c:

N∑

i=1

∑

j 6=i

L∑

ℓ=1

Di

(
1
{
Yi ≤ q̂d (τ ℓ, Bj , Xi)

}
−G

[
G−1

(
τ ℓ, p(Bj , Xi; θ̂); c

)
, p(Bi, Xi; θ̂); c

] )2
.

In case covariates are discrete, the qd(τ , z) may be estimated as sample quantiles, cell-by-cell,
as in Chamberlain (1993). Alternatively, when covariates are continuous, nonparametric quantile
regression methods may be used, such as the series-based quantile regression estimator of Belloni,
Chernozhukov and Fernández-Val (2011).

The method can be iterated. Once an estimator of ρ is available one can update it as follows.
Recall that the observed quantiles satisfy:

qd (τ , z) = x′βG−1(τ ,p(z);ρ).

Hence, given estimates ρ̂ and β̂, we can estimate:

q̃d (τ , z) ≡ x′β̂G−1(τ ,p(z);ρ̂),
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and update ρ by minimizing:

N∑

i=1

∑

j 6=i

L∑

ℓ=1

Di

(
1
{
Yi ≤ q̃d (τ ℓ, Bj , Xi)

}
−G

[
G−1

(
τ ℓ, p(Bj , Xi; θ̂); c

)
, p(Bi, Xi; θ̂); c

] )2
.

This procedure may be iterated further. We leave the study of the asymptotic properties of this
alternative estimator of the copula parameter to future work.

E Asymptotic properties

In this section we start by deriving the asymptotic distribution of β̂τ given a consistent and asymp-
totically normal estimator of the copula parameter ρ. Then, in the second part of the section we
derive the joint asymptotic distribution of β̂τ and ρ̂, for ρ̂ given by (15).

E.1 Analysis conditional on a consistent and asymptotically nor-

mal estimator of ρ

Let:
giτ ≡ Di

(
1
{
Yi ≤ X ′

iβτ
}
−G (τ , p (Zi; θ) ; ρ)

)
.

We make the following assumptions.

Assumption E1

i) There exists a positive definite matrix Στ such that:

√
N




1
N

∑N
i=1Xigiτ
θ̂ − θ
ρ̂− ρ


 d→ N (0,Στ ) .

ii) The cdf of Y given Z = Zi and Di = 1 is absolutely continuous, with continuous density fi
bounded away from zero and infinity at the points X ′

iβτ , i = 1, ..., N .
iii) The function G is continuously differentiable with respect to its second and third arguments,

with derivatives ∂pG and ∂ρG, respectively. The propensity score p(·; θ) is continuously differentiable
with respect to its second argument, with derivative ∂θp.

iv) There exist a positive definite matrix Jτ , and matrices P1τ and P2τ , such that

Jτ = plim
N→∞

1

N

N∑

i=1

p (Zi; θ)XiX
′
ifi
(
X ′

iβτ
)
,

P1τ = plim
N→∞

1

N

N∑

i=1

p (Zi; θ)Xi (∂θp (Zi; θ))
′ ∂pG (τ , p (Zi; θ) ; ρ) ,

P2τ = plim
N→∞

1

N

N∑

i=1

p (Zi; θ)Xi (∂ρG (τ , p (Zi; θ) ; ρ))
′ .

Condition i) requires that 1
N

∑N
i=1Xigiτ , θ̂, and ρ̂ jointly satisfy a central limit theorem. In

particular, this requires ρ to be point-identified from the population counterpart of (15). Under
weak regularity conditions, it is easy to show that:

1√
N

N∑

i=1

Xigiτ
d→ N

(
0,E

[
Gτi (1−Gτi) p (Zi; θ)XiX

′
i

])
,
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where we have denoted:
Gτi ≡ G (τ , p (Zi; θ) ; ρ) . (E3)

Condition ii) is standard in quantile regression (e.g., Theorem 4.2 in Koenker and Bassett,
1978). The only difference here is that we work with the cdf of Y given Z, and not given X.
Condition iii) requires that the copula and propensity score be differentiable. Most of the usual
parametric families of copulas are differentiable in both their arguments. Exceptions are piecewise-
constant empirical copulas, which are not continuous. Lastly, Condition iv) requires the existence
of moments.

Theorem E1 Let τ ∈]0, 1[, and let Assumptions A1 to A4 and E1 hold. Then, as N tends to
infinity: √

N
(
β̂τ − βτ

)
d→ N

(
0, J−1

τ PτΣτP
′
τJ

−1
τ

)
,

where Pτ ≡ [Idimβ ,−P1τ ,−P2τ ], and Jτ , P1τ , P2τ are given in Assumption E1.

Theorem E1 provides the asymptotic distribution of quantile estimates, corrected for the fact
that θ̂ and ρ̂ have been estimated. Note that, in the absence of sample selection, the formula boils
down to the standard expression (Koenker, 2005, p.120).

Proof.

By a standard result in quantile regression, the following approximate moment condition is
satisfied, see e.g. Theorem 3.3. in Koenker and Bassett (1978):

1

N

N∑

i=1

Xigi

(
β̂τ , θ̂, ρ̂

)
= Op

(
1

N

)
, (E4)

where
gi (b, a, c) ≡ Di

(
1
{
Yi ≤ X ′

ib
}
−G (τ , p (Zi; a) ; c)

)
.

An expansion around the truth yields, evaluating the functions and their derivatives at true
values:

1

N

N∑

i=1

Xigi

(
β̂τ , θ̂, ρ̂

)
= Op

(
1

N

)

= Ê [Xigiτ ] +
∂E [Xigiτ ]

∂β′

(
β̂τ − βτ

)

+
∂E [Xigiτ ]

∂θ′

(
θ̂ − θ

)
+
∂E [Xigiτ ]

∂ρ′
(ρ̂− ρ) + op

(
1√
N

)
,

where Jτ = ∂E[Xigiτ ]
∂β′ , P1τ = −∂E[Xigiτ ]

∂θ′
, and P2τ = −∂E[Xigiτ ]

∂ρ′ exist by Assumption E1 parts ii), iii),

and iv), and Ê[Zi] =
1
N

∑N
i=1 Zi denotes a sample mean. Hence, as Jτ is non-singular:

β̂τ − βτ = −J−1
τ

[
Ê [Xigiτ ]− P1τ

(
θ̂ − θ

)
− P2τ (ρ̂− ρ)

]
+ op

(
1√
N

)
(E5)

= −J−1
τ Pτ




Ê [Xigiτ ]

θ̂ − θ
ρ̂− ρ


+ op

(
1√
N

)
.

The result then comes from part i) in Assumption E1.
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E.2 Joint analysis of β̂τ and ρ̂

We now derive the joint asymptotic distribution of β̂τ and ρ̂, for ρ̂ given by (15). For simplicity we
focus on the just-identified case, where ρ and ϕ have the same dimensions.19

Assumption E2

i) There exists a positive definite matrix H, and a function Si ≡ s (Di, Zi), such that:

θ̂ − θ = −H−1
Ê [Si] + op

(
1√
N

)
. (E6)

ii) For all ℓ, there exist a positive definite matrix J̃τℓ, and matrices P̃1τℓ and P̃2τ ℓ, such that

J̃τℓ = plim
N→∞

1

N

N∑

i=1

p (Zi; θ)ϕ (τ ℓ, Zi)X
′
ifi
(
X ′

iβτℓ
)
,

P̃1τ ℓ = plim
N→∞

1

N

N∑

i=1

p (Zi; θ)ϕ (τ ℓ, Zi) (∂θp (Zi; θ))
′ ∂pG (τ ℓ, p (Zi; θ) ; ρ) ,

P̃2τ ℓ = plim
N→∞

1

N

N∑

i=1

p (Zi; θ)ϕ (τ ℓ, Zi) (∂ρG (τ ℓ, p (Zi; θ) ; ρ))
′ .

iii) The following matrix inverse exists:

Aρ ≡
[

L∑

ℓ=1

(
P̃2τℓ − J̃τℓJ

−1
τℓ
P2τ ℓ

)]−1

. (E7)

Condition i) will be satisfied if θ̂ is asymptotically linear, for example when it is a regular
maximum likelihood estimator. Conditions ii) and iii) require that some moments exist.

Define the following matrices:

Bρ ≡ −Aρ

[
J̃τ1J

−1
τ1 , ..., J̃τLJ

−1
τL

]
, (E8)

Cρ ≡ Aρ

(
L∑

ℓ=1

[
P̃1τℓ − J̃τℓJ

−1
τℓ
P1τ ℓ

]
H−1

)
, (E9)

and, for a given τ ∈]0, 1[:

Aβ (τ) ≡ J−1
τ P2τAρ, (E10)

Bβ (τ) ≡ J−1
τ P2τBρ, (E11)

Cβ (τ) ≡ J−1
τ

(
P2τCρ − P1τH

−1
)
. (E12)

Then, let:

∆τ ≡
(
Aβ (τ) −J−1

τ Bβ (τ) Cβ (τ)
Aρ 0 Bρ Cρ

)
.

19Note that the instrument function ϕ (τ , Zi) = p
(
Zi; θ̂

)
used in Section 4 depends on θ̂. This slightly

affects the formula for the asymptotic variance. For simplicity here we do not account for this dependence.
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Lastly, let:

σiℓm ≡ min {Gτℓi, Gτmi} −GτℓiGτmi,

σiℓ (τ) ≡ min {Gτℓi, Gτi} −GτℓiGτi,

σi (τ) ≡ Gτi (1−Gτi) ,

where Gτi is given by (E3), and define:

Ωτ ≡




Ω1,1
τ Ω1,2

τ ... Ω1,L+2
τ 0

Ω2,1
τ Ω2,2

τ ... Ω2,L+2
τ 0

... ... ... ... ...

ΩL+2,1
τ ΩL+2,2

τ ... ΩL+2,L+2
τ 0

0 0 ... 0 E [SiS
′
i]



, (E13)

where Ωτ is symmetric, and:

Ω1,1
τ ≡

L∑

ℓ=1

L∑

m=1

E
[
σiℓmp (Zi; θ)ϕ (τ ℓ, Zi)ϕ (τm, Zi)

′] ,

Ω1,2
τ ≡

L∑

ℓ=1

E
[
σiℓ(τ)p (Zi; θ)ϕ (τ ℓ, Zi)X

′
i

]
,

Ω1,2+m
τ ≡

L∑

ℓ=1

E
[
σiℓmp (Zi; θ)ϕ (τ ℓ, Zi)X

′
i

]
, m = 1, ..., L,

Ω2,2
τ ≡ E

[
σi(τ)p (Zi; θ)XiX

′
i

]
,

Ω2,2+m
τ ≡ E

[
σim(τ)p (Zi; θ)XiX

′
i

]
, m = 1, ..., L,

Ω2+ℓ,2+m
τ ≡ E

[
σiℓmp (Zi; θ)XiX

′
i

]
, ℓ = 1, ..., L, m = 1, ..., L.

We have the following result.

Theorem E2 Let Assumptions A1 to A4, E1, and E2 hold. Suppose that dimϕ = dim ρ. Then:

√
N

(
β̂τ − βτ
ρ̂− ρ

)
d→ N

(
0,∆τΩτ∆

′
τ

)
.

Proof.

As in the proof of Theorem E1, we start with an approximate moment equation:

L∑

ℓ=1

Ê

[
ϕ (τ ℓ, Zi) gi

(
β̂τℓ , θ̂, ρ̂

)]
= Op

(
1

N

)
.

Expanding around true parameter values:

L∑

ℓ=1

Ê

[
ϕ (τ ℓ, Zi) gi

(
β̂τℓ , θ̂, ρ̂

)]
=

L∑

ℓ=1

{
Ê [ϕ (τ ℓ, , Zi) giτℓ ] + J̃τℓ

(
β̂τℓ − βτℓ

)

−P̃1τℓ

(
θ̂ − θ

)
− P̃2τ ℓ (ρ̂− ρ)

}
+ op

(
1√
N

)
.

32



So, by (E5):

Op

(
1

N

)
=

L∑

ℓ=1

{
Ê [ϕ (τ ℓ, Zi) giτℓ ]− P̃1τ ℓ

(
θ̂ − θ

)
− P̃2τℓ (ρ̂− ρ)

−J̃τℓ
(
J−1
τℓ

[
Ê [Xigiτℓ ]− P1τℓ

(
θ̂ − θ

)
− P2τ ℓ (ρ̂− ρ)

])}
+ op

(
1√
N

)
.

So, by (E6):

ρ̂− ρ =

[
L∑

ℓ=1

(
P̃2τℓ − J̃τℓJ

−1
τℓ
P2τ ℓ

)]−1

×
{

L∑

ℓ=1

Ê [ϕ (τ ℓ, Zi) giτℓ ]−
L∑

ℓ=1

J̃τℓJ
−1
τℓ

Ê [Xigiτℓ ]

+

(
L∑

ℓ=1

[
P̃1τℓ − J̃τℓJ

−1
τℓ
P1τ ℓ

]
H−1

)
Ê [Si]

}
+ op

(
1√
N

)
.

Hence:

ρ̂− ρ = Aρ

(
L∑

ℓ=1

Ê [ϕ (τ ℓ, Zi) giτℓ ]

)
+BρÊ [Xigi] + CρÊ [Si] + op

(
1√
N

)
,

where Aρ, Bρ, and Cρ are given by (E7)-(E9), and:

Ê [Xigi] =




Ê [Xigiτ1 ]
...

Ê [XigiτL ]


 .

Let now τ ∈]0, 1[. Using (E5):

β̂τ − βτ = −J−1
τ

[
Ê [Xigiτ ]− P1τ

(
θ̂ − θ

)
− P2τ (ρ̂− ρ)

]
+ op

(
1√
N

)

= −J−1
τ

[
Ê [Xigiτ ] + P1τH

−1
Ê [Si]

−P2τ

(
Aρ

(
L∑

ℓ=1

Ê [ϕ (τ ℓ, Zi) giτℓ ]

)
+BρÊ [Xigi] + CρÊ [Si]

)]
+ op

(
1√
N

)
.

So:

β̂τ − βτ = Aβ (τ)

(
L∑

ℓ=1

Ê [ϕ (τ ℓ, Zi) giτℓ ]

)
− J−1

τ Ê [Xigiτ ]

+Bβ (τ) Ê [Xigi] + Cβ (τ) Ê [Si] + op

(
1√
N

)
,

where Aβ (τ), Bβ (τ), and Cβ (τ) are given by (E10)-(E12).
Next, denote:

ψiτ ≡




∑L
ℓ=1 ϕ (τ ℓ, Zi) giτ ℓ

Xigiτ
Xigiτ1
...

XigiτL
Si



.
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From the above, we have:

√
N

(
β̂τ − βτ
ρ̂− ρ

)
d→ N (0, Vτ ) ,

with:

Vτ =

(
Aβ (τ) −J−1

τ Bβ (τ) Cβ (τ)
Aρ 0 Bρ Cρ

)
E
(
ψiτψ

′
iτ

)( Aβ (τ) −J−1
τ Bβ (τ) Cβ (τ)

Aρ 0 Bρ Cρ

)′

.

Finally, we check that E
(
ψiτψ

′
iτ

)
= Ωτ given by (E13):

E



(

L∑

ℓ=1

ϕ (τ ℓ, Zi) giτℓ

)(
L∑

m=1

ϕ (τm, Zi) giτm

)′

 =

L∑

ℓ=1

L∑

m=1

E
[
σiℓmp (Zi; θ)ϕ (τ ℓ, Zi)ϕ (τm, Zi)

′] ,

and similarly:

E

[(
L∑

ℓ=1

ϕ (τ ℓ, Zi) giτ ℓ

)
(Xigiτm)

′

]
=

L∑

ℓ=1

E
[
σiℓmp (Zi; θ)ϕ (τ ℓ, Zi)X

′
i

]
,

E
[
(Xigiτℓ) (Xigiτm)

′] = E
[
σiℓmp (Zi; θ)XiX

′
i

]
,

and, as Si is a function of (Di, Zi), we have E [giτ ℓS
′
i] = 0.

This completes the proof of Theorem E2.

Estimating the asymptotic variance. To construct an empirical counterpart of the asymp-
totic variance appearing in Theorem E1, note that all matrices but Jτ can be estimated by sample
analogs, replacing the population expectations by empirical means. Moreover, following Powell
(1986), a consistent estimator of Jτ is:

Ĵτ =
1

2NhN

N∑

i=1

1 {|̂εi (τ) | ≤ hN}DiXiX
′
i,

where ε̂i ≡ Yi −X ′
iβ̂τ , and hN is a bandwidth that satisfies hN → 0 and Nh2N → +∞ as N tends

to infinity. We may proceed similarly to estimate Vτ that appears in Theorem E2.

Extensions. The results can be easily generalized to derive the asymptotic distribution for a

finite number of quantiles
(
β̂τ1 , ..., β̂τL

)
. An interesting extension is to derive the large sample

theory of the quantile process τ 7→
√
N
(
β̂τ − βτ

)
. This can be done along the lines of Koenker

and Xiao (2002) or Chernozhukov and Hansen (2006). Confidence bands for unconditional effects
may be derived using the results in Chernozhukov, Fernández-Val and Melly (2013).

F Extensions

Treatment effects with selection on unobservables. As a direct extension of model
(1)-(3) consider the following system of equations:

Y ∗
0 = q (U0, X) , Y ∗

1 = q (U1, X) , Y = (1−D)Y ∗
0 +DY ∗

1 ,
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where, in the spirit of Assumption A1, (U0, U1, V ) is assumed independent of Z given X. This
model coincides with the standard potential outcomes framework in the treatment effects litera-
ture (Vytlacil, 2002). In the context of the empirical application, Y ∗

0 = 0, and Y ∗
1 is the partial

equilibrium causal effect of working. In this framework, the quantile IV method of Chernozhukov
and Hansen (2005) relies on an assumption of rank invariance or rank similarity which restricts
the dependence between U0 and U1. Specifically, rank invariance (respectively, similarity) requires
that U0 and U1 be identically distributed (resp., given V ), thus ruling out most patterns of sample
selection. In contrast, in the identification analysis our approach leaves the conditional distribution
of U0, U1 and V given X unrestricted.

Nonparametric propensity score. Although the paper focuses on the case where the propen-
sity score is parametrically specified, our approach can accommodate a nonparametric modelling of
p (Z) as well. A difficulty is that the G function has p (Z) in the denominator. A similar problem
arises in Buchinsky and Hahn (1998)’s censored quantile regression estimator. When using a non-
parametric estimate p̂ (Z) (for example, a kernel-based Nadaraya-Watson estimator), Buchinsky
and Hahn’s construction relies on trimming out the observations for which p̂ (Zi) < c, where c > 0
is a small number. A suitable choice of c guarantees root-N consistency of the quantile regression
coefficients. We conjecture that a similar device could work in our case, although we leave this
extension to future work.

Testing for the absence of sample selection. Under the null hypothesis of absence of
sample selection, we have G (τ , p (Z; θ) ; ρ) = τ . So, βτ satisfies:

E
[
1
{
Y ≤ X ′βτ

}
− τ |D = 1, Z = z

]
= 0, for all τ ∈ (0, 1).

This motivates using a test statistic of the form:

S =

∥∥∥∥∥

L∑

ℓ=1

N∑

i=1

Diϕ (τ ℓ, Zi)
(
1
{
Yi ≤ X ′

iβ̂τℓ

}
− τ ℓ

)∥∥∥∥∥

2

,

where ϕ (τ , Zi) are instrument functions, and β̂τ is the quantile regression estimate of the τ -specific
slope coefficient, computed on the sample of participants (Di = 1).

Endogeneity. Let us assume that the latent outcome is given by the following linear quantile
model:

Y ∗ = E′αU +X ′βU , (F14)

where the percentile level U is independent of X, but may be correlated with the endogenous regres-
sor E. As before, the participation equation is given by (2). Suppose that (U, V ) is independent of
Z given X. Assume also that q (τ ,X,E) ≡ E′ατ +X ′βτ is strictly increasing in its first argument.
Then, for any τ ∈ (0, 1):

E
[
1
{
Y ≤ E′ατ +X ′βτ

}
−G (τ , p (Z; θ) ; ρ) | D = 1, Z = z

]
= 0. (F15)

To estimate ρ, θ, and {ατ , βτ} for any τ ∈ [0, 1], one can use the following three-step estimation
method, which extends Chernozhukov and Hansen (2006)’s estimator to correct for selection. In
the first step, we compute θ̂. In the second step, we compute ρ̂ as:

ρ̂ = argmin
c

∥∥∥∥∥

L∑

ℓ=1

N∑

i=1

Diϕ (τ ℓ, Zi)
(
1
{
Yi ≤ E′

iα̃τℓ (c) +X ′
iβ̃τℓ (α̃τℓ (c) ; c)

}

−G
(
τ ℓ, p

(
Zi; θ̂

)
; c
))∥∥∥∥∥,
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where, for µτ (Zi) a dimα× 1 vector of instruments we have defined:

(
β̃τ (α; c) , γ̃τ (α; c)

)
≡ argmin

(b,g)

N∑

i=1

Di

{
G
(
τ , p̂

(
Zi; θ̂

)
; c
) (
Yi −X ′

ib− µτ (Zi)
′ g
)+

+
(
1−G

(
τ , p̂

(
Zi; θ̂

)
; c
)) (

Yi −X ′
ib− µτ (Zi)

′ g
)− }

,

and:
α̃τ (c) ≡ argmin

a
‖γ̃τ (a; c)‖ .

Lastly, once ρ̂ has been estimated, we compute α̂τ ≡ α̃τ (ρ̂), and β̂τ ≡ β̃τ (α̂τ ; ρ̂).

Censoring. Suppose that Y ∗ is censored when Y ∗ < y0, where y0 is a known threshold, so
that we observe Y = max {Y ∗, y0} when D = 1. From the equivariance property of quantiles, the
τ -quantile of max {Y ∗, y0} is max {X ′βτ , y0}. So, under Assumptions A1 to A4:

Pr
(
Y ≤ max

{
X ′βτ , y0

}
|D = 1, Z = z

)
= G (τ , p (z; θ) ; ρ) . (F16)

In particular, this implies that the G (τ , p (Z; θ) ; ρ)-quantile of observed outcomes coincides
with max {X ′βτ , y0}. The β coefficients can thus be estimated as in the main text, replacing X ′

ib

and X ′
iβ̂τ (c) by max {X ′

ib, y0} and max
{
X ′

iβ̃τ (c) , y0

}
, respectively, where:

β̃τ (c) ≡ argmin
b

N∑

i=1

Di

{
G
(
τ , p̂

(
Zi; θ̂

)
; c
) (
Yi −max

{
X ′

ib, y0
})+

+
(
1−G

(
τ , p̂

(
Zi; θ̂

)
; c
)) (

Yi −max
{
X ′

ib, y0
})− }

. (F17)

The optimization problem in (F17) is a selection-corrected version of Powell’s (1986) censored
quantile estimator.

G Frank and generalized Frank copulas

Let us consider the following two-parameter family of copulas, which we call the “generalized
Frank” family for reasons that will be clear below. The copula depends on two parameters θ ≥ 1
and γ ∈]0, 1), and is given by:

C (u, v; γ, θ) =
1

δ

[
1−

{
1− 1

γ

[
1− (1− δu)θ

] [
1− (1− δv)θ

]} 1

θ

]
, (G18)

where δ = 1− (1− γ)
1

θ . Joe (1997) refers to (G18) as the “BB8” copula.
It is convenient to introduce the following concordance ordering ≺ on copulas:

C1 ≺ C2 if and only if C1 (u, v) ≤ C2 (u, v) for all (u, v).

As ≺ is the first-order stochastic dominance ordering, C1 ≺ C2 unambiguously indicates that C1

induces less correlation than C2. Importantly for interpretation, the concordance of the generalized
Frank copula given by (G18) increases in θ and γ. In particular, θ = 1 or γ → 0 correspond to the
independent copula.
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An interesting special case is obtained when θ → ∞, for fixed γ. Then

C (u, v; γ, θ) →
θ→∞

CF (u, v; γ) ,

where:

CF (u, v; γ) =
1

ln (1− γ)
ln

[
1− 1

γ
{1− exp [ln (1− γ)u]} {1− exp [ln (1− γ) v]}

]
. (G19)

CF given by (G19) is the Frank copula (Frank, 1979), with parameter η = − ln (1− γ). Here also,
concordance increases with η.

The density of the Frank copula is symmetric with respect to the point
(
1
2 ,

1
2

)
in the (U, V )

plane. In comparison, the generalized Frank copula (G18) permits some asymmetries, by allowing
the dependence to increase on the main diagonal. However, the generalized Frank copula treats
symmetrically u and v, so that it is symmetric with respect to the main diagonal.

Taking negative η, the Frank copula exhibits negative dependence. This is important in our
empirical application, as we estimate that U and V are negatively correlated. To allow for negative
dependence in the generalized Frank copula, we simply consider:

C̃ (u, v; γ, θ) = v − C (1− u, v; γ, θ) ,

which is the copula of (1− U, V ) where (U, V ) is distributed as C.20 In addition, by taking instead
the copula of (U, 1− V ) we obtain:

C̃ (u, v; γ, θ) = u− C (u, 1− v; γ, θ) .

In this way, we may allow for decreasing dependence along the second diagonal.

H Estimating the elasticity of substitution

The estimation of equation (19) is based on time series aggregate data. We use the microdata to
construct time series of the relevant aggregates. The time series of the log-relative price of skill
ln
(
r̂1t /r̂

2
t

)
is obtained from the estimation of the wage functions. Time series of relative aggregate

labor supplies can be estimated by aggregation of individual units of human capital of employed
workers:

ln

(̂
H1t

H2t

)
= ln

∑

Si=1

Wit

r̂1t
− ln

∑

Si=2

Wit

r̂2t
= ln


∑

Si=1

Wit/
∑

Si=2

Wit


− ln

(
r̂1t /r̂

2
t

)
.

The log ratio of factor-specific productivities ln
(

at
1−at

)
is allowed to vary over time to capture

skill-biased technical change. It is specified as a trend λ(t) plus an unobservable shock εt. The
equation to be estimated is therefore:

ln
(
r̂1t /r̂

2
t

)
= λ(t) + (φ− 1) ln

(
Ĥ1t/Ĥ2t

)
+ εt. (H20)

20This is because:

Pr (1− U ≤ u, V ≤ v) = Pr (V ≤ v)− Pr (1− U > u, V ≤ v)

= v − Pr (U < 1− u, V ≤ v)

= v − C (1− u, v; γ, θ) .
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This equation was estimated on aggregate US data by Katz and Murphy (1992), who obtained
φ̂ = 0.3. A comparable estimate on UK data in Card and Lemieux (2001) is φ̂ = 0.4. We then
estimate at as:

ât ≡ Λ
(
ln
(
r̂1t /r̂

2
t

)
−
(
φ̂− 1

)
ln
(
Ĥ1t/Ĥ2t

))
,

where Λ(r) = exp(r)/(1 + exp(r)).

Finally, note that the explanatory variable ln
(
Ĥ1t/Ĥ2t

)
is likely to be correlated with εt in

(H20), in which case OLS estimates are inconsistent. Natural instrumental variables would be
aggregates (by skill) of labor supply shifters such as potential out-of-work welfare income.
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Table 1: Descriptive statistics (conditional on employment)

Mean Min Max q10 q50 q90

Males
Married

Log-wage 2.10 .172 4.30 1.56 2.06 2.71
Propensity score .879 .021 1.00 .766 .893 .979

Single
Log-wage 1.99 .319 4.28 1.45 1.95 2.58

Propensity score .753 .259 1.00 .574 .765 .916

Females
Married

Log-wage 1.64 -.378 3.59 1.11 1.57 2.32
Propensity score .681 .006 .998 .512 .699 .844

Single
Log-wage 1.78 -.465 3.58 1.20 1.76 2.42

Propensity score .718 .019 1.00 .475 .735 .933

Source: Family Expenditure Survey, 1978-2000.

Note: The propensity score is estimated using a probit model.

Figure 1: Sample selection shifts percentile ranks
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Note: Latent (dashed) and observed (solid) log-wages. Indicated are the τ = 10% and 90% per-

centiles of latent log-wages.

39



Figure 2: Wage quantiles, by gender
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Note: FES data for 1978-2000. Quantiles of log-hourly wages, conditional on employment (solid

lines) and corrected for selection (dashed). Male wages are plotted in thick lines (top lines in each

graph), while female wages are in thin lines (bottom lines).
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Figure 3: Fit to wage quantiles, by gender (employed individuals)
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Note: FES data for 1978-2000. Quantiles of log-hourly wages conditional on employment, data

(solid lines) and model fit (dashed). Male wages are plotted in thick lines (top lines in each graph),

while female wages are in thin lines (bottom lines).
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Figure 4: Contour plots of the copula
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Note: FES data for 1978-2000. Contour plots of the estimated copula between the percentile level in

the wage equation and the participation error. Negative correlation indicates positive selection into

employment. The first two rows show the Frank copula, while the last two rows show the generalized

Frank copula; see Appendix G.
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Figure 5: Wage quantiles, by gender (generalized Frank copula)
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Note: FES data for 1978-2000. Percentiles of log-hourly wages, conditional on employment (solid

lines) and corrected for selection (dashed). Male wages are plotted in thick lines (top lines in each

graph), while female wages are in thin lines (bottom lines).
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Figure 6: Estimated bounds on latent wage quantiles, by gender
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Note: FES data for 1978-2000. Estimated bounds on quantiles of log-hourly wages (dashed). The

solid lines show the quantiles conditional on employment. Male wages are plotted in thick lines,

while female wages are in thin lines.
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Figure 7: Estimated bounds on latent wage quantiles, by gender (trimming 1% of extreme
observations in out-of-work income)
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Note: FES data for 1978-2000. Estimated bounds on quantiles of log-hourly wages (dashed). The

solid lines show the quantiles conditional on employment. Male wages are plotted in thick lines,

while female wages are in thin lines.

45



Figure 8: Estimated bounds on latent wage quantiles (males), by education (trimming 1%
of extreme observations in out-of-work income)
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Note: FES data for 1978-2000. Estimated bounds on quantiles of log-hourly wages (dashed). The

solid lines show the quantiles conditional on employment. Wages for high-school and college are

plotted in thick lines (at the top), while wages for statutory schooling are in thin lines (bottom).
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Figure 9: Latent wage quantiles and counterfactual equilibrium latent wage quantiles, by
gender
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Note: FES data for 1978-2000. Quantiles of log-hourly wages corrected for selection. Latent wage

quantiles (solid lines) and counterfactual general equilibrium latent wage quantiles (dashed). Male

wages are plotted in thick lines (top lines in each graph), while female wages are in thin lines

(bottom lines).

Figure 10: Employment (actual and counterfactual), by gender
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Note: FES data for 1978-2000. Actual employment rate predicted by the model (solid lines), coun-

terfactual employment rate at constant prices (dashed), and counterfactual employment rate at

equilibrium prices (dotted). Male employment is plotted in thick lines (top lines), while female

employment is in thin lines (bottom lines).
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Figure 11: Wage quantiles conditional on employment (actual and counterfactual), by gender
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Note: FES data for 1978-2000. Quantiles of log-hourly wages conditional on employment. Ac-

tual quantiles predicted by the model (solid lines), counterfactual quantiles in partial equilibrium

(dashed), and counterfactual quantiles in general equilibrium (dotted). Male wages are plotted in

thick lines (top lines in each graph), while female wages are in thin lines (bottom lines).

Figure 12: Fit to wage quantiles, by gender

τ = 10% τ = 50% τ = 90%

1
1

.2
1

.4
1

.6
lo

g
 w

a
g

e

1980 1985 1990 1995 2000
year

1
.4

1
.6

1
.8

2
2

.2
lo

g
 w

a
g

e

1980 1985 1990 1995 2000
year

2
2

.2
2

.4
2

.6
2

.8
3

lo
g

 w
a

g
e

1980 1985 1990 1995 2000
year

Note: FES data for 1978-2000. Specification used in Subsection 4.3. Quantiles of log-hourly wages

conditional on employment. Data (solid lines) and predicted by the model (dashed). Male wages

(at the top) are plotted in thick lines, while female wages are in thin lines.
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Figure 13: Fit to employment, by gender
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Note: FES data for 1978-2000. Specification used in Subsection 4.3. Employment rate in the data

(solid lines) and predicted by the model (dashed). Male employment (at the top) is plotted in thick

lines, while female employment is in thin lines.
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