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Abstract

Empirical models of demand for—and, often, supply of—differentiated
products are widely used in practice, typically employing parametric
functional forms and distributions of consumer heterogeneity. We re-
view some recent work studying identification in a broad class of such
models. This work shows that parametric functional forms and distri-
butional assumptions are not essential for identification. Rather, iden-
tification relies primarily on the standard requirement that instruments
be available for the endogenous variables—here, typically, prices and
quantities. We discuss the kinds of instruments needed for identification
and how the reliance on instruments can be reduced by nonparametric
functional form restrictions or better data. We also discuss results on
discrimination between alternative models of oligopoly competition.



1 Introduction

Over the last twenty years there has been an explosion of empirical work us-
ing models of differentiated products demand and supply that build on Berry
et al. (1995) (“BLP”). Initially this work focused on traditional topics in in-
dustrial organization such as market power, mergers, or the introduction of
new goods. But as Table 1 suggests, these models are being applied to an
increasingly broad range of markets and questions in economics. Of course,
a quantitative understanding of demand and/or supply is essential to answer-
ing many positive and normative questions in a wide range of markets, and
most markets involve differentiated goods. Empirical models following BLP
are particularly attractive for such applications because they allow for both
heterogeneity in consumer preferences and product-level unobservables. The
former is essential for accurately capturing consumer “substitution paterns”
(own- and cross-price demand elasticities) while the latter makes explicit the
source of the endogeneity problems that we know arise in even the most ele-
mentary supply and demand settings.

Table 1: Example Markets and Topics

Topic Example Papers

transportation demand McFadden et al. (1977)
market power Berry et al. (1995), Nevo (2001)
mergers Nevo (2000), Capps et al. (2003)), citeFan
welfare from new goods Petrin (2002), Eizenberg (2011)
network effects Rysman (2004), Nair et al. (2004)
product promotions Chintagunta & Honoré (1996), Allenby & Rossi (1999)
environmental policy Goldberg (1998)
vertical contracting Villas-Boas (2007), Ho (2009)
equilibrium product quality Fan (2013)
media bias Gentzkow & Shapiro (2010))
asymmetric info & insurance Cardon & Hendel (2001), Bundorf et al. (2012), Lustig (2010)
trade policy Goldberg (1995), Berry et al. (1999), Goldberg & Verboven (2001)
residential sorting Bayer et al. (2007)
voting Gordon & Hartmann (2013)
school choice Hastings et al. (2010), Neilson (2013)

Until recently, however, identification of BLP-type models was not well un-
derstood. One often encountered informal speculation—either that the models
were identified only through functional form restrictions, or that certain model
parameters were identified by certain moments of the data. But there was no
formal analysis applicable to this class of models. Here we discuss some re-
cent work on this topic, focusing primarily on results presented in Berry et al.
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(2013), Berry & Haile (2014), and Berry & Haile (2010).1 This work considers
nonparametric generalizations of the BLP model and provides sufficient con-
ditions for identification of demand, identification of firms’ marginal costs and
cost functions, and discrimination between alternative models of firm behavior.

Broadly speaking, these papers show that when it comes to identification,
there is nothing special about BLP-type models. Even in a fully nonparamet-
ric specification, the primary requirement for identification is the availability
of instruments providing sufficient exogenous variation in prices and quan-
tities. These results both provide comfort—that the functional forms and
distributional assumptions used for approximation in finite samples are not
essential—and clarify which kinds of instrumental variables can suffice.

In this review we give an overview of some key ideas and results from this
recent work. We also discuss practical implications for applied work, focusing
in particular on the types of instruments yielding identification of the most
flexible models, as well as tradeoffs between the flexibility of the model (e.g.,
between alternative weak separability restrictions), the types of data available
(e.g., market-level vs. individual-level), and the demands on instrumental
variables.

1.1 A Starting Point: The BLP Demand Model

On the demand side, BLP builds on classic models of demand with endogenous
prices, on the rich literature discussing discrete choice models of demand (as
in McFadden (1981)) as well as on a few earlier pioneering empirical works
on differentiated product markets in equilibrium, especially Bresnahan (1981,
1987). One variation of this model (see Berry et al. (1999)) posits that con-
sumer i’s conditional indirect utility for good j in market t can be written
as

vijt = xjtβit − αitpjt + ξjt + εijt. (1)

Here the vector xjt represents observed exogenous product characteristics, ξjt
is an unobserved product/market characteristic, and pjt is the endogenous
characteristic price.2

In addition to an i.i.d. idiosyncratic product/consumer “match value” εijt,
there are two types of unobservables in (1), both essential. One is the vector
(βit, αit) of random coefficients on xjt and pjt. These random coefficients allow
heterogeneity in preferences that can explain why consumers tend to substitute

1We will also make some use of a recent literature on the identification of simultaneous
equations, as represented by Matzkin (2008), Matzkin (2015) and Berry & Haile (2015).

2For simplicity we discuss only the usual case in which price is the (only) endogenous
product attribute. The arguments extend to the case of other endogenous attributes, al-
though when there is more than one endogenous characteristic per good, the number of
instruments required will be greater.
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among “similar” products (those close in (xt, pt)-space) when prices or other
attributes of the choice set change. The second is the product/market-level
unobservable ξjt. The presence of these demand shocks is not only realistic
(typically we don’t observe all relevant attributes a product or market) but
also generates the familiar problem of price endogeneity. That is, the price of
a good in a given market will typically be correlated with the latent demand
shocks (those associated with all goods) in that market. Such correlation
is implied, for example, by standard oligopoly models when firms know the
realizations of these shocks or, more generally, the elasticities of the demand
system. It is this combination of rich consumer heterogeneity through latent
taste shocks and endogeneity through product/market-specific demand shocks
that distinguishes the BLP framework, and upon which the nonparametric
models of Berry & Haile (2014) and Berry & Haile (2010) build.

The parametric BLP model already raises a number of difficult questions
about identification. One is how to handle the problem of price endogene-
ity. Instrumental variables will typically be needed. Classic instruments for
prices are exogenous cost shifters. Berry et al. (1995) made limited use of
cost shifters, combining these with instruments (characteristics of competing
products—the so-called “BLP instruments”) that economic theory tells us will
shift equilibrium markups (in addition to shifting market shares conditional
on prices). Following Hausman (1996), Nevo (2001) emphasized proxies for
cost shifters (prices of the same good in other markets), while Berry et al.
(1999) added a range of cost shifters like exchange rates. A more subtle point
involves identification of the “substitution” parameters—those governing the
distribution of the random coefficients. Intuition suggest that these parame-
ters would be identified by exogenous changes in choice sets (e.g., additions
and removals of choices), since these would directly reveal the extent to which
consumers tend to substitute to “similar” goods. But such exogenous varia-
tion often is limited if present at all. So can more continuous changes in choice
sets—say, variation in prices of a fixed set of goods—do the job? Are the kinds
of instruments used in practice sufficient to identify these parameters without
relying on distributional assumptions? What about models with less paramet-
ric structure on consumer preferences? Can anything be gained by combining
the supply and demand model in a single system (see, e.g., Bresnahan (1987),
Berry et al. (1995))? Does consumer-level demand data help? Although there
are many empirical papers that follow on the BLP parametric form, these
identification questions remained without a formal answer for many years.

1.2 Related Literatures

We have already mentioned some key papers that motivate the work we review,
but we pause here to highlight a few others. A huge literature on applied
discrete choice demand goes back at least to McFadden (1974), with many
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later contributions. On the supply side, the idea of estimating marginal costs
by using first-order conditions for imperfectly competitive firms goes back to
Rosse (1970), continues through the “New Empirical IO” literature of the 1980s
(see Bresnahan (1989)) and has become a standard tool of the empirical IO
(and auctions) literatures. The literature on discriminating between different
modes of oligopoly competition dates at least to Bresnahan (1982) and Lau
(1982).

In addition, there is an extensive pre-existing literature on the identification
of semi/nonparametric discrete choice models. Perhaps surprisingly, these
papers do not cover models with the key features (consumer heterogeneity and
endogeneity through product-level unobservables) of the BLP framework. A
number of papers consider rich taste heterogeneity, but without endogeneity.
Examples include Ichimura & Thompson (1998) and Briesch et al. (2010).
Other papers on the nonparametric identification of discrete choice models
without endogeneity concerns include Manski (1985), Manski (1987), Manski
(1988), Matzkin (1992), Matzkin (1993), Magnac & Maurin (2007), and Fox
& Gandhi (2011).

Another set of papers (e.g., Blundell & Powell (2004)) discuss control func-
tion techniques for dealing with endogeneity. However, control function tech-
niques apply to triangular (or recursive) systems of equations, not to a fully
simultaneous system that arises in a model of differentiated products supply
and demand (see also Blundell & Matzkin (2014)).

Yet another set of papers considers endogeneity involving correlation be-
tween a choice characteristic and unobservables at the individual (“consumer”
or “worker”) level. One example here is Lewbel (2000), who models a condi-
tional indirect utility function along the lines of

vij = xijβ + εij εij ∼ F (·|xij) (2)

Here, observed x variables can shift the distribution of ε at the consumer
level. However, the typical counterfactual of interest in a differentiated prod-
ucts context involves holding both market-level unobservables and consumer
tastes fixed while letting the distribution of utilities change with the value of
an observed endogenous variable (e.g. price). This requires a different frame-
work. Other papers that consider endogeneity in discrete choice models, but in
a framework different from the differentiated products framework we discuss
include (among others) Honoré & Lewbel (2002), Hong & Tamer (2003), Al-
tonji & Matzkin (2005), Lewbel (2006), Hoderlein (2009) and Petrin & Gandhi
(2011).

1.3 The Path Ahead

Looking ahead to the remainder of the paper, we first review some familiar
parametric demand models in order to motivate key ideas behind our ap-
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proach. We then discuss identification of demand when one has only market
level data, as in the original BLP paper. This is followed by a discussion of the
gains that can be obtained from observing individual-level(“micro”) data. Mi-
cro data does not eliminate the endogeneity problem, but it can substantially
reduce the number of instruments required for identification. We then turn to
identification of the supply side, including results that demonstrate construc-
tive joint identification of marginal costs and demand, as well as results on
discrimination between alternative static oligopoly models.

2 Insights from Parametric Models

Our approach to the nonparametric identification problem builds on insights
from familiar parametric models. Consider a standard multinomial logit model
(incorporating product-specific unobservables) where consumer i’s conditional
indirect utility from product j > 0 in market t is

vijt = xjtβ − αpjt + ξjt + εijt (3)

and the conditional indirect utility from the outside good (“good 0”) is nor-
malized to vi0t = εi0t. Letting

γjt = xjtβ − αpjt + ξjt,

choice probabilities (or “market shares”) are given by the well known formula

sjt =
eγjt

1 +
∑

k e
γkt
. (4)

While each share depends on the entire vector (γ1t, . . . , γJt), the share of good
j is strictly increasing in γjt. Thus, the “mean utility” γjt has the flavor of a
“quality index” that has both an observed and unobserved component.

As is well known, the relationship (4) can be inverted to express each index
as a function of the market share vector: γjt = ln(sjt)− ln(s0t). Remembering
the definition of the index γjt, we have

ln(sjt)− ln(s0t) = xjtβ − αpjt + ξjt.

As noted in Berry (1994), this now looks like a regression model with an
endogenous covariate pjt. To identify the model parameters (α, β) one needs
an instrument for price. To look even more like what we do later, partition xjt

as
(
x
(1)
jt , x

(2)
jt

)
where x

(1)
jt is a scalar. Then condition on x

(2)
jt and rewrite (2) as

x
(1)
jt + ξ̃jt =

1

β
(ln(sjt)− ln(s0t)) +

α

β
pjt, (5)
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with ξ̃jt = ξjt/β. Note that the right-hand side of this expression is a tightly
parameterized function of shares and prices while the left-hand side is just a
linear index of x

(1)
jt and the (rescaled) unobserved characteristic.

More complicated models yield this same general form, only with less re-
strictive functions of shares and prices on the right-hand side. For example, if
we follow the same steps for the two-level nested logit model one can obtain
(see Berry (1994)) the equation

ln(sjt)− ln(s0t) = xjtβ − αpjt + (1− λ) ln(sj|g,t) + ξjt.

where sj|g,t denotes the share of good j within its nest (or “group”) g. This
again looks like a regression model, but now identification requires instru-
ments not only for pjt but also for the endogenous share ln(sj|g,t). Loosely
speaking, the need for this “extra” instrument reflects the new parameter λ,
which (compared to the multinomial logit) gives more flexibility to the pat-

terns of substitution permitted by the model. Again, fix x
(2)
jt and rewrite this

as

x
(1)
jt + ξ̃jt =

1

β

(
ln(sjt)− ln(s0t)− (1− λ) ln(sj/g,t)

)
+
α

β
pjt, (6)

yielding a linear index on the left and a more complicated function of price
and shares on the right.

Finally, consider the BLP model and assume that there is one element of
the product characteristic vector, x

(1)
jt , that does not have a random coefficient.

Then the model can once again be rewritten with a non-random linear index
x
(1)
jt β̄

(1)
0 + ξ̃jt for each product. Although there is no longer a closed form for the

inverse of the system of market shares, BLP show that such an inverse exists
(and provide a computational algorithm). To make a connection to equations
(5) and (6), we can write this inverse as

x
(1)
jt + ξ̃jt =

1

β̄
(1)
0

δ̃j

(
st, pt, x

(2)
t , θ

)
. (7)

Compared to (5) and (6), the right-hand side of (7) is now a more complicated
function of prices and market shares, all of which are endogenous. For identi-
fication of the parameters in this equation, one needs instruments for prices,
and additional instruments for the market shares that appear in the inverse
function δ̄j. In the literature, the latter set of instruments are often described
loosely as instruments identifying the “nonlinear” parameters of the model—
those determining how the random coefficients affect substitution patterns.

Our discussion of each of these examples featured three key components:

1. an index of each good’s unobserved characteristic and an observed char-
acteristic,

2. an inversion mapping observed market shares to each index, and
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3. a set of instrumental variables for the prices and market shares appearing
in the inverse function.

Our approach to nonparametric identification will make use of this same se-
quence of features.

3 Identification of Demand From Market Level

Data

3.1 Demand Model

We begin by sketching the discrete choice demand model of Berry & Haile
(2014). In each market t there is a continuum of consumers. In practice
markets are typically defined by time and/or geography, although one can use
observed consumer characteristics to define markets more narrowly. Formally,
a market is defined by {Jt, χt}, where Jt denotes the number of “inside goods”
available. The “outside good”—the option to purchase none of the modeled
goods—is always available as well and indexed as “good 0.” The matrix χt
describes all product and market characteristics (observed and unobserved).3

We henceforth condition on the number of goods available, setting Jt = J for
all t. In each market, each consumer i chooses one good j ∈ {0, 1, . . . , J}.

Following the BLP notation above,

• xjt ∈ RK is a vector of exogenous observables,

• pjt ∈ R is a vector endogenous observables (prices), and

• ξjt ∈ R is a market/choice-specific unobservable.

We let xt = (x1t, . . . , xJt) , pt = (p1t, . . . , pJt) and ξt = (ξ1t, . . . , ξJt). Thus, the
characteristics of the market are χt = (xt, pt, ξt) .

Demand is derived from a random utility model. Each consumer i in market
t has preferences characterized by a vector of conditional indirect utilities
(henceforth “utilities”) for the available goods:

vi0t, vi1t, . . . , viJt.

The utility vi0t of the outside good is normalized to zero. From the econome-
trician’s perspective, for each consumer i, (vi1t, . . . , viJt) is a vector of random
variables drawn from a joint distribution Fv (·|χt).

Thus far the model is extremely general, placing no restriction on how
Fv (·|χt) depends on χt. Implicitly we have imposed one significant assumption

3We use the terms “good,” “product,” and “choice” interchangeably.
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on the demand model by restricting the jt-level unobservable ξjt to be a scalar.
This is standard in practice and appears difficult to relax without data on
multiple decisions (e.g., panel data, ranked data, or repeated choice data) or
distinct sub-markets (subpopulations of consumers) assumed to share the same
demand shocks (see, e.g., Athey & Imbens (2007)).

We further restrict the model with an index structure. In particular,
we partition the exogenous observed characteristics into two parts, xjt =(
x
(1)
jt , x

(2)
jt

)
, with x

(1)
jt ∈ R. For each good j we then define an index

δjt = δj

(
x
(1)
jt , ξjt

)
, (8)

for some (possibly unknown) function δj that is strictly increasing in ξjt. We

will require that the joint distribution Fv (·|χt) depend on x
(1)
jt and ξjt only

through the index δjt; i.e., letting δt = {δ1t, . . . , δJt},

Fv(·|χt) = Fv(·|δt, x(2)t , pt). (9)

This is a weak separability condition. Although it places no restriction on how
(δt, x

(2)
t , pt) together alter the joint distribution of utilities, it requires that the

marginal rate of substitution between x
(1)
jt and ξjt be invariant to (x

(2)
t , pt).

This condition is satisfied in all of our empirical examples. However, whereas
those examples specified utilities that are separable in the index, this is not
required by (9).

Henceforth we condition on x
(2)
t , suppress it in the notation when possible,

and let xjt denote x
(1)
jt . The model is then completely general in x

(2)
t . For the

results of this section, we will also assume that each δj is linear:

δjt = x
(1)
jt βj + ξjt, (10)

with each βj normalized to one without loss (this merely defines the units of
ξjt). Berry & Haile (2014) discuss identification with a nonseparable index,
and we discuss the case of a nonlinear but separable index below.

As usual, market level demand is derived from the conditional (on χt)
distribution of random utilities. Each consumer chooses the product giving
the highest utility, yielding choice probabilities (market shares)

sjt = σj (χt) = σj (δt, pt) = Pr

(
arg max

j∈J
vijt = j|δt, pt

)
j = 1, . . . , J. (11)

The functions σj fully characterize the demand system. We observe (st, xt, pt).
If we also observed each ξjt we would directly observe the demand functions
(σ1, . . . , σJ); i.e., identification of demand would be trivial. Thus, the main
challenge to nonparametric identification of demand is endogeneity arising
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through the unobservables ξjt. In fact, the challenge here is more complex
than in many familiar economic settings because each of the endogenous
variables pjt and sjt (price and quantity) depends on all J demand shocks
(ξ1t, . . . , ξJt). Standard IV and control function approaches cannot be ap-
plied here because prices and quantities are determined in a fully simultaneous
system. Our approach to overcoming these challenges builds on the “index-
inverse-instruments” intuition developed above for the parametric examples.
We have already described the index restriction. We next discuss the inversion
of market shares.

3.2 Inversion

The goal of the inversion step is to show that, given any vector of prices and
nonzero market shares, there is a unique vector of indices δt that can rationalize
this observation with the demand system (11). Berry et al. (2013) demonstrate
this invertibility under a condition they call “connected substitutes.”4 This
condition has two parts. The first is that all goods are weak gross substitutes
with respect to the indices; i.e., for k 6= j, σk (δt, pt) is weakly decreasing in
δjt for all (δt, pt) ∈ R2J . This is little more than a monotonicity assumption
implying that δjt is “good” (e.g., an index of product “quality”) at least on
average across consumers. A sufficient condition is that, as in the parametric
examples, higher values of δjt raise the utility of good j without affecting the
utilities of other goods.

The second part of the Berry et al. (2013) connected substitutes condition
is “connected strict substitution.” This condition requires that starting from
any good j there be a chain of substitution leading to the outside good. In
a multinomial logit model (or any discrete choice model like the BLP model
where additive shocks to utilities have full support) all goods strictly substitute
directly to the outside good (all else equal, an increase in the quality of good
j causes the market share of the outside good to fall), so the condition is
satisfied. In a classic model of pure vertical differentiation, each good strictly
substitutes only with its immediate neighbors in the quality hierarchy, but
those goods substitute to their neighbors and so forth. Starting from any
good j > 0, there will therefore be a path from one neighbor to the next
that eventually links j to the outside good. Thus, in the vertical model, the
connected strict substitution requirement is again satisfied.

Formally, a good j substitutes to good k at (δt, pt) if σk (δt, pt) is strictly
decreasing in δjt. We represent the pattern of strict substitution with a matrix
Σ (δt, pt) that has entries

Σj+1,k+1 =

{
1 {good j substitutes to good k at x} j > 0
0 j = 0.

4Their result applies outside the discrete choice framework studied here as well.
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The second part of the connected substitutes condition is that for all (δt, pt)
in their support, the directed graph of Σ (δt, pt) has, from every node k 6= 0, a
directed path to node 0.5

Berry et al. (2013) discuss a range of examples and point out that when
δjt is a quality index, it is extremely hard to break the connected substitutes
assumption in a discrete choice setting. Weak substitutes is a direct impli-
cation of weak monotonicity in a discrete choice model, and connected strict
substitution then requires only that there is no strict subset of the goods that
substitute only among themselves. That is to say, all the goods must “belong”
in one demand system.

Given connected substitutes, Berry et al. (2013) prove existence of the
inverse market share function. That is, for all j there is a function σ−1j such
that

δjt = σ−1j (st, pt) (12)

for all (st, pt) in their support.
We will not discuss the proof, but point out that this result offers an

alternative to the classic invertibility results of Gale & Nikaido (1965) or Palais
(1959), which can be difficult to apply to demand systems. Because Berry et
al’s result can be applied outside the discrete choice setting considered here,
an interesting question is whether this can be used as the starting point for
studying identification of demand in other settings as well.

Unlike the inversion results for the parametric examples, the invertibility
result of Berry et al. (2013) is not a characterization (or computational algo-
rithm) for the inverse. Nonetheless, having established that the inverse exists,
we can move on to its identification using instrumental variables. Note that
once the inverse is known, so is the value of each index δjt and, therefore, each
demand shock ξjt. Thus, once we demonstrate identification of the inverse, it
is as if there were no unobservables—a situation in which (as discussed above)
identification of the demand system is trivial.

3.3 Instruments: Identifying the Inverse Demand Sys-
tem

The final step of the argument involves using instrumental variables to identify
the inverse market share functions. Recalling that we have let

δij = xjt + ξjt

we can rewrite (12) as
xjt = σ−1j (st, pt)− ξjt. (13)

5One can of course define the connected substitutes condition in terms of substitution in
response to changes in a product characteristic other than the index—for example, price.
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This equation bears close resemblance to the standard nonparametric regres-
sion model studied by Newey & Powell (2003). They considered identification
of the model

yi = Γ (xi) + εi, (14)

using instrumental variables wi that satisfy a standard exclusion restriction
that E [εi|wi] = 0 a.s. They show that the analog of the classic rank condition
for identification of a linear regression model is a standard “completeness”
condition (Lehmann & Scheffe (1950, 1955)), namely that if B(·) is a func-
tion with finite expectation satisfying E [B (xi) |wi] = 0 almost surely, then
B (xi) = 0 almost surely. Like the classic rank condition, completeness re-
quires that the instruments shift the endogenous variables around “enough;”
further, like the rank condition, completeness is not only sufficient but also
necessary for identification of the unknown regression function Γ.

Equations (13) and (14) are not quite equivalent. Whereas the endogenous
variable Yi appears alone on the left in (14), in (13) all endogenous variables
enter through the unknown function σj. Further, in (13) the exogenous ob-
servable xjt—which we will see is an essential instrument—is not excluded.
Nonetheless, Berry & Haile (2014) show that the proof used by Newey &
Powell (2003) can be used to establish identification of (14) under analogous
exclusion and completeness conditions. In particular, let wt now denote a set
of observables and suppose that (i) E[ξjt|xt,wt] = 0 a.s., and (ii) for all func-
tions B (st, pt) with finite expectation,6 if E [B (st, pt) |xt,wt] = 0 a.s. then
B (st, pt) = 0 a.s. Then each of the inverse functions σj(·) is identified. Given
(13) each unobserved product characteristic ξjt is then identified, and identi-
fication of the demand system (11) follows immediately.

We discuss the availability of instruments below. However, it is worth
pausing to observe that this result provides a reassuringly “dull” answer to
the question of what ensures identification of demand in a BLP-type model:
instruments for the endogenous variables. Because the model involves discrete
choice, rich consumer heterogeneity, and a simultaneous system (e.g., all prices
and quantities depend on all J demand shocks), the best possible hope is
that identification would be obtained under same IV conditions needed for
identification of a homogeneous regression model with a separable scalar error.
This is what is shown by Berry & Haile (2014).

3.4 Discussion

3.4.1 Demand versus Utility

The demand functions σj are the main features of interest on the consumer
side of the model. These functions determine all demand counterfactuals (up

6Other types of completeness assumptions (see, e.g., Andrews (2011)) can also suffice.
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to extrapolation/interpolation, as usual). Demand is the input from the con-
sumer model needed to estimate marginal costs, to test models of supply, to
simulate a merger, and so forth. However, demand is not necessarily enough to
identify changes in consumer welfare. As usual, valid notions of aggregate wel-
fare changes can be obtained under an additional assumption of quasilinearity.
Welfare changes (changes in consumer surplus) are then identified whenever
demand is.

Berry-Haile-market also show how to extend identification of demand to
identification of the joint distribution of random utilities, Fv (·|χt) under stan-
dard quasi-linearity and support conditions. However, given identification of
demand and consumer surplus, there is often little gain from identifying a
particular distribution of random utilities consistent with demand.

3.4.2 Instrumental Variables

Although it is encouraging that essentially “all” one needs for identification
is a suitable set of instruments, this leads to the important question of what
kinds of observables can play the role of these instruments in practice. One
important observation is that for the completeness condition above to hold the
instruments must have dimension no less than 2J—i.e., instruments for all 2J
endogenous variables (st, pt) are needed. This should not be surprising given
the discussion of the parametric examples. Except in the most restrictive
of these models, we required instruments not only for prices but for some
quantities (market shares) as well. Formally, this requirement reflects the fact
that in a multi-good setting the quantity demanded of a given good depends
on the endogenous prices of all goods as well as the demand shocks associated
with all goods.7 Inverting the demand system is a valuable “trick” producing a
system with only one structural error (demand shock) per equation (see (13)).
But in general the resulting inverted demand equations each depend on all
prices and quantities. Identification of the inverse demand function requires
independent exogenous variation in each of these variables.

Excluded cost shifters (e.g., input prices) are the classic instruments for
identifying demand. Proxies for cost shifters or for marginal costs themselves
(if these proxies are properly excluded from demand) can of course substitute.
Hausman (1996) proposed a particular type of proxy for the marginal cost of
good j in market t: the prices of good j in other markets t′ (see also Nevo
(2000)). Another type of candidate instrument is an excluded shifter of firm
markups. One possibility involves demographics of other markets falling in the
same “pricing zone” (see, e.g., Gentzkow & Shapiro (2010) or Fan (2013)). The
availability and suitability of these different types of instruments varies across

7Contrast this with a classical supply and demand model, where the quantity demanded
depends on only one endogenous price and one demand shock.
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applications. Excluded cost shifters are sometimes available, either at the firm
or product level. “Hausman instruments” can always be constructed from a
market-level data set but have been controversial: in some applications the
exclusion restriction may be difficult to defend, and in others the instruments
may have little cross-market variation. Instruments based on demographics of
other markets require at least market-level demographic data and a supply-
side connection (like zonal pricing) between the price in one market and the
demographics of another.

But even when one has suitable instruments in one or more of these classes,
the analysis above reveals something important: such instruments cannot suf-
fice on their own in the model above. This is because costs and markups affect
the endogenous variables (st, pt) only through prices.

This point may become more clear by considering the identification prob-
lem when all price variation is exogenous (mean independent of ξt). With

exogenous prices, pt can be treated as an element of x
(2)
t and held fixed for the

purposes of studying identification. The inverted demand equations then take
the form (cf. (13))

xjt = σ−1j (st)− ξjt. (15)

Each of these equations involves the J-dimensional endogenous variable st.
Identification can still be obtained following the argument above, but this
requires instruments for st. Excluded shifters of costs or markups cannot do
the job because they only alter shares through prices (which are fixed).

This raises the question of what remaining instruments, excluded from the
inverse market share function, can shift st in (13). The exogenous product
characteristics xt are the only available instruments, and they are of the cor-
rect dimension. Thus, our result on the identification of demand requires J
dimensional instruments wt affecting prices (costs or markups), plus the prod-
uct characteristics that enter the demand indices δjt. Strictly speaking, the
identification result provides sufficient conditions; however, given the presence
of 2J endogenous variables, it seems unlikely that one could avoid the need
for exogenous variation of dimension 2J without additional data or structure.

Some intuition about the role of the instruments xt can be seen by first
recalling that we have inverted the market share function, placing the shares
on the right-hand side instead of the indices δt. Holding prices fixed (with
other instruments for prices), by the implicit function theorem the derivative
matrix of market shares with respect to the quality indices is the (matrix)
inverse of the inverse market share functions with respect to shares. Thus,
identifying the effect of shares in the inverse demand system (13) is equivalent
to identifying the effect of the “quality” index δt on market shares. The xt
vector directly shifts the indices δt, so it is not surprising that these are appro-
priate instruments for market shares in the inverse demand function. Further,
without the index structure that links the effects of ξjt to the effects of xjt, it
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is not clear how one could quantify the effects that a changes in unobservables
have on demand. With the linear index structure this link is particularly clear:
a unit increase in ξjt has the same effects as a unit increase in xjt.

This analysis also clears up some possible confusion about the excludability
of the BLP instruments. On one hand, it natural to ask how (whether) demand
shifters could be properly excluded from demand. On the other hand, it is clear
that characteristics of goods k 6= j are excluded from the utility of good j, and
the parametric examples suggest that perhaps this is enough. We can see in
the analysis above that it is the index restriction which makes the exogenous
variables xt available as instruments (rather than being fixed like x

(2)
t ) and

which yields a system of inverse demand equations in which each xjt appears
in only one equation. Thus, as suggested above, the index restriction and the
BLP instruments are both central to the identification result above.

We also see that the BLP instruments are not sufficient on their own in this
model. They provide the required independent variation in st, but something
else must provide the independent exogenous variation in pt.

8 This requires ad-
ditional instruments for costs or markups. The importance of combining both
types of variation has been recognized in much of the applied literature. For
example, Berry et al. (1995) utilized both the “BLP instruments” and proxies
for marginal cost, and Berry et al. (1999) added further cost instruments. The
importance of having both types of instruments, even in a parametric setting,
is supported by recent simulations in Reynaert & Verboven (2014). The results
of Berry & Haile (2014) may explain why: both types of instruments appear
to be essential, at least without additional data or structure.

3.4.3 Nonparametric Functional Form Restrictions

We saw in the parametric examples that the instrumental variables require-
ments were milder than those for the fully nonparametric case. In fact, the
parametric structure not only reduced a completeness condition to a standard
rank condition, but also cut the number of instruments required. This suggests
a potentially important role for functional form restrictions in substituting for
sources of exogenous variation. This may be a concern in some applications,
where one suspects that functional form, rather than exogenous variation, is
pinning down demand parameters. But this tradeoff may be advantageous in
other cases: it is sometimes difficult to find J-dimensional cost shifters (or
proxies) that can be excluded from demand, and further exploration reveals
that even fairly modest restrictions on the demand system can yield substantial
reductions in the instrumental variables requirements.

8cf. Armstrong (2015). The vector xt typically will alter elasticities and therefore
markups (prices). However, our formal argument relies on the direct effect of xt on shares,
holding prices fixed.
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To illustrate one such possibility, consider a stronger weak separability
requirement where price is included in the index δjt along with xjt (i.e., x

(1)
jt )

and ξjt:
δjt = xjtβ − αpjt + ξjt. (16)

This specification substantially generalizes versions of the BLP model in which,
as often assumed in applied work, price and at least one exogenous observable
enter the utility function without a random coefficient. Without loss of gen-
erality, we can choose the units of ξjt by setting α = 1. The equations of the
inverse demand system then have the form

xjtβ − pjt + ξjt = σ−1j (st)

or
pjt = −σ−1j (st) + xjtβ − ξjt.

This takes the form of a classic inverse demand function with price on the
left hand side and quantities (here, shares) on the right. In this case, because
shares are the only endogenous variables on the right, the BLP instruments
x−jt can suffice alone: instruments for costs or markups would still be useful
in practice but would not be necessary for identification.

There are many other possibilities for imposing functional form restrictions
that reduce the instrumental variable requirements. These include a variety of
nonparametric restrictions such as symmetry (exchangeability), various nest-
ing structures, etc., that can often be motivated by economics or features of
the market being studied.

4 Gains from Micro Data

Better data can also relax the instrumental variables requirements. Here we
consider “micro data” that matches individual choices to consumer/choice-
specific observables

zit = (zi1t, . . . , ziJt) ,

where each zijt ∈ R.9 Often these consumer/choice-specific variables will in-
volve interactions between consumer attributes (say dit) and product attributes

(x
(1)
t or x(2) in the notation of the previous section.) For example, many ap-

plications have utilized interactions of consumer and choice locations to create
measures of consumer×product-specific distances

9Other consumer-level observables can be accommodated in a fully flexible way by treat-
ing these as characteristics (elements of xt) of distinct markets. This would permit a different
vector of unobservables ξt for consumers with different observable characteristics. For ex-
ample, an unobserved product characteristic viewed as desirable by one demographic group
could be viewed as undesirable by another.
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• to different modes of transport (McFadden et al. (1977)),

• to different hospitals (Capps et al. (2003)),

• to different schools (Hastings et al. (2010)), and

• to different retailers (Burda et al. (2008)).

Other examples of observables that might play the role of zit include

• exposure to product-specific advertising (Ackerberg (2003)),

• family size×car size (Goldberg (1995), BLP),

• consumer-newspaper political match (Gentzkow & Shapiro (2010)),

• household-neighborhood demographic match (Bayer & Timmins (2007)).

As before, Berry & Haile (2010) start from an extremely flexible random
utility model where

(vi1t, . . . , viJt) ∼ Fv (·|χit) , (17)

and now
χit = (zit, xt, pt, ξt) . (18)

Consumer utility maximization yields choice probabilities

σj(χit) = σj (zit, xt, pt, ξt) j = 1, . . . , J. (19)

Let σ (zit, xt, pt, ξt) = (σ1 (zit, xt, pt, ξt) , . . . , σJ (zit, xt, pt, ξt)).
Within a given market, (xt, pt, ξt) are fixed, but choice probabilities vary

with the value of zit. Let Zt denote the support of zit in market t. For
each ẑ ∈ Zt we observe the conditional choice probability vector st(ẑ) =
(s1t(ẑ), . . . , sJt(ẑ)), where each

sjt(ẑ) = σj (ẑ, xt, pt, ξt)

gives the market share of good j among ẑ-type consumers, given the true value
of the vector (xt, pt, ξt) in market t. Let

St = st (Zt) .

denote the set of all conditional choice probabilities in market t generated by
some ẑ ∈ Zt. Of course, for every s ∈ St, there is at least one vector z∗t (s) ∈ Zt
such that

st (z∗t (s)) = s. (20)

The identification arguments in Berry & Haile (2010) rely heavily on the
within-market variation in choice probabilities that results from variation in
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the consumer characteristics zit. Just as in the case of market-level data, the
primary challenge is uncovering the value of the latent demand shocks ξjt;
once the demand shocks are known, identification of demand is trivial. Berry
& Haile (2010) obtain identification using two different approaches (applied to
slightly different models), each proceeding in two steps. First, within-market
variation in zit is used to construct, for each jt combination, a scalar variable
that is a function of prices and the scalar unobservable ξjt. Second, standard
instrumental variables arguments are applied to obtain identification of this
function and, therefore the value of each structural error ξjt. Both approaches
lead to results allowing identification of demand with weaker instrumental
variables requirements than those we required without micro data.

4.1 Identification with a Common Choice Probability

4.1.1 Index and Inversion

The first approach utilizes an index restriction very similar to that used in the
case of market-level data. Let

λijt = gj(zijt) + ξjt,

where gj is an unknown strictly increasing function. Assume now that zit and
ξt affect the joint distribution of utilities only through the indices; i.e., letting
λit = (λi1t, . . . , λiJt), assume

Fv (·|χit) = Fv (·|λit, xt, pt, ) .

With this restriction, we can write the components of the demand system (19)
as

σj (λit, xt, pt) j = 1. . . . , J.

For the remainder of this section, we condition on xt—treating this in a com-
pletely general fashion as we did x

(2)
t in the previous section—and drop it from

the notation.
Berry & Haile (2010) require sufficient variation in zit to generate a common

choice probability vector s̄. That is, they require that there be some choice
probability vector s̄ such that

s̄ ∈ St ∀t. (21)

Because choice probabilities conditional on zit are observable, this assumption
is directly verifiable from data. Further, full support for zit is not required
unless the support of the unobservable ξt is itself RJ . In many industries,
unobserved tastes vary across markets but not to an extreme degree, so the
variation in zit required need not be extreme. In particular, zit need only
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move the choice probabilities to the common vector s̄ in every market; no
probability needs to be driven to zero or to one, in contrast to the requirements
of “identification at infinity” arguments. Indeed, such arguments typically
use assumptions implying that every s̄ in the J-simplex is a common choice
probability (i.e., all such s̄ satisfy (21)).

A key insight underlying Berry & Haile’s first approach is that variation
in the value of z∗t (s̄) (recall (20)) across markets can be linked precisely to
variation in the vector of demand shocks ξt. Assuming that the demand system
satisfies connected substitutes (now with respect to the indices λijt instead of
δjt), the demand system can be inverted: for any choice probability vector s
and any price vector pt there is at most one vector of indices λit such that
σj (λit, pt) = sj for all j. Of particular interest is the inverse at the common
choice probability s̄. Since s̄ ∈ St for every market t, the invertibility result of
Berry et al. (2013) ensures that for each market there is a unique z∗t (s̄) ∈ Zt
such that st (z∗t (s̄)) = s̄. Thus, we may write

gj
(
z∗jt(s̄)

)
+ ξjt = σ−1j (s̄, pt). (22)

4.1.2 Instruments

Berry & Haile (2010) provide conditions ensuring that each function gj is
identified. For simplicity we take this as given for the remainder of this section.
This is equivalent to focusing on the case of a linear index structure

λijt = zijtβj + ξjt,

where each βj can be normalized to one without loss (setting the scale of the
unobservable ξjt). This allows us to rewrite (22) as

z∗jt(s̄) = σ−1j (s̄, pt)− ξjt. (23)

This equation takes exactly the form of the Newey-Powell nonparametric re-
gression model (14), with z∗jt(s̄) playing the role of the dependent variable,

σ−1j (s̄, pt) the unknown regression function, and ξjt the error term that is
correlated with the endogenous vector pt. Using this insight and now exploit-
ing cross-market variation, identification of each function σ−1j (·) (and therefore
each structural error ξjt) follows immediately from the result of Newey & Pow-
ell (2003) discussed above, given excluded instruments wt for pt that satisfy
the standard completeness condition. With each ξjt known, identification of
demand is immediate.

Here, as in the case of market-level data, we require instruments for pt.
However, we no longer need instruments for st, which is held fixed at s̄ in
(23). To suggest why, remember that in the case of market-level data we
relied on instruments that provided variation in quantities (shares) even when

18



the structural errors ξt and prices pt were held fixed. We avoid this need by
exploiting within-market variation in zit. Within a market, ξt and pt are held
fixed by construction while variation in zit provides variation in quantities.
Thus, only instruments for pt are needed when we move to arguments that
rely on cross-market variation.

Cost shifters and proxies are, as usual, important candidate instruments
for pt. In addition, in this micro data context, one could also use features of
the market-level distribution of zt as instruments for price. For example, if a
market as a whole features unusually many high-income consumers, prices in
this market may be unusually high. This type of instrument is a variant of
the “characteristics of nearby markets” discussed in the case of market data,
although here “nearby consumers” can replace “nearby markets.” Berry &
Haile (2010) call these “Waldfogel” instruments, after the insight in Waldfogel
(2003) that choice sets (including prices) naturally vary with the local distri-
bution of consumer types. To see why such instruments may be excludable,
recall that with micro data the observed choice probabilities already condition
on the consumer’s own zit. So the exclusion restriction is a requirement that
there be no demand spillovers (or sorting affects) that would require putting
“attributes of other consumers in the market” in the micro-level demand sys-
tem.

Note that the BLP instruments are not available as instruments here: we
have conditioned on the entire xt. Indeed, we have not imposed any condition
requiring that “rival characteristics” x−jt be excluded from the shifters of
vijt. Such a restriction can restore the availability of the BLP instruments,
and other functional form restrictions can reduce the number of instruments
required even further.

To illustrate this, first suppose that we add pt to the index λjt(z), so that

λijt(z) = zijt − αpjt + ξjt. (24)

In this case, equation (23) becomes

z∗jt(s̄) = σ−1j (s̄, ) + αpjt − ξjt. (25)

The first term σ−1j (s̄, ) on the right is a constant; thus, we have a regression
model with just one endogenous variable. Alternatively, we could put xt (or

some subset of (x
(1)
t , x

(2)
t )) into the index:

λijt(z) = zijt + xjtβ + ξjt.

This which would make the “characteristics of other products” (the BLP in-
struments) available as instruments for price, at the cost of imposing restric-
tions on the way that at least some of the xt’s shift the distribution of utilities.
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4.2 Utility Linear in z with Large Support

Berry & Haile (2010) consider a second approach using a slightly different spec-
ification in which (zi1t, . . . , ziJt) serve as a “special regressors” (e.g., Lewbel
(1998, 2000)). This approach requires that (zi1t, . . . , ziJt) have large support
(sufficient support to move choice probabilities to all points on the simplex).
This is a strong assumption, but special regressors with large support have
been used at least since Manski (1975, 1985) as a useful way to explore how
far exogenous variation in covariates can go toward eliminating the need for
distributional assumptions in discrete choice models. Berry & Haile (2010)
take the same approach in order to explore how far variation in the demand
shifters zit can go in reducing the need for excluded instruments.

In the simplest version of this second approach,10 Berry & Haile (2010)
assume that utilities take the form

vijt = λijt + µijt j = 1, . . . , J. (26)

Here
λijt = zijt + ξjt (27)

as before, and the random variables (µi1t, . . . , µi1t) have a joint distribution
that does not depend on λt:

11

Fµ (·|χt) = Fµ (·|xt, pt) . (28)

In addition, Berry & Haile (2010) impose the standard condition that the
utility from good j is unaffected by the observed characteristics of other goods.
With (28) this implies

Pr(µijt < c |xt, pt, ξt) = Pr(µijt < c |xjt, pjt) (29)

This specification is a nonparametric generalization of standard random co-
efficients models, where the utility from a good is a random function of its
characteristics and price.12

Under the large support assumption

supp zit| (xt, pt, ξt) = RJ , (30)

10As above, this version can be generalized to allow each zijt to enter through an unknown
monotonic function gj(·). Below we discuss another variation that treats ξt more flexibly.

11If Fµ depended freely on λt, what appears to be an additive separability restriction in
(26) would actually have no content: the distribution of vit could still change freely with λt.

12For example, one obtains this structure by assuming that vijt = zijt+ v(xjt, pjt, ξjt, θit)
for all j where θj is an infinite-dimensional random parameter whose distribution does not
depend on χit.
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identification can be shown in two simple steps. First, by standard argu-
ments, within-market variation in zit traces out the joint distribution of (µi1t+
ξ1t, . . . , µiJt + ξJt) separately for each market. This joint distribution also re-
veals, for each j, the marginal distribution of µijt + ξjt in each market t. The
second step then treats a functional of this distribution as the dependent vari-
able in a nonparametric IV regression model. For example, by (29), for a given
j the mean (or any quantile) of this marginal distribution takes the form

δjt = hj(xjt, pjt) + ξjt (31)

where hj is an unknown function. Once again, we can condition on xjt without
loss, yielding an equation taking the form of the regression model studied by
Newey & Powell (2003). Since the “dependent variable” δjt can be treated as
observed (by the first step), identification of the function hj (and, then, the
residuals ξjt) requires instruments satisfying a standard completeness condi-
tion. Because there is now only one price entering hj, identification can be
obtained with only a single instrument. Further, in this case all the instru-
ment types discussed above are candidates; in particular, the BLP instruments
x−jt were not fixed in the derivation of (31), so they are available as instru-
ments. In addition, since (31) requires only one instrument at a time, a single
market-level instrument (e.g., a single “Waldfogel instrument”) could poten-
tially suffice.

The model above can be generalized by dropping the requirement that
utilities be separable in the demand shocks ξjt. Consider the specification

vijt = zijtβ + µ̃ijt

with the joint distribution of µ̃it now permitted to depend on ξt:

Fµ (·|χt) = Fµ (·|xt, pt, ξt)

Under an appropriate monotonicity condition—for example, let µijt be stochas-
tically increasing in ξkt when j = k but independent of ξkt otherwise—repeating
the analysis above yields an equation taking the form of a nonparametric IV
regression with a nonseparable error. For example, Berry & Haile (2010) shows
that under appropriate assumptions the mean of the marginal distribution of
µ̃ijt would take the form

δjt = hj(xjt, pjt, ξjt) (32)

where hj is strictly increasing ξjt. Chernozhukov & Hansen (2005) have con-
sider identification of such a nonseparable nonparametric regression model
under modified “completeness” conditions that (at least in the case of a con-
tinuous endogenous dependent variable) are somewhat harder to interpret than
the standard completeness condition of Newey & Powell (2003) that suffices for
(31). However, whether we use the model with separable ξjt leading to (31) or
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the more general model leading to (32), this second class of (“separable in z”)
models studied in Berry & Haile (2010) has the advantage of minimizing the
number of instruments required while maximizing the availability of candidate
instruments.

5 Supply

Many positive and normative questions regarding differentiated products mar-
kets require a quantitative understanding of “supply” as well as demand.
In a static oligopoly context, the primitives of a supply model are marginal
cost functions and a specification of oligopoly competition. Because reliable
marginal cost data are seldom available, there is a long tradition in the empir-
ical industrial organization literature of estimating marginal costs using firm
first-order conditions.

A very early example is Rosse (1970), which considered a model of monopoly
newspaper publishers, and the key insight of this literature is particularly
transparent in the case of monopoly. Marginal revenue is a function of observed
quantity, observed price, and the slope of demand. If the slope of demand is
already known, marginal cost is revealed directly as equal to marginal rev-
enue. Rosse (1970) considered joint estimation of demand and marginal cost
parameters from a combination of demand equations and monopoly first-order
conditions. Elements of this approach are carried over to oligopoly models in
the “New Empirical Industrial Organization” literature (see, e.g., Bresnahan
(1981, 1989)). That literature also asks whether the hypothesis of a particular
form of oligopoly competition is falsifiable. The widely used approach of BLP
involves combining estimates of demand parameters with first-order conditions
characterizing equilibrium in a given oligopoly model (typically multi-product
oligopoly price setting) to solve for marginal costs and parameters of marginal
cost functions.

Below we discuss nonparametric identification results that build on these
earlier insights.13 We discuss identification of marginal costs, identification
of marginal cost functions, and discrimination between particular models of
oligopoly competition. For the remainder of this section we do this treating
demand as known, reflecting the results above on identification of demand.
However, in the following section we discuss results obtained by treating de-
mand and supply explicitly as a fully simultaneous system.

13There are important questions about identification when firms make discrete supply
decisions—e.g., entry or introduction of new products—as well as identification of dynamic
oligopoly models. These are beyond the scope of this review.
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5.1 Identification of Marginal Costs with a Known Oligopoly
Model

When the model of oligopoly competition is known, identification of equilib-
rium marginal costs follows almost immediately from identification of demand.
Let mcjt denote the equilibrium marginal cost of good j in market t.14 Given
the connected substitutes condition on demand (now with respect to prices),
Berry & Haile (2014) point out that for a wide variety of static oligopoly
models there exists a known function ψj such that in equilibrium

mcjt = ψj (st,Mt, Dt(st, pt), pt) , (33)

where Dt (st, pt) is the matrix of partial derivatives ∂σk
∂p`

. Here Mt is the scalar

number of potential consumers in market t (“market size”), so that the level
of demand is qjt = Mtsjt.

If the function ψj is known, then mcjt is directly identified from (33) once
the demand derivatives Dt are identified. Since most standard oligopoly mod-
els imply a known functional form for ψj, identification of the level of marginal
cost then follows directly from the identification of demand.

In the simple case of monopoly, ψj is just the standard marginal revenue
function. More generally, the function ψj can be interpreted as a “generalized
product-specific marginal revenue” function. For example, in the case of single-
product firms setting prices in a static Nash equilibrium, firm j’s first-order
condition can be written

mcjt = pjt +
1

∂sjt/∂pjt
Mtsjt. (34)

The right hand side of (34) is the marginal revenue that stems from a price
decrease sufficient to increase quantity by one unit, holding constant the prices
of other products. With multi-product firms and simultaneous price setting
(as in BLP), each function ψj is obtained by solving a simultaneous system of
first-order conditions. The vector of marginal costs for all goods in market t
is given by

mct = pt + ∆−1t st, (35)

where ∆t is a matrix with (j, k)-entry equal to ∂skt/∂pjt when goods j and k
are produced by the same firm, and zero otherwise.

5.2 Identification of Marginal Cost Functions

Equation (33) yields the immediate identification of the level of market costs
mcjt whenever the right-hand side of the equation is known. However, un-

14In general this is the marginal cost of good j in market t conditional on the observed
values of all relevant quantities.
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less marginal costs are constant, many counterfactuals of interest will require
knowing how costs vary with output.

Typically one might specify a marginal cost function of the form

mcjt = cj (qjt,wjt) + ωjt (36)

where wjt and ωjt are observed and unobserved cost shifters, respectively. With
the values of mcjt known, equation (36) takes the form of a standard separable
nonparametric regression, as in Newey & Powell (2003). Identification of the
unknown function cj requires an instrument for the endogenous variables in
(36). A natural assumption is that the cost shifters of all the firms are mean
independent of each ωjt. In that case, a single excluded instrument—for the
endogenous quantity qjt—can suffice.

Natural instruments for qjt include the exogenous cost shifters w−jt of other
goods. Other potential instruments are also likely to be available as well. De-
mand shifters of own and rival products or firms are all possible instruments,
if they are properly excluded from own-product marginal costs. Market-level
factors that influence the level of demand (like total population and the pop-
ulation of various demographic groups) are other possible instruments.

Note that, given identification of demand, the problem of finding an ap-
propriate number of instruments is much easier on the cost side than on the
demand side. In the simplest case, there is only one endogenous variable in
the marginal cost function but possibly many available cost and demand in-
struments. This availability of instruments means that richer specifications of
the marginal cost functions may be accommodated. For example, in some ap-
plications one may wish to allow production spillovers across goods produced
by the same firm. This could introduce the entire vector Qj of a firm’s own
quantities (all endogenous) as arguments of the marginal cost function cj. But
in many cases there will be excluded instruments available of dimension even
larger than that of Qj.

5.3 Identifying Cost Shocks with an Unknown Oligopoly
Model

Berry & Haile (2014) show that one need not specify the oligopoly model in
order to identify the latent shocks to marginal costs, ωjt. This can be directly
useful because it allows identification of a reduced form for equilibrium prices
that can be used to answer some kinds of counterfactual questions without
specifying the form of oligopoly competition. Identification of the latent cost
shocks also leads to the most straightforward and powerful of their results on
discrimination between alternative oligopoly models, a topic we take up in the
following section.

Here we continue to assume that equation (34) holds but allow the form
of the function ψj to be unknown. Thus, we relax the assumption of a known
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oligopoly model and require only that some relation of the form (34) exist. To
allow this relaxation, we will require an index structure on the marginal cost
function similar to one exploited previously on the demand side.15 Partition

the cost shifters as
(

w
(1)
jt ,w

(2)
jt

)
, with w

(1)
jt ∈ R, and define the cost indices

κjt = w
(1)
jt γj + ωjt j = 1, . . . , J (37)

where each parameter γj may be normalized to one without loss. Suppose

now that the cost shifter w
(1)
jt and the cost shock ωjt enter marginal costs only

through the index. In particular, assume that each marginal cost function
cj (qjt,wjt, ωjt) can be rewritten as

cj

(
qjt, κjt,w

(2)
jt

)
where cj is strictly increasing in κjt.

Now fix w
(2)
jt for all jt, drop it from the notation, and let wjt represent w

(1)
jt .

Berry & Haile (2014) show that the supply side first-order conditions can be
inverted to obtain relations of the form

κjt = π−1j (st, pt) , (38)

where each π−1j is an unknown function.16 Rewriting this as

wjt = π−1j (st, pt)− ωjt (39)

we obtain an equation taking exactly the form of the inverted demand equa-
tions (13) above. Identification (of the functions π−1j and, therefore, each ωjt)
can thus be obtained using the same extension of Newey & Powell (2003) relied
on in section 3.3, now with (xt,wt) as the instruments.

Because here we have fixed not only x
(2)
t but also w

(2)
t , the instrumental

variables requirement is more demanding than that for the parallel result on
identification of demand. In particular, the demand shifters xt (i.e., x

(1)
t ) must

now be excluded from marginal costs. In some applications product charac-
teristics will vary without affecting firm costs due to technological constraints
(e.g., satellite television reception in Goolsbee & Petrin (2004)) or other ex-
ogenous market-specific factors (climate, topography, transportation network).

15This structure is also used below when we discuss identification of demand and supply
within a single simultaneous system.

16This function is the composition of the inverse (with respect to κjt) of the marginal cost
function and the “generalized product-specific marginal revenue” function ψj appearing in
the first-order condition for good j. We use the notation π−1 as a reminder that this relation
is obtained by inverting the equilibrium map to express the cost index κjt in terms of the
market outcomes (st, pt).
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In other cases, product characteristics that shift demand may alter fixed costs
rather than marginal costs—-for example, quality produced through research
and development, a product’s geographic location, or product-specific advertis-
ing (e.g., Goeree (2008)). Other examples of instruments that can play the role
of xt here involve interactions between market and product characteristics. For
example, BLP point out that conditional on the product characteristic “miles
per gallon” (which might affect marginal cost) , “miles per dollar” is a demand
shifter that is properly excluded from the marginal cost function.

Note that given identification of the inverted demand functions σ−1j and

the functions π−1j , total differentiation of the system

xjt + ξjt = σ−1j (st, pt) ∀j,
wjt + ωjt = π−1j (st, pt) ∀j

(40)

will reveal the response of quantities and prices to the exogenous shifters
(xt,wt). This is true even when the interpretation of π−1j is not yet estab-
lished via appeal to some particular oligopoly model. In section 6 we will re-
turn to this system of simultaneous equations to consider a different approach
to identification.

5.4 Discrimination Between Models of Firm “Conduct”

An important early literature in industrial organization explored discrimina-
tion between alternative models of firm “conduct” (see, e.g., Bresnahan (1989)
and references therein). This literature was developed on the important insight
in Bresnahan (1982) that “rotations of demand” (changes in market conditions
that alter the slope of demand but leave the equilibrium quantity unchanged)
can alter equilibrium markups differently in different models of supply. Thus,
the price response to such rotations might be used to infer the true model. A
formalization of this intuition was developed in Lau (1982), although the result
was limited to “conjectural variations” models with nonstochastic demand and
cost, homogeneous goods, and symmetric firms. Berry & Haile (2014) showed
that none of these limitations is essential, and that Bresnahan’s intuition can
be generalized to provide an approach for discriminating between alternative
models in a much less restrictive setting. Moreover, in the differentiated prod-
ucts context, there are many different types of variation that can be exploited,
not just the rotations of market demand considered by Bresnahan (1982) and
Lau (1982).

The simplest results of this type in Berry & Haile (2014) take advantage
of the results in the previous section. Suppose that we have already identified
each cost index κjt as well as the demand derivatives in each market. Consider
again the first-order condition

cj (qjt, κjt) = ψj (st,Mt, Dt (st, pt) , pt) (41)
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For a the function ψj implied by a hypothesized model of oligopoly compe-
tition. An implication of this hypothesis is that all observations (jt combi-
nations) with the same values of qjt and κjt must have the same value for
the right-hand side of equation (41) as well. If we misspecify the model, this
restriction will often fail: different values of marginal cost will be required to
rationalize the data, even though all shifters of marginal costs have be held
fixed. Such a finding will falsify a misspecified oligopoly model.

As the simplest example, suppose that there is a single producer setting
prices and quantities as a profit-maximizing monopolist. If we mistakenly
hypothesize that the firm prices at marginal cost, this would imply the model

cj (qjt, κjt) = pjt (42)

(i.e., ψj (st,Mt, Dt (st, pt) , pt) = pjt). This hypothesis would be falsified if
(for example) there are two markets with the same (qjt, κjt, pjt) but different
demand derivatives—i.e., if there is a rotation in demand. However, rota-
tions of demand just one example of the kind of variation that can reveal
misspecification of the oligopoly model. In general a model can be falsified
whenever there is variation between two markets t and t′ or products j and
j′ that (i) leaves the relation between quantities and marginal cost unchanged
(i.e., cj(·, κjt) = cj′(·, κj′t′) , (ii) yields qjt = qj′t′ , but (iii) would imply a
change in at least one of these equilibrium quantities under the false model.
Even if preferences and market size do not change (demand is fixed), one can
obtain a contradiction under a misspecified model from variation in the num-
ber of competing firms, the set of competing goods, observed or unobserved
characteristics of competing products, or observed/unobserved cost shifters of
competitors. Berry & Haile (2014) provide several examples. They also show
how the insights described here can be generalized to apply without requiring
identification of the marginal cost shocks and, therefore, without the cost-side
index structure relied on in section 5.3.

6 Identification in a Simultaneous System

Although the main challenge to identification in differentiated products mar-
kets is the simultaneous determination of prices and quantities, our approach
in the identification results presented above was sequential. We began by
demonstrating identification of demand without specifying a model of supply;
then, given knowledge of demand, we showed how the primitives of supply
could be identified. An alternative is to directly consider identification of the
fully simultaneous model of differentiated products demand and supply.

Berry & Haile (2014) explore such an approach, using the same kind of
index structure (on both the demand and cost sides) relied on in section 5.3
above. In particular, they consider identification of the system of 2J equations
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in (40). These equations exhibit what Berry & Haile (2015) call a “residual
index structure,” as each structural error enters the model through an index
that also depends on an equation-specific observable. This class of models was
introduced by Matzkin (2008) and is also studied by Matzkin (2015) and in
Berry & Haile (2014, 2011).

The results in this literature show a tradeoff between [i] support conditions
on the instruments (here xt,wt)) and [ii] shape restrictions on the joint density
of the unobservables (here (xit, ωt)). At one extreme, Berry & Haile (2014,
2015) show identification of the system of equations (40) under an assumption
that the instruments have large support, but with no restriction on the density
of unobservables. At the other extreme, Berry & Haile (2015) shows that even
with arbitrarily small support for the instruments, failure of identification
occurs only under strong restrictions on the joint density of unobservables.
These results can be extended, appealing to results from Matzkin (2008) or
Berry & Haile (2015), to models of the form

gj(xjt) + ξjt = σ−1j (st, pt) ∀j
hj(wjt) + ωjt = π−1j (st, pt) ∀jv

where the functions gj and hj are unknown strictly increasing functions.
The simultaneous equations approach contrasts with the approaches in the

previous sections that rely on completeness conditions to establish identifica-
tion. A disadvantage of identification results relying on completeness condi-
tions is a lack of transparency about the kinds of assumptions on economic
primitives that will generate completeness. A related point is that identifica-
tion proofs relying on completeness conditions provide little insight about how
the observables uniquely determine the primitives; formally, identification is
proved by contradiction. In contrast, the results from the simultaneous equa-
tions literature rely on explicit conditions on the primitives of the supply and
demand model and permit constructive identification proofs.

7 Conclusion

We have reviewed recent nonparametric identification results for models of
discrete choice demand and oligopoly supply that are widely used in empirical
economics. Our results show that identification of these models relies primar-
ily on the presence of sufficient exogenous sources of variation in prices and
quantities—i.e., on the standard requirement of adequate instruments. With
market-level data, these results require instruments for all prices and quanti-
ties: exogenous shifters of costs or markups as well as the “BLP instruments”
that, besides altering markups, shift market shares conditional on prices. Con-
sumer level “micro data” can eliminate the need for market share instruments,
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and some special cases require only a single exogenous price shifter to iden-
tify demand. Given identification of demand, identification of marginal costs
requires no additional instruments, and identification of firms’ marginal cost
functions can be attained with as few as one excluded instrument that shifts
equilibrium quantities across markets. We also show that the standard prac-
tice of specifying a form of competition on the supply side generally leads to
falsifiable restrictions that can be used to discriminate between alternative
models of firm conduct. Finally, a simultaneous equations approach to sup-
ply and demand allows for constructive proofs of identification under various
combinations of support and density conditions.

We believe these nonparametric identification results are of use to applied
researchers regardless of whether they use nonparametric estimation tech-
niques. Economists have long recognized the distinction between identifiability
of (“within”) a model and properties of any particular estimator (e.g., Koop-
mans (1945, 1950), Hurwicz (1950), Koopmans & Reiersol (1950)). Because
economic theory typically delivers few implications regarding functional forms
or distributions of unobservables, it seems unambiguously good that identi-
fication hold without such assumptions (see, e.g., Matzkin (2013)). On the
other hand, because every data set is finite, going beyond mere description of
the data requires reliance on approximation techniques. Indeed, in practice
the difference between parametric and nonparametric estimators is frequently
not a matter of whether one estimates a finite set of parameters but of how
one constructs standard errors (see, e.g., Horowitz (2011, 2014)). Even when
estimation relies on parsimonious parametric specifications, a nonparametric
identification result limits the essential role of functional form and distribu-
tional assumptions to the unavoidable jobs of approximation, extrapolation,
and compensation for the gap between the exogenous variation available in
practice and the idealized variation that would allow one to definitively dis-
tinguish between all nonparametric structures permitted by the model.

The primary message of the results reviewed here is that identification holds
under precisely the kinds of instrumental variables conditions required for
more familiar (e.g., regression) models. Thus, as usual, the key identification
question in applied work concerns the availability of suitable instruments. The
differentiated products setting points to a variety of potential instruments, and
our results clarify the types of instruments that suffice in different settings.
They also reveal some tradeoffs between instrumental variables requirements,
the flexibility of the underlying model, and the kind of consumer-level data
relied upon.
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