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1 Introduction

We study the nonparametric regression model

Y; = ho(Xi)+e B
Elg|Xi] = 0

where Y; € R is a scalar response variable, X; € X C R? is a d-dimensional regressor (predictor
variable), and the conditional mean function ho(z) = E[Y;|X; = x] belongs to a Hdolder space of
smoothness p > 0. We are interested in series least squares (LS) estimatiorﬂ of hg under sup-norm
loss and inference on possibly nonlinear functionals of hg allowing for weakly dependent regressors and

heavy-tailed errors ;.
For i.i.d. data, [Stone (1982) shows that (n/logn) /(P4 is the minimax lower bound in sup-norm
risk for estimation of hy over a Holder ball of smoothness p > 0. For strictly stationary beta-mixing
regressors, we show that spline and wavelet series LS estimators h of ho attain the optimal uniform

2+(d/p)}

rate of [Stone, (1982) under a mild unconditional moment condition E||e;]| < oo imposed on the

martingale difference errors.

More generally, we assume the error process {¢;}5°__ is a martingale difference sequence but
impose no explicit weak dependence condition on the regressor process {X;}2°_ . Rather, weak de-

pendence of the regressor process is formulated in terms of convergence of a certain random matrix.
We verify this condition for absolutely regular (beta-mixing) sequences by deriving a new exponential
inequality for sums of weakly dependent random matrices. This new inequality then leads to a sharp
upper bound on the sup-norm variance term of series LS estimators with an arbitrary basis. When
combined with a general upper bound on the sup-norm bias term of series LS estimators, the sharp
sup-norm variance bound immediately leads to a general upper bound on the sup-norm convergence
rate of series LS estimators with an arbitrary basis and weakly dependent data.

In our sup-norm bias and variance decomposition of series LS estimators, the bound on the sup-
norm bias term depends on the sup norm of the empirical L? projection onto the linear sieve space.
The sup norm of the empirical L? projection varies with the choice of the (linear sieve) basis. For spline

regression with i.i.d. data, [Huang (2003b)) shows that the sup norm of the empirical L? projection onto

1Other terms for series LS appearing in the literature include series regression and linear sieve regression, but we use
series LS hereafter. The series LS estimator falls into the general class of nonparametric sieve M-estimators.



splines is bounded with probability approaching one (wpal). Using our new exponential inequality
for sums of weakly dependent random matrices, his bound is easily extended to spline regression
with weakly dependent regressors. In addition, we show that, for either i.i.d. or weakly dependent
regressors, the sup norm of the empirical L? projection onto compactly supported wavelet bases is also
bounded wpal. These tight bounds lead to sharp sup-norm bias control for spline and wavelet series
LS estimators. They in turn imply that spline and wavelet series LS estimators achieve the optimal
sup-norm convergence rate even for weakly dependent data and heavy-tailed errorsE|

Sup-norm (uniform) convergence rates of series LS estimators have previously been studied by
Newey| (1997)), |de Jong| (2002), Song (2008) and (Chen and Liao (2014) for i.i.d. data, and Lee and
Robinson| (2013)) for spatially dependent data. But the uniform convergence rates obtained in these
papers are slower than the optimal rate of Stone (1982)E| In a rough note, |Chen and Huang (2003))
derived the optimal sup-norm rate for spline series LS estimators with i.i.d. data under the condition
E[lei])*™] < oo for some § > d/ p In an independent work, Belloni, Chernozhukov, Chetverikov, and
Kato| (2014)) show that spline and local polynomial partition seriesﬂ LS estimators attain the optimal
sup-norm rate with i.i.d. data under the conditional moment condition sup, E[|e;|*™ | X; = 2] < oo for
some ¢ > d/p. Our result contributes to the literature by establishing that spline and wavelet series LS
estimators attain the optimal sup-norm rate with either i.i.d. data or strictly stationary beta-mixing

2+(d/p)} < o0,

regressors under the weaker unconditional moment requirement E||e;|

As another application of our new exponential inequality, under very weak conditions we obtain
sharp L? convergence rates for series LS estimators with weakly dependent regressors. For example,
under the minimal bounded conditional second moment restriction (sup, E[|e;]* | X; = 2] < 00), our
L?-norm rates for trigonometric polynomial, spline or wavelet series LS estimators attain Stone] (1982))’s

2p+d) with strictly stationary, exponentially beta-mixing (respectively

optimal L2-norm rate of n=?/(
algebraically beta-mixing at rate ) regressors with p > 0 (resp. p > d/(27v)), while the power series LS

estimator attains the same optimal rate with exponentially (resp. algebraically) beta-mixing regressors

2+5}

2The error ¢; is heavy-tailed in the sense that E[|¢;] = oo for § > d/p is allowed; say E[|e;|!] = oo is allowed.

3See [Hansen| (2008), [Kristensen| (2009), [Masry| (1996), (Cattanco and Farrell (2013) and the references therein for
attainability of the optimal uniform convergence rates with kernel, local linear regression and partitioning estimators.

4The authors did not pay attention to the fact that their proof for the optimal sup-norm rate of spline LS estimator
actually allows for § > d/p. They set § = 2 for the optimal sup-norm rate, but did not like the strong condition
El[le;|*] < 0o and hence did not finish the paper. The authors did circulate the note among some colleagues and their
former students who work in this area.

®Belloni et al.|(2014) recast the local polynomial partitioning estimator of |Cattaneo and Farrell (2013) as a series LS
estimator.



for p > d/2 (resp. p > d(2 + 7)/(27)). It is interesting to note that for a smooth conditional mean
function, we obtain the optimal L? convergence rates for these commonly used series LS estimators
with weakly dependent regressors without requiring the existence of higher-than-second unconditional
moments of the error terms.

We also show that feasible asymptotic inference can be performed on a possibly nonlinear functional
f(hg) using the plug-in series LS estimator f (ﬁ) We establish the asymptotic normality of f (/ﬁ) and
of the corresponding Student t statistic for weakly dependent data under mild low-level conditions.
When specializing to general irregular (i.e., slower than /n-estimable) but sup-norm bounded linear

functionals of spline or wavelet series LS estimators with i.i.d. data, we obtain the asymptotic normality
of f(h)

Va(f(h) = f(ho))
vy?

—4 N(0,1)

under remarkably mild conditions of (1) uniform integrability (sup,cy Ele2{|e:| > £(n)}|X; = 2] — 0
for any £(n) — oo as n — o00), and (2) K~?/%/n/Vi = o(1), (Klog K)/n = o(1), where K is the
sieve number of terms, and Vi is the sieve variance that grows with K for irregular functionals. These
conditions coincide with the weakest known conditions in Huang| (2003b) for the pointwise asymptotic
normality of spline LS estimators, except we also allow for other irregular linear functionals of spline or
wavelet LS estimators. When specializing to general irregular but sup-norm bounded nonlinear func-
tionals of spline or wavelet series LS estimators with i.i.d. data, we obtain asymptotic normality of f (ﬁ)
(and of its t statistic) under conditions (1) and (3) K~7/%\/n/Vi = o(1), K@+9/%(logn)/n <1 (and
K@9)/3(1ogn)/n = o(1) for the t statistic) for & € (0,2) such that E[|e;|*™] < oo. These conditions
are much weaker than the well-known conditions in Newey| (1997) for the asymptotic normality of a
nonlinear functional and its t statistic of spline LS estimator, namely K~7/4\/n = o(1), K*/n = o(1)
and sup, E[|e;]* | X; = 2] < co. Moreover, under a slightly more restrictive growth condition on K but
without the need to increase §, we show that our mild sufficient conditions for the i.i.d. case extend
naturally to the weakly dependent case.

Since economic and financial time series data often have infinite forth moments, the new improved
rates and inference results in our paper should be very useful to the literatures on nonparametric
estimation and testing of nonlinear time series models (see, e.g., Robinson| (1989), Li, Hsiao, and Zinn
(2003)), Fan and Yao, (2003)), |Chen (2013)). Moreover, our new exponential inequality for sums of

weakly dependent random matrices should be useful in series LS estimation of spatially dependent



models and in other contexts as well[f

The rest of the paper is organized as follows. Section [2| first derives general upper bounds on the
sup-norm convergence rates of series LS estimators with an arbitrary basis. It then shows that spline
and wavelet series LS estimators attain the optimal sup-norm rates, allowing for weakly dependent
data and heavy tailed error terms. It also presents general sharp L?-norm convergence rates of series
LS estimators with an arbitrary basis under very mild conditions. Section [3| provides the asymptotic
normality of sieve t statistics for possibly nonlinear functionals of hg. Section [4] provides new exponen-
tial inequalities for sums of weakly dependent random matrices, and a reinterpretation of equivalence
of the theoretical and empirical L? norms as a criterion regarding convergence of a certain random
matrix. Section [5| shows the sup-norm stability of the empirical L? projections onto compactly sup-
ported wavelet bases, which provides a tight upper bound on the sup-norm bias term for the wavelet
series LS estimator. The results in Sections ] and [5] are of independent interest. Section [6] contains a

brief review of spline and wavelet sieve bases. Proofs and ancillary results are presented in Section [7]

Notation: Let Apin(-) and Apax(-) denote the smallest and largest eigenvalues, respectively, of a
matrix. The exponent ~ denotes the Moore-Penrose generalized inverse. || - || denotes the Euclidean
norm when applied to vectors and the matrix spectral norm (i.e., largest singular value) when applied
to matrices, and || - [|s» denotes the ¢’ norm when applied to vectors and its induced operator norm
when applied to matrices (thus || - || = || - ||2). If {an, : n > 1} and {b, : n > 1} are two sequences

< b, means there exists a finite positive C such that a, < Cb, for all

~

of non-negative numbers, a,
n sufficiently large, and a,, < b, means a, < b, and b, < a,. #S denotes the cardinality of a set
S of finitely many elements. Given a strictly stationary process {X;} and 1 < p < oo, we let LP(X)
denote the function space consisting of all (equivalence classes) of measurable functions f for which

the LP(X) norm || f||1r(x) = E[|f(X;)[P]'/? is finite, and we let L°(X) denote the space of bounded

functions under the sup norm || - ||so, i.€., if f: X — R then || f|lcc = sup,ex |f(2)]-

2 Uniform Convergence Rates

In this section we present some general results on uniform convergence properties of nonparametric

series LS estimators with weakly dependent data.

5In our ongoing work on sieve estimation of semi/nonparametric conditional moment restriction models with time
series data, this new exponential inequality also enables us to establish asymptotic properties under weaker conditions.



2.1 Estimator and basic assumptions

In nonparametric series LS estimation, the conditional mean function hg is estimated by least squares
regression of Y7,...,Y, on a vector of sieve basis functions evaluated at Xi,...,X,. The standard

series LS estimator of the conditional mean function hg is

h(z) = b5 (2)(B'B)"B'Y (2)
where bg1,...,bxKk are a collection of K sieve basis functions and
V(z) = (bgi(z),... bk (x)) (3)
B = (b%(Xy),...,b5(X,)) (4)
Y = (11,....Y,). (5)

Choosing a particular class of sieve basis function and the dimension K are analogous to choosing the
type of kernel and bandwidth, respectively, in kernel regression techniques. The basis functions are
chosen such that their closed linear span Bx = clsp{bk1,...,bxk} can well approximate the space of
functions in which hg is assumed to belong.

When the data {(X;,Y;)}!'; are a random sample it is often reasonable to assume that X is
supported on a compact set X C R%. However, in a time-series setting it may be necessary to allow
the support X of X to be infinite, as in the example of nonparametric autoregressive regression with
a student t distributed error term. See, e.g., Fan and Yao| (2003) and (Chen (2013) for additional
examples and references.

To allow for possibly unbounded support X of X; we modify the usual series LS estimator and
notion of convergence. First, we weight the basis functions by a sequence of non-negative weighting

functions w,, : X — {0, 1} given by

1 ifzeD,
wy(z) = (6)
0 otherwise

where D,, C X is compact, convex, and has nonempty interior, and D,, C D, for all n. The resulting



series LS estimator is then

h(z) = b (2) (B, Bu)”BLY (7)
where bx1,...,bx Kk are a collection of K sieve basis functions and
by (2) = (b1(@)wn(@), ... bk (@)wn(@)) (8)
By = (bl (X1),...,b5 (X)) (9)
Second, we consider convergence in the (sequence of) weighted sup norm(s) || - ||oc,w given by
1 lloo o = sup | f (z)wn ()] = Sup |/ ()] (10)

This modification is made because simple functions, such as polynomials of x, have infinite sup norm

when X; has unbounded support, but will have finite weighted sup norm.

Remark 2.1 When X is compact we may simply set wy(x) =1 for all x € X and all n. With such a
choice of weighting, the series LS estimator with weighted basis trivially coincides with the series LS

estimator in () with unweighted basis, and || - ||oow = || - [|oc-

When & is unbounded there are several possible choices for D,,. For instance, we may take D,, = D
for all n, where D C X is a fixed compact convex set with nonempty interior. This approach is not
without precedent in the nonparametric analysis of nonlinear time series models. For example, [Huang
and Shen| (2004) use a similar approach to trim extreme observations in nonparametric functional
coefficient regression models, following [Tjgstheim and Auestad| (1994)). More generally, we can consider
an expanding sequence of compact nonempty sets D,, C X with D,, C D, for all n and set w,(x) =
{x € D,} for all n. For example, if X = R? we could take D, = {r € R? : ||z|, < r,} where
0 <7y < 7pe1 < oo for all n. This approach is similar to excluding functions far from the support of
the data when performing series LS estimation with a compactly-supported wavelet basis for L?(R)
or L?(R%). We defer estimation with smooth weighting functions of the form wj,(z) = (1 +||z[|?)™% or
wp () = exp(—||z]|“) to future research.

We first introduce some mild regularity conditions that are satisfied by typical regression models

and most linear sieve bases.



Assumption 1 (i) {X;}2___ is strictly stationary, (ii) X C R? is conver and has nonempty interior.

Assumption 2 (i) {¢;, Fi_1}}', with Fi_1 = o(X;,€i-1, Xi—1,...) is a strictly stationary martingale
difference sequence, (ii) E[€2|F;_1] is uniformly bounded for all i > 1, almost surely, (iii) E[e;|**°] <

oo for some & > 0.

Let N(D,, €) denote the internal e-covering number of D,, with respect to the Euclidean norm (i.e.
the minimum number of points x1, ...,z € D, such that the collection of e-balls centered at each of

X1, ...,Tm cover Dy).

Assumption 3 (i) D,, is compact, conver, has nonempty interior, and D,, C Dyy1 for all n, (i)

there exists v1,v9 > 0 such that N(Dp,€) < n"le V2,
Define (. = sup, [[b5 ()] and Mg = [Amin(BBE (X5 (X))] 2.

Assumption 4 (i) there exist wi,ws > 0 s.t. sup,ep, ||[VOE (z)|| S n*K“2, (ii) there ewist wy >

0,209 > 0 s.t. (e SNTUKT2, (ii0) Amin (E[DE (X:)bE (X;)']) > 0 for each K and n.

~

Assumptions [I] and [2] trivially nest i.i.d. sequences, but also allow the regressors to exhibit quite
general weak dependence. Note that Assumption (ii) reduces to sup, E[e?|X; = z] < oo in the
i.i.d. case. Suitable choice of ¢ in Assumption iii) for attainability of the optimal uniform rate
will be explained subsequently. Strict stationarity of {¢;} in Assumption [2f may be dropped provided
the sequence {|ei|2+5} is uniformly integrable. However, strict stationarity is used to present simple
sufficient conditions for the asymptotic normality of functionals of h in Section

Assumption [3] is trivially satisfied when X is compact and D,, = X for all n. More generally,
when X is noncompact and D,, is an expanding sequence of compact subsets of X’ as described above,
Assumption [3(ii) is satisfied provided each D,, is contained in an Euclidean ball of radius r, < n” for
some v > 0[]

Assumption [4] is a mild regularity condition on the sieve basis functions. When X is compact and
rectangular this assumption is satisfied by all the widely used series (or linear sieve bases) with Ax,, <

1, and (xn S VK for tensor-products of univariate polynomial spline, trigonometric polynomial or

~

7By translational invariance we may assume that D,, is centered at the origin. Then D,, C R,, = [—rmrn]d. We can
cover R, with (r,/€)? £°°-balls of radius €, each of which is contained in an Euclidean ball of radius ev/d. Therefore,
N(Dn,€) < (Vdrp)%e ¢ < n¥de



wavelet bases, and (x,, S K for tensor-products of power series or orthogonal polynomial bases (see,

e.g., Newey| (1997), Huang| (1998), and |Chen| (2007)). See [DeVore and Lorentz| (1993) for additional
bases with either (x,, < VK or ¢ Kn S V'K properties.

Let b (2) denote the orthonormalized vector of basis functions, namely
bl (@) = Blbly (Xi)byy (X)) /205 () (11)
and let B, = (b5 (X1),...,bK(X,)).

Assumption 5 FEither: (a) {X;} is i.4.d. and (g pAxny/(log K)/n=o(1), or
(6) I1(B}, Bu/n) = I || = 0p(1).

Assumption [5|is a mild but powerful condition that ensures the empirical and theoretical L? norms
are equivalent over the linear sieve space wpal (see Section 4] for details). In fact, to establish many of
our results below with weakly dependent data, nothing further about the weak dependence properties
of the regressor process {X;}!" ; needs to be assumed beyond convergence of B, By,/n — Ik|| to zero.
In the i.i.d. case, the following Lemma shows that part (a) of Assumption [5| automatically implies

(B, Bu/n) = Ik || = 0p(1).

Lemma 2.1 Under Assumption [J(iii), if {X;}?_; is i.i.d. then
1B, Bu/n) — Iic| = Op (Cindicn/(0g K) ) = 0,(1)

provided (i n Ak ny/ (log K)/n = o(1).

Remark 2.2 Consider the compact support case in which X = [0,1]¢ and w,(x) = 1 for all z € X
and all n (so that bk (x)wy(z) = brr(z) for alln and K ) and suppose the density of X; is uniformly
bounded away from zero and infinity over X. In this setting, we have i,y S 1. If {X;}7, is i.i.d., then

Assumption@ is satisfied with \/(Klog K)/n = o(1) for spline, trigonometric polynomial or wavelet

bases, and with K+/(log K)/n = o(1) for (tensor-product) power series.

When the regressors are S-mixing (see Section 4] for definition), the following Lemma shows that

Assumption [f|(b) is still easily satisfied.



Lemma 2.2 Under Assumption |/ I(m) if {Xi}2_ o is strictly stationary and B-mizing with mizing

coefficients such that one can choose an integers q = q(n) < n/2 with B(q¢)n/q = o(1), then
|(Bl,Bufn) = Ikl = Oy (Ckndicn/(alog K)/n) = 0,(1)

provided (g n Ak ny/(qlog K)/n = o(1).

Remark 2.3 Consider the compact support case from Remark. with {X;}2 strictly stationary

1=—00

and B-mizing.

(i) Ezponential [3-mixing: Assumption @(b) is satisfied with /K (logn)?/n = o(1) for (tensor-
product) spline, trigonometric polynomial or wavelet bases, and with K/ (logn)? 1) for

(tensor-product) power series.

(ii) Algebraic [-mixing at rate v: Assumption @(b) is satisfied with /(K log K)/n"/(+7) = o(1) for

(tensor-product) spline, trigonometric polynomial or wavelet bases, and with K+/(log K) /n7/(+7) =
o(1) for (tensor-product) power series.
2.2 A general upper bound on uniform convergence rates

Let By = clsp{bxiwn,...,bxxw,} be a general weighted linear sieve space. Let h denote the

projection of hy onto B ,, under the empirical measure, that is,

h(w) = by () (B, Bu)~ Bi,Ho = bl (x)/ (B}, Bu) ™ B, Ho (12)

where Hy = (ho(X1),...,ho(Xn)). The sup-norm distance |[h — hol|co,w may be trivially bounded

using

1= holloow < llho = hllco,w + ([P = hlloow (13)

=: bias term + variance term . (14)

Sharp bound on the sup-norm variance term. The following result establishes a sharp uniform

convergence rate of the variance term for an arbitrary linear sieve space. Convergence is established

10



in sup norm rather than the weighted sup norm || - ||, because both h and h have support D,,.

Therefore, ||h — hlloo = sup,ep, [7(z) — h(2)| = |[B — h|oo,w-

Lemma 2.3 Let Assumptions[1(i)(ii), [3(i) (ii) (iit), [3, [} and[5 hold. Then
7= Rlloc = Op (Crndcny/Tog ) /n) = 0,(1)

as n, K — oo provided the following are satisfied:

(i) (CknAicn)FHO0 < /(n/logn);
(ii) either: (a) {(X;, o) Yooy are iii.d., or (b) \/ihe x |(Bl,Bu/n) — Ix| = Op(1).

Remark 2.4 Weak dependence of the regressor process {X;} is implicitly captured by the speed of
convergence of ||(Bl,Buw/n) — Ix||. If {X;} is exponentially B-mizing (respectively algebraically f-
mixing at rate v ), condition (ii)(b) in Lemma is satisfied provided Cx.nAi.n+/(K logn)/n = O(1)
(respectively CinAicny/K /0703 = O(1)); see Lemma .

General bound on the sup-norm bias term. With our sharp bound on the variance term

||ﬁ - EHOOM in hand it remains to provide a calculation for the bias term ||hg — EHoo,w. Let Pk 4, be

the (empirical) projection operator onto B ., = clsp{bxiwp, ..., bk xwy}, namely
_ 1K /B;quian ) N _ 3K 1 n o \— D!
Prewnh(z) = by (@) | —— | — > bl (X)h(X;) = bly () (B}, Bw)” BL,H (15)
i=1

where H = (h(X1),...,h(Xn)). Pruwn is a well defined operator: if L2, (X) denotes the space
of functions with norm || - [lun where [|f2,, = LS F(X)2wn(X;), then Py L2 (X) —
L?ML(X ) is an orthogonal projection onto By ., whenever B; B, is invertible (which it is wpal under
Assumptions [4[(iii) and [5).

One way to control the bias term ||hg — l~z||oo7w is to bound P 4, in sup norm. Note that h =

Pk wnho. Let L3, (X) denote the space of functions for which sup, |f(z)wn ()| < co and let

_ I1Ps wnlloow
| Prc,w,nll 00w = sup
e, (X):hlowz0  I1Plloow

denote the (weighted sup) operator norm of P . The following crude bound on || Pk |l is valid

for general linear sieve bases and weakly dependent regressors.

11



Remark 2.5 Let Assumptions (m) and@ hold. Then: || Pk wnllco < \/§CK,n>\K,n wpal.

More refined bounds on || Py n||co, may be derived for particular linear sieves with local proper-
ties, such as splines and wavelets stated below. These more refined bounds, together with the following
Lemma, lead to the optimal uniform convergence rates of series LS estimators with the particular linear

sieves.

Lemma 2.4 Let the assumptions and conditions of Lemma [2.5 hold. Then: (1)

17 = holloe < Op (CrnArny/Togm)/n) + (14 | P,

00, W inf — oW -
o), 0t o = Bl
(2) Further, if the linear sieve satisfies Cx nAkn S VK and | Pk wonlloo,w = Op(1), then
B = hollso < O, ( (Klogn)/n+ inf |ho— huoo,w) .
hEBK,w

2.3 Attainability of optimal uniform convergence rates

We now turn to attainability of the optimal uniform rate of [Stone| (1982)) by specific series LS es-
timators. To fix ideas, in what follows we take D, = D = [0,1]¢ C X for all n, whence | f|loow =
sup,ep | f(z)]. Let AP([0,1]%) denote a Holder space of smoothness p on the domain [0, 1]¢ (see, e.g.
Chen| (2007) for definition). Let BSpl(, [0,1]%,+) denote a B-spline sieve of degree v and dimension
K on the domain [0,1]¢, and let Wav(K,[0,1]%,+) denote a Wavelet sieve basis of regularity v and
dimension K on the domain [0, 1]% (see Section |§| for details on construction of these sieve bases). Be-
cause our bases have been constructed to have support [0, 1] we trivially have by (2) = bxr(2)wy ()
forall k=1,..., K and all n and K. Recall Bx = clsp{bk1,...,bxk} is the linear sieve space.

The following assumptions on the conditional mean function and the sieve basis functions are

sufficient for attaining the optimal uniform convergence rate.

Assumption 1 (continued) (iii) D, = D = [0,1]¢ C X for all n, (iv) the unconditional density of

X, is uniformly bounded away from zero and infinity on D.
Assumption 6 The restriction of hg to [0,1]% belongs to AP(]0,1]%) for some p > 0.

Assumption 7 The sieve By is BSpl(K,[0,1]¢,v) or Wav(K,[0,1]%,~) with v > max{p, 1}.

12



Assumptions [I] and [6] are standard regularity conditions used in derivation of optimal uniform con-
vergence rates (Stone| [1982; Tsybakov, 2009)). Assumption iii) implies Assumption |3l Assumptions
and imply Assumption 4 with (x, < VK and Ag,, < 1.

Let hg ;¢ € B solve infpep, lho — h||loo,w- Assumptions |§| and (7| imply that ||hg — ha,Kiioo,w <
K~P/4 (see, e.g. [DeVore and Lorentz| (1993), Huang| (1998), |(Chen| (2007)). Previously [Huang| (2003b)

showed that || Pk wnllcow S 1 wpal for spline bases with i.i.d. data. In the proof of Theorem we

~

extend his result to allow for weakly dependent regressors. In addition, Theorem [5.2]in Section [5] shows

that || Px wnllcow S 1 wpal for wavelet bases with i.i.d. or weakly dependent regressors.

~

Theorem 2.1 Let Assumptions @(i)(ii)(iii) (with § > d/p), @ cmd@ hold. If K = (n/logn)% 2r+d),
then

7= holloc, = Opl(n/ Tog n) =/ @)
provided that either (a), (b), or (c) is satisfied:

(a) {(Xi,Yi) oy is did.;
(b) {Xi} is exponentially 5-mizing and d < 2p;

(c) {Xi}l is algebraically B-mizing at rate v and (2 + v)d < 2vp.

Theorem states that the optimal uniform convergence rates of Stone| (1982)) are achieved by
spline and wavelet series LS estimators with i.i.d. data whenever § > d/p. If the regressors are exponen-
tially S-mixing the optimal rate of convergence is achieved with § > d/p and d < 2p. The restrictions
d > d/p and (2 + v)d < 2vp for algebraically S-mixing (at a rate ) reduces naturally towards the
exponentially S-mixing restrictions as the dependence becomes weaker (i.e. 7 becomes larger). In all
cases, for a fixed dimension d > 1, a smoother function (i.e. bigger p) means a lower value of §, and
hence fatter-tailed error terms ¢;, are permitted while still obtaining the optimal uniform convergence
rate. In particular this is achieved with § = d/p < 2.

Discussion of closely related results. Under Assumption [I] with i.i.d. data and compact X, we
can set the weight to be w, = 1 for all n. Let Px denote the L?(X) orthogonal projection operator

onto By, given by

-1

Prch(x) = b (x) (E™ (X)b™ (Xi)]) " EB"™ (Xi)h(X:)] (16)
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for any h € L?(X), and define its L° operator norm:

[ Prc ol oo

1P |0 := sup

17
heLoo(X): w0 lIPlloo 17)

Under i.i.d. data, Assumptions (i)(ii) (ie., Elei|Xi] = 0, sup, B[ | X; = 2] < o0), @ and the

conditions Mg, <1, % K/n = o(1) and ||hg — h x|l S K/ on the series basis, Newey| (1997)

derived the following sup-norm convergence rates for series LS estimators with an arbitrary basis:

1B = holloe < Op (Cinv/ K/ + Caen K7 (18)

By Remark under the same set of mild conditions imposed in [Newey| (1997) (except allowing for

weakly dependent regressors), the bound can be slightly improved to

1B = holloe < Op (Cinv/ K70 + [ Prcun oo K77 (19)

It is clear that the general bounds in and with an arbitrary basis are not optimal, but
they are derived under the minimal moment restriction of Assumption (ii) without the existence of
higher-than-second moments (i.e., § = 0 in Assumption [2[(iii)).

Under the extra moment condition sup, E[|e;|* | X; = z] < oo, de Jong| (2002) obtained the following

general bound on sup-norm rates for series LS estimators with an arbitrary basis:

I~ holloo < O (Creny/Togm) -+ K/ 4 || Prchy — I o) - (20)

de Jong (2002) did not provide sharp bounds for |[Pxho — hg g lleo for any particular basis, and was
therefore unable to attain the optimal convergence rate ||h — ho||os = O, ((n/logn)~P/rd) of Stone

(1982)). Note that

1Prcho — hg gelloo = 11 Pic (ho = s 1) oo < 1Pk llos 1o = B selloo S [1 P oo K /. (21)

Given the newly derived sharp bounds of ||Px|ls < 1 in [Huang (2003b) for splines, in Belloni et al.
(2014) for the local polynomial partition series, and in our paper (Theorem for wavelets, one

could now apply de Jong| (2002)’s result to conclude the attainability of the optimal sup-norm
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rate by spline, local polynomial partition and wavelet series LS estimators for i.i.d. data. However,
de Jong| (2002))’s result is proved under the strong bounded conditional fourth moment condition
of sup, E[|&;|*|X; = 2] < 0o and the side condition Q%(nK/n = o(1).

In a rough note, Chen and Huang (2003) derived ||7L—hg|]oo = Op(y/(K logn)/n+K~P/?) for spline

2+6] < oo for some § > d/p, but they carelessly set

LS estimators under i.i.d. data and condition E||e;]|
0 = 2 to attain Stone| (1982))’s optimal rate and concluded that the finite fourth moment condition
E [|ei|4] < o0 is too strong. (Cattaneo and Farrell (2013 proved that a local polynomial partitioning
regression estimator can attain the optimal sup-norm rate under i.i.d. data and the conditional moment
condition sup, E[|e;|*™ | X; = 2] < oo for some § > max(1,d/p). Belloni et al. (2014) show that spline
and local polynomial partition LS estimators attain the optimal sup-norm rate under i.i.d. data and the
conditional moment condition sup, F [|ei|2+§ |X; = x| < oo for some 6 > d/p. By contrast, we require

2+(d/p)]

a weaker unconditional moment condition E[|¢;| < oo for spline and wavelet LS estimators

to attain the optimal uniform convergence rate, allowing for both i.i.d. data and weakly dependent
regressors. It remains an open question whether one could obtain the optimal sup-norm convergence
rate without imposing a finite higher-than-second unconditional moment of the error term, however.

2.4 A general sharp bound on L? convergence rates

In this subsection, we present a simple but sharp upper bound on the L? (or root mean square)

convergence rates of series LS estimators with an arbitrary basis and weakly dependent regressors.
Recall that B, = clsp{bxiwn,...,bxxw,} is a general weighted linear sieve space and h =

Py wnho is defined in . Let ho,x be the L?(X) orthogonal projection of the conditional mean

function hg onto B 4.

Lemma 2.5 Let Assumptions[1|(i), [3(i)(ii), [4(iii) and[3] hold. Then:

7= Rllzzcxey = Op (VET) and [[h = hollax) = Op (Iho = o llzzx) -

Lemmas 2.1 and 2.2 immediately imply the following result.

Remark 2.6 Let Assumptions[1|(i), [3(i)(ii) and Axpn S 1 hold. Then: (1)

B = hollzzx) = Op (VEm + Ilho = houcll2x)) (22)
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provided that either (1.a), (1.b) or (1.c) is satisfied:
(1.a) {X;} isi.i.d., and (g pny/(log K)/n=0(1);
(1.b) {X;}I', is exponentially S-mizing, and Cxn+/(logn)?/n = o(1);

(1.c) {Xi}1, is algebraically B-mizing at rate v, and (i n/(log K)/n7/(+7) = o(1).

(2) Further, if Assumptions and@ hold and K = (n/logn)¥@r+d)  then
[ = ol 2y = Op(n /D)

provided that either (2.a) or (2.b) is satisfied:

(2.a) {X;} is i.i.d. or exponentially B-mizing: with p > 0 for trigonometric polynomial, spline or

wavelet series, and p > d/2 for power series;

(2.b) {X;} is algebraically f-mizing at rate v: with p > d/(2v) for trigonometric polynomial, spline

or wavelet series; and p > d(2 4 v)/(27) for power series.

With i.i.d. data under the condition A\g,, < 1,[Newey| (1997) derived the same sharp L? rate in
for series LS estimators under the restriction C%(’nK /n = o(1). |[Huang (2003a) showed that spline LS
estimator has the same L? rate under the much weaker condition K (log K)/n = o(1). Both our Remark
2.6] part (1.a) and Belloni et al| (2014) extend [Huang| (2003a)’s weakened condition to other bases
satisfying Cxn S VK (such as trigonometric polynomial and wavelet) for series LS regression with i.i.d.
data. In addition, Remark part (1.b) shows that the mild condition K (log K)?/n = o(1) suffices

< V/K for exponentially

~

for trigonometric polynomial, wavelet, spline and other bases satisfying (x p
[-mixing regressors.

With weakly-dependent data, Chen and Shen| (1998) derived L? rates for LS regression using various
linear or nonlinear sieves with beta-mixing sequence under higher-than-second moment restriction (see
Proposition 5.1 in |Chen and Shen| (1998)). Huang and Yang (2004) and others derived the optimal
L? rate for spline LS regression with strongly mixing sequence assuming a uniformly bounded higher-
than-second conditional moment. Thanks to our Lemma we are able to show that series LS
estimators with arbitrary bases attain the optimal L? convergence rate with beta-mixing regressors
under a uniformly bounded second conditional moment condition on the residuals. Our result should

be very useful to nonparametric series regression for financial time series data with heavy-tailed errors.
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3 Inference on possibly nonlinear functionals

We now study inference on possibly nonlinear functionals f : L?(X) N L>¥(X) — R of the regres-
sion function hg. Examples of functionals include, but are not limited to, the pointwise evaluation
functional, the partial mean functional, and consumer surplus (see, e.g., Newey| (1997) for examples).
The functional f(hg) may be estimated using the plug-in series LS estimator f (ﬁ), for which we now
establish feasible limit theory.

As with |Newey| (1997) and (Chen, Liao, and Sun| (2014), our results allow researchers to perform
inference on nonlinear functionals f of hy without needing to know whether or not f(hg) is regular (i.e.,
\/n-estimable). However, there is already a large literature on the y/n-asymptotic normality and the
consistent variance estimation for series estimators of regular functionals of conditional mean functions
with weakly dependent data (see, e.g.,|Chen and Shen| (1998), (Chen| (2007), |Li and Racine, (2006)). To
save space and to illustrate the usefulness of our new sup-norm convergence rate results, we focus on
asymptotic normality of f (ﬁ) and the corresponding sieve t statistic when the functional is irregular
(i.e., slower than y/n-estimable) in this section.

We borrow some notation and definitions from |Chen et al.| (2014). Denote the pathwise derivative

of f at hg in the direction v € V := (L?(X) — {ho}) by

. f(ho + 7v)
oh ' T—0t T

(23)

and assume it is linear. Let v}, € Vi := (Bk,w — {ho,k }) be the sieve Riesz representer of %[-] on

VK, i.e. v} is the unique element of Vi such that

[v] = Elvl(Xi)o(X;)] forall v e V. (24)

—1 0f(ho)

vic () = by () (Blby (Xi)by (X:)1)

where %ﬁo) [b5] is understood to be the vector formed by evaluating % [] at each element of b% (-).

* * . * df(ho) 1. Of(ho) 1.
Let [|vl122(x) = Elvk (Xi)?. Tt is clear that oj|2,y, = (2552 [pE]) (22 b))

Following |Chen et al.| (2014)), we say that f is a regular (or L?-norm bounded) functional if
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[vkllz2x) /vl 2(x) < 0o where v* € V' is the unique solution to

8f(h0) [’U]
Oh

= E*(X;)v(X;)] forall ve).

We say that f is an irregular (or L2-norm unbounded) functional if |jv}|| r2(x) /" +oo. Note that a
functional could be irregular but still sup-norm bounded (see Remark below).
Given the martingale difference errors (Assumption[2f(i)), we can define the sieve variance associated

with f(R) as Vi = |[vi]|2, := E[(ev} (X:))2). It is clear that

Vi = <8f(h0)[bf§]> (EDE (X)bl (X)) Bl (Xl (X0 (E[bg(X,-)bg(Xi)’])‘l<8f(h0)[b5])

oh oh
(200 ) et oty (2L ).

-~ —2
. . . * 2 . . . . . . _ *
The sieve variance Vi = [|vj ||, is estimated with the simple plug-in estimator Vi = ||vi||,,, where

—2
icla = = > Tk (X)*(Y: = h(X3))®
i=1 (26)

Ti(Xs) = bE(X;)(BlBuw/n)” 2 pK].

We first introduce a slight variant of Assumption [2[(ii).

Assumption 2 (iv) infex E[e2|X; = 2] > 0, (v) sup,ey Ele2{|e;] > €(n)}|X; = 2] — 0 as n — o0

for any positive sequence £ : N — R with £(n) — oo as n — oo.

Assumption (ii) and (iv) together imply that ||v}‘(||%2(X) = |Jvi %, = Vk. Assumption (v) is a
standard uniform integrability condition, which is not needed for the asymptotic normality of f (ﬁ)
with i.i.d. data when f is a regular functional (see, e.g.,|Chen| (2007))

Before we establish the asymptotic normality of f (ﬁ) under general weak dependence, we need
an additional assumption on the joint dependence of X; and e?, since this is not captured by the
martingale difference property of {;} (Assumption [2[i)). Define the K x K matrices

Q = I EbE(X)bE (X

- =1 z~w (27)
= E[e2bK(X;)bE (X;)]

Assumption 8 [ — Q| = o0,(1).
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The following Lemma is a useful technical result that is again derived using our new exponential

inequality for sums of weakly dependent random matrices.

Lemma 3.1 Let Assumptions[1(i), [3(ii) (i), and[{|(iii) hold. Then Assumption|§ is satisfied provided
that either (a), (b) or (c) is satisfied:

(a) {(Xi,Yi)}r, is ii.d. and (Cxnicn)>T9/%/(log K)/n = o(1);

(b) {(X;,Yi)} is exponentially B-mizing and (Cx nMicn)?T9/2\/(logn)?/n = o(1);

(¢) {(X;,Y:)}y is algebraically B-mizing at rate v and (Crcniic.n)?T9/%/(log K)/n/(+7) = o(1).

3.1 Asymptotic normality of f (ﬁ) for general irregular functionals

Let Nk, denote a convex neighborhood of hg such that E,E € Nk, wpal. The appropriate neighbor-
hood will depend on the properties of the functional under consideration. For regular and irregular
functionals we can typically take Nk, to be of the form Nk, = {h € Bkw : |h —hollr2(x) <
(V/K/n+ ||ho — ho k|| r2(x)) % loglogn}. However, for sup-norm bounded nonlinear functionals (see
Remark it may suffice to take Nk, = {h € Brw : ||h — hollp~(x) < €} for some fixed € > 0,
or even Nk, = L®(X) N Bk, for sup-norm bounded linear functionals. Our sup-norm and L? rate
results are clearly useful in defining an appropriate neighborhood.

We now introduce some primitive regularity conditions on the functional f.

Assumption 9 (i) v — %[v] is a linear functional;

(i1) $ubnense . VIVl LA ey [ (B) = F(Ro) = 2502 — hal| = 0(1) where b, € Nign wpal;

N - ) T
(i) el 2 /7 00, VAl 73 ) [ = hol| = 0,(1).

Assumption |§| corresponds to Assumption 3.1 in |Chen et al.| (2014) and Assumption 2.1 in (Chen
and Liao| (2014) for irregular functionals. We refer the reader to these papers for a detailed discussion
and verification of Assumption [9] Note that parts (i) and (ii) of Assumption [9] are automatically

satisfied when f is a linear functional.

Remark 3.1 Certain linear and nonlinear functionals may be irreqular yet may still be bounded with
respect to the sup norm. Alternative sufficient conditions for Assumption [d may be provided for such

functionals:
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(a) Suppose f is a linear, irregular functional but that f is sup-norm bounded, i.e. |f(h)| < [|h]lso
(e.g. the evaluation functional f(h) = h(x) for some fized x € X is sup-norm bounded because

|f(h)] = |h(z)| < ||k|los). Then a sufficient condition for Assumption[q is

—-1/2,7 —1/2 *
VaVig IR = holloo Sp vAVig 1 Prcwnllso o — B i oo = 0p(1).

~

SV PP = o(1).

When || Prwnlle S 1 and |[ho — hg glloo = O(K~P/%) then Assumption@ is satisfied provided

(b) Suppose f is a nonlinear, irreqular functional whose derivative is sup-norm bounded. Then As-
sumption [d may be replaced with:
(i’) v %[v] is a linear functional;
(i6°) |F(h) = f(ho) = 252 [ = hol| S lIh — holl2 wniformiy for h € Nicn;
(i3’
(iv’) B o € Ni wpal, vl ey (I = holloo + I = RollZ + IIf = RII%.) = 0p(1)
where Ni, = {h € Bg : ||h — holleo < €} for some fized € > 0.

Lffg;;o) [h — ho]‘ S Ik — holleo uniformly for h € Ni ,; and

For example, |Newey (1997) shows that conditions (i’)(ii°)(iii’) are satisfied for consumer surplus

functionals in demand estimation.

Theorem 3.1 Let Assumptions [1(i), [3(3) (i) (iv) (v), [4(¥ii), [ and[9 hold. Then

ﬁ(f(%/; fh)) _, no,1)

as n, K — oo provided that either (a) or (b) is satisfied:
(a) {(X;,Y3)}iy isiid.;
(b) {Xi}l is weakly dependent: Assumption@ holds, and ||§1’U§w/n —Ig| = op(Kfl/Q),

We now consider the special case of irregular but sup-norm bounded linear or nonlinear functionals
as discussed in Remark [3.I] The sup-norm convergence rates for series LS estimators in Section 2]
are employed to derive asymptotic normality of plug-in estimators of such functionals under weak

conditions. To save space, for the weakly dependent case we only present sufficient conditions for
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asymptotic normality of f (ﬁ) when the regression error has no more than a finite 4th absolute moment

(i.e., E[le;]*19] < oo for some 0 < § < 2). We also take X = [0,1]¢ and w,, = 1 for all n for simplicity.

Corollary 3.1 Let f be an irregular but sup-norm bounded linear functional, and let Assumptions

(with X = [0,1]%), [4(i) (i) () (v), [, and[7] hold. Then

Va(f(h) — f(ho))
vy?

—4 N(0,1)

as n, K — oo provided that either (a), (b) or (c) is satisfied:
(a) {(X5, Y}, is iicd.: /nVig PKP/7 = o(1) and (K log K)/n = o(1);

(b) {(X;,Yi)} is exponentially B-mizing: Assumption @(m) also holds, \/ﬁVlglpK_p/d = o(1),
and K293 (logn)? /n = o(1) with § < 2;

(¢) {(X;, i)} is algebraically B-mizing at rate y: Assumption @(m} also holds, \/ﬁVglﬂK—P/d =
o(1), and K@+9/%(log K) /n/ (47 = o(1) with § < 2.

Corollary part (a) extends the weakest known result on pointwise asymptotic normality of
spline LS estimators in [Huang (2003b) to general sup-norm bounded linear functionals of spline or

wavelet series LS estimatorsfl

Corollary 3.2 Let f be an irreqular but sup-norm bounded nonlinear functional, and let Assumptions

(with X = [0,1%),[4 [d [1 and[d(i*)(ii°) (i3i°) hold. Then

Va(f(h) — f(ho))
vy?

—d N(Ov 1)

as n, K — oo provided that either (a), (b) or (c) is satisfied:

(a) {(X5, Y)Y, is iicd.: /nVig PKP/4 = o(1) and K@T)/(logn)/n < 1 with § < 2;

(b) {(X;,Yi)} is exponentially B-mizing: \/ﬁVIEI/QK_p/d = 0o(1) and K®*t9/%(logn)?/n = o(1)
with § < 2;

8Under the assumption of empirical identifiability (see equation ) and other conditions similar to the ones listed
in Corollary part (a), Chen and Huang| (2003) derived the asymptotic normality of plug-in spline LS estimators of
sup-norm bounded linear functionals (see their Theorem 4).
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(¢) {(Xs,Y5)}7, is algebraically 5-mizing at rate y: /nVy Y2 g—p/d = = o(1) and K@+t9)/(log K) /n/(1+7) =
o(1) with 6 < 2.

Conditions for weakly dependent data in Corollary parts (b) and (c) are natural extensions
of those in part (a) for i.i.d. data, which in turn are much weaker than the well-known conditions in
Newey| (1997) for the asymptotic normality of nonlinear functionals of spline LS estimators, namely

VKP4 = 6(1), K*/n = o(1) and sup, E[|&|* | X; = 2] < co.

3.2 Asymptotic normality of sieve t statistics for general functionals

We now turn to the consistent estimation of Vi = ||[vj ||, and feasible asymptotic inference for f(ho).
Assumption 10 ”U;(”Z?l(x) H%(hh)[g{g] Ba(ho bK H = o(1) uniformly over h € Nk ,, or Be oo (ho).

Note that Assumption [10]is automatically satisfied when f is a linear functional. It is only required
to establish consistency of @]s ;4 for a nonlinear functional, and corresponds to Assumption 3.1(iii)
of (Chen and Liao, (2014)).

The first part of the following Lemma establishes the consistency of the sieve variance estimator

under both the i.i.d. and general weakly dependent data.

Lemma 3.2 Let Assumptions |1 I(z)(zz) @(z)(zz)(w) I(m) @ @ and. hold and Hh hol|so,w = 0p(1).

Then:
il _ 1‘ =0p(1) as n, K — oo.

(1) T
(2) Further, if Assumptions @(v} and@ hold, then:

Va(f(h) — f(ho))
VL2

—d N(07 1)

as n, K — oo provided that either (a) {(X;,Y:)}, is i.i.d., or (b) {X;}', is weakly dependent with
|BL, Bu/n — Ig|| = 0,(K~/2) is satisfied.

Lemma 3.2 can be combined with different sufficient conditions for Assumptions and [J to yield
different special cases of the asymptotic normality of sieve t statistics for general (possibly) nonlinear
functionals. We state three special cases below. The following Theorem is applicable to series LS

estimators with an arbitrary basis.
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Theorem 3.2 Let Assumptions (i)(ii), @, @ @ cmd hold and ||h — hol|so = op(1). Then

Va(f(h) — f(ho))
vy

—d N(Ov 1)

as n, K — oo provided that either (a), (b) or (c) is satisfied:

(a) {(Xi, Y)Yr, is di.d.: (Cinhin)ZH/%/(logn)/n = o(1);
(b) {(X;,Yi)}y is exponentially B-mizing: max(vVK, (CrnAicn)?®) X (CrnAin)y/ M = o(1);

(c) {(X:,Y:)}, is algebraically B-mizing at rate v: max(vV'K, (CK,n)\K,n)Q/‘S) X (CrnAK )/ % =
o(1).

The following Corollaries are direct consequences of Theorem for linear and nonlinear sup-

norm bounded functionals, with spline or wavelet bases. For simplicity, we take w, = 1 for all n and

X =10,1)%

Corollary 3.3 Let Assumptions (with X = [0,1]%), @ @ andlj hold for a sup-norm bounded linear
functional. Then
Vn(f(h) = f(ho))
pIr

—4 N(0,1)

as n, K — oo provided that either (a), (b) or (c) is satisfied:
(a) {(X5, Vi) is iicd.: /nVig/PKP/7 = o(1) and K@+9/%(logn)/n = o(1);
(b) part (b) of Corollary[3.1};

(c) part (c) of Corollary[3.1]

Corollary 3.4 Let Assumptions (with X = [0,1]¢), @ @ @ @(@’)(m’)(m ’) and hold for a nonlinear
functional. Then

Va(f(h) — f(ho))

7

—q4 N(0,1)

as n, K — oo provided that either (a), (b) or (c) is satisfied:
(a) {(X5, Vi), is iicd.: /nVig PKP/1 = o(1) and KC)/%(logn)/n = o(1) with § < 2;
(b) part (b) of Corollary|3.3;
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(¢) part (c) of Corollary[3.9

Previously, [Newey]| (1997) required that sup, E[e}|X; = z] < oo and K*/n = o(1) in order to
establish asymptotic normality of student ¢ statistics for nonlinear functionals with i.i.d. data. Our

sufficient conditions are weaker and allow for weakly dependent data with heavy-tailed errors.

4 Useful results on random matrices

4.1 An exponential inequality for sums of weakly dependent random matrices

In this section we derive a new Bernstein-type inequality for sums of random matrices formed from
absolutely regular (S-mixing) sequences, where the dimension, norm, and variance measure of the
random matrices are allowed to grow with the sample size. This inequality is particularly useful for
establishing sharp convergence rates for semi/nonparametric sieve estimators with weakly dependent

data. We first recall an inequality of |[Tropp| (2012)) for independent random matrices.

Theorem 4.1 (Tropp (2012)) Let {=;}! , be a finite sequence of independent random matrices with

dimensions di X dg. Assume E[Z;] =0 for each i and maxi<;<y [|Z;|| < Ry, and define

P ( > t> < (dy1 + do)exp (WQ) .

02 + Ryt/3
Corollary 4.1 Under the conditions of Theorem if Rp\/log(di + d2) = o(oy,) then

=1 =1

Then for all t > 0,

n

Z’_‘
— .
—1

i=1

n

—_—
— .
—i,n

=1

= Op(on+/log(dy + d2)) .

When {X;}°_ isiid., Corollary is used to provide weak low-level sufficient conditions under
which ||B),By/n — Ix| = 0p(1) holds (see Lemma .
We now provide an extension of Theorem and Corollary for matrix-valued functions of

[-mixing sequences. The S-mixing coefficient between two o-algebras A and B is defined as

BAB) = Jsup Y7 [P(4iN By) — B(AB(By) (28)
(3,5)EIxJ
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with the supremum taken over all finite partitions {4;},c; C A and {Bj}je; C B of Q (see, e.g.,

Bradley| (2005)). The gth S-mixing coefficient of {X;}5° __ is defined as

1=—00

/B(Q) = Sup /8(0( .. 7Xi—1> XZ)? U(Xi+Q7 Xi+q+17 .- )) . (29)

The process {X;}52__ is said to be algebraically f-mizing at rate v if ¢73(q) = o(1) for some v > 1,

1=—00

and ezponentially S-mizing if B(q) < cexp(—~q) for some v > 0 and ¢ > 0. The following extension of

Theorem is made using Berbee’s Lemma and a coupling argument.

Theorem 4.2 Let {X;}°__ be a S-mizing sequence and let Z;, = =Z,(X;) for each i where E,, :
X — R4 s o sequence of measurable di x dy matriz-valued functions. Assume E[Zin] =0 and
|Zinll < Ry for each i and define s2 = maxi<ij<n max{|| E[EinZ] ]I, 1 E[Z5,Z50]l} Let q be an

integer between 1 and n/2 and let I, = q[n/q|+1,...,n when g[n/q] < n and I, = O when q[n/q] = n.

> 6t> < gﬁ(q) +P <

Corollary 4.2 Under the conditions of Theorem |4.2, if ¢ = q(n) is chosen s.t. %B(q) = o(1) and

R, +/qlog(di + d2) = o(sp\/n) then

n

—_
— .
—i,n

=1

Then for all t > 0,

g

(where || ;¢ =

n

—_
— .
—%,n

i=1

—_
—
—,n

i€l

> t) 20 + ey (L)

ngsZ + qR,t/3

= Op(spv/nglog(di + dz)) .

When the regressors {X;}° are (-mixing, Corollary is used to provide weak low-level

sufficient conditions under which || B/, By /n — Ix|| = 0p(1) holds (see Lemma [2.2).
We note that both Theorem [£.2] and Corollary [4.2] allow for non-identically distributed beta-mixing

sequences. So the convergence rate and the inference results in previous sections could be extended to

non-identically distributed regressors { X }5° as well, except that notation and regularity conditions

1=—00

will be slightly more complicated.
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4.2 Empirical identifiability

We now provide a readily verifiable condition under which the theoretical and empirical L? norms are
equivalent over a (weighted) linear sieve space wpal. This equivalence, referred to by Huang| (2003b)) as
empirical identifiability, has several applications in nonparametric sieve estimation. In nonparametric
series LS estimation, empirical identifiability ensures that the estimator is the orthogonal projection
of Y onto the linear sieve space under the empirical inner product and is uniquely defined wpal
(Huang, 2003b)). Empirical identifiability is also used to establish the large-sample properties of sieve
conditional moment estimators (see, e.g., (Chen and Pouzo (2012)). A sufficient condition for empirical
identifiability is now cast in terms of convergence of a random matrix, which we verify for i.i.d. and
[-mixing sequences.

Recall that L?(X) denotes the space of functions f : X — R such that E[f(X;)?] < co. A (linear)
subspace A C L?(X) is said to be empirically identifiable if %Z?:l b(X;)? = 0 implies b = 0. A
sequence of spaces {Ag : K > 1} C L?(X) is empirically identifiable wpal as K = K(n) — oo with n
if
5 i1 a(Xi)? — Ela(X:)*)

Ela(X;)?]

lim P ( sup

n—oo CLEAK

:>t> =0 (30)

for any t > 0. Huang| (1998)) verifies for i.i.d. data using a chaining argument. (Chen and Pouzo

(2012) use this result to establish convergence of sieve conditional moment estimators. However, it may

be difficult to verify via chaining arguments for certain types of weakly dependent sequences.
To this end, the following is a readily verifiable sufficient condition for empirical identifiability for

(weighted) linear sieve spaces given by By, = clsp{bxiwn, ..., bxxwy}.

Condition 4.1 Apin(E[bE (X)bE (X;)]) > 0 for each K and ||BlyBy/n — Ix| = 0y(1).

w

Lemma 4.1 If Apin(E[bE (X)0E(X;)']) > 0 for each K then

w

LS~ b(X;)? — Eb(X;)? ~ ~
ek B N

Corollary 4.3 If Condition [{.1) holds then B, is empirically identifiable wpal.
Condition is therefore a sufficient condition for to hold for the linear sieve space B .

Remark 4.1 Consider the compact support case in which X = [0,1]¢ and wy,(x) = 1 for all x €

X and all n (so that bip(z)w,(x) = brr(z) for all n and K) and suppose the density of X; is
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uniformly bounded away from zero and infinity over X. (1) For i.i.d. regressors (and Mg, S 1),
previously |Huang (1998) establishes equivalence of the theoretical and empirical L? norms over the
sieve space via a chaining argument with Clz(nK/n = o(1).|Huang (2003Y)) relazxes this to K (logn)/n =
o(1) for a polynomial spline basis. Our Lemma shows that, in fact, CK,n\/W = o(1l) is

sufficient with an arbitrary linear sieve (provided Ak, S 1). (2) For strictly stationary beta-mizing

~

~

regressors (and A\, S 1), Lemma shows the equivalence of the theoretical and empirical L?

norms over any linear sieve space under either (i n+/(logn)?/n = o(1) for exponential beta-mizing,

or Cx.ny/(log K) /n/(47) = o(1) for algebraic beta-mizing.

5 Sup-norm stability of L?(X) projection onto wavelet sieves

In this section we show that the L?(X) orthogonal projection onto (tensor product) compactly sup-
ported wavelet bases is stable in sup norm as the dimension of the space increases. Consider the
orthogonal projection operator Px defined in expression where the elements of b span the
tensor products of d univariate wavelet spaces Wav(Kj, [0,1]). We show that its L> operator norm
| Pi||oo (see expression (L7))) is stable, in the sense that || Px|joc S 1 as K — oo. We also show that the
empirical L? projection Pk, onto the wavelet sieve is stable in sup norm wpal. This result is used to
establish that series LS estimators with (tensor-product) wavelet bases attain their optimal sup-norm
rates. A variant of this result for projections arising in series two-stage LS was used in an antecedent
of this paper (Chen and Christensenl) 2013) but its proof was omitted for brevity.

The following Theorem presents our result for the stability of the projection with respect to the

L*(X) inner product.

Theorem 5.1 Let X D [0,1]¢ and let the density fx of X; be such that 0 < inf,co1)0 fx (@) <

Supgefo1)¢ fx(2) < 0o. Let By be the tensor product of d univariate wavelet spaces Wav(Ko, [0,1])

where Wav (K, [0, 1]) is as described in Section@ and K = 2% and Ky = 27 > 2N. Then: || Px|ls < 1.

We now present conditions under which the empirical projection onto a tensor-product wavelet

basis is stable wpal. Here the projection operator is

Prah(e) =0y (22 23K (xn(x)
i=1
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where the elements of b span the tensor products of d univariate spaces Wav (Ko, [0, 1]). The following

Theorem states simple sufficient conditions for ||Px pllcc S 1 wpal.

Theorem 5.2 Let conditions stated in Theorem hold. Then ||Prnllcc S 1 wpal provided that

~

either (a), (b), or (c) is satisfied:

(a) {X;}7, are i.i.d. and \/(Klogn)/n = o(1)
(b) {X;}, are exponentially B-mizing and /K (logn)?/n = o(1), or

(¢) {X;}1, are algebraically B-mizing at rate v and /(K logn)/n/(+7) = o(1).

6 Brief review of B-spline and wavelet sieve spaces

We first outline univariate B-spline and wavelet sieve spaces on [0, 1], then deal with the multivariate

case by constructing a tensor-product sieve basis.

B-splines B-splines are defined by their order » > 1 (or degree r — 1 > 0) and number of interior

knots m > 0. Define the knot set

O=t (ppy=..=tg <t <. <ly <tpyr=... = by = 1. (31)

We generate a L°°-normalized B-spline basis recursively using the De Boor relation (see, e.g., Chapter
5 of DeVore and Lorentz (1993)) then appropriately rescale the basis functions. Define the interior

intervals Iy = [to,t1), ..., Im = [tm, tm+1] and generate a basis of order 1 by setting

Nja(x) = 1r;() (32)

for j = 0,...m, where 1;,(z) = 1if z € I; and 1;,(z) = 0 otherwise. Bases of order 7 > 1 are generated

recursively according to

T —1 tigr —
Nj,r(x) = Lo 1t i tANj,r—l(w) + #Njﬂ,r—l(ﬂﬂ) (33)
j+r—1 J J+r Jj+1
for j = —(r —1),...,m where we adopt the convention % := 0. Finally, we rescale the basis by

multiplying each N;, by (m + r)Y/2 for j = —(r — 1),...,m. This results in a total of K = m + r
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splines of order r. Each spline is a polynomial of degree » — 1 on each interior interval Iy,...,I,, and

is (r — 2)-times continuously differentiable on (0, 1) whenever r > 2. The mesh ratio is defined as

maxo<j<m(tjv1 — ;)

mesh(K) = (34)

ming<j<m(tjr1 —t;)

We let the space BSpl(K, |0, 1]) be the closed linear span of these K = m + r splines. The space
BSpl( X, [0, 1]) has uniformly bounded mesh ratio if mesh(K) < k for all N > 0 and some & € (0, 00).
We let BSpl(XK, [0,1],v) denote the space BSpl(XK, [0,1]) with degree v and uniformly bounded mesh
ratio. See \De Boor| (2001)) and |Schumaker| (2007) for further details.

Wavelets We construct a wavelet basis with support [0, 1] following |Cohen, Daubechies, and Vial
(1993). Let (y,%) be a Daubechies pair such that ¢ has support [-N + 1, N]. Given j such that
2 — 2N > 0, the orthonormal (with respect to the L?([0,1]) inner product) basis for the space V;
consists of 2/ — 2N interior scaling functions of the form ¢, x(z) = 21/2p(27x — k), each of which
has support [277(—N + 1+ k),279(N + k)] for k = N,...,2) — N — 1. These are augmented with
N left scaling functions of the form gog.)’k(:v) = 20/2pt (272) for k = 0,...,N — 1 (where ¢}, ..., oh_,
are fixed independent of j), each of which has support [0,277(N + k)], and N right scaling func-
tions of the form ;5 j(z) = 20127 (27(x — 1)) for k = 1,...,N (where ¢” ,...,¢" 5 are fixed
independent of j), each of which has support [I — 277(1 — N — k), 1]. The resulting 27 functions
‘P?‘,m e @?’N_l, OjNs -3 Pj2i—N—15 90},2]‘—1\7? el 4,0}7%_1 form an orthonormal basis (with respect to
the L2([0, 1]) inner product) for the subspace they span, denoted V;.

An orthonormal wavelet basis for the space W;, defined as the orthogonal complement of Vj; in
Vit1, is similarly constructed form the mother wavelet. This results in an orthonormal basis of 27
functions ¢;{0, ey 1/}?7]\,_1, ViNs V2 N1 ;,zi—N’ ces ,1/)]1.72]-71. To simplify notation we ignore the
0 and 1 superscripts on the left and right wavelets and scaling functions henceforth.

Let Jy and J be integers such that 270 < 27/ < 2N. A wavelet space at resolution level .J is the set

of 27 functions given by

2701 J 27-1
Wav(J) =< D agprpanr+ Y, O biktin: agnbik €Rp . (35)
k=0 j=Jo k=0

The spaces V; and W; are constructed so that V1 = V; @ W; for all j with 2/ — 2N > 0. Therefore,
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we can reexpress Wav(J) as

27-1
WaV(J) = Z ajkPIk Ak € R . (36)

k=0
The orthogonal projection onto Wav(.J) is therefore the same, irrespective of whether we use the bases
for Vjor Vj, @ Wy, @ ... ® W,. Note that, by the support of the ¢;0,...,¢;9s_1, the support of at
most 2N — 1 basis functions overlaps on a set of positive Lebesgue measure. We use this local support
to bound the orthogonal projection operator onto (tensor product) wavelet bases below.
We say that Wav(K, [0,1]) has regularity v if N > ~, and write Wav(K, [0,1],) for a wavelet
space of regularity « with continuously differentiable basis functions. See |Johnstone (2013) for further

details.

Tensor products We construct tensor product B-spline or wavelet bases for [0, 1]¢ as follows. First,
for x = (x1,...,24) € [0,1]% we construct d B-spline or wavelet bases for [0,1]. We then form the
tensor product basis by taking the product of the elements of each of the univariate bases. Therefore,

bX (z) may be expressed as
d

b () = Q) b0 (1) (37)

=1
where the elements of each vector b%°(z;) span BSpl(Ky, [0,1],v) with Kg =m +rforl=1,...,d, or
span Wav(Ky, [0,1],7) with Ko =27 for I = 1,...,d. We let BSpl(X, [0,1]%,~) and Wav(K, [0, 1]¢,7)

denote the resulting tensor-product spaces spanned by the K = (m + )% or K = 2%/ elements of b.

7 Proofs

7.1 Proofs for Section [2

Proof of Lemma Follows from Corollary by setting Z; , = n~ (oK (X)bE (X;) — Ix) and

w

noting that R, < nfl((’%(,n)\%{’n +1), and 02 < nfl((%{m)\%{’n +1). =m

Proof of Lemma Follows from Corollary by setting =;,, = n 1 (b (X;)bE (X;)' — Ixk) and

noting that R, <n (¢}, A%, +1),and 02 <n 2(¢% A%, +1). m
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Proof of Lemma By rotational invariance, we may rescale h and h to yield
h(z) = h(x) = by () (B, Bu/n)” Byye/n (38)

where e = (e1,...,€,).
Let h = h— h to simplify notation. By the mean value theorem, Assumptions i) and (i)(iii), for

any (z,z*) € D2 we have

[(x) = h(a)| = |} (x) = by (")) (Bl,Bu/n)” Bie/n] (39)
= |(x = 2")'Vbly (+"*)(B,,Bu/n)” Bl,e/n| (40)
< OvAgan K2 | — 2| (Bl Bu/n)” ||| Bie/nll (41)

for some z** in the segment between z and x* and some finite constant Cy (independent of z, x*, n, K).
Now, ||(B/,By/n)~Y| = Op(1) by Assumption |5 and we may deduce by Markov’s inequality (under
Assumptions (1)(11)) that | Bl e/n| = Op(v/K/n). It follows that

limsup P (C | (B, Bu/n) ||| Bye/nl| > M) =0 (42)

n—oo

for any fixed M > 0 (since condition (i) implies K/n = o(1)). Let B, denote the event on which
Cvl||(B.,Bw/n)" ||| Bye/n|| < M and observe that P(BS) = o(1). On By, for any C > 1, a finite

positive 1 = m1(C) and 12 = 1n2(C') can be chosen such that
O AR K2 ||z — 2| [|(B), Buw/n)~ | Ble/nll < ClinArny/ (logn)/n (43)

whenever ||z — 2*|| < mn ", by Assumption [4{ii). Let S,, be the smallest subset of D,, such that for
each x € D, there exists a z,, € S, with ||z, — z|| < mn~". For any = € D,, let x,(x) denote the

xn € Sp nearest (in Euclidean distance) to x. Then on B,, we have
() = h(wn(@))] < Clienricny/(logn)/n (44)

for any z € D,.
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Using the fact that P(A) < P(A N B) + P(B¢), we obtain

7o > 4CCk n Ak (1ogn)/n)
I

< E{ lloo > 4c<KnAKn¢W} NB,) +P(B;) (45)
< P ({222 |h(x xn ()| > 2CCKk nAK (logn)/n} N Bn)

+P {meax 7(2n)| > 2CCk n i/ (log n) /n} n Bn> + P(BE) (46)
= P ({xITILlea}i |h(xn)| > 2CCK n Ak ny/ (logn) /n} N Bn> +0o(1) (47)

where the final line is by and the fact that P(BS) = o(1). The arguments used to control expression
(A7) differ depending upon whether or not {(X;, ¥;)}, is i.i.d.

With i.i.d. data, first let 4, denote the event on which ||(B.,By/n) — Ix| < 3 and observe that
P(AS) = o(1) because ||B!,By/n — Ik| = 0,(1). Let {A,} denote the indicator function of A,, let

{M,, : n > 1} be an increasing sequence diverging to +oo, and define

eLin = €{la] < Mn} — Ele{lea] < My} Xi] (48)
€2,in = € —€lin (49)
Gin(zn) = b (xa) (BlyBuw/n) bl (X:){An}. (50)

Since P(AN B) < P(A) and P(A) < P(AN B) + P(B°), we have

P ({ mae ()] > 20k A /o n)/n} n Bn)

< P (max ]h(wn)\ > 2CCkn K (logn)/n>
< P ({ max (2n)| = 2CCk nAx ny/ (log ) /n} N An) +P(A9)
1 n
< (#8n) max P ({ - ; Gim(Tn)etin| > CCrnhicn/(logn) /n} N An> (51a)
1 n
+P ({xgleagi - ;Gi,n(l’n)ﬁzi,n > CCrnArny (log n)/n} N An> +P(AS).  (51b)

Control of (51a)): Note that ||(B/,By/n)~ || < 2 on A,. Therefore, by the Cauchy-Schwarz inequal-

32



ity and definition of €1;, and (k n, Ak n, We have:

2 2
CK,n)\K,nM”

N Gi(n)erin] S -

(52)

Let E[-|X7] denote expectation conditional on Xi,..., X,. Assumption [2[ii) in the ii.d. data case

implies that sup, F[e?|X; = z] < co. Therefore,

Y El(n™ ' Ginlzn)erin)*1XT]
i=1

= > B X e (Bl B ) B (X0 (X0 (A} (Bl B /) B () (53)
=1

< B ) (Bl B /) B (KB (X0 A} (B Bus ) B () (54)
i=1
1~K ’ ' —/pl 5 D 17K CIQ(n)‘%(n
= bl (@a) E(Bl,Bu/m)” (Bl Bu/m){An} (B, Bu fr) Jblf () § 222 (55)

Bernstein’s inequality for independent random variables (see, e.g., pp. 192-193 of Pollard| (1984)) then

Xy>

provides that

1
— E Gi,n(xn)ﬁl,i,n
n

i=1

> CCrnAKon (logn)/n} NA,

v |

C2%¢2 X2 (logn)/n
g nl/1+7721/2exp _ 5 5 2CK,721 K,n( g )/ (56)
ClCK,n)\K,n/n + CQCKJ’L)\KJ’LMH/TL X CCK,R)\KJZ (log n)/n
C?CGe N n(logn) /1 Cy/nlogn
< exp<logn — S + ex {lo n—} 57
p{ S e A e v A (57)

for finite positive constants C1,...,Cy (independent of X7, ..., X,,). Thus (51a)) vanishes asymptoti-
cally for all sufficiently large C' provided M,, = O(C[_(}n)\[_gn\/n/ (logn)).
Control of the leading term in 1} First note that |G| < 2C12(,n)\§(,n by the Cauchy-Schwarz

inequality and Assumption [4fiii). This, together with Markov’s inequality and Assumption [2|(iii) yields

1 n
> (max LSS G| > Onhn /08 n)/n>
Tn€Sn | M P
Q%{,nA%{,nE“eini‘ > M, }] - CkmAknv/n Elle>T0{]e] > My}]

CknAKny/ (logn)/n Viogn MO
which is o(1) provided CxnAny/n/logn = O(M;*). Setting My** < (knAkny/n/logn trivially

33



satisfies the condition (i, Ainy/n/logn = O(M}+®). The condition M, = O(g}’ln)\[_én\/m)
is satisfied for this choice of M,, provided C%(7n)\§(7n < (n/logn)%/+9) (cf. condition (i)). Finally, it is
straightforward to verify that M, — oo as a consequence of condition (i). Thus, both and
vanish asymptotically. This completes the proof in the i.i.d. case.

With weakly dependent data we use P(AN B) < P(A) to bound remaining term on the right-

hand side of by

P ({ max \lvz(a:n)| > 20Ckn Ak 0y (log n)/n})

< P ( max (b () {(Bl,Bu/n) ™ — Ix} Bye/n| = ClxnAin/(logn) /n> (58)
TnESn
+P <m3§< b5 (2) Bl,e/n| > ClcnAicn/(logn) /n> : (59)

It is now shown that a sufficiently large C' can be chosen to control terms and .
Control of : The Cauchy-Schwarz inequality and Assumption (iii) yield

b8 (@) {(B, Bw/n)~ — Ik} Ble/n| S Cadicnll(ByBu/n)™ — Ik x Op(v/K/n) (60)
uniformly for z,, € S, (since | Bl,e/n| = Op(y/K/n) under Assumption (1)(11)) On A,, we have
(Bl Buw/n)™ = Ikl = [|(Bl,Bu/n) " (Bi,Bu/n) = Ix)|| < 2|[(B,Bu/n) - Ik (61)

Thus || B, By/n—Ix| = Op(+/(logn)/K) (i.e. condition (ii)) ensures that can be made arbitrarily
small for large enough C.

Control of : Let M,, be as in the i.i.d. case and define

€Lin = €file| < My} — Elei{le] < My} Fia] (62)
€2in = € —€lin (63)
Gin(Tn) = B (2,) B8 (Xi){ AL} (64)
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The relation P(A) < P(AN B) + P(B°) and the triangle inequality together yield

P (max b5 (2,) Blye/n| > CCxn Mg/ (logn) /n> —P(AS)

TnESn
< (#S,) max P ({ %ngq,i,n > %CK,n/\K,n\/(IOg n)/n} N An) (65a)

Tn€Sn i=1
1 @& c
+ <Ir7111éa§§I " i:E 1 9in€2in| = 9 CK,n Kn ( 0og n)/n) ( )

Control of 1) First note that |g; | < (?Qn/\%(’n by the Cauchy-Schwarz inequality and Assump-

tion (iii). This, together with Markov’s inequality and Assumption (iii) yields

1 & C
(glggl - ;_1 Gin€2in| 2 5 CxnAKny (log n)/n)

Ca e Plelllel > Ma}] _ Crndieny/n Ella*{le] > My)]
CK,n)\K,n (IOg n)/n N \% IOg n M?%—HS

which is o(1) provided Cx Ak n\/n/logn = O(M}H9).
Control of (65a)): By Assumption (ii), the predictable variation of the summands in (65al) may be

bounded by
1 < ~ . -
= > BlGinerin) 1 Fit] S 07 (@a) (BlyBu/n) b (wa) (66)
1
5 <I2(,n)‘%(,n/n on An (67)
uniformly for z,, € §,. Moreover,
Clen N M

N gimerin| S . (68)

uniformly for x,, € S,,. An tail bound for martingales (Freedmanl {1975, Proposition 2.1) then provides
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that

n
1
- E 9in€lin
n

=1

(#Sn) max P ({ > %CK,nAK,n (log n)/n} N An)

C?¢2 X2 (logn)/n
< piitmvaexp { — . CKén K,n( gn)/ (69)
cngm/\K:n/n + CQCK,n)‘K,nMn/n X CCK,n)\K,n (log n)/n
C?Cf y i n(logn) /1 Cv/nlogn
< expylogn — AL + ex {lo n—} 70
p{ © CSC?(,nA%(,n/n P & C4CK,n)\K,nMn ( )

for finite positive constants cy, ..., cq. Thus (65a]) vanishes asymptotically for all sufficiently large C'
provided M,, = O(CI_(}”)\[_(IR n/(logn)). Choosing M, as in the i.i.d. case completes the proof. m
Proof of Remark Take any h € L, with ||h|lcw 7# 0. By the Cauchy-Schwarz inequality we

have

| Prcwn ()] 185 ()11 (B, Bu/n)~ Bl H/n| (71)

IA

IN

|(B1,Bu/n)” By, H/n| (72)

CK,n)\K,n

uniformly over z, where H = (h(X1)wn(X1), ..., h(Xn)wn(X,))'. When Awin (B!, Bw/n) > % (which it

is wpal since || Bl By/n — I|| = 0,(1)), we have:

(B}, Bu/n)” BLH/n|> = (H'By/n)(B,Buy/n) " (Bl,Bu/n)" B,H/n
< 2(H'By/n)(B.,By/n)"'B!,H/n

< 2hl5 0 < 201705 .

where the second last line is because By, (B, B,,) "' B, is a projection matrix. Thus | Prw,n Pl oo,/ | ]| so,w <
V2( i n A i wpal (uniformly in k). Taking the sup over h yields the desired result. m

Proof of Lemma It suffices to control the bias term. Note that h = Pk wnho. Therefore, for
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any h € By, we have, by the usual argument,

17 = Bolloow = Ih =P+ h—holloouw (73)
= |[[Pkwmn(ho —h) +h—hollecw (74)
< NPrwn(ho = R)|lsow + | — holloow (75)
< (1 + [1Prwnllocw) 1A = Rolloow - (76)

Taking the infimum over h € By ,, yields the desired result. m
Proof of Theorem The variance term is Op(y/K(logn)/n) by Lemma condition (i)
of Lemma is satisfied by virtue of the condition & > d/p; condition (ii) is satisfied for K =
(n/logn)¥Cr+d) directly in the i.i.d. case, and by Lemma and the conditions on p for the [-
mixing cases.

For the bias term, it is well known that infyep, , [[ho — hlloow = O(K~P/4) under Assumptions

6] and [7] (e.g. [Huang] (1998) and [Chen| (2007)). It therefore remains to show that || P n

loo <1 wpal.

When By = BSpl(K, [0,1]%, ), we may slightly adapt Corollary A.1 of[Huang| (2003b) to show that
| Pk wnlloow < 1 wpal, using the fact that the empirical and true L?(X) norms are equivalent over
Bp 1 wpal by virtue of the condition |B.,By/n — Ix|| = op(1) (see our Lemma . This condition
is satisfied with K = (n/logn)% P+ for ii.d. data (see Lemma [2.1)), and is satisfied in the S-mixing
case by Lemma and the conditions on p.

When By = Wav(K,[0,1]¢,v), the conditions on K in Theorem are satisfied with K =
(n/logn)¥P+d) ynder the conditions on p in the Theorem. Therefore, || P iwnlloow < 1 wpal. m

Proof of Lemma By similar arguments to the proof of Lemma
Ih = Al z2(x) = 1(b5) (BlyBu/n)~ Bye/nll 12(x) < (Bl Buw/n)~ |l Bue/nll- (77)

Chebyshev’s inequality and Assumption (i)(ii) yield || Bl e/n| = Op(y/K/n). Moreover, it follows
from Assumption [5| that ||(B/,By/n)~|| = Op(1).
For the remaining term it suffices to show that ||h — hollz2(xy = Op(llho — ho,kllz2(x))- By the

triangle inequality we bound

1A = hollz2(x) < Ih = ho,xllz2(x) + l1ho,c — hollp2(x) - (78)
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Recall the definition of the empirical projection Pk 4, from expression , and observe that h =
Py wnho and that Pg ., nh = h for all h € By ,,. Also recall the definition of quyn(X ) as the space
of functions with finite norm | - [juw,n where | f||2, , = LS | f(Xi)?w,(X;). Since the empirical and
theoretical L?(X) norms are equivalent over B ,, wpal under the condition |B.,By/n— Ixk|| = op(1)

(see Section [4.2). Therefore, we have

1= horlZexy = IPrwn(ho = how)lZ2ix) (79)
= ||Pxwn(ho — hox)lls, wpal (80)
< (o = ho,g)% (81)

where the second line is by equivalence of the empirical and theoretical L?(X) norms wpal, and the

final line is because P, 5 is an orthogonal projection on L%w(X ). Finally, Markov’s inequality yields

I(ho = o,k ) s = Op([lh0 = ho,k|l72(x)- ®

7.2 Proofs for Section 3

Proof of Lemma We use a truncation argument together with exponential inequalities for
random matrices. Let M, < (CxnA an)(2+5)/ % (with § as in Assumption (iii) be a sequence of positive

numbers and let

(E1i — E[E14)) (82)

=

Il
SRS
&M:

=1

~ 1 &

Qo = = (B9, — E[Es; 83
2 = L E P (83)

B o= bl (Xl (X0 {|€bl (Xi)bl (X)) || < M7} (84)

Boi = bl (X)bh (X)) {||€bl (X)bl (X:)|| > M7} (85)

Clearly Q — Q = 1 4 Qy, so it is enough to show that [|Qy = op(1) and 1€ = op(1).

Control of ||Qy: By definition, ||Z ]| < M2. It follows by the triangle inequality and Jensen’s
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inequality (|| - || is convex) that ||Z1; — E[E1]|| < 2M,,. Moreover, by Assumption [2{ii)

E((E1, - BELY] < Blefllbly (X008 (Xa)bly (X0) {lle7bly (Xa)bgy (X0)'I| < M7} (86)

< ME[fbl (Xo)bl (Xa){||€bls (X:)bls (X3)']| < M7} (87)
< MZE[E[e| X:Jbls (X;)bE (X3 (88)
< MZERE (X0 (X3)] = M2k (89)

where the inequalities are understood in the sense of positive semi-definite matrices. It follows that
||E[(E“—E[E“])2]|| < M2, In thei.i.d. case, Corollaryyields |]§1|| = Op(Mpy/(log K)/n) = op(1).
In the S-mixing case, Corollaryyields Hﬁl | = Op(Mp+/q(log K)/n), and the result follows by taking
g =~y 'logn in the exponentially S-mixing case and ¢ < n*/(1*7) in the algebraically S-mixing case.

Control of ||Q]|: The simple bound 1224l < (CxmArn)?e2{e? > M2/((knrkn)?} together with

the triangle inequality and Jensen’s inequality (|| - || is convex) yield
E[|Qll] < 2Ckndwn) Elei{lel > Ma/(Crndren))] (90)
CK,n)\K,n 244
< UK AT i 2 e > 0 (Cheica)} = o(1) (o)

by Assumption (iii) because M, /(CknAkn) = (CK7n)\K7n)2/5 — oo and (CK,n)\K,n)”‘s/Mg = 1.
Therefore, ||Qq]| = op(1) by Markov’s inequality. m
Proof of Theorem First define uj () = vj(x)/||vi|lsa- Note that E[(u} (Xi)e)?] = 1,
Elui(X;)% = HvHL2 /||UH 2; =< 1 (by Assumptions (ii)(iv)), and || uklloe S CrnAK,n by the re-
lation between the L? and sup norms on B -
By Assumption @(1)(11) and the fact that h, h € Nk, wpal, we obtain:
Va(f(h) = f(m) _ VaZgth —h)

= + op(1) (92)
V2 V2 ?

" 7o) (pK /(B! By /n)~ — B e/\/n
= Jr k(K PEIUR A 0 it )
" K

+0p(1).(93)

The leading term is now shown to be asymptotically N(0,1) and the second term is shown to be
asymptotically negligible. The proof of this differs depending upon whether the data are i.i.d. or

weakly dependent.
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With i.i.d. data, we first show that the second term on the right-hand side of is 0p(1). Let
n > 0 be arbitrary. Let C, be such that lim sup P(|| B, By /n — Ig| > CoCrnArny/ (log K)/n) < n
(we may always choose such a C), by Lemma , let Cy, denote the event |B.,By/n — Ig| <
CCrn k.ny/(log K)/n and let {Cy,,,} denote its indicator function. Observe that V;(/ ? < H%ZO)[@% ] H
(under Assumption (ii)(iv)). Let E[-|X7] denote expectation conditional on X7, ..., X, and let 855

denote 2/ a(ZO) [bX]. By iterated expectations,

T KN\ (R D n)— — n/ e/ J/n 2
E (abw> ((Bwa/ )1 - IK)(Bw /\F) {Cn,n}
v/

(965 ) E[((By,Bu/n)~ — I ) E[(Bye€ Bu/n)| XT]((ByBuw/n)~ = Ii){Cnn bl

Vi
_ (@06 BI(ByyBu/n)” — Ix) (5 Yoiy Blefbl (Xa)biy (X:)'|Xi]) (Bl Bu/n)~ — 1){Crn } |00l
Vi
_ (OBEYE[(ByBuw/n)~ — Ik)(Bj,Buw/n)((By,Buw/n)~ = Ik){Cny}0b
S 7
S CrClenicnllog K)/n = o(1) (94)

for all n sufficiently large, where the second last line is by Assumption (ii) and the final line is because
both ||(Bl,Bw/n)~ — Ik | < |(BlyBuw/n) — Ik and ||(B,By)/n|l < 1 hold on C,,, for all n sufficiently
large under Assumption |5l As liminfP(C, ) > 1 — n and 7 is arbitrary, the second term in is
therefore op(1).

Now consider the leading term in (93]). The summands are i.i.d. with mean zero and unit variance.

The Lindeberg condition is easily verified:

Blefuje(Xa){leiuic (Xo)| > nv/n}] = Eleuj(X)*{leil > n(v/n/Crnn)}] (95)

< sng[e?{Iq\ > n(Vn/CrnAkn)}Xi = x] = o(1) (96)

by Assumption (v) because C%(’n)\%(’n /n = o(1). Thus the leading term is asymptotically N(0,1) by
the Lindeberg-Feller theorem.

With weakly dependent data we apply the Cauchy-Schwarz inequality to the second term in
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expression to obtain

f(ho) TK11(( ! D n)— — ~/e n
G b <<BwaV/1/>2 1) (Bie /') o
K
| 228t 55| 1B B /) — Ll Blye /] x v
< 7 (%)
K
S I(B),Bu/n) — IxlllBlye/nll x Vn (99)

wpal, because Haf (b H = Vg 12 and (B, By/n)~—Ig|| < 2|(Bl,By/n)—Ik| wpal by Assumption
Assumption I(l i) implies || Be/n|| = O,(\/K/n), whence the second term in expression is
0,(1) by the condition ||(B.,By/n) — Ix| = op(K~/2).

To show the leading term in is asymptotically N(0,1) we use a martingale CLT (Corol-
lary 2.8 of McLeish| (1974)). This verifying the conditions (a) max;<y |uf (X;)ei/v/n| —p 0 and (b)

LS uje(Xi)%e? = 1. To verify condition (a), let > 0 be arbitrary. Then,

Plmax|euf (X)/ Vil > ) < ZP!ezuK i)/Vn| > n) (100)
< T}ZEW«( Xo)2{ el (Xi) /v > ] (101)

=1
- ;E[e%}(m {lesule (X2) /v > )] (102)

which again is o(1) by Assumption (V) since CIQ(’”)\%(’H/n = o(1). For condition (b), note that

||6f f10) [bK]/HU}}HSdH = |lvkllz2(x)/lvi |lsa < 1. Then by the Cauchy-Schwarz inequality, we have

(P g (2
ol ol

which is 0,(1) by Assumption |8 Therefore, the leading term in is asymptotically N (0, 1).

<2-9| (103)

~ |

1 - * 22
nz;uK(Xi) -1
1=

It remains to show that

Va(f(h) = f(ho))
v/?

= 0,(1). (104)

Assumption |§|(ii) and the fact that h € N K,n wpal together yield

Va(f(h) = f(he)) [ 9f(ho) ~
V= Bl . (105)
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which is 0,(1) by Assumption [9|(iii). m

Proof of Corollary The result follows from Theorem Assumption [4[(iii) is satisfied for
these bases under Assumptions [I| and [7] Moreover, Assumption [5] is satisfied under the restrictions
on K (see Lemmas and . Assumption |§| is satisfied provided v/n||h — hollso = 0(V§1/2). But
7 = holles = O,(K~P/) by the proof of Theorem S0 \/ﬁVIQIUK_p/d = o(1) is sufficient for
Assumption |§| to hold. Moreover, under Assumption (iii), Lemma shows that Assumption [§| and
the condition || B/, By /n—If || = 0p(K~1/2) are satisfied for weakly dependent data under the respective
conditions on K (see Lemma [2.2). m

Proof of Corollary The result follows by Theorem with Assumption @(i’)f(iv’) in place
of Assumption |§| (see Remark . Most conditions of Theorem can be verified in the same
way as those for Corollary Assumption @(iv’) is satisfied under the conditions on K because
IR — hollss = O,(K~7/%) by the proof of Theorem and |[h — k| = O,(\/(Klogn)/n) by Lemma
[

Proof of Lemma Result (2) follows from Theorem and Result (1) of Lemma by the

continuous mapping theorem. It remains to show Result (1). By addition and subtraction of terms,

[ *ZevK 1§ K X)) 06)
o7 1%, = |vKHsd n 5 o512,
1 Z";@( ) = o(X0)) 0 (X)? | 1§ ((X0) = ho(X0) (05 (X0)? — vje (X))
n i=1 HUKHSd nizl ”vK”Sd
2 ~a(h ho(X))uie(Xo)® _ 2 " (h(Xa) = ho(X0) (B3 (X0)? — 0 (X0)?)
Z HvKHsd n; ”UK”Sd

=: T1+T2+T3+T4+T5+T6-

Control of T1: T1 —, 1 by Assumption
Control of Ty: Let

3f(ho)['5K]

o = b s (107)
[0kl 54
af(h) (7

0 = M (108)
107l sq

& = (B,By/n)"10. (109)
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Then with this notation,

T3 =

@00 — a’ﬁa\ = (8 +9)Q0 — )| < 1@ +) 2@ — ). (110)
Note that H(AZH = Op(1) by Assumption (ii). By the triangle inequality and definition of 9, 9, and 0,
18 — || < |(BlyBuw/n)~ — Ix||(0 — a|| +1|3])) - (111)

Assumption [5| implies ||(B.,By/n)~ — Ix|| = op(1); ]\5— d|| = 0p(1) by Assumption @(iv), because
he Ngn wpal; and [[9]] < 1 because [|vi|lr2(x) < [[vk|lsa under Assumption (ii)(iv). Therefore,
|0 = 0| = 0p(1), ||0 4+ 9]| = Op(1), and so |Ta| = op(1).

Control of T3: First note that
T3] < (17~ hollZ. % Z ||v || = 0p(1) x Op(1) = 0p(1) (112)
K

where Hﬁ — hollsow = 0p(1) by hypothesis and n=! "8 | v (X;)?/|lvi |2, by Markov’s inequality and
the fact that |[vj|[2(x) X ||vjlls¢ under Assumption (ii)(iv).

Control of Ty: by the triangle inequality definition of v}, and v}:

Tal < 1B = hollZw X Z Z (113)
HUKH ||”K||
PN N N N
= op(1) x (8 Q0 —1—6’98) < 0p(1) x || x <H8|2 + |8||2> . (114)
Moreover, ||| = Op(1) by Assumption 9]l < 1 by Assumption (ii)(iv), and |9 < |0 — || +

18 — 8] + 1|8]| = Op(1) by Assumption [5] and [ofiv). Tt follows that T3] = 0,(1).

Control of T5: By the inequality 2|a|] < 1 + a?, we have

~ 1 o= (14 e2)vi(X;)?
yTsrsyyh—hoHoo,wnZ( i Xi)”

okl op(1) x Op(1) = 0,(1) (115)

where [l — hollsow = 0p(1) by hypothesis, n=! >""

'le

Vi (X3)?/|vill?; —p 1 by Assumption and
the remaining term is Op(1) by the arguments for T3.

Control of Ty: The proof is essentially the same as that for Ts, except we replace Q by the matrix
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O=n"t" ei(h(X;) — ho(X:))bE (X;)bE (X;). By the inequality 2|a| < 1+ a2, it follows that

w w

nt Y ()b (Xa)bly (X0
=1
1= hollooaw x || BisBu/n+ Q| = 0,(1) x 0,(1) = 0,(1) (117)

1G] < (|7 = holloo,w x (116)

because [l — hol|oo.w = 0p(1), [| Bl Bu/nl| = Op(1) by Assumption[s] and ||| = O,(1) by Assumption
B m
Proof of Theorem [3.2l This follows from Lemma [3.2]

First, Assumption [5] is satisfied for i.i.d. and S-mixing data under the respective conditions on
K (see Lemmas and [2.2). Moreover, Lemma shows that Assumption |8 and the condition
|B.,By/n — Ig| = 0p(K~1/?) is satisfied for weakly dependent data under the respective conditions
on K (see Lemma . Therefore Theorem may be applied for asymptotic normality of f (ﬁ)

To apply Lemma it remains to show that |[h — holloo,w = 0p(1). But IR — hollse = op(1) by

assumption, and ||71 — hlloo = Op(CxnArny/(logn)/n) = 0,(1) by Lemmas and [2.2| under the

conditions on K. m

7.3 Proofs for Section [l

Proof of Corollary Follows from Theorem with t = Can\/m for sufficiently large
C, and applying the condition an =o(o,). =

Proof of Theorem By Berbee’s lemma (enlarging the probability space as necessary) the
process {X;} can be coupled with a process X* such that Y := {X(k_l)qH, oo, X} and V)P =
{XEkk—l)qH’ ..., Xp, } are identically distributed for each k > 1, P(Y}, # Y}7) < B(g) for each k > 1 and
{Y},Y5, ...} are independent and {Y5",Y)", ...} are independent (see Lemma 2.1 of Berbee (1987)).

Let I. and I, denote the indices of {1,...,n} corresponding to the odd- and even-numbered blocks,

and I, the indices in the remainder, so I, = ¢[n/q] + 1,...,n when ¢[n/q] < n and I, = () when

qln/q] = n.
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Let £, = E(X],,). By the triangle inequality,

P (|| Y0, Zill > 68)
P(I S22 1+ | e, Eonll + | S89(Es, — Ei)| > 68) (118)
< 28(0) + P (I Sier, Binll 20) + P (I Tier, Bl 2 ) + P (Il Zier, Ziall 2 1)

IA

To control the last two terms we apply Theorem recognizing that » ,.; =7, and >, ; Ef are
each the sum of fewer than [n/q] independent di x dp matrices, namely W} = qu(k Dat1 S0

Moreover each W} satisfies [|W}|| < ¢R,, and max{|E[W; W[, |EIW;W{]|I} < ¢*sn. Theorem

—t2/2
P ( > t) < (dy + d2)exp </> (119)
and similarly for I,. m

ngs2 + qR,t/3
Proof of Corollary Follows from Theorem with t = Cs,\/nqlog(dy + ds) for sufficiently

large C, and the conditions ¢8(q) = o(1) and Rn/qlog(di + d2) = o(spy/n). =
Proof of Lemma Let G = E[bE (X;)bE(X;)]. Since B = clsp{bkiwp, ..., bk kwy}, we have:

then yields

—_
—
—

i€le

sup{|1 S°F | b(X;)2 — 1| : b € B, E[b(X)?] = 1}

= sup{|d (B, By/n—G)c| : c € RE |G/?¢|| = 1} (120)
= sup{|dGY*(G7V*(B!,B,/n)GY? — Ix)GY?¢| : c € RE || GY2¢|| = 1} (121)
= sup{|d(B.By/n—Ix)c| : c e RE ||| = 1} (122)
= | B}, Bu/n— Ik (123)

as required. m

7.4 Proofs for Section [5

We first present a general result that allows us to bound the L> operator norm of the L?(X) pro-
jection Pk onto a linear sieve space Bx = clsp{bki,...,bxk} by the £>° norm of the inverse of its

corresponding Gram matrix.

Lemma 7.1 If there exists a sequence of positive constants {ck } such that (i) supyc |05 (2)||n S ek
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and (i4) maxi<gp<k [[brkllL1x) S ¢y, then

1Pxlloo S | (5 (X)BS (X)) e -

Proof of Lemmal|7.1] By Holder’s inequality (with (i)), definition of the operator norm, and Holder’s

inequality again (with (ii)), we obtain:

-1

Pf(@)] = b () (EBF (X" (X)) 5 (X)) £(X)]]
< K@) al (E[bK<X >bK<Xz> ]) B[R (X0) £(X) e
< ekl (E[bK( 1) () £(X) e
< el (ED"(x )1||eoo||EbK X)) F(X0)] e
= ekl (E[bK< 1) e max Bllbrn(Xo) F(X0)]
< el (B (X VD) e max Bllbacr (X 1l
S I(ERx >bK< >]) lHoonHoo

uniformly in x. The result now follows by taking the supremum over x € X. m
We will bound || (E[b (X;)b" (X;)’ ])_1 |lgoo for (tensor product) wavelet bases using the following

Lemma.

Lemma 7.2 Let A € REXK be o positive definite symmetric matriz such that A;;j = 0 whenever

i — j| > m/2 for m even. Then: ||[A™ e < 25 where

K = )\maX(A)/)\m}n(A)
B \/E—l 2/m
A= (\/EH) <!
C = [[A7Ymax{1, (1 +vk)*/(2x)}.

Proof of Lemma By definition of the matrix infinity norm, we have

1A~ 1||oo—ma><Z| ikl -
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The result now follows by Theorem 2.4 of Demko, Moss, and Smith|(1984) (which states that [(A™1); ;| <
CM=il for all i, j) and geometric summation. m
Proof of Theorem We first prove the univariate case (i.e. d = 1) before generalizing to the
multivariate case.

By the definition of wavelet basis, we may assume without loss of generality that bx1 = @0, ...,
bk = @yo7_ with K =27

For any z € [0, 1] the vector % (z) has, at most, 2N elements that are nonzero (as a consequence

of the compact support of the ¢ ;). It follows that

16" (@)l < (2N)27 max{||@lloos @b lloos - - -+ |61 lloos |0 1 lloos - - Il wlloo} S 2777 (124)

uniformly in x. Therefore sup,cpo 1 165 (z)||;2 < VK. Let k be such that N < k <2/ — N — 1. By

boundedness of fx and a change of variables, we have (with x denoting Lebesgue measure)

Ellosn(X)] < sup fx(a) / 27/2( (27 — k)| du(z) (125)
z€[0,1] R
— sup fx(a)2 / o(y)| du(y) (126)
z€[0,1] R
= sup fx(@)27720l L1 (127)
z€[0,1]

where |[¢[|11(,) < oo because ¢ has compact support and is continuous. Similar arguments can be
used to show the same for the N left and right scaling functions. It follows that maxy [|brkl/1(x) S
27J/2 = K~=1/2 Therefore, the by, ..., bxk satisfy the conditions of Lemma and hence || Pxllco <
| (BB (X (X)) e

It remains to prove that || (E[b" (X;)b" (Xi)’])f1 |lee < 1. We first verify the conditions of Lemma
Disjoint support of the ¢, implies that (E[bK(Xi)bK(Xi)’])kJ = 0 whenever |k — j| > 2N — 1.

For positive definiteness, we note that

Amax (E[B™ (Xi)b™ (X3)']) < ( sup fx($)> Amax (/[0 . bK(x)bK(ﬂf)’du(l‘)> = ( sup fx(@) (128)

z€[0,1] z€[0,1]

(where we understand the integral performed element wise) because @0, ..., 2s_; are an orthonor-

mal basis for V; with respect to the L?([0,1]) inner product. Similarly, Amin(E[D (X)b5 (X)) >
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inf,c(o,1] fx (7). Therefore

w < (sup fx(2))/( inf fx(x)) <oo
z€[0,1] z€[0,1]

uniformly in K, and

-1

I (BD" (X)p™ (X)) 1 < 1/( inf fx(x)) < oo

z€[0,1]
uniformly in K. This verifies the conditions of Lemma for A = E[bX(X)bX(X;)']. Tt follows by
Lemma 7.2 that || (E[bX (X,)6% (X;)]) " [l <1, as required.

We now adapt the preceding arguments to the multivariate case. For any z = (z1,...,z4) € [0, 1]¢
we define b¥ (z) = @, b5 (2;) where b%0(2) = (po(1), ..., 00 _1(21)) and Ko =27,

Recall that K = 27¢. For any = = (21, ...,24) € [0,1]¢ we have

d
W@l = T @) (129)
=1
d
< (@N2"2 max{|loos [&hlloes - s okt lloos It lloos - [T wlloc} ) (130)
= 5@ = VK. (131)

With slight abuse of notation we let X;1,..., X;q denote the d elements of X;. For 0 < kyi,..., kg <

27 — 1, Fubini’s theorem and a change of variables yields

d d
E l]_;lle,k(Xu)] < I:E;g]d fx () /Rd (EISOJ,@(%)I) dp(z1, ..., xq) (132)
d
= AL eontentaven) 139
S et (134)

This verifies the conditions of Lemma and hence || Pk |00 < | (E[bK(XZ-)bK(Xi)/])_1 Il oo -

The tensor product basis is an orthonormal basis with respect to Lebesgue measure on [0, 1]¢ (by Fu-
bini’s theorem). Therefore, the minimum and maximum eigenvalues of E[b% (X;)b" (X;)'] may be shown
to be bounded below and above by inf,cp1je fx (%) and sup,ejo1je fx(2) as in the univariate case.
Again, compact support of the ¢ s, and the tensor product construction implies that E[b% (X;)b (X;)']
is banded: (E[bX(X;)b% (X;)))k; = 0 whenever |k — j| > (2N — 1)%. This verifies the conditions of
Lemma 7.2 for E[bX (X;)b% (X;)'. It follows by Lemma [7.2] that || (E[p* (X;)b (X:)]) ™" e < 1, as
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required. m

Theorem 7.1 Under conditions stated in Theorem we have ||Pgplloc S 1 wpal provided the

following are satisfied:

(i) || (B'B/n) — E[p™ (X;)b™ (X;)']|| = 0p(1), and

=3y bk (Xa) = Ellbrk (X))
(%) B (X =0
l n YN .
Proof of Theorem Condition (ii) maxj<p<x = lbgﬁé}(;)(')(gl[}'bm(&”} = 0p(1) implies
1 n
- < < 1/2
max Z; brn(Xa)l S max lbrckllzce) S K- (135)

where the final inequality is by the proof of Theorem Moreover, sup, |[|[b*(z)||pn < VK by the
proof of Theorem It follows analogously to Lemma that ||Pxnlle S || (B'B /n) "o wpal
(noting that B’ B/n is invertible wpal because || (B'B/n)— E[BX (X;)bX(X;)]|| = 0p(1) and Mg, < 1).
Condition (i) || (B'B/n)—E[BX (X;)bX(X;)]|| = 0,(1) implies (1) Amin(B'B/n) 2 Amin (B[ (X)X (X:)']),

(2) Amax(B'B/n) S Amax(EBX (X)X (X,))), and (3) || (B'B/n) ™" || S || (BPX (X)bX (X)) || al
hold wpal. Moreover, Amin (E[b% (X)X (X;)']) 2 1 and Apmax (E[b% (X:)05(X;)']) < 1 by the proof of
Theorem It follows by Lemman that || (B'B/n)" " |l;e < 1 wpal, as required. m

Proof of Theorem 5.2} Condition (i) of Theorem [7.1]is satisfied because Ax , < 1 and the condition

|(B'B/n) — Ix|| = 0p(1) under the conditions on K (see Lemma for the i.i.d. case and Lemma

for the weakly dependent case). Therefore,

I(B'B/n) = EB"(X)b" (X1 < Pauin(BPS (X" (X DI I(B'B/n) — Ix| - (136)

S IB'B/n) — Ikl = op(1). (137)

It remains to verify condition (ii) of Theorem Let bi1 = cpfio, o brg = 4,032]_1 with K = 24/
as in the proof of Theorem [5.1] Similar arguments to the proof of Theorem yield the bounds
1bxk]loo < 2472 = VK uniformly for 1 < k < K. Let fx(z) denote the density of X. Then by
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inf,cpo17¢ [fx (2)] > 0 and Fubini’s theorem

Ellbgr(X)|] = ( inf fX(l’)> /[071](1 (H |80J,kl($l)\> dp(z, ... 24) (138)

€[0,1]¢
€(0,1] futy

d
= (mgggi]dfxm) I1 ( /[ | leauta) du(xo) . (139)

=1

A change of variables argument yields f[O,l] @7k, (1) dpe(ar) 2 277/2 uniformly for 0 < k < 27 — 1,
and so E[|bgi(X)]] = 274//2 = K=Y/2 uniformly for 1 < k < K.

For the i.i.d. case, define b%, (X;) = n ™ (|bxr(Xi)| — Ellbrk(X:)]]))/(E[|brk(X;)]]) for each 1 <
k < K. It may be deduced from the preceding bounds and the fact that E[bg(X;)?] < 1 that

0% 1]l S K/n and E[bj, (X;)?] < K/n? By the union bound and Bernstein’s inequality (see, e.g.,

)

pp. 192-193 of Pollard| (1984)) we obtain, for any ¢ > 0,

LS lbrw(X)| — Ellbri(X:)|]

El[bgr(X;)]]
K 1 n
LS brw(Xs)| — Ellbrk(X:)]
- kZP< e g 'f) (140)
2
< 2exp {logK - ClK/ﬂtKiZK/m} .

where ¢; and ¢ are finite positive constants independent of ¢. The right-hand side of (141f) vanishes
as n — oo since K logn/n = o(1).

For the beta-mixing regressors case, we may extend the proof for the i.i.d. case using a coupling
argument similar to the proof of Theorem [£.2] to deduce that

P < max > t)
1<k<K

n 2
< ZB(q) + logn — . 142
< qﬁ(Q) exp{ogn cqu/n—i—cQKq/nt} (142)

LS Ibrk(X0)| — Ellbrr(X)]]
E[|bgk(Xi)]]

The right-hand side is o(1) provided 75(q) = o(1) and (¢Klogn)/n = o(1). Both these conditions
are satisfied under the conditions on K, taking ¢ = v ' logn in the exponentially S-mixing case and

g = n"/(*7) in the algebraically A-mixing case. m
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