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Abstract

I formulate and study a model of undirected dyadic link formation which allows for assor-
tative matching on observed agent characteristics (homophily) as well as unrestricted agent
level heterogeneity in link surplus (degree heterogeneity). Similar to fixed effects panel data
analyses, the joint distribution of observed and unobserved agent-level characteristics is left
unrestricted. To motivate the introduction of degree heterogeneity, as well as its fixed effect
treatment, I show how its presence can bias conventional homophily measures. Two estimators
for the (common) homophily parameter, β0, are developed and their properties studied under
an asymptotic sequence involving a single network growing large. The first, tetrad logit (TL),
estimator conditions on a sufficient statistic for the degree heterogeneity. The TL estimator is
a fourth-order U-Process minimizer. Although the fourth-order summation in the TL criterion
function is over the i = 1 . . . , N agents in the network, due to a degeneracy property, the

∗Department of Economics, University of California - Berkeley, 530 Evans Hall #3380, Berkeley,
CA 94720-3888 and National Bureau of Economic Research, e-mail: bgraham@econ.berkeley.edu, web:
http : //emlab.berkeley.edu/ bgraham/. The first draft of this paper dates to March 2014 and was titled
“An empirical model of network formation: detecting homophily when agents are heterogenous”. MATLAB
code implementing the methods described in the paper are available for download from my web page. I
thank Jinyong Hahn for sharing an unpublished appendix of Hahn and Newey (2004), Joachim De Weerdt
for generously making his Nyakatoke dataset available, Peter Bickel, Stephane Bonhomme, Jesus Carro,
Xiaohong Chen, Nicholas Christakis, Ivan Fernandez-Val, Jim Heckman, Yuichi Kitamura, Elena Manresa,
Costas Meghir, Roger Moon, Jong-Myun, Matt Shum, Martin Weidner and Bin Yu for numerous helpful
suggestions. This paper has also benefited from the reactions of audiences at the 2014 Seattle-Vancouver
Econometrics Conference, the 2014 All California Econometrics Conference, and the 2015 Econometrics Jour-
nal Conference on Networks, as well as from participants in seminars and workshops at New York University,
UC Berkeley, the Toulouse School of Economics, Oxford, Cambridge, St. Gallen, CEMFI, the Yale Institute
of Network Sciences, Stanford, USC, UCSD, Chicago and Michigan. This revision incorporates many useful
suggestions made by the co-editor and four anonymous referees. Finally, I am especially grateful for helpful
conversations and suggestions from my three immediate colleagues at Berkeley, Michael Jansson, Demian
Pouzo and Jim Powell. Financial support from NSF grant SES #1357499 is gratefully acknowledged. All
the usual disclaimers apply.

1



leading variance term of β̂TL is of order 1/n, where n def
=
(
N
2

)
= 1

2N (N − 1) equals the number
of observed dyads. Using martingale theory, I show that the limiting distribution of β̂TL (ap-
propriately scaled and normalized) is normal. The second, joint maximum likelihood (JML),
estimator treats the degree heterogeneity {Ai0}Ni=1 as additional (incidental) parameters to be
estimated. The properties of β̂JML are also non-standard due to a parameter space which grows
with the size of the network. Adapting and extending recent results from random graph theory
and non-linear panel data analysis (e.g., Chatterjee, Diaconis and Sly, 2011; Hahn and Newey,
2004), I show that the limit distribution of β̂JML is also normal, but contains a bias term.
Accurate inference necessitates bias-correction. The TL estimate is consistent under sparse
graph sequences, where the number of links per agent is small relative to the total number of
agents, as well as dense graphs sequences, where the number of links per agent is proportional
to the total number of agents in the limit. Consistency of the JML estimate, in contrast, is
shown only under dense graph sequences. The finite sample properties of β̂TL and β̂JML are
explored in a series of Monte Carlo experiments.

JEL Codes: C31, C33, C35
Keywords: Network formation, homophily, degree heterogeneity, scale-free networks, inci-

dental parameters, asymptotic bias, fixed effects, dependent U-Process

Homophily, the tendency of individuals to form connections with those like themselves, is
a widely-observed feature of real world social and economic networks (e.g., McPherson,
Lynn-Smith and Cook, 2001). Equally common is degree heterogeneity: variation in the
number of links (i.e., degree) across individuals. In particular, the conjunction of many
low degree individuals with few links, and a handful of high degree “hub” individuals with
many links, characterizes many networks (e.g., Barabási and Bonabau, 2003). The presence
and magnitude of homophily and degree heterogeneity has implications for how information
diffuses, the spread of epidemics, as well as the speed and precision of social learning (e.g.,
Pastor-Satorras and Vespignani, 2001; Jackson and Rogers, 2007; Golub and Jackson, 2012;
Jackson and López-Pintado, 2013).1

This paper formulates and studies a model of link formation that flexibly accommodates
both homophily and degree heterogeneity. To motivate the model, as well as heuristically
introduce some of the identification issues involved, consider the small network depicted in
Figure 1. This network consists of two types of agents: “gray” and “black”. There is also one
“hub” agent in the network: the larger black node in the center of the graph. This network is a
random draw from a population characterized by a strong structural taste for homophily (see
Section 1 below for details). Indeed, excluding links involving the hub agent, six out of seven
connections (edges) are homophilic (i.e., between individuals of the same type). However,
if we include hub edges in our count we see that eight out of fifteen edges are heterophilic

1Apicella, Marlowe, Fowler and Christakis (2012) even study the relationship between homophily and the
emergence of cooperation in hunter-gatherer societies.
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Figure 1: Homophily and Degree Heterogeneity

Notes: See Section 1 below for additional details on the construction of the figure as well as
notational definitions. The figure shows a simulated network with correlated degree heterogeneity.
Gray and black shaded nodes respectively denote X = 0 and X = 1 agents. Smaller nodes denote
“low degree agents” (with A = a) and larger nodes “high degree” or “hub” agents (with A = ā).
Edges emanating from the black hub agent are drawn with dashed lines, while those connecting two
low degree agents are drawn with a solid line. Links form according to equation (1) of Section 1 with
Pr (X = 0, A = a) = 0.8, Pr (X = 0, A = ā) = 0, Pr (X = 1, A = a) = 0.1 and Pr (X = 1, A = ā) =

0.1, β0 = −1 and a and ā chosen such that a (X = 0, A = a) to (X = 1, A = a) link occurs with
probability 0.05 and a (X = 0, A = ā) to (X = 1, A = ā) link occurs with probability 0.8. The
probability limit of the dyadic logit estimate based on (2) with Wij = |Xi −Xj | equals β∗ ≈ 0.30,
which suggests heterophily when, in fact, homophily is present.

3



(i.e., between individuals of a different type). A standard measure of assortative matching
from the networks literature, modularity (Q), takes a value of −1/5 in the depicted network
(Newman 2010, p. 224). This suggests that heterophilic links are more frequent than would
be expected by chance. This measurement occurs despite the fact that individuals’ exhibit
a strong taste for homophilic links. A researcher fitting common models of link formation
to these data might incorrectly conclude that preferences are heterophilic. The presence of
the hub agent, who forms many links irrespective of type, effectively attenuates measured
homophily.

The model outlined below is designed to help researchers avoid this type of inferential mis-
take. It augments a standard dyadic model of link formation, as used by, for example,
Fafchamps and Gubert (2007), Lai and Reiter (2000), Apicella, Marlowe, Fowler and Chris-
takis (2012) and Attanasio, Barr, Cardenas, Genicot and Meghir (2012), with agent-specific
unobserved degree heterogeneity. Specifically agents freely vary in the generic surplus they
generate when forming a match. The surplus associated with any given match may further
vary with observable characteristics of the dyad. For example surplus may be systemati-
cally higher between agents who are close in age (homophily on age). Unlike prior work
incorporating degree heterogeneity (e.g., van Duijn, Snijders and Zijlstra, 2004; Krivitsky,
Handcock, Raftery and Hoff, 2009), the joint distribution of the unobserved degree hetero-
geneity and observed agent attributes is left unrestricted. The treatment here is a “fixed
effects” one (Chamberlain, 1980, 1985). This allows for settings similar to that depicted in
Figure 1, where black agents are more likely to be hubs than gray ones.2

In the model each agent has an individual-specific “degree effect”. If these effects are treated
as (incidental) parameters, then the dimension of the parameter vector grows with the num-
ber of agents in the network. This makes the estimation problem non-standard. Textbook
results on the large sample properties of maximum likelihood estimates (MLEs) do not apply
(e.g., Neyman and Scott, 1948). In this paper I introduce and study two fixed effects esti-
mators of the common parameters characterizing homophily. The first estimator implicitly
conditions on a sufficient statistic for the degree effects. The second estimates the degree
effects jointly with the common parameters.

The first estimator is based on a standard application of minimal sufficiency in exponential
families (Andersen, 1973). Similar results form the basis of conditional maximum likelihood
estimators in nonlinear panel data models (Cox, 1958; Chamberlain, 1980). Recently, in
independent work, Charbonneau (2014) uses sufficiency arguments to develop conditional

2de Weerdt (2004, Column 3, Table 7) fits the JML estimator described below to a risk sharing network
from Tanzania. He does not analyze the asymptotic sampling properties of the JMLE.
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estimators for nonlinear models with multiple fixed effects. Her analysis is inspired by
empirical studies of international trade, where the introduction of importer and exporter
effects is common (e.g., Santos Silva and Tenreyro, 2006). While not explicitly formulated
as such, the implicit network structure of her model is one with directed edges (“does country
i export to country j?”). In contrast, the results presented here apply to undirected networks.
Charbonneau (2014) does not characterize the large sample properties of her estimator.3

The conditional estimator I introduce below is based on the relative frequency of different
types of subgraphs, each consisting of four agents (called tetrads). I call this estimator the
tetrad logit (TL) estimator. The tetrad logit criterion function is (a type of) fourth order
U-process, where the summation is over the i = 1, . . . , N sampled agents. The properties
of U-process minimizers have been studied in statistics and econometrics (e.g., Honoré and
Powell, 1994). Unfortunately, prior results do not apply to the TL estimator. The tetrad logit
first order condition is asymptotically equivalent to a fourth order degenerate U-statistic. The
degeneracy is of order one such that the leading variance term is inversely proportional to the
number of dyads in the network, n def

=
(
N
2

)
= 1

2
N (N − 1), not the number of agents, N .4 This

U-statistic is asymptotically equivalent to a certain projection which involves summation over
dyads. This projection, however, is not a sum of independent components. Fortunately it
has a martingale structure, which I exploit to demonstrate asymptotic normality.

The second estimator jointly estimates the common and incidental parameters by maximum
likelihood. I call this estimator the joint maximum likelihood (JML) estimator. The key
insight is that, although the number of parameters is of order N , the number of conditionally
independent log-likelihood components is of order N2. Each dyad contributes for a total of
n = 1

2
N (N − 1) log-likelihood components. Since the amount of “data” is increasing at a

rate faster than the dimension of the parameter, the joint maximum likelihood estimates of
the common parameters are consistent, however, their limit distribution is biased. Accurate
inference therefore requires bias-correction. This analysis parallels recent findings from the
non-linear panel data literature under large-N, large-T asymptotics (e.g., Hahn and Newey,
2004; Arellano and Hahn, 2007). Dzemski (2014), in related work, studies the properties
of joint maximum-likelihood applied to the directed network model of Charbonneau (2014).
His analysis builds on Fernandez-Val and Weidner’s (2015) study of non-linear panel data
models with both individual- and time-effects. The technical details of the analysis presented
here draws from Chatterjee, Diaconis and Sly’s (2011) analysis of the β-model of network

3I conjecture that the general proof strategy used to show Theorem 1 below could be adapted to charac-
terize the large sample properties of Charbonneau’s (2014) estimator.

4This statement only applies exactly to dense network sequences, the sparse case is more complicated, as
detailed below.
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formation (cf., Yan and Xu, 2013)5 and Hahn and Newey (2004).

I demonstrate consistency and asymptotic normality of the TL and JML estimators under
differing regularity conditions. In both cases results are established under an asymptotic
sequence involving a single network which grows in size. To my knowledge, the two estimators
introduced here represent the first frequentist analyses of an econometric model of link
formation under “single network asymptotics”.6 The TL estimate is shown to be consistent
under both sparse graph sequences, where the number of links per agent is small relative
to the total number of agents, as well as dense graph sequences, where the number of links
per agent is proportional to the total number of agents in the limit. The JML estimate is
only shown to be consistent under dense graph sequences. This difference is likely to be
consequential in ways relevant to empirical researchers. Many social and economic networks
are “sparse”, in the sense that only a small fraction of all possible links are present, the JML
estimator may have poor finite sample properties in such settings (a conjecture I explore
through Monte Carlo experiments below). An advantage of the JML estimator, relative to
the TL one, is that it produces estimates of the incidental as well as the common parameters.
This allows for computation of marginal effects and counterfactuals. The two estimators are
complementary, with the TL estimator being applicable to a wider class of problems, but
the JML estimator providing consistent estimates of more features of the network generating
process.

An important limitation of the analysis presented here is that it rules out interdependent
link preferences, whereby agents’ preferences over a link may vary with the presence or
absence of links elsewhere in the network. The study of network formation in the presence
of interdependent preferences is one theme of recent theoretical research on networks (e.g.,
Jackson and Wolinsky, 1996; Bala and Goyal, 2000; Jackson and Watts, 2002). Christakis,
Fowler, Imbens and Kalyanaramman (2010), Mele (2013), Goldsmith-Pinkham and Imbens
(2013), Graham (2013), Sheng (2014) and de Paula, Richards-Shubik and Tamer (2015) are
some recent attempts to study econometric models of network formation with interdependent
preferences. None of these papers, with the exception of Goldsmith-Pinkham and Imbens

5This work is, in turn, closely connected to an older literature on the Bradley-Terry model of paired
comparisons (e.g., Simons and Yao, 1998, 1999).

6Prior empirical work based on a single network has generally taken a Bayesian approach (e.g., van Duijn,
Snijders and Zijlstra, 2004; Krivitsky, Handcock, Raftery and Hoff, 2009; Christakis, Fowler, Imbens and
Kalyanaramman, 2010; Mele, 2013; Goldsmith-Pinkham and Imbens, 2013). Extant frequentists analyses
involve asymptotic sequences based upon an increasing number of independent networks (e.g., Miyaichi,
2013; Sheng, 2014). Chandrasekhar and Jackson (2014) do work under single network asymptotics, but in
the context of a rather different model from the one considered here. Leung (2015) also develops some tools
for frequentist inference based on a single large network. Dzemski’s (2014) analysis, which builds, in part,
on the one given here, is a single large network one as well.
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(2013) and Graham (2013), incorporate correlated unobserved agent heterogeneity into their
modeling frameworks, as is done here. In Section 4 I discuss how to extend the results
presented below to incorporate interdependent preferences in link formation (at least of a
certain type) when the network is observed for two or more periods.

Section 1 formally introduces a dyadic model of link formation with degree heterogeneity and
presents a baseline set of maintained assumptions. Some examples of degree heterogeneity
bias are also developed. Section 2 introduces the tetrad logit (TL) and joint maximum like-
lihood (JML) estimators and characterizes their large sample properties. Section 3 explores
the finite sample properties of the TL and JML estimators via Monte Carlo experimenta-
tion. Section 4 sketches several extensions of the basic model. All proofs are collected in
Appendices A and B.

Notation

In what follows random variables are denoted by capital Roman letters, specific realizations
by lower case Roman letters and their support by blackboard bold Roman letters. That is Y ,
y and Y respectively denote a generic random draw of, a specific value of, and the support
of, Y . If B is an N × N matrix with (i, j)th element Bij, then ‖B‖max = supi,j |Bij| and
‖B‖∞ = supi

∑N
j=1 |Bij|. I use ιN to denote a N×1 vector of ones and IN the N×N identity

matrix. The notation
∑

i<j<k is a shorthand for
∑N

i=1

∑N
j=i+1

∑N
k=j+1. A “0” subscript on

a parameter denotes its population value and may be omitted when doing so causes no
confusion.

1 Model and baseline assumptions

Consider a large population of potentially connected agents. Depending on the context
agents may be individuals, households, firms, or nation-states (among many other types of
possible actors). Let i = 1, . . . , N index a random sample of size N from this population.
Each of the n def

=
(
N
2

)
= 1

2
N (N − 1) pairs of sampled agents constitute a dyad. For each (i, j)

dyad let Dij = 1 if i and j are connected and zero otherwise.7 Connections are undirected
(i.e., Dij = Dji) and self-ties are ruled out (i.e., Dii = 0). The N × N matrix D, with ijth

element Dij, is called the adjacency matrix. This matrix is binary and symmetric, with zeros
on its main diagonal. The adjacency matrix encodes the structure of links across all sampled
agents. It what follows I will refer to a set of such links as, equivalently, a network or graph.

7Connections may be equivalently referred to as links, ties, friendships, edges or arcs depending on the
context.

7



An agent’s degree equals the number of links she has: Di+ =
∑

j 6=iDij (the “+” denotes
“leave-own-out” summation over the replaced index). The row (or column) sums of the
adjacency matrix, denoted by the N × 1 vector D+ = (D1+, . . . , DN+)′, give the network’s
degree sequence.

The econometrician also observes Xi, a vector of agent-level attributes. These agent-level
attributes are used to construct the K × 1 dyad-level vector Wij = g (Xi, Xj). The function
g (·, ·) is symmetric in its arguments so that Wij = Wji. As an example if X1i and X2i

are location coordinates, then Wij =
(
(X1i −X1j)

2 + (X2i −X2j)
2)1/2

equals the distance
between i and j.

Agents i and j form a link if the total surplus from doing so is positive:

Dij = 1
(
W ′
ijβ0 + Ai + Aj − Uij ≥ 0

)
, (1)

where 1 (•) denotes the indicator function. Link surplus consists of three components:

1. a systematic component which varies with observed dyad attributes,W ′
ijβ0 (homophily),

2. a component which varies with the unobserved agent-level attributes {Ai}Ni=1, (degree
heterogeneity) and

3. an idiosyncratic component, Uij, assumed independently and identically distributed
across dyads.

Because links are undirected, the surplus function is specified to ensure that the linking rule
for Dij coincides with that for Dji. This requires, as noted above, that Wij = Wji, but also
that Ai and Aj enter (1) symmetrically. Finally, observe that any components of surplus
linear in Xi and Xj will be absorbed by the degree heterogeneity terms {Ai}Ni=1.

Implicit in rule (1) is the presumption that utility is transferable across directly linked
agents; all links with positive net surplus form (Bloch and Jackson, 2007). Rule (1) re-
sults in a complete and coherent model of network formation. For a given draw of U =

(U12, U13, . . . , UN−1N)′ the network is uniquely determined.

Baseline assumptions

Let X be the N × dim (X) matrix of observed agent attributes and A0 the N × 1 vector
of unobserved agent-level degree heterogeneity terms. All of the results presented below
maintain the following three assumptions, with additional assumptions made for specific
results.
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Assumption 1. (Likelihood) The conditional likelihood of the network D = d is

Pr (D = d|X,A0) =
∏
i<j

Pr (Dij = d|Xi, Xj, Ai0, Aj0)

with

Pr (Dij = 1|X,A0) =
exp

(
W ′
ijβ0 + Ai0 + Aj0

)
1 + exp

(
W ′
ijβ0 + Ai0 + Aj0

) .
for all i 6= j.

Assumption 1 implies that the idiosyncratic component of link surplus, Uij, is a standard
logistic random variable that is independently and identically distributed across dyads. The
logistic assumption is important for the tetrad logit (TL) estimator, but less so for the joint
maximum likelihood (JML) estimator (although my proof strategy does make use of the logit
structure extensively in both cases).

Assumption 1 also implies that links form independently conditional on X and A0. Consider
the agents i, j and k. Conditional on these agents’ observed and unobserved characteristics,
respectively Xi, Xj, Xk and Ai, Aj, Ak, the events “i and j are connected”, “i and k are
connected” and “j and k are connected” are independent of one another.

Importantly independence is conditional on the latent agent attributes {Ai}Ni=1. Uncon-
ditionally on these attributes, independence does not hold. For example, conditioning on
Xi, Xj, Xk but not on Ai, Aj, Ak, observing that “i and j are connected” increases the ex
ante probability placed on the event “i and k are connected”. Dependence of this type is
generated by the presence of Ai in both the (i, j) and (i, k) linking rules.

The assumption that links form independently of one another conditional on agent attributes
will be plausible in some settings, but not in otherwise. Specifically, rule (1) and Assumption
1 are appropriate for settings where the drivers of link formation are predominately bilateral
in nature, as may be true in some types of friendship and trade networks as well as in models
of (some types of) conflict between nation-states (e.g., Santos Silva and Tenreyro, 2006;
Fafchamps and Gubert, 2007, Lai and Reiter, 2000). In such settings, as outlined below,
the inclusion of unobserved agent attributes in the link formation model is a significant, and
useful, generalization relative to many commonly-used models.

In other settings, however, link decisions may have strong strategic aspects. For example,
Apple may prefer that its supply-chain not overlap with Samsung’s (in order to protect
manufacturing know-how). In such settings the events “firm A supplies Samsung” and “firm
A supplies Apple” will not be independent. With strategic interaction the presence or absence
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of a link in one part of the network, may structurally influence the returns to link formation
in other parts of the network. Such interdependencies generate interesting challenges that
are not addressed here. The survey by Graham (2015) provides additional discussion as well
as references.

The approach taken here is to study identification and estimation issues when links form
according to rule (1) and Assumption 1. This setting both covers a useful class of empirical
examples, and represents a natural starting point for formal econometric analysis. An anal-
ogy with single agent discrete choice panel data models is perhaps useful. In that setting
early work methodological work focused on introducing unobserved correlated heterogeneity
into static models of choice (e.g., Chamberlain, 1980; Manski, 1987). Later work subse-
quently incorporated a role for state dependence in choice (e.g., Chamberlain, 1985, Honoré
and Kyriazidou, 2000). Section 4 sketches some extensions of the framework developed here
to incorporate certain types of interdependencies in link formation.

Assumption 2. (Compact Support)

(i) β0 ∈ int (B), with B a compact subset of RK .

(ii) the support of Wij is W, a compact subset of RK .

Part (i) of Assumption 2 is standard in the context of nonlinear estimation problems. To-
gether with part (ii) it implies that the observed component of link surplus, W ′

ijβ0 will have
bounded support. This simplifies the proofs of the main Theorems, especially those of the
JML estimator, as will be explained below.

Assumption 3. (Random Sampling) Let i = 1, . . . , N index a random sample of agents
from a population satisfying Assumptions 1 and 2. The econometrician observes (Dij,Wij)

for i = 1, . . . , N , j < i (i.e., for all sampled dyads).

Network data can be difficult and expensive to collect, consequently many analyses in the
social sciences are based on incomplete graphs (e.g., Banerjee, Chandrasekhar, Dulfo and
Jackson, 2013). One implication of Assumption 3 is that estimation and inference may be
based upon only a subset of the full network.8

Degree heterogeneity bias

To motivate the inclusion of the unobserved agent attributes {Ai}Ni=1 in the link rule (1), it
is helpful to consider the properties of an analysis which ignores them. A common empirical

8Shalizi and Rinaldo (2013) call this property “consistency under sampling”.
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model of dyadic link formation assumes that9

Pr (Dij = 1|Xi, Xj) =
exp

(
α + (Xi +Xj)

′ γ + |Xi −Xj|′ β
)

1 + exp
(
α + (Xi +Xj)

′ γ + |Xi −Xj|′ β
) . (2)

An example from economics is provided by Fafchamps and Gubert (2007, Table 1), who
study risk-sharing links across households. Green, Kim and Yoon (2001) and Apicella,
Marlowe, Fowler and Christakis (2012) provide examples from, respectively, political science
and anthropology.10 In this model the (Xi +Xj)

′ γ term calibrates the propensity with
which different types of agents form links, while |Xi −Xj|′ β measures the degree to which
observably similar agents are more (or less) likely to form links. A finding that βk < 0 is
taken as evidence of homophily, or assortative matching, on the attribute Xk.

Assume that a researcher fits model (2) by pseudo maximum likelihood when, in fact, links
form according to rule (1). In order to make a concrete comparison it is convenient to assume
that f (A|X) =

∏n
i=1 f (Ai|Xi). In this case the observed conditional link probabilities take

the mixture form:

pxz =

ˆ
a

ˆ
b

exp
(
|x− z|′ β + a+ b

)
1 + exp

(
|x− z|′ β + a+ b

)fA|X (a|x) fA|X (b| z) dadb, (3)

with pxz = Pr (Dij = 1|Xi = x,Xj = z). Equation (3) does not, in general, coincide with
(2) and, consequently, the dyadic logit estimate is inconsistent for β0.

Let β∗ denote the probability limit of the estimate of β0 based on (2). If we further assume
that X is binary, then, under rule (1) and Assumption 1, this limit equals

β∗ = ln

(
p01

1− p01

)
+ ln

(
p10

1− p10

)
− ln

(
p11

1− p11

)
− ln

(
p00

1− p00

)
with the four conditional probabilities to the right of the equality as defined in (3) (note that
p01 = p10). Model (2) equates homophily with a high relative frequency of same type versus
mixed type links.

To develop some intuition of how β∗ may differ from β0 we can return to the stylized example
depicted in Figure 1 of the introduction. In this example the degree heterogeneity terms take
two possible values, A ∈ {a, ā} , corresponding, loosely, to “normal” and “hub” agents. In
Figure 1 there is a single hub agent: the larger black (X = 1) node in the center of the graph.

9I have not been able to find a primitive reference for dyadic logit analysis, but the application of model
(2), and close variants, has been quite common across the social sciences at least since the early 1980s.

10Apicella, Marlowe, Fowler and Christakis (2012) work with a variant of (2) adapted to accommodate
directed networks.
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Set Pr (A = ā|X = 0) = 0 and Pr (A = ā|X = 1) = 1/2. This parameterization generates
some dependence between X and A. Gray (X = 0) nodes are always low A nodes, but black
nodes can be either low or high A nodes, each with probability one half. Further assume that
gray agents are more numerous. Figure 1 plots a random network generated from this setup
with β0 = −1, which corresponds to a strong taste for same type linking (i.e., preferences
are homophilic).

The lone hub agent in the network has eight connections, seven of which are heterophilic
(i.e., with gray agents). These are shown by the dashed lines in the figure. In contrast,
between low degree agents there are seven links, six of which are homophilic (shown by solid
lines in the figure). Of the the fifteen edges in the graph, the majority (eight) are across gray
(X = 0) and black (X = 1) agents. This occurs despite the presence of a strong taste for
homophily in links and is a consequence of the linking behavior of the hub agent. Although
β0 = −1, a simple numerical calculation gives β∗ ≈ 0.30. A researcher fitting a dyadic logit
regression model to these data would incorrectly conclude that preferences are heterophilic.11

The setting depicted in Figure 1 is, of course, a stylized one. However it does include
features common in real world networks, namely a skewed degree distribution with fat tails.
Consequently the inconsistency of the standard dyadic logit estimate of β0 in this example
is likely to be typical.12

2 Estimation

Tetrad logit (TL) estimation

The tetrad logit estimator is based on an identifying implication of the model defined by
(1) and Assumptions 1 through 3 that is invariant to {Ai0}Ni=1. To derive this implication
consider the conditional likelihood of the event D = d given (X,A0), which equals

Pr (D = d|X,A0) =
∏
i<j

[
exp

(
W ′
ijβ0 + T ′ijA0

)
1 + exp

(
W ′
ijβ0 + T ′ijA0

)]dij [ 1

1 + exp
(
W ′
ijβ0 + T ′ijA0

)]1−dij

,

11A more careful statement is that a researcher fitting a dyadic logit regression model to a large network
generated as described in the text would incorrectly conclude that preferences are heterophilic. In the simple
ten agent example depicted in the figure p̂11 = 1 and hence the dyadic logit pseudo maximum likelihood
estimate does not exist.

12Degree heterogeneity may also cause substantial inconsistency even if it varies independently of X.
Consider the case where A ∈ {−a, a}, each occurring with probability one-half regardless of type. In this
case, letting F (x) = exp (x) / [1 + exp (x)] we have p01 = p10 = 1

4F (−a) + 1
2F (0) + 1

4F (a) = 1
4 + 1

2
1
2 = 1

2
and p00 = p11 = 1

4F (β − a) + 1
2F (β) + 1

4F (β + a) ≈ F (β) (for a small enough). This gives β∗ ≈ 2β0.
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where Tij is an N × 1 vector with a one for its ith and jth elements and zeros elsewhere such
that T ′ijA0 = A0i+A0j. After some manipulation this likelihood can put into the exponential
family form

Pr (D = d|X,A0) = c (X; β0,A0) exp
(
S1 (d,X)′ β0

)
exp

(
S2 (d)′A0

)
(4)

where

S1 (d,X) =
N∑
i=1

∑
j<i

dijWij, S2 (d) =
(
d1+ · · · dN+

)′
.

Inspection of (4) indicates that D+ = (D1+, . . . , DN+)′, the network’s degree sequence, is a
sufficient statistic for A0.

An important strand of network research takes the degree sequence as its primary object of
interest, since many other topological features of networks are fundamentally constrained by
it (e.g., Albert and Barabási, 2002).13 For example, Graham (2015) shows that the mean
and variance of a network’s degree sequence can be expressed as a function of its triad census
(i.e., the number of triads with no links, one link, two links and three links).

Let Ds denote the set of all feasible network adjacency matrices with degree sequence D+ =

d+ :

Ds = {v : v ∈ D, S2 (v) = S2 (d)} .

Solving for the conditional probability of the observed network given its degree sequence
yields

Pr (D = d|X,A0, S2 (D) = S2 (d)) =
exp

(∑N
i=1

∑
j<i dijW

′
ijβ0

)
∑

v∈Ds exp
(∑N

i=1

∑
j<i vijW

′
ijβ0

) , (5)

which does not depend on A0.

The model defined by (1) and Assumptions 1 to 3 allows for arbitrary degree sequences and
hence can replicate many types of network structures. A loose intuition, implicit in the form
of the conditional likelihood (5), is that the heterogeneity parameters {A0i}Ni=1 tie down the
degree distribution of the network (i.e., how many ones/links are present in each row (or
column) of D). The precise location of each link within a given row/column is then driven
by variation in W ′

ijβ0.

Even for small networks, consisting of say a few dozen agents, the set Ds will typically be far
13Faust (2007) develops this point empirically using a large database of social networks. Newman (2010)

refers to the degree distribution as one of the “...most fundamental of network properties...” (p. 243).
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Figure 2: Edge Swaps and the Definition of Sij,kl

Notes: Figure depicts tetrad configurations consistent with the events Sij,kl = 1 (left) and Sij,kl = −1

(right). Solid lines denote required edges, dashed lines denote edges, the presence or absence of
which, do not affect the value of Sij,kl. However, if they are present, they are assumed to be so in
both subgraphs.

too large to enumerate such that (5) cannot be exactly evaluated. Blitzstein and Diaconis
(2010) derive a method for sampling uniformly from Ds, which could be used to estimate
(5) via simulation. The analysis of the resulting simulated conditional maximum likelihood
estimate of β0 would be an interesting topic for future research. Here I instead form an
estimator based on the relative probability of different types of subgraph configurations.
While this approach is unlikely to be as efficient as one based directly on (5), it has the
advantage of yielding a criterion function that is easy to evaluate and maximize.

Figure 2 depicts two tetrad configurations. In the first (left) subgraph the ij and kl edges
are present, but the ik and jl ones are not. In the second (right) subgraph the opposite
configuration is observed. Edges il and jk, depicted as dashed lines in the figure, may
or may not be present. However, if they are present, they are assumed to be so in both
subgraphs. The two subgraphs, when the dashed edges are omitted, share identical degree
sequences of (1, 1, 1, 1)′. Because a rewiring from the left-hand subgraph to the right-hand
subgraph leaves the network degree sequence unchanged, the relative probability of observing
one subgraph or the other – conditional on observing one of them – will not depend on A0.
The tetrad logit estimator is constructed from this implication.

To be precise, let Sij,kl = 1 if we observe the edges ij and kl, but not ik and jl, −1 if we
observe the opposite, and zero otherwise (see Figure 2). We can construct Sij,kl from the

14



adjacency matrix as

Sij,kl = DijDkl (1−Dik) (1−Djl)− (1−Dij) (1−Dkl)DikDjl.

Since subgraph configurations with Sij,kl = 1 and Sij,kl = −1 share the same (subgraph)
degree sequence, the conditional probability

Pr (Sij,kl = 1|X,A0, Sij,kl ∈ {−1, 1}) =
exp

(
W̃ ′
ij,klβ0

)
1 + exp

(
W̃ ′
ij,klβ0

) , (6)

with W̃ij,kl = Wij + Wkl − (Wik +Wjl), does not depend on Ai0, Aj0, Ak0 or Al0. The
form of (6) accords with the heuristic intuition given above. The contribution of unobserved
heterogeneity to total net surplus is the same for the two subgraphs shown in Figure 2,
hence the (conditional) frequency with which each is observed depends only on the amount
of “observable” surplus associated with each. If W̃ ′

ij,klβ0 > 0, then the observable surplus
associated with configuration one (Sij,kl = 1) exceeds that associated with configuration two
(Sij,kl = −1):

(Wij +Wkl)
′ β0 > (Wik +Wjl)

′ β0,

and hence the left-hand configuration in Figure 2 is observed more frequently than the right-
hand one.

The index in (6) takes an “increasing difference” form, highlighting the close connection
between homophily in matching and structural complementarity in preferences (cf., Graham,
2011; Fox and Bajari, 2013).

The conditional log likelihood associated with configuration Sij,kl is

lij,kl (β0) = |Sij,kl|
{
Sij,klW̃

′
ij,klβ0 − ln

[
1 + exp

(
Sij,klW̃

′
ij,klβ0

)]}
. (7)

Object (7) is not invariant to permutations of its indices. To impose symmetry I average
lij,kl (β) across all possible permutations of its indices, yielding

gijkl (β) =
1

4!

∑
π∈Π4

lπ1π2,π3π4 (β) , (8)

with Π4 the group of all 4! = 24 permutations of a 4 element vector. The kernel gijkl(β) is
symmetric in its arguments.

The tetrad logit criterion function consists of a summation of contributions (8) over all
(
N
4

)
15



distinct tetrads in the network. That is β̂TL maximizes

LN (β) =

(
N

4

)−1 ∑
i<j<k<l

gijkl (β) . (9)

This estimate satisfies the first order condition

∇βLN

(
β̂TL

)
=

(
N

4

)−1 ∑
i<j<k<l

sijkl

(
β̂PL

)
= 0, (10)

where sijkl (β) = ∇βgijkl (β).

The asymptotic sampling properties of β̂TL will depend on those of (10) (suitably normal-
ized). Equation (10) is a fourth order U-statistic. In Appendix B I show that this U-Statistic
is degenerate, with degeneracy of order one. This degeneracy is a consequence of the condi-
tional independence of link formation given X and A0. Consider the tetrads (i, j, k, l) and
(l,m, n, o). Although these tetrads share the agent l in common, conditional on X and A0,
the form of the subgraph on (i, j, k, l) is independent of that on (l,m, n, o). If we observe a
particular wiring of the (l,m, n, o) tetrad, our prediction of how the (i, j, k, l) tetrad is wired
will not change (as long as we are conditioning of X and A0). An example is depicted in
Figure 3, where the probability of observing the depicted (i, j, k, l) subgraph does not, for
example, vary with whether the (l,m, n, o) tetrad takes the form depicted in the upper or
lower panel (which differ by an single edge). This independence implies that the covariance
between sijkl (β0) and slmno (β0) is zero.14

A consequence of degeneracy is that the leading term in the variance of the U-Statistic
(10), evaluated at β = β0 is of order 1/n.15 This drives the rate of convergence of β̂TL to β0.
Appendix B further shows that (10) is asymptotically equivalent to a certain projection which
consists of a sum over all n dyads in the network. Unlike in a standard U-Statistic analysis
(e.g., Serfling, 1980, Chapter 5), this projection is not a sum of independent components. In
particular the contribution of dyad (i, j) covaries with that of dyad (j, k). The projection
does have a martingale structure which, using a recent result due to Chatterjee (2006), I
exploit to show asymptotic normality.

To state a formal result I require an additional assumption, the precise statement of which
requires some more notation and background information. This background also provides

14The form the subgraphs on (i, j, k, l) and (k, l,m, n), which share two agents in common, are obviously
dependent. If we observe the kl edge in one of these tetrads, then we also must observe it in the other.

15Some of the heuristic discussion which follows formally only applies to the case of dense graph sequences.
See the proof to Theorem 1 in Appendix B for a careful and complete argument. Some additional comments
also appear after the statement of Theorem 1 below.
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Figure 3: Conditional tetrad independence with partial overlap

Notes: The two panels depict two tetrad subgraphs, ijkl and lmno, that share the agent l in
common. Conditional on X and A the link structure in the two subgraphs are independent of one
another. This conditional independence generates degeneracy in the tetrad logit criterion function
(9) as well as its first order condition (10).

additional insight into the structure of the tetrad logit identification and estimation problem.

Start by observing that a tetrad can be wired in up to 26 = 64 different ways. By enumerating
these different wirings it is possible to verify that 46 of them are completely determined by
their (subgraph) degree sequence. For example the degree sequence (1, 1, 0, 0)′ uniquely
defines a tetrad with a single edge between its first two members. The remaining 18 possible
wirings share their degree sequence with at least one other wiring. For example there are
three tetrads with degree sequence (1, 1, 1, 1)′. These are depicted as the three subgraphs
running top-to-bottom in the left-most-column of Figure 4 (with the dashed gray edges
omitted). There are also three tetrads with degree sequence (2, 2, 2, 2)′ . There are depicted
as the three subgraphs running left-to-right in the upper-most-row of the figure (with dashed
gray edges included). All 18 wirings with non-unique degree sequences appear in Figure 4
(perhaps multiple times).

The tetrad (i, j, k, l) only makes a non-zero contribution to the tetrad logit criterion function
(9) if it is wired in one of the 18 ways associated with non-unique degree sequences. These
are the only tetrads which can be used to identify β0, since all other tetrads have no variation
in structure conditional on their degree sequence.

Although there are 24 possible permutations of the index set {i, j, k, l}, it is easy to verify
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Figure 4: Tetrad subgraphs for which gijkl (β) is non-zero

Notes: The gijkl (β) kernel function entering the tetrad logit criterion function (9) is only non-zero
when one of the wirings depicted in the figure apply to the (i, j, k, l) tetrad. All 18 subgraphs
with non-unique degree sequences are depicted above (some multiple times). The degree sequences
associated with non-unique subgraphs are (1, 1, 1, 1)’, (2, 2, 2, 2)′, (2, 2, 1, 1)′, (2, 1, 2, 1)′, (2, 1, 1, 2)′,
(1, 2, 2, 1)′, (1, 2, 1, 2)′ and (1, 1, 2, 2)′. The first two are associated three possible wirings each and
the reminder with two wirings each.

that the summand in the tetrad kernel gijkl (β) takes, at most, six different values. This
follows since, for example, lij,kl (β) = lji,lk (β) = lkl,ij (β) = llk,ji (β). Hence, with some
tedious bookkeeping, it is possible to show that

gijkl (β) =
1

6
{lij,kl (β) + lij,lk (β) + lik,jl (β) + lik,lj (β) + lil,jk (β) + lil,kj (β)}

for lij,kl (β) as defined in (7). Observe that lij,kl (β) is only non-zero if (i, j, k, l) takes one of
the forms depicted in the upper-left-hand box of Figure 4. Similarly lij,lk (β) is only non-zero
if (i, j, k, l) takes one of the forms depicted in the upper-right-hand box of the figure. We can
proceed analogously for the six terms entering gijkl (β), each matched with a corresponding
set of wirings in Figure 4.

All six pairs of subgraphs in Figure 4 are isomorphic to one another. That is, after a rela-
belling of their vertices, they are the same. For example the upper-left-hand and right-hand
subgraphs are the same if we permute the k and l indices in the right pair of graphs. Let
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Pr
(
Sπiπj ,πkπl ∈ {−1, 1}

)
denote the probability that Sπiπj ,πkπl ∈ {−1, 1} for some permuta-

tion πi, πj, πk, πl of i, j, k, l. This coincides with the probability of that the tetrad takes one
of the wirings depicted in the Figure 4.

With this additional background and notation I can state:

Assumption 4. (Conditional FE Identification)

(i) Pr (Sij,kl ∈ {−1, 1}) = αN with 1 > αN ≥ α0

N
for some 0 < α0 < 1.

(ii) E
[
W̃ij,klW̃

′
ij,kl

∣∣∣Sij,kl ∈ {−1, 1}
]
is a finite non-singular matrix.

Part (i) restricts the rate at which identifying tetrads are observed as the network grows. If
the support of Ai is bounded for all i = 1, 2, . . . , then (i) holds with αN equal to a positive
constant. This corresponds to the dense graph case. If, however, the sequence {Ai}Ni=1

diverges with N , then αN may shrink toward zero as N → ∞. The rate at which this
probability shrinks is restricted by the requirement that NαN converge to something no
smaller than a positive constant. This condition ensures that N2αN → ∞, so that, even if
identifying tetrads become less frequent as the network grows, their absolute number relative
to the number of dyads in the network grows (i.e., n−1

[(
N
4

)
αN
]

= 1
12

(N − 2) (N − 3)αN →
∞). Condition (i) holds, for example, if αN = α0

N1−ε with any ε such that 0 < ε ≤ 1. By
setting ε = 1 we get dense graph sequences with αN ≡ α0 > 0. Values of ε < 1 allow for
greater sparseness in the asymptotic graph sequence.

Part (ii) is a standard identification for binary choice models, albeit expressed conditionally
on Sij,kl ∈ {−1, 1} (e.g., Amemiya, 1985).

To state the Theorem I need two more pieces of notation. First, define

s̄m,i1,...,im (β) = E [si1i2i3i4 (β)| i1, . . . , im]

as the average of the “score” vector sijkl (β) over its indices holding the first m of them
fixed. Second, I require an index notation for dyads. Recall that i = 1, 2, . . . indexes the N
sampled agents. Let the boldface indices i = 1,2, . . . index the n =

(
N
2

)
dyads among them

(in arbitrary order). In an abuse of notation, also let i denote the set {i1, i2}, where i1 and
i2 are the indices for the two agents which comprise dyad i. Using this notation we have, for
example, Di = Di1i2 .

The main result is:

Theorem 1. (Large Sample Properties of β̂TL) Under Assumptions 1, 2, 3 and 4
(i) β̂TL

p→ β0

(ii)
αN
√
nc′(β̂TL−β0)

(c′Γ−1
0 ΩNΓ−1

0 c)
1/2

D→ N (0, 36)
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for anyK×1 vector of real constants c, Γ0 = E
[
∂2gijkl(β0)

∂β∂β′

∣∣∣Sij,kl ∈ {−1, 1}
]
, ΩN = 1

n

∑n
i=1 Ωi,N ,

and Ωi,N = E
[
s̄2,is̄

′
2,i

∣∣ s̄2,1, . . . , s̄2,i−1
]
.

Proof. See Appendix B.

Theorem 1 follows from the asymptotically linear representation

√
nαN

(
β̂TL − β0

)
= 6Γ−1

0

[
1

√
nαN

N∑
i<j

s̄2,ij

]
+ op (1) . (11)

The components of the sum in (11) are not independent of one another, however it is possible
to show that {s̄2,i}ni=1 is a martingale difference sequence, from which asymptotic normality
follows. In the dense graph case V

(
1√
nαN

∑N
i<j s̄2,ij

)
→ 1

α
Ω0 with Ω0 = E

[
s̄2,ij (β0) s̄2,ij (β0)′

]
and αN ≡ α > 0 so that

√
n
(
β̂TL − β0

)
approx∼ N

(
0, 36

α
Γ−1

0 Ω0Γ−1
0

)
in large enough samples.

In the sparse case, the rate of convergence slows. Calculations in Appendix B indicate that
c′Γ−1

0 ΩNΓ−1
0 c ≤ O (αN), in which case the appropriate scaling factor would be (no smaller

than)
√
nαN .

Empirical implementation

From the vantage of an empirical researcher, estimation and inference proceed identically in
the sparse and dense cases (see below). Specifically, β̂TL can be calculated using a conven-
tional logit estimation program:

1. For all
(
N
4

)
sampled tetrads calculate Sπiπj ,πkπl and W̃πiπj ,πkπl for all six permutations

of the agent-level indices listed in Figure 4.

2. Stack these six replicates on top of one another, generating a dataset with 6
(
N
4

)
rows.

3. Drop all rows with Sπiπj ,πkπl = 0.

4. Use the retained rows to compute the logit fit of 1
(
Sπiπj ,πkπl = 1

)
onto W̃πiπj ,πkπl . The

coefficient on W̃πiπj ,πkπl equals β̂TL.

Inference can be based upon the approximation

β̂TL
approx∼ N

(
β0,

36Γ̂−1Ω̂Γ̂−1

nα̂

)
,
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where

α̂ =
(
N
4

)−1
N∑

i<j<k<l

1
(
gijkl

(
β̂TL

)
6= 0
)

Ω̂ =
1

n

∑
i<j

ˆ̄s2,ij

(
β̂TL

)
ˆ̄s2,ij

(
β̂TL

)′

Γ̂ = α̂−1
(
N
4

)−1
N∑

i<j<k<l

∂2gijkl

(
β̂TL

)
∂β∂β′

with ˆ̄s2,ij (β) = 1
n−2(N−1)+1

∑
k<l,{i,j}∩{k,l}=� sijkl (β). This is the covariance estimator used

in the Monte Carlo experiments.

The actual computation of β̂TL is quite quick, even with medium-sized networks. However
the pre-processing of the network data described in steps 1 to 3 above can be computationally
expensive. For covariance matrix estimation, the Γ̂ matrix can be recovered from the output
of logit estimator. The computation of Ω̂ is more expensive. This is because for each
of n dyads an average of O (n) elements must be computed first (for a total of O(N4)

operations).16

Joint maximum likelihood (JML) estimation

Let AN denote an N × 1 vector of degree heterogeneity values and A0N the corresponding
vector of true values. The N subscript is used in this sub-section where it is helpful to
emphasize that the dimension of the incidental parameter vector grows with the sample size.
For what follows it is also convenient to define the notation

pij (β,Ai, Aj)
def
=

exp
(
W ′
ijβ + Ai + Aj

)
1 + exp

(
W ′
ijβ + Ai + Aj

) .
The joint maximum likelihood estimator chooses β̂JML and ÂN simultaneously in order to
maximize the log-likelihood function

lN (β,AN) =
∑
i<j

{Dij ln pij (β,Ai, Aj) + (1−Dij) ln [1− pij (β,Ai, Aj)]} . (12)

16In large networks an estimate based on a subset of identifying tetrads might be computationally conve-
nient; but the properties of such an approach are not considered here.
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Some insight in β̂JML is provided by outlining a method of computation. For this purpose it
is convenient to note that β̂JML also maximizes the concentrated likelihood

lcN

(
β, Â (β)

)
=

N∑
i=1

∑
j<i

Dij

(
W ′
ijβ + T ′ijÂN (β)

)
− ln

[
1 + exp

(
W ′
ijβ + T ′ijÂN (β)

)]
(13)

where ÂN (β) = arg max
A

lN (β,A) .

By adapting Theorem 1.5 of Chatterjee, Diaconis and Sly (2011) I show that ÂN (β), when
it exists, is the unique solution to the fixed point problem

ÂN (β) = ϕ
(
ÂN (β)

)
(14)

where

ϕ (A)
def
=


lnD1+ − ln r1 (β,A,W1)

...
lnDN+ − ln rN (β,A,WN)

 , (15)

with Wi =
(
Wi1, . . . ,Wi(i−1),Wi(i+1), ,WiN

)′ and
ri (β,A (β) ,Wi) =

∑
j 6=i

exp
(
W ′
ijβ
)

exp (−Aj (β)) + exp
(
W ′
ijβ + Ai (β)

) .
That ÂN (β) = ϕ

(
ÂN (β)

)
can be directly verified by rearranging the sample score of (12).

That iteration using (14) converges to ÂN (β) = arg max
A∈AN

lN (β,A) – when the solution

exists – is a direct implication of Lemma 4 in Appendix A.

The fixed point representation of ÂN (β) shows that, while the incidental parameters {Ai}Ni=1

are agent-specific, their concentrated MLEs are jointly determined using all n =
(
N
2

)
dyad

observations. To see this observe that if we perturb Âi, then all values of Âj for i 6= j

will change. This differs from joint fixed effects estimation in a nonlinear panel data model
without time effects. In those models, conditional on the common parameter, the value of
Âi (β) is a function of only the T observations specific to unit i (e.g., Hahn and Newey, 2004;
Arellano and Hahn, 2007). The joint determination of the components of ÂN (β) is a direct
consequence of the multi-agent nature of the network formation problem and complicates
the asymptotic analysis of β̂JML.

To characterize the large sample properties of the JML estimates I require some additional
notation and an identification condition. It is useful to begin by observing that the population
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problem is
max

b∈B,aN∈AN
E [ lN (b, aN)|X,A0N ] ,

where it is easy to show that

E [ lN (β,AN)|X,A0N ] = −
∑
i<j

DKL (pij‖ pij (β,Ai, Aj))−
∑
i<j

S (pij) .

whereDKL (pij‖ pij (β,Ai, Aj)) is the Kullback-Leibler divergence of pij (β,Ai, Aj) from pij
def
=

pij (β0, Ai0, Aj0) and S (pij) is the binary entropy function. It is clear that (β0,A0N) is a max-
imizer of the population criterion function. The following assumption ensure that it is the
unique maximizer (and also that this maximizer exists for large enough N).

Assumption 5. (Joint FE Identification)

(i) For i = 1, 2, . . . the support of Ai0 is A, a compact subset of R.
(ii) E [ lN (b, aN)|X,A0N ] is uniquely maximized at b = β0 and aN = A0N .

Part (i) of the assumption implies, in combination with Assumption 2, that

pij (β,Ai, Aj) ∈ (κ, 1− κ) (16)

for some 0 < κ < 1 and for all (Ai, Aj) ∈ A × A and β ∈ B. Condition (16) implies that in
large networks the number of observed links per agent will be proportional to the number of
sampled agents. Put differently it implies a dense sequence of graphs. It might be possible
to relax part (i) to accommodate sequences of {A0i}Ni=1 that diverge at some (slow enough)
rate (e.g., sup

1≤i≤N
A0i = O (log logN)), but the structure of the proofs of Theorems 2, 3 and

4 below suggest that any feasible sequence will result in a non-sparse graph (i.e., agents
will have a large number of links in the limit). This contrasts sharply with the tetrad logit
estimator, where consistency under relatively sparse graph sequences was established.

Part (ii) of Assumption 5 is an identification condition. It will generally hold in there is
sufficient variance in each column of Wi =

(
Wi1, . . . ,Wi(i−1),Wi(i+1), ,WiN

)′
.

The first theorem establishes consistency of β̂JML.

Theorem 2. Under Assumptions 1, 2, 3 and 5

β̂JML
p→ β0.

Proof. See Appendix B.
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A simple intuition for Theorem 2 is as follows. Rearranging the likelihood yields

lN (β,AN) =
∑
i<j

(Dij − pij) ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)
−
∑
i<j

DKL (pij‖ pij (β,Ai, Aj))−
∑
i<j

S (pij) (17)

An implication of (16) is that (Dij − pij) ln
(

pij(β,Ai,Aj)

1−pij(β,Ai,Aj)

)
is a bounded random variable.

This fact and Hoeffding’s (1963) inequality can be used to show that the first component of
n−1lN (β,A) is op (1) uniformly in β ∈ B and AN ∈ AN . The last term in (17) is constant
in β. In large samples a maximizer of lN (β,A) will therefore be close to a minimizer of the
sum of the n Kullback-Leibler measures of divergence of pij (β,Ai, Aj) from pij across all
dyads. From part (ii) of Assumption 5 this minimizer is unique.17

A more involved argument shows that it is possible to estimates the elements of A0N with
uniform accuracy.

Theorem 3. With probability 1−O (N−2)

sup
1≤i≤N

∣∣∣Âi − Ai0∣∣∣ < O

(√
lnN

N

)
.

Proof. See Appendix B.

Chatterjee, Diaconis and Sly (2011) show uniform consistency of Âi in the model with no
dyad-level covariates. Theorem 3 follows from a combination of Theorem 2 above and an
adaptation of their results. It is also closely related to Simons and Yao’s (1999) analysis of
the Bradley-Terry model of paired comparisons.

The key intuition is as follows. Under dense graph sequences we effectively observe N − 1

linking decision per agent. That is we observe whether agent i links with j for all j 6= i.
This feature of the problem allows for consistent estimation of Ai0 for each agent. The
argument is complicated by the fact that agents i′s and agent j′s sequence of link decisions
are dependent. However this dependence is weak, only arising via the presence of Dij in
both link sequences.18

17The argument is close to that of a standard M-estimator consistency proof (e.g., Amemiya, 1985; pp.
106 - 107). The presence of the incidental parameters {Ai}Ni=1 complicates the argument. This handled by
“concentrating them out” of the problem.

18Lemma 6 in the Appendix additionally establishes asymptotic normality of any sub-vector of Â of fixed
length:

24



Establishing asymptotic normality of β̂JML is also involved. This is because the sampling
properties of β̂JML are influenced by the estimation error in ÂN . This influence generates
bias in the limit distribution of β̂JML. This bias is similar to that which arises in large-
N, large-T joint fixed effects estimation of nonlinear panel data models (Hahn and Newey,
2004; Arellano and Hahn, 2007). An additional challenge here, not present in the panel data
problem, is to characterize the probability limit of the (suitably normalized) Hessian matrix
of the concentrated log-likelihood. This matrix depends on the inverse of the N ×N block
of the full likelihood’s Hessian associated with the incidental parameters. This sub-matrix,
unlike in the corresponding panel data problem, is not diagonal due to the weak dependence
across different agents’ link sequences. The inverse of this sub-matrix is not available in
closed form and hence must be approximated.19

To state the form of the limit distribution define

I0 (β) = lim
N→∞

−
(
N
2

)−1
∂2lcN

(
β0, Â (β0)

)
∂β∂β′

, (18)

and also

B0 = − lim
N→∞

1

2
√
n

N∑
i=1

1
N−1

∑
j 6=i pij (1− pij) (1− 2pij)Wij

1
N−1

∑
j 6=i pij (1− pij)

. (19)

Theorem 4. Under Assumptions 1, 2, 3 and 520

(i) β̂JML = β0 +
I−1
0 (β)B0√

n
+ op (1)

(ii)
√
nc′(β̂JML−β0)−c′I−1

0 (β)B0

(c′I−1
0 (β)IN (β)I−1

0 (β)c)
1/2

D→ N (0, 1) ,

or any K × 1 vector of real constants c and IN (β) as defined in the Appendix.

Proof. See Appendix B

√
N
(
Â−A

)
1:L

D→ N
(

0,diag

(
1

E [p1j (1− p1j)]
, . . . ,

1

E [pLj (1− pLj)]

))
.

19In the proof I use some matrix approximation results originally developed in the context of the Bradley-
Terry model for paired comparisons (cf., Simons and Yao, 1998). Fernandez-Val and Weidner’s (2015)
encounter a related problem in their extension of Hahn and Newey (2004) to include time effects.

20To relate Theorem 4 to analogous results from the large-N, large-T non-linear panel data literature
observe that for each agent we observe N − 1 linking decisions; corresponding to “T ” in the panel data case.
The bias term is thus O (1/N) = O (1/

√
n) , analogous to the O (1/T ) bias term in the panel data case (e.g.,

Hahn and Newey (2004)).
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Empirical implementation

Computation of β̂JML is possible by computing the logit fit of Dij onto Wij and Tij. The
dimension of the latter vector is N , and hence the concentration approach outlined above
will be more reliable in practice. For small networks β̂JML may not exist. In practice any
agents with no links, or any agent with a complete set of links, should be dropped prior to
estimation. Inference, noting that IN (β)→ I0 (β), may be based on the approximation

β̂JML
approx∼ N

(
β0 +

I−1
0 (β)B0√

n
,
I−1

0 (β)

n

)
.

Hence the standard errors reported by a conventional logit command will be valid (alterna-
tively a sandwich estimator may be used).

Although conventional logit standard errors will be valid, confidence intervals computed
using them with not be, due to the bias in the limit distribution. Consequently, for inference
it is important to bias-correct β̂JML. There are many possible approaches to bias correction
(cf., Hahn and Newey, 2004; Fernandez-Val and Weidner’s, 2015). I use the iterated bias
correction procedure outlined in Hahn and Newey (2004) in the Monte Carlo experiments.
In this procedure β̂JML is used to replace β0 in the sample analogs of (18) and (19), yielding
Î1 and B̂1. Next compute β̂BC,1 as β̂BC,1 = β̂JML − Î

−1
1 B̂1√
n

. Plug this estimate of β0 back into

(18) and (19) and compute β̂BC,2 = β̂BC,1 − Î−1
2 B̂2√
n

. Repeat until β̂BC,b = β̂BC,b+1
def
= β̂BC.

In principle the limiting variance of
√
n
(
β̂BC − β0

)
need not coincide with the one given in

Theorem 4, although the results of Hahn and Newey (2004) and others suggest it should.

3 Finite sample properties

In this section I explore the finite sample properties of β̂TL, β̂JML and the iterated bias-
corrected JML estimate β̂BC via Monte Carlo. I also report results for the commonly used
dyadic logit estimator, β̂DL, discussed in Section 1. This estimator is inconsistent across all
designs considered here.

The Monte Carlo designs are calibrated to assess the accuracy of the large sample results
presented in the previous section, to assess the ability of the estimators to “correct for”
correlated degree heterogeneity bias and to explore the sensitivity of each estimator to the
level of link sparseness in the network.
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I simulate networks using the rule

Dij = 1 (XiXjβ0 + Ai + Aj − Uij ≥ 0)

where Xi ∈ {−1, 1} and β0 = 1. This link rule implies that agents have a strong taste for
homophilic matching since XiXjβ0 = 1 when Xi = Xj and XiXjβ0 = −1 when Xi 6= Xj.

Individual-level degree heterogeneity is generated according to

Ai = αL1 (Xi = −1) + αH1 (Xi = 1) + Vi (20)

with αL ≤ αH and Vi a centered Beta random variable:

Vi|Xi ∼
{

Beta (λ0, λ1)− λ0

λ0 + λ1

}
, (21)

so that Ai ∈
[
αL − λ0

λ0+λ1
, αH + λ1

λ0+λ1

]
with E [Ai|Xi = −1] = αL and E [Ai|Xi = 1] = αH .

The relative magnitudes of αL and αH calibrate the extent to which the degree heterogeneity
is correlated with the observed agent attribute. The goal is to recover the homophily coef-
ficient, β0. The frequency of each type of agent is set to one-half: Pr (Xi = 1) = 1/2. The
homophily parameter is kept fixed across all designs, while αL, αH , λ0 and λ1 are varied to
calibrate the density of the graph and/or induce right-skewness in the degree distribution.

I consider eight different designs, each of which are summarized in Table 1. I set N = 100,
generating n = 4, 950 dyads, and complete 1,000 Monte Carlo replications for each design.
The first four designs, A.1 to A.4, incorporate degree heterogeneity that is (i) uncorrelated
with Xi and (ii) symmetrically distributed. This leads to graphs with bell-shaped degree
distributions. These four designs cover a range of link densities (see Panel B of the Table),
with anywhere from one half to as little as one tenth of all possible links being present on
average. The next four designs, B.1 to B.4 involve degree heterogeneity distributions that are
(i) correlated with Xi and (ii) right skewed. This latter feature generates degree distributions
closer to those observed in real world networks.

Formally, each of the eight Monte Carlo designs satisfy the regularity conditions required
for consistency and asymptotic normality of both β̂TL and β̂JML. However, in practice, the
designs involve varying levels of link density. In particular designs A.4 and B.4 generate
fairly sparse networks, consequently the expectation is that the joint maximum likelihood
estimator, as well as its bias-corrected version, may perform poorly in those designs.

Table 2 presents the Monte Carlo results. The first panel reports the median estimate of
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Table 1: Monte Carlo Designs
Symmetric Uncorrelated Right-Skewed

Heterogeneity Correlated Heterogeneity
Panel A A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4

αL 0 -1/4 -3/4 -5/4 0 -1/2 -1 -3/2
αH 0 -1/4 -3/4 -5/4 1/2 0 -1/2 -1
λ0 1 1 1 1 1/4 1/4 1/4 1/4
λ1 1 1 1 1 3/4 3/4 3/4 3/4

Panel B
Density 0.50 0.40 0.23 0.12 0.59 0.40 0.24 0.12

Min Degree 32.4 23.8 10.2 2.9 40.6 21.2 8.1 1.9
Max Degree 66.4 56.9 37.8 21.9 77.9 61.6 44.2 27.9
Std of Degree 7.3 7.2 5.9 3.9 8.2 9.1 8.2 5.6

Notes: Panel A lists the parameter values used to simulate the individual-specific degree hetero-
geneity as specified in equations (20) and (21) of the main text. Panel B gives average network
summary statistics across the 1,000 Monte Carlo repetitions for each design. Across all designs
Xi ∈ {−1, 1} with Pr (Xi = −1) = Pr (Xi = 1) = 1/2 and β0 = 1.

β0 across the 1,000 simulated networks for each estimator and design. Unsurprising, the
bias of the commonly used dyadic logit estimator is substantial across all of the designs
considered here. The tetrad logit estimate is essentially median unbiased across all eight
designs. In contrast the JML estimate exhibits median bias comparable in magnitude to its
sampling standard deviation (consistent with Theorem 4). The bias-corrected JML estimator
is approximately median unbiased across the densest designs, namely A.1, A.2, B.1 and
B.2. In the two sparser designs (A.4 and B.4) bias correction works rather poorly, with
β̂BC’s median bias actually exceeding that of its non-bias corrected counterpart β̂JML. These
results suggest that the density of the network is an important consideration when deciding
whether to utilize the joint maximum likelihood procedure. In contrast the bias properties
of the tetrad logit estimator are insensitive to the range of network densities considered here.

In terms of root mean square error performance, β̂TL and β̂BC are similar across dense designs,
with β̂TL markedly superior across the sparser designs. A formal efficiency comparison of
these two estimators is non-obvious and would be an interesting topic for future research.

Panels B and C of Table 2 report the actual size of t-tests of the null hypothesis that β0 = 1.
The size of the tetrad logit t-tests are close to nominal levels across all designs, tending to
be slightly conservative on average. Tests based on the joint maximum likelihood estimate
reject too frequently, consistent with the bias in the limit distribution of this estimate. For
the dense designs (Columns A.1, A.2, B.1 & B.2) the t-test based on the biased corrected
estimator has actual size close to nominal size. However, this test over rejects in the sparse
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Table 2: Monte Carlo Results
Symmetric Uncorrelated Right-Skewed

Heterogeneity Correlated Heterogeneity
Panel A A.1 A.2 A.3 A.4 B.1 B.2 B.3 B.4

med
[
β̂DL

] 0.962
(0.032)
[0.049]

0.925
(0.034)
[0.082]

0.649
(0.042)
[0.350]

0.350
(0.039)
[0.644]

0.894
(0.038)
[0.113]

0.936
(0.034)
0.072

0.675
(0.045)
[0.324]

0.380
(0.042)
[0.616]

med
[
β̂TL

] 0.999
(0.034)
[0.034]

1.000
(0.035)
[0.035]

1.001
(0.044)
[0.044]

1.005
(0.065)
[0.066]

1.001
(0.037)
[0.037]

1.001
(0.034)
[0.034]

1.000
(0.046)
[0.046]

1.002
(0.067)
[0.067]

med
[
β̂JML

] 1.023
(0.035)
[0.041]

1.022
(0.036)
[0.042]

1.022
(0.044)
[0.049]

1.023
(0.065)
[0.070]

1.025
(0.038)
[0.045]

1.024
(0.035)
[0.042]

1.021
(0.046)
[0.051]

1.019
(0.067)
[0.071]

med
[
β̂BC

] 1.001
(0.034)
[0.034]

1.002
(0.035)
[0.035]

1.019
(0.046)
[0.048]

1.106
(0.079)
[0.134]

1.004
(0.036)
[0.037]

1.003
(0.034)
[0.034]

1.017
(0.047)
[0.050]

1.086
(0.081)
[0.125]

Panel B
α = 0.05

DL 0.200 0.657 1.000 1.000 0.877 0.508 1.000 1.000
TL 0.036 0.042 0.038 0.036 0.034 0.025 0.038 0.043
JML 0.107 0.112 0.075 0.045 0.108 0.098 0.085 0.053
BC 0.055 0.057 0.068 0.352 0.061 0.035 0.076 0.296

Panel C
α = 0.10

DL 0.319 0.746 1.000 1.000 0.922 0.626 1.000 1.000
TL 0.076 0.081 0.080 0.081 0.081 0.061 0.085 0.090
JML 0.178 0.178 0.132 0.097 0.200 0.164 0.145 0.107
BC 0.102 0.097 0.126 0.467 0.105 0.087 0.140 0.391

% of JML 100 100 100 99.1 100 100 100 95.7
Notes: Panel A gives the median estimate of β0 for each estimator and design across the 1,000
Monte Carlo estimates (mean values, not reported, are very similar). The standard deviation of the
Monte Carlo estimates is reported below the median value of the point estimates in parentheses.
The root mean square error is reported in square brackets below the standard deviation). Panels B
and C report the actual size of, respectively an α = 0.05 and α = 0.10 t-test of the null that β0 = 1.
The Monte Carlo standard error on these estimates is

√
α (1− α) /100 or about 0.007 for α = 0.05

and 0.009 for α = 0.1. The final row of the table reports the number of times the JML estimate
was successfully computed across the 1,000 Monte Carlo replications for each design.
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graph designs, consistent with the failure of bias correction in those settings (Columns A.3,
A.4, B.3 & B.4).

4 Areas for further work

As noted in the introduction, one limitation of the model studied here is that it excludes
interdependencies in link preferences. This omission raises two natural questions. First, can
one construct a test for the assumption of no interdependencies in link formation? Second,
can one augment the model to include such interdependencies?

Consider the testing problem first. A natural way to include interdependencies in preferences
is to posit that links for according to

Dij = 1

(
δ0

(
N∑
k=1

DikDjk

)
+W ′

ijβ0 + Ai + Aj − Uijt ≥ 0

)
(22)

so that an ij link is more likely if i and j share many friends in common. Transitivity
in link structure is predicted by many models of strategic network formation (see Graham
(2015) for discussion and references). Link rule (22) results in an incomplete model of
network formation: for a given draw of U there will generally be multiple equilibrium network
configurations consistent with (22) (cf., Tamer, 2003; Graham, 2015). However, under the
null of δ0 = 0 the model coincides with the one analyzed here, which suggests a Score/LM
test for neglected transitivity (cf., Hahn, Moon and Snider, 2015). The TL estimator may be
especially convenient for this purposes, since its “score” vector does not depend on {Ai}Ni=1.
The study of this approach to specification testing (and other approaches) would be an
interesting topic for future research.

Turning to the second question, if the econometrician observes a network for two periods,
then the incorporation of interdependencies in link formation, albeit of a particular kind, is
possible. Assume that individuals i and j form a period t link, for i = 1, . . . , N and j < i,
according to the rule

Dijt = 1

(
γDijt−1 + δ

N∑
k=1

Dikt−1Djkt−1 +
(
W ∗
ijt

)′
β∗ + Ai + Aj − Uijt ≥ 0

)
, (23)

where Uijt is iid across pairs and over time as well as logistic. This model allows the proba-
bility of a period t ij link to depend on (i) whether i and j were linked in the prior period
and (ii) on the number of friends they shared in common in the prior period. In incorporates
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both state-dependence and a taste for transitivity in links.

In the two period case (t = 0, 1), both the tetrad logit and joint maximum likelihood esti-

mates remain valid, with outcomeDij = Dij1, regressor vectorWij =
(
Dij0,

∑N
k=1 Dik0Djk0,

(
W ∗
ij1

)′)′,
and coefficient vector β =

(
γ, δ, (β∗)′

)′ . This observation hinges critically on the way in
which agent-level heterogeneity is modeled. For example, the conditional estimator is based
on within-agent variation in a given network; over time contrasts are not used. If Ai + Aj

were replaced with, say, Aij = Bi +Bj +h (Ci, Cj) for Bi and Ci agent-specific heterogeneity
and h (•, •) symmetric but otherwise arbitrary, then identification of β would rely on (over-
time) within-dyad variation and a variant of the “initial condition” problem that occurs in
single agent dynamic panel data analysis would arise. Graham (2013) studies models of this
type.

A Appendix

This Appendix states and, where required, proves, several Lemmas used in the proofs of
Theorems 1, 2, 3 and 4. The proofs of these four Theorems appear in Appendix B. All
notation is as defined in the main text, unless noted otherwise. The abbreviation TI refers to
the Triangle Inequality, LLN to Law of Large Numbers, and CLT to Central Limit Theorem.
A zero subscript on a parameter denotes its population value. This subscript may be omitted
when doing so causes no confusion.

I begin with two useful matrix analysis results.

Lemma 1. Let the matrix A belong to the class LN (δ) if ‖A‖∞ ≤ 1 and, for all 1 ≤ i 6=
j ≤ N and for some δ > 0,

aii ≥ δ and aij ≤ −
δ

N − 1
.

If A,B ∈ LN (δ), then

‖AB‖∞ ≤ 1− 2 (N − 2) δ2

N − 1
.

Proof. See Lemma 2.1 of Chatterjee, Diaconis and Sly (2011).

Lemma 2. For all N ×N symmetric diagonally dominant matrices J with J ≥ SN (δ) for
SN (δ) = δ {(N − 2) IN + ιN ι

′
N} and δ > 0, we have

∥∥J−1
∥∥
∞ ≤

∥∥S−1
N (δ)

∥∥
∞ =

3N − 4

2δ (N − 2) (N − 1)
= O

(
1

N

)
.
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Proof. See Theorem 1.1 of Hillar, Lin, Wibisono (2013).

Lemma 3. Under Assumptions 1, 2, 3 and 5

sup
1≤i≤N

∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ <
√

3

2

lnN

N
,

with probability 1−O (N−2) .

Proof. Hoeffding’s (1963) inequality gives

Pr

(∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2 (N − 1) ε2

(1− 2κ)2

)

for κ as defined by (16). Setting ε =
√

3
2

lnN
N

gives the probability bound

Pr

(∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ ≥
√

3

2

lnN

N

)
≤ 2 exp

(
−2 (N − 1)

(1− 2κ)2

3

2

lnN

N

)
= 2 exp

(
ln

(
1

N3

)
N − 1

(1− 2κ)2N

)
=

2

N3
exp

(
(N − 1)

(1− 2κ)2N

)
= O

(
N−3

)
.

Applying Boole’s Inequality then yields

Pr

(
max

1≤i≤N

∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ ≥
√

3

2

lnN

N

)
≤ 2

N2
exp

(
− 2 (N − 1)

(1− 2κ)2N

)
= O

(
N−2

)
,

from which the result follows.

The next Lemma formalizes the fixed point characterization of Â (β) discussed in Section
1 of the main text. Lemma 4 is a straightforward extension of Theorem 1.5 of Chatterjee,
Diaconis and Sly (2011) to accommodate dyad-level covariates in the link formation model.
Since it is constructive, a proof is provided here.

Lemma 4. Suppose the concentrated MLE Â (β) lies in the interior of A × . . . × A = AN ,
then for 0 < δ ≤ κ2

1−κ and Ak+1 (β) = ϕ (Ak (β)) with ϕ (A) as defined by (15) of the main
text (i) ∥∥∥Ak+1 (β)− Â (β)

∥∥∥
∞
≤
(

1− 2 (N − 2)

N − 1
δ2

)∥∥∥Ak−1 (β)− Â (β)
∥∥∥
∞
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and (ii)

‖Ak+2 (β)−Ak+1 (β)‖∞ ≤
(

1− 2 (N − 2)

N − 1
δ2

)
‖Ak (β)−Ak−1 (β)‖∞ .

Proof. I suppress the dependence of Â (β) , Ak (β) and other objects on β in what follows
(note that the Lemma holds for any β in its parameter space). Tedious calculation gives a
N ×N Jacobian matrix of

∇Aϕ (A) =



∑
j 6=1 p

2
1j∑

j 6=1 p1j
−p12(1−p12)∑

j 6=1 p1j
· · · −p1N (1−p1N )∑

j 6=1 p1j

−p21(1−p12)∑
j 6=2 p2j

∑
j 6=2 p

2
2j∑

j 6=2 p2j
· · · −p2N (1−p2N )∑

j 6=2 p2j
... . . . ...

−pN1(1−p1N )∑
j 6=N pNj

−p2N (1−p2N )∑
j 6=N pNj

· · ·
∑
j 6=N p2Nj∑
j 6=N pNj

 . (24)

Observe that ‖∇Aϕ (A)‖∞ = 1 (i.e., the Jacobian is “diagonally balanced”); further note
that

inf
1≤i≤N

∑
j 6=i p

2
ij∑

j 6=i pij
≤ (N − 1)κ2

(N − 1) (1− κ)
=

κ2

1− κ

as well as
sup

1≤i,j≤N, i6=j
− pij (1− pij)∑

k 6=i pik
≤ − κ (1− κ)

(N − 1) (1− κ)
= − κ

N − 1
.

Therefore ∇Aϕ (A) ∈ LN (δ) with 0 < δ ≤ κ2

1−κ with LN (δ) as defined in Lemma 1.

Assume that the MLE Â = ϕ
(
Â
)

exists. A mean value expansion of ϕ (Ak) about Â,

followed by a second mean value expansion of Ak = ϕ (Ak−1), also about Â, yields

Ak+1 − Â = ϕ (Ak)− ϕ
(
Â
)

= ϕ
(
Â
)

+∇Aϕ
(
Ā
) (

Ak − Â
)
− Â

= ∇Aϕ
(
Ā
) (
ϕ (Ak−1)− Â

)
= ∇Aϕ

(
Ā
) (
ϕ
(
Â
)

+∇Aϕ
(
Ā
) (

Ak−1 − Â
)
− Â

)
= ∇Aϕ

(
Ā
)
∇Aϕ

(
Ā
) (

Ak−1 − Â
)

where Ā is a “mean value” between Â and Ak (or Â and Ak−1) which may vary from row to
row (as well as across the two Jacobian matrices in the last expression above). Taking the
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absolute row sum norm of both sides of the last equality gives∥∥∥Ak+1 − Â
∥∥∥
∞
≤

∥∥∥∇Aϕ
(
Ā
)
∇Aϕ

(
Ā
) (

Ak−1 − Â
)∥∥∥
∞

≤
∥∥∇Aϕ

(
Ā
)
∇Aϕ

(
Ā
)∥∥
∞

∥∥∥(Ak−1 − Â
)∥∥∥
∞

≤
(

1− 2 (N − 2)

N − 1
δ2

)∥∥∥(Ak−1 − Â
)∥∥∥
∞

for 0 < δ ≤ κ2

1−κ . The last inequality follows from an application of Lemma 1. Similar
arguments give the second result in the Lemma.

The next two Lemmas require some additional notation. The Hessian matrix of the joint
log-likelihood is given by

HN =

(
HN,ββ HN,βA

H ′N,βA HN,AA

)
(25)

with

HN,ββ = −
N∑
i=1

∑
j<i

pij (1− pij)WijW
′
ij

H ′N,βA = −


∑

j 6=1 p1j (1− p1j)W
′
1j

...∑
j 6=N pNj (1− pNj)W ′

Nj



HN,AA = −


∑

j 6=1 p1j (1− p1j) · · · p1N (1− p1N)
... . . . ...

p1N (1− p1N) · · ·
∑

j 6=N pNj (1− pNj)

 .

We also define the matrices

VN = diag {−HN,AA} (26)

and

QN = V −1
N − 1

2

[∑
i<j

pij (1− pij)

]−1

ιN ι
′
N . (27)

The next Lemma, which is due to Yan and Xu (2013), shows that−H−1
N,AA is well-approximated

by QN (see also Simons and Yao, 1998).
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Lemma 5. Under Assumptions 1, 2, 3 and 5

∥∥−H−1
N,AA −QN

∥∥
max

= O

(
1

N2

)
,

for HN,AA and QN as defined in (25) and (27) respectively.

Proof. See Proposition A.1 of Yan and Xu (2013).

Let sβij (β,A) and sAij (β,A) denote the (i, j)th dyad’s contributions to the score of the
JML estimator associated with, respectively, the K × 1 vector β, and N × 1 vector A.

Lemma 6. Under Assumptions 1, 2, 3 and 5
√
N
[
Â (β0)−A (β0)

]
has the asymptotically

linear representation

√
N
[
Â (β0)−A (β0)

]
= −

[
HN,AA

N

]−1

× 1√
N

N∑
i=1

∑
j<i

sAij (β0,A (β0)) + op (1) , (28)

as well as, for a fixed L, a limiting distribution of

√
N
[
Â (β0)−A (β0)

]
1:L

D→ N
(

0, diag

(
1

E [p1j (1− p1j)]
, . . . ,

1

E [pLj (1− pLj)]

))
. (29)

Proof. A second order Taylor series expansion gives∑
i<j

sAij

(
β0, Â (β0)

)
=

∑
i<j

sAij (β0,A (β0))

+

[∑
i<j

∂

∂A′
sAij (β0,A (β0))

](
Â (β0)−A (β0)

)
+

1

2

[
N∑
p=1

(
Âp (β0)− Ap (β0)

)∑
i<j

∂

∂Ap∂A′
sAij

(
β0, Ā (β0)

)]
×
(
Â (β0)−A (β0)

)
, (30)

with Ā (β0) a mean value between Â (β0) and A (β0). It is convenient to evaluate the last
term in (30) row by row. Its pth row is, for p = 1, . . . , N ,

Rp =
1

2

(
Â (β0)−A (β0)

)′ [∑
i<j

∂

∂A∂A′
s

(p)
Aij

(
β0, Ā (β0)

)](
Â (β0)−A (β0)

)
,
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with
∂

∂A∂A′
s

(p)
Aij

(
β̄, Ā (β0)

)
= −p̄ij (1− p̄ij) (1− 2p̄ij)TijT

′
ijTp,ij

and p̄ij = pij
(
β̄, Āi (β0) , Āj (β0)

)
. Here Tp,ij denotes the pth element of Tij.

Lemma 3, the form of ∂
∂A∂A′

s
(p)
Aij

(
β̄, Ā (β0)

)
, and the fact that |p̄ij (1− p̄ij) (1− 2p̄ij)| < 1,

gives the bound

|Rp| ≤ λ2
N

N∑
i=1

∑
j 6=i

|p̄ij (1− p̄ij) (1− 2p̄ij)|Tp,ij

≤ 2λ2
N (N − 1) ,

where λN = sup
1≤i≤N

∣∣∣Âi − Ai0∣∣∣ . Observe that, for VN as defined in (26), −V −1
N HN,AA/2 is a

row stochastic matrix (i.e., a non-negative matrix with all rows summing to one (e.g., Horn
and Johnson (2013, p. 547))), therefore

−
(
V −1
N HN,AA

)−1
V −1
N ιN2λ2

N (N − 1) ≤ −
(
V −1
N HN,AA

)−1
ιN

2λ2
N (N − 1)

(N − 1)κ (1− κ)

= ιN
λ2
N

κ (1− κ)
,

with κ as defined in (16). From Lemma 3, and the proof to Theorem 3 below, λ2
N = O

(
lnN
N

)
,

which combined with the bound given above yields, after rearranging (30),

√
N
(
Â (β0)−A (β0)

)
= −

[
HN,AA

N

]−1

× 1√
N

N∑
i=1

∑
j<i

sAij (β0,A (β0)) +O

(
lnN√
N

)
.(31)

This proves the first part of the Lemma.

To show the second result I use Lemma 5 to get

√
N
(
Â (β0)−A (β0)

)
= NQN ×

1√
N

N∑
i=1

∑
j<i

sAij (β0,A (β0)) +O

(
1

N

)
op

(√
N
)

+O

(
lnN√
N

)

where the O
(

1
N

)
op

(√
N
)

and O
(

lnN√
N

)
terms respectively capture approximation error

from replacing −H−1
N,AA with QN and from the remainder term in the Taylor series expan-

sion. The overall remainder term is op (1) . Now observe that 1
2

[∑
i<j pij (1− pij)

]−1

≤
1

N(N−1)κ(1−κ)
= O

(
1
N2

)
and hence that the probability limit of the upper-left-hand L ×

L block of NQN coincides with that of the corresponding sub-matrix of (VN/N)−1 or
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diag

(
1

E[p1j(1−p1j)] , . . . ,
1

E[pLj(1−pLj)]

)
.

The ith element of
∑N

i=1

∑
j<i sAij (β0,A (β0)) equals

∑
j 6=i (Dij − pij). This is a sum of inde-

pendent, but not identically distributed, Bernoulli random variables. Asymptotic normality
of 1√

N

∑
j 6=i (Dij − pij) follows from the fact that |Dij − pij| ≤ 1− κ and hence

∑
j 6=i

E
[
|dij − pij|3

](∑
j 6=i pij (1− pij)

)3/2
≤
∑
j 6=i

(1− κ)E
[
|dij − pij|2

](∑
j 6=i pij (1− pij)

)3/2
=

(1− κ)(∑
j 6=i pij (1− pij)

)1/2
→ 0

as N →∞. This is Lyapounov’s condition and hence result (29) follows from an application
of Lyapounov’s central limit theorem for triangular arrays (e.g., Billingsley, 1995, p. 362)
and Slutsky’s Theorem.

B Appendix

Proof of Theorem 1

Part 1: Consistency

Recall that

gijkl (β) =
1

6
{lij,kl (β) + lij,lk (β) + lik,jl (β) + lik,lj (β) + lil,jk (β) + lil,kj (β)}

for lij,kl (β) defined in (7) of the main text. Using this representation we can compute the
expected value of the tetrad logit criterion function, normalized by α−1

N as defined in part
(i) Assumption 4, as

E
[
α−1
N LN (β)

]
=

∑
i<j<k<l

E
[
α−1
N gijkl (β)

]
=

∑
i<j<k<l

1

6

{
E
[
α−1
N lij,kl (β)

]
+ E

[
α−1
N lij,lk (β)

]
+E

[
α−1
N lik,jl (β)

]
+ E

[
α−1
N lik,lj (β)

]
+E

[
α−1
N lil,jk (β)

]
+ E

[
α−1
N lil,kj (β)

]}
.

By exchangeability/symmetry each of the six expectations to the right of the second equality
are equal to one another. We may therefore consider only the first without loss of generality.
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Let qij,kl (β) =
exp(W̃ ′ij,klβ)

1+exp(W̃ ′ij,klβ)
, qij,kl = qij,kl (β0) and

Q (β) = −{E [DKL (qij,kl‖ qij,kl (β)) + S (qij,kl)|Sij,kl ∈ {−1, 1}]} .

Evaluating this expectation yields (see the Supplemental Web Appendix)

E
[
α−1
N lij,kl (β)

]
= −α−1

N Pr (Sij,kl ∈ {−1, 1}) {E [DKL (qij,kl‖ qij,kl (β))|Sij,kl ∈ {−1, 1}]

+E [S (qij,kl)|Sij,kl ∈ {−1, 1}]}

= Q (β) (32)

as N → ∞ since α−1
N Pr (Sij,kl ∈ {−1, 1}) = 1 using condition (i) of Assumption 4. Here

i, j, k and l are independent random draws from the population of agents and the inner
expectation to the right of the first equality is over these i.i.d. draws Xi, Xj, Xk and
Xl conditional on the event Sij,kl ∈ {−1, 1}. By the properties of the Kullback-Leibler
divergence, we therefore have that β0 is a maxima of E

[
α−1
N LN (β)

]
in large enough samples.

Global uniqueness of this maximum follows from part (ii) of Assumption 4, which implies
concavity of LN (β) in β.

Observe that α−1
N LN (β) is a 4th order U-Process, where the indexing is over agents in the

network. By compactness of the support of β and W (Assumption 2) and condition (i) of
Assumption 4 we have that

E
[∥∥α−1

N gijkl (β)
∥∥2
]

= α−1
N E

[
‖gijkl (β)‖2]

= O
(
α−1
N

)
= O (N) ,

so that Lemma A.3 of Ahn and Powell (1993, p. 22) gives α−1
N LN (β)

p→ Q (β) . By the
concavity of LN (β) in β this convergence is uniform in β ∈ B. Since conditions A, B and C
of Theorem 4.1.1 in Amemiya (1985, p. 106 - 107) hold, part (i) of the Theorem follows.

Part II: Asymptotic normality

A Taylor expansion of the first order condition of the pairwise logit criterion function yields,
after re-arrangement,

β̂ − β0 = −
[
α−1
N

(
N
4

)−1∑N
i<j<k<l

∂2gijkl(β̄)
∂β∂β′

]+

×

[
α−1
N

(
N

4

)−1 N∑
i<j<k<l

sijkl (β0)

]
,
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where β̄ lies between β̂ and β0 and + denotes a Moore-Penrose generalized inverse. By

Assumptions 1 and 2, E
[
sup
β∈B
‖∇ββgijkl (β)‖max

]
< ∞ and is also continuous in β ∈ B so

that, using condition (i) of Assumption 4, α−1
N

(
N
4

)−1∑N
i<j<k<l

∂2gijkl(β̄)
∂β∂β′

p→ Γ0 with Γ0 =

E
[
∂2lij,kl(β)

∂β∂β′

∣∣∣Sij,kl ∈ {−1, 1}
]
. The matrix Γ0 is finite and non-singular by Assumptions 2

and 4. The result follows by demonstrating that
[
α−1
N

(
N
4

)−1∑N
i<j<k<l sijkl (β0)

]
, properly

normalized, obeys a central limit theorem (CLT) and repeated application of Slutsky’s The-
orem (e.g., Amemiya (1985, Theorem 3.2.7, p. 89).

Let UN =
(
N
4

)−1∑N
i<j<k<l sijkl (β0); verifying that α−1

N UN obeys a CLT requires some work,
which I divide into three steps. While these steps parallel textbook demonstrations of asymp-
totic normality of U-Statistics, additional complications arise at each stage due to the more
complex structure of dependence across the summand in (10) and because α−1

N UN exhibits
degeneracy of order 1. First I calculate the variance of α−1

N UN using Hoeffding (1948) type
arguments. Second I show that the statistic α−1

N UN is asymptotically equivalent to a Hajek-
type projection. This projection does not consist of independent components, but does have
a martingale structure which I exploit to verify that it obeys a CLT using a result from
Chatterjee (2006).

Step 1, Calculating the variance of α−1
N UN : Recall that

s̄m,i1,...,im (β) = E [si1i2i3i4 (β)| i1, . . . , im]

is the average of sijkl (β) over its indices holding the first m of them fixed. Now define

∆m,N = V (s̄m,i1,...,im (β0)) (33)

as the variances of these averages at β = β0. A Hoeffding (1948) decomposition gives

V
(
α−1
N UN

)
= α−2

N

(
N
4

)−2
4∑
s=0

(
N
4

)(
4
s

)(
N−4
4−s

)
∆m,N

= α−2
N

(
N
4

)−1(4
2

)(
N−4
4−2

)
∆2,N + α−2

N

(
N
4

)−1(4
3

)(
N−4
4−3

)
∆3,N

+α−2
N

(
N
4

)−1(4
4

)(
N−4
4−4

)
∆4,N .

The second equality follows from the fact that C (si1i2i3i4 , sj1j2j3j4) = 0 whenever the sets
{i1, i2, i3, i4} and {j1, j2, j3, j4} share zero or one indices in common (see Figure 3). That
∆1,N = 0 indicates that UN exhibits degeneracy of order 1. We can show that elements of
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∆m,N for m = 2, 3, 4 are of (at most) order αN since

E
[
∇βlij,kl (β0)∇βlij,kl (β0)′

]
= E

|Sij,kl|
1 (Sij,kl = 1)−

exp
(
W̃ ′
ij,klβ0

)
1 + exp

(
W̃ ′
ij,klβ0

)


2

W̃ij,klW̃
′
ij,kl


= Pr (Sij,kl ∈ {−1, 1})

×E


1 (Sij,kl = 1)−

exp
(
W̃ ′
ij,klβ0

)
1 + exp

(
W̃ ′
ij,klβ0

)


2

W̃ij,klW̃
′
ij,kl

∣∣∣∣∣∣∣Sij,kl ∈ {−1, 1}


Pr (Sij,kl ∈ {−1, 1})E

[
qij,kl (1− qij,kl) W̃ij,klW̃

′
ij,kl

∣∣∣Sij,kl ∈ {−1, 1}
]

= O (αN) ,

by condition (i) of Assumption 4. From the Cauchy-Schwartz inequality we have the weak
ordering c′∆2,Nc ≤ c′∆3,Nc ≤ c′∆4,Nc, for c a vector of constants, (e.g., Ferguson, 2006) and
hence that ∆2,N (β) ≤ ∆3,N ≤ O (αN) . Putting things together we get

V
(
α−1
N UN

)
=

36

n
α−2
N ∆2,N +O

(
α−1
N n−3/2

)
. (34)

The leading term in (34) is, at most, of order 1/nαN .

Step 2, Projection: In order to approximate UN with a statistic which is a summation
over the n =

(
N
2

)
sampled dyads alone I define the function

φklmn,ij =

{
s̄2,ij if {i, j} ⊆ {k, l,m, n}

0 otherwise

For each ij consider the approximation
(
N
4

)−1∑
k<l<m<n φklmn,ij of UN . The sum of these

approximations across all dyads, using the fact that for each (i, j) pair a total
(
N−2

2

)
of the(

N
4

)
possible tetrads contain both i and j, yields the projection

U∗N =
N∑
i<j

(
N
4

)−1 ∑
k<l<m<n

φklmn,ij =
6

n

N∑
i<j

s̄2,ij. (35)

The random variables s̄2,12, s̄2,13, . . . , s̄2,N−1N entering the summation in (35) are not inde-
pendently and identically distributed. However, an implication of conditionally independent
edge formation given X and A (Assumptions 1) is that C ( s̄2,ij, s̄2,kl|X,A) = 0 unless (i, j)

and (k, l) correspond to the same dyad. Using this fact yields, by iterated expectations, a
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variance of U∗N (normalized by α−1
N ) equal to

V
(
α−1
N U∗N

)
=

36

n
α−2
N ∆2,N +

36

n2
α−2
N

N∑
i<j

N∑
k<l,k 6=i,l 6=j

C (s̄2,ij, s̄2,kl)

=
36

n
α−2
N ∆2,N + 0. (36)

Asymptotic equivalence of
√
nαN

(
α−1
N UN

)
and
√
nαN

(
α−1
N U∗N

)
follows if

α−1
N nE

[
(UN − U∗N)2] = α−1

N nV (UN) + α−1
N nV (U∗N)− 2α−1

N nC (U∗N , UN)

is op (1). The first term to the right of the equality, using (34) above, equals 36α−1
N ∆2,N +

O
(
n−1/2

)
, which converges to a constant since ∆2,N ≤ O (αN). The second term, by (36)

converges to the same constant. The covariance term equals

α−1
N nC (U∗N , UN) = α−1

N nC

(
6

n

N∑
i<j

s̄2,ij,
(
N
4

)−1
N∑

k<l<m<n

sklmn

)

= α−1
N 6
(
N
4

)−1
N∑
i<j

N∑
k<l<m<n

C (s̄2,ij, sklmn) .

The summand covariances are zero unless {i, j} ⊆ {k, l,m, n}, in which case it equals ∆2,N .
For a fixed (i, j) the number of tetrads containing both i and j is

(
N−2

2

)
so that

α−1
N nC (U∗N , UN) = α−1

N 6
(
N
4

)−1(N−2
2

)
∆2,N = 36α−1

N ∆2,N

and hence

α−1
N nE

[
(U∗N − UN)2] = o

(
n−1/2

)
as needed.

Step 3, CLT: Putting the above results together we have that

√
nαN

(
β̂TL − β0

)
= 6Γ−1

0

[
1

√
nαN

N∑
i<j

s̄2,ij

]
+ op (1) (37)

The main result follows if we can demonstrate asymptotic normality of (a variance normal-
ized) 1√

nαN

∑N
i<j s̄2,ij. Recall that the boldface indices i = 1,2, . . . index the n =

(
N
2

)
dyads in

arbitrary order. An implication independent link formation (across dyads) conditional of X
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and A is that {s̄2,i}∞i=1 is a martingale difference sequence (since, by the law of iterated expec-
tations and the fact that E [ s̄2,i|X,A] is conditionally mean zero, E [ s̄2,i| s̄2,1, . . . , s̄2,i−1] = 0

). Let c be a vector of real constants and define

Ri =
c′Γ−1

0 s̄2,i√
c′Γ−1

0 ΩNΓ−1
0 c

, (38)

where ΩN = 1
n

∑n
i=1 Ωi,N with Ωi,N = E

[
s̄2,is̄

′
2,i

∣∣ s̄2,1, . . . , s̄2,i−1
]
< ∞ and bounded away

from zero for any fixed N (by Assumptions 2 and 4). Observe that, by the martingale
property E [Ri|R1, . . . , Ri−1] = 0 and E [R2

i |R1, . . . , Ri−1] =
c′Γ−1

0 ΩiΓ
−1
0 c

c′Γ−1
0 ΩNΓ−1

0 c
. Let Y be a

n× 1 random vector with independent non-identically distributed normal components Yi ∼
N
(

0,
c′Γ−1

0 ΩiΓ
−1
0 c

c′Γ−1
0 ΩNΓ−1

0 c

)
. Let CM denote the class of functions f : R → R that are three times

continuously differentiable with sup
x

∣∣∣∂rf(x)
∂xr

∣∣∣ < Lr (f) < ∞ for r = 1, 2, 3. Observing that
1√
n

∑n
i=1 Yi is a standard normal random variable, Theorem 1.1 of Chatterjee (2006, p. 2062)

gives, for each f in the class CM , the bound∣∣∣∣∣E
[
f

(
1√
n

n∑
i=1

Ri

)]
− E [f (Z)]

∣∣∣∣∣ ≤ 1

6

M3√
n
L3 (f)

withM3 = maxi E
[
|Ri|3

]
(which is finite by Assumption 2) and Z a standard normal random

variable. Since E
[
f
(

1√
n

∑n
i=1 Ri

)]
→ E [f (Z)] as N → ∞ for each f in the class CM we

have that 1√
n

∑n
i=1Ri

D→ N (0, 1) (Lemma 16 of Pollard (2002, p. 177)). Using this result,
(37) and (38) I get

αN
√
nc′
(
β̂TL − β0

)
√
c′Γ−1

0 ΩNΓ−1
0 c

= 6

[
1√
n

N∑
i<j

c′Γ−1
0 s̄2,ij√

c′Γ−1
0 ΩNΓ−1

0 c

]
+ op (1)

= 6

[
1√
n

n∑
i=1

Ri

]
+ op (1)

D→ N (0, 36)

as claimed.

Proof of Theorem 2

Rearranging the log-likelihood (12) gives
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lN (β,A) =
∑
i<j

(Dij − pij) ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)
−
∑
i<j

DKL (pij‖ pij (β,Ai, Aj))−
∑
i<j

S (pij)

=
∑
i<j

(Dij − pij) ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)
+ E [ lN (β,A)|X,A0] ,

for DKL (pij‖ pij (β,Ai, Aj)) the Kullback-Leibler divergence of pij (β,Ai, Aj) from pij and
S (pij) the binary entropy function. The Triangle Inequality (TI) gives, for all β ∈ B,
A ∈ AN , and X ∈ XN

∣∣∣∣∣
(
N

2

)−1 N∑
i=1

∑
j<i

(Dij − pij) ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)∣∣∣∣∣ ≤ 2

N

N∑
i=1

∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

× ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)∣∣∣∣ .
We can apply a Hoeffding inequality to the terms in the outer summand to the right of
the inequality above. Let ψij (β,Ai, Aj) = ln

(
pij(β,Ai,Aj)

1−pij(β,Ai,Aj)

)
and ψ̄ = ln

(
1−κ
κ

)
. Condition

(16) implies that −ψ̄ ≤ ψij (β,Ai, Aj) ≤ ψ̄ so that Dijψij (β,Ai, Aj) is a bounded random
variable with mean pijψij (β,Ai, Aj) . Hoeffding’s inequality therefore gives

Pr

(∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)ψij (β,Ai, Aj)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− (N − 1) ε2

2 (1− κ)2 ψ̄2

)
.

A direct application of the argument used to establish Lemma 3 then implies that, with
probability equal to 1−O (N−2), and for any β ∈ B, A ∈ AN

∣∣∣∣∣
(
N

2

)−1 N∑
i=1

∑
j<i

(Dij − pij) ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)∣∣∣∣∣ < O

(√
lnN

N

)
,

and hence that

sup
β∈B,A∈AN

∣∣∣∣∣
(
N

2

)−1 N∑
i=1

∑
j<i

(Dij − pij) ln

(
pij (β,Ai, Aj)

1− pij (β,Ai, Aj)

)∣∣∣∣∣ < O

(√
lnN

N

)
. (39)

Equations (17) and (39) therefore give, again with probability equal to 1 − O (N−2), the
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uniform convergence result

sup
β∈B,A∈AN

∣∣∣∣∣
(
N

2

)−1

{lN (β,A)− E [ lN (β,A)|X,A0]}

∣∣∣∣∣ < O

(√
lnN

N

)
. (40)

Let B0 be an open neighborhood in B which contains β0. Let B̄0 be its complement in B.
Define

εN = max
A∈AN

(
N

2

)−1

E [ lN (β0,A)|X,A0]− max
β∈B̄0,A∈AN

(
N

2

)−1

E [ lN (β,A)|X,A0] . (41)

As long as E [ lN (β,A)|X,A0] is uniquely maximized at β0 and A0, then εN will be strictly
greater than zero (Assumption 5). Let CN be the event∣∣∣∣∣max

A∈AN

(
N

2

)−1

lN (β,A)− max
A∈AN

(
N

2

)−1

E [ lN (β,A)|X,A0]

∣∣∣∣∣ < εN/2

for all β ∈ B. Under event CN , we get the inequalities

max
A∈AN

(
N

2

)−1

E
[
lN

(
β̂,A

)∣∣∣X,A0

]
>

(
N

2

)−1

lN

(
β̂, Â

)
− εN

2
(42)

and

max
A∈AN

(
N

2

)−1

lN (β0,A) > max
A∈AN

(
N

2

)−1

E [ lN (β0,A)|X,A0]− εN
2
. (43)

By definition of the MLE we have that
(
N
2

)−1
lN

(
β̂, Â

)
≥ max

A∈AN

(
N
2

)−1
lN (β0,A) and hence,

making use of (42),

max
A∈AN

(
N

2

)−1

E
[
lN

(
β̂,A

)∣∣∣X,A0

]
> max

A∈AN

(
N

2

)−1

lN (β0,A)− εN
2
. (44)

Adding both sides of (43) and (44) gives

max
A∈AN

(
N

2

)−1

E
[
lN

(
β̂,A

)∣∣∣X,A0

]
> max

A∈AN

(
N

2

)−1

E [ lN (β0,A)|X,A0]− εN

= max
β∈B̄0,A∈AN

(
N

2

)−1

E [ lN (β,A)|X,A0] , (45)

where the second line follows from the definition of εN (i.e., from equation (41)).

From (45) we have that CN ⇒ β̂ ∈ B0. Therefore Pr (CN) ≤ Pr
(
β̂ ∈ B0

)
. But (40) implies
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that lim
N→∞

Pr (CN) = 1 and hence β̂ p→ β0 as claimed.

Proof of Theorem 3

Let A0 denote the population vector of heterogeneity terms and A1 = ϕ (A0). From (15)
we can show that the ith element of A1 −A0 is

A1i − A0i = lnDi+ − ln
{

exp (A0i) ri

(
β̂,A0,Wi

)}
= lnDi+ − ln

∑
j 6=i

exp (A0i) exp
(
W ′
ijβ̂
)

exp (−A0j) + exp
(
W ′
ijβ̂ + Ai0

)
= lnDi+ − ln

∑
j 6=i

exp
(
W ′
ijβ̂ + A0i + A0j

)
1 + exp

(
W ′
ijβ̂ + A0i + A0j

) .
A mean value expansion in β about β0 gives

ln
∑
j 6=i

exp
(
W ′
ijβ̂ + A0i + A0j

)
1 + exp

(
W ′
ijβ̂ + A0i + A0j

) = ln
∑
j 6=i

pij +

∑
j 6=i p̄ij (1− p̄ij)Wij∑

j 6=i p̄ij

(
β̂ − β0

)
,

where p̄ij =
exp(W ′ijβ+A0i+A0j)

1+exp(W ′ijβ+A0i+A0j)
(with β a mean value between β̂ and β0). Using (16), the

compact support assumption on Wij, and Theorem 2 yields∣∣∣∣∣
∑

j 6=i p̄ij (1− p̄ij)Wij∑
j 6=i p̄ij

(
β̂ − β0

)∣∣∣∣∣ ≤ ∑
j 6=i

∣∣∣∣∣ p̄ij (1− p̄ij)Wij∑
j 6=i p̄ij

∣∣∣∣∣ ∣∣∣(β̂ − β0

)∣∣∣
≤

sup
w∈W
|w|

4κ

∣∣∣(β̂ − β0

)∣∣∣
= Op (1) · op (1)

= op (1) .

We can conclude that

A1i − A0i = ln

[∑
j 6=iDij∑
j 6=i pij

]
+ op (1) .
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A second mean-value expansion, this time of ln
[∑

j 6=iDij

]
in
∑

j 6=iDij about the point∑
j 6=i pij gives

ln

[∑
j 6=i

Dij

]
= ln

[∑
j 6=i

pij

]
+

1[
λ
(∑

j 6=iDij

)
+ (1− λ)

(∑
j 6=i pij

)]∑
j 6=i

(Dij − pij) ,

for some λ ∈ (0, 1). Using condition (16) gives∣∣∣∣∣∣ 1[
λ
(∑

j 6=iDij

)
+ (1− λ)

(∑
j 6=i pij

)]∑
j 6=i

(Dij − pij)

∣∣∣∣∣∣ ≤ 1

(1− λ)κ

∣∣∣∣∣ 1

N − 1

∑
j 6=i

(Dij − pij)

∣∣∣∣∣ .
Lemma 3 then gives, with probability 1−O (N−2), the uniform bound

sup
1≤i≤N

∣∣∣∣∣ln
[∑

j 6=iDij∑
j 6=i pij

]∣∣∣∣∣ < O

(√
lnN

N

)
. (46)

To complete the proof observe that, using the second inequality given in Lemma 4, we have
the geometric series∥∥∥A0 − Â

∥∥∥
∞

= ‖A0 −A1 + A1 −A2 + A2 −A3 + A3 − · · · −A∞‖∞

≤
∞∑
k=0

‖Ak −Ak+1‖∞

≤
∞∑
k=0

(
1− 2 (N − 2)

N − 1
δ2

)k
(‖A0 −A1‖∞ + ‖A1 −A2‖∞)

=
N − 1

2 (N − 2) δ2
(‖A0 −A1‖∞ + ‖A1 −A2‖∞)

≤ N − 1

(N − 2) δ2
‖A0 −A1‖∞ (47)

for δ as defined in Lemmas 1 and 4. Inequality (47), together with (46), gives the result.
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Proof of Theorem 4

Step 1: Characterization of the probability limit of the Hessian of the concen-
trated log-likelihood

Following, for example, Amemiya (1985, pp. 125 - 127), the Hessian of the concentrated
log-likelihood is given by HN,ββ−HN,βAH

−1
N,AAH

′
N,βA, which, using the definitions of VN and

QN given above, can be decomposed as

(
HN,ββ −HN,βAH

−1
N,AAH

′
N,βA

)
= HN,ββ +HN,βAV

−1
N H ′N,βA +HN,βA

(
QN − V −1

N

)
H ′N,βA

+HN,βA

(
−H−1

N,AA −QN

)
H ′N,βA.

Under condition (16) we have −HN,AA ≥ SN (δ) holding entry-wise for δ = κ (1− κ) and
SN (δ) as defined in Lemma 2; HN,AA is also diagonally balanced. Lemma 2 therefore gives
the bound

∥∥H−1
N,AA

∥∥
∞ ≤

3N−4
2κ(1−κ)(N−2)(N−1)

= O
(

1
N

)
. We also have the bounds ‖HN,βA‖∞ ≤

N−1
4

sup
w∈W
|w| = O (N) and ‖QN‖∞ ≤

1
(N−1)κ(1−κ)

+ (N−1)
N(N−1)κ(1−κ)

= O
(

1
N

)
. These bounds and

the TI give

∥∥HN,βA

(
−H−1

N,AA −QN

)
HN,βA

∥∥
∞ ≤

∥∥HN,βAH
−1
N,AAHN,βA

∥∥
∞ + ‖HN,βAQNHN,βA‖∞

≤ ‖HN,βA‖2
∞

∥∥H−1
N,AA

∥∥
∞ + ‖HN,βA‖2

∞ ‖QN‖∞
= O (N) +O (N) .

Observing that QN − V −1
N = −1

2

[∑
i<j pij (1− pij)

]−1

ιι′ gives the bound
∥∥QN − V −1

N

∥∥
∞ ≤

N−1
N(N−1)κ(1−κ)

= O
(

1
N

)
. This bound, as well as the results immediately above, then give the

bound
∥∥HN,βA

(
QN − V −1

N

)
H ′N,βA

∥∥
∞ ≤ O (N). Therefore, after dividing the Hessian of the

concentrated log-likelihood by n = 1
2
N (N − 1) , I get

n−1
(
HN,ββ −HN,βAH

−1
N,AAH

′
N,βA

)
= n−1

(
HN,ββ +HN,βAV

−1
N H ′N,βA

)
+ o (1) .

Tedious calculation then gives n−1
(
HN,ββ +HN,βAV

−1
N HN,βA

)
equal to

−

{
2

N (N − 1)

N∑
i=1

∑
j<i

pij (1− pij)WijW
′
ij

− 2

N

N∑
i=1

(
1

N−1

∑
j 6=i pij (1− pij)Wij

)(
1

N−1

∑
j 6=i pij (1− pij)Wij

)′
1

N−1

∑
j 6=i pij (1− pij)

 (48)
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which converges in probability to −I0 (β) as defined by (18).

Step 2: Asymptotically linear representation

Now consider the first order condition associated with the concentrated log-likelihood, a
mean value expansion gives

√
n
(
β̂ − β0

)
= −

[
1

n

N∑
i=1

∑
j<i

∂

∂β′
sβij

(
β̄, Â

(
β̄
))]−1

×

[
1√
n

N∑
i=1

∑
j<i

sβij

(
β0, Â (β0)

)]
,

which, after applying the result for the Hessian of the concentrated log-likelihood derived
immediately above, gives

√
n
(
β̂ − β0

)
= I−1

0 (β)×

[
1√
n

N∑
i=1

∑
j<i

sβij

(
β0, Â (β0)

)]
+ op (1) , (49)

since 1
n

∑N
i=1

∑
j<i

∂
∂β′
sβij

(
β̄, Â

(
β̄
)) p→ −I0 (β). We cannot apply a CLT directly to the

summation in brackets in (49). Instead I replace it with an approximation. Specifically, a
third order Taylor expansion of 1√

n

∑N
i=1

∑
j<i sβij

(
β0, Â (β0)

)
gives

1√
n

N∑
i=1

∑
j<i

sβij

(
β0, Â (β0)

)
=

1√
n

N∑
i=1

∑
j<i

sβij (β0,A (β0))

+

[
1√
n

N∑
i=1

∑
j<i

∂

∂A′
sβij (β0,A (β0))

](
Â (β0)−A (β0)

)
+

1

2

[
1√
n

N∑
k=1

(
Âk (β0)− Ak (β0)

) N∑
i=1

∑
j<i

∂2

∂Ak∂A′
sβij (β0,A (β0))

×
(
Â (β0)−A (β0)

)]
+

1

6

1√
n

N∑
k=1

N∑
l=1

[(
Âk (β0)− Ak (β0)

)(
Âl (β0)− Al (β0)

)
×

[
N∑
i=1

∑
j<i

∂3

∂Ak∂Al∂A′
sβij

(
β0, Ā (β0)

)]](
Â (β0)−A (β0)

)
.(50)

The main result follows by showing that (i) a CLT may be applied to the first two terms in
(50), that (ii) the third, bias, term has a well-defined non-zero probability limit, and that
(iii) the last (fourth) term in (50) is an asymptotically negligible remainder term.

48



I work with each of these three groups of terms in reverse order. Beginning with the last
term in (50), it is possible to show, after tedious manipulation, that it coincides with (see
the Supplemental Calculations Appendix)

−1

3

1√
n

N∑
i=1

∑
j 6=i

(
Âi − Ai

)2 (
Âj − Aj

)
(1− pij) (1− 6pij (1− pij))Wij. (51)

Condition (16) and the compact support assumption for Wij implies that the absolute value
of (51) is bounded above by, for λN = sup

1≤i≤N

∣∣∣Âi − Ai0∣∣∣ ,
1

3

N (N − 1)√
n

∣∣∣∣λ3
N

1

4
(1− 6κ (1− κ))

∣∣∣∣× sup
w∈W
|w| =

N (N − 1)

3
√
n

×

∣∣∣∣∣C3 (lnN)3/2

N3/2

N − 1

4
(1− 6κ (1− κ))

∣∣∣∣∣× sup
w∈W
|w|

= O

(
(lnN)3/2

√
N

)
= o (1) .

Now consider parts (i) and (ii) of (50). Let soβij (β0,A0) = sβij (β0,A0)−HN,βAH
−1
N,AAsAij (β0,A0)

and

B0 = lim
N→∞

1

2
√
n

N∑
i=1

1
N−1

∑
j 6=i pij (1− pij) (1− 2pij)Wij

1
N−1

∑
j 6=i pij (1− pij)

. (52)

Tedious calculations, detailed in the Supplemental Calculations Appendix, along with the
calculations immediately above, give (50) equal to

1√
n

N∑
i=1

∑
j<i

sβij

(
β0, Â (β0)

)
=

1√
n

N∑
i=1

∑
j<i

soβij (β0,A0) +B0 + op (1) , (53)

with 1√
n

∑N
i=1

∑
j<i s

o
βij (β0,A0) equivalent to the first two terms in (50) and B0 the proba-

bility limit of the third term in (50).

Substituting (53) into (49) then gives

√
n
(
β̂ − β0

)
= I−1

0 (β)B0 + I−1
0 (β)

1√
n

N∑
i=1

∑
j<i

soβij (β0,A0) + op (1) . (54)
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Step 3: Demonstration of asymptotic normality of 1√
n

∑N
i=1

∑
j<i s

o
βij (β0,A0)

Recall that, as in the proof to Theorem 1 given above, the boldface indices i = 1,2, . . . index
the n =

(
N
2

)
dyads in arbitrary order. Similar to the argument given in the proof of Theorem

1, an implication of independent link formation (across dyads) – conditional of X and A –
is that

{
soβi (β0,A0)

}∞
i=1

is a martingale difference sequence. This follows since, by the law
of iterated expectations and the fact that E

[
soβi (β0,A0)

∣∣X,A0

]
is conditionally mean zero,

E
[
soβi (β0,A0)

∣∣ soβ1 (β0,A0) , . . . , soβi−1 (β0,A0)
]

= 0. Using an argument analogous to the one

used in the Proof of Theorem 4 then gives
√
nc′(β̂−β0)−c′I−1

0 (β)B0

(c′I−1
0 (β)IN (β)I−1

0 (β)c)
1/2

D→ N (0, 1) for any K × 1

vector of real constants c, IN (β) = 1
n

∑n
i=1 Ii (β), and Ii (β) = E

[
soβi
(
soβi
)′∣∣∣ soβ1, . . . , s

o
βi−1

]
<

∞ .
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