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Abstract 

Models with high-dimensional covariates arise frequently in economics and other fields.  Often, 
only a few covariates have important effects on the dependent variable.  When this happens, the model is 
said to be sparse.  In applications, however, it is not known which covariates are important and which are 
not.   This paper reviews methods for discriminating between important and unimportant covariates with 
particular attention given to methods that discriminate correctly with probability approaching 1 as the 
sample size increases.  Methods are available for a wide variety of linear, nonlinear, semiparametric, and 
nonparametric models.  The performance of some of these methods in finite samples is illustrated through 
Monte Carlo simulations and an empirical example. 

_____________________________________________________________________________________ 
This article is based on my State of the Art Lecture at the 2014 meeting of the Canadian Economics 
Association in Vancouver, BC.  I thank Russell Davidson for inviting the lecture. 
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VARIABLE SELECTION AND ESTIMATION IN HIGH-MODELS 

1. Introduction

This paper is about estimating the model 

(1.1) 1( ,..., ) ; 1,..., ; 1,...,i i ip iY f X X i n j pε= + = = , 

where n  is the sample size, iY  is the i ’th observation of the dependent variable Y , ijX  is the i ’th 

observation of the j ’th component of a 1p×  vector of explanatory variables X , and the iε ’s are 

independently and identically distributed random variables that satisfy ( ) 0iE ε =  or Quantile( ) 0iε = .  

The number of explanatory variables, p , may be larger than the sample size, n .  It is assumed that a few 

components of the vector X  have effects on Y  that are “large” in a sense that will be defined.  The rest 

of the components of X  have effects that are small though not necessarily zero.  Suppose the components 

of X  that have large effects on Y  are denoted by the vector 
0AX .  The objective of the analysis is to 

determine which components of X  belong in 
0AX  (variable selection) and to estimate 

0
( | )AE Y X  or 

0
Quantile( | )AY X .  In most of this paper, f  is a linear function and ( ) 0iE ε = .  Other versions of model 

(1.1) are discussed briefly. 

There is a large statistics literature on high-dimensional variable selection and estimation.  This 

literature is cited throughout the discussion in this paper.  In a typical application in statistics, one wants 

to learn which genes out of thousands in a species are associated with a disease, but data are available for 

only 100 or so individuals in the species.  In this application, iY  is a measure of the intensity of the 

disease in individual i  and ijX  is a measure of the activity level of gene j  in individual i .  There is no 

hope of discriminating between genes that are and are not associated with the disease if the number of 

associated genes p  exceeds the sample size n .  However, it is usually believed that the number of genes 

associated with a disease is small.  In particular, it is much smaller than the size of the sample.  Most 

genes have little or no influence on the disease.  Models in which only a few components of X  have 

important influences on Y  are called sparse.  In a sparse model, it is possible, using methods that are 

described in this paper, to discriminate between components of X  that have important effects on Y  and 

components of X  that have little or no influence on Y . 

High-dimensional problems also arise in economics.  For example, survey data sets such as the 

National Longitudinal Survey of Youth (NLSY) may contain hundreds or thousands of variables that 

arguably affect productivity and, therefore, wages.  Depending on how the data are stratified, there may 

be more potentially relevant explanatory variables than observations in a wage equation.  However, only a 

few variables such as education and years of labor force experience are thought to have large effects on 
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wages.  Thus, a wage equation is sparse, although one may not know which variables should be classified 

as unimportant.  A second example is a study by Sala-i-Martin (1997), who carried out 2 million 

regressions in attempt to determine which of 59 potential explanatory variables should be included in a 

linear growth model.  In an earlier attempt to identify variables relevant to a growth model, Sala-i-Martin 

(1996) carried out 4 million regressions.  These examples illustrate the need in economics and applied 

econometrics for a systematic way to decide which variables should be in a model. 

 This paper reviews and explains methods that are used to estimate high-dimensional models.  The 

discussion is informal and avoids technical details.  Key results are presented and explained in as intuitive 

a way as possible.  Detailed technical arguments and proofs are available in references that are cited 

throughout the paper. 

 Section 2 presents basic concepts and definitions that are used throughout the subsequent 

discussion.  Section 3 discusses the linear model in detail.  Nonlinear and nonparametric models are 

discussed in Section 4.  Section 5 presents some Monte Carlo results and an empirical example.  Section 6 

presents conclusions. 

2.  Basic Concepts and Definitions 

 This section presents concepts and definitions that are used in discussing methods for high-

dimensional models.  The concepts and definitions are presented first in the setting of a linear mean-

regression model.  The linear model has received the most attention in the literature, and methods for it 

are highly developed.  Extensions to nonlinear models are presented later in the paper. 

 When f  in model (1.1) is a linear function, the model becomes 

(2.1) 
1

; 1,...,
p

i j ij i
j

Y X i nβ ε
=

= + =∑ , 

where ( ) 0iE ε = , 2( )iE ε < ∞ , and the jβ ’s are constant coefficients that must be estimated.  Assume 

without loss of generality that iY  and the covariates ijX  are centered and scaled so that 1
1

0n
ii

n Y−
=

=∑ , 

1
1

0n
iji

n X−
=

=∑ , and 1 2
1

1n
iji

n X−
=

=∑  for each 1,...,j p= .  Because of the centering, there is no intercept 

term in model (2.1).  The scaling makes it possible to define “large” and “small” jβ ’s unambiguously.  

Without the scaling, each jβ  could be made to have any desired magnitude by choosing the scale of ijX  

( 1,..., )i n=  appropriately. 

 Most known properties of variable selection and estimation methods for high-dimensional models 

are asymptotic as n →∞ .  If p  is fixed, then p n>  is not possible as n →∞ .  Similarly, if the 
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coefficients jβ  in (2.1) are fixed, then coefficients whose magnitudes are small compared to random 

sampling error but not zero are not possible as n →∞ .  To enable asymptotic approximations to be used 

while allowing the possibility that p n> , p  is allowed to increase as n  increases.  Thus, ( )p p n= .  

Similarly, the coefficients, jβ  may approach zero as n →∞ .  The possible dependence of p  and the 

jβ ’s on n  is a mathematical device to enable the use of asymptotic approximations.  The values of p  

and the jβ ’s in the sampled population do not depend on n . 

 Suppose for the moment that the non-zero jβ ’s are bounded away from 0.  Then the objectives 

of variable selection and estimation in (2.1) are to discriminate between coefficients that are non-zero and 

zero and to estimate the non-zero coefficients.  A model selection procedure is called model-selection 

consistent if it discriminates correctly between jβ ’s that are zero and non-zero with probability 

approaching 1 as n →∞ .  An estimation procedure is called oracle efficient if the estimated non-zero 

jβ ’s have the same asymptotic distribution that they would have if the variables with coefficients of zero 

were known a priori, dropped from model (2.1), and ordinary least squares (OLS) were used to estimate 

the non-zero jβ ’s. 

 Now suppose that some jβ ’s can be small but not zero, whereas others are large.  Let SA  denote 

the indices j  of jβ ’s that are small or zero and 0 SA A=  denote the indices of jβ ’s that are large.  The 

precise definitions of small and large vary, depending on the variable selection and estimation method.  

Roughly speaking, however, the small jβ ’s satisfy 1/2| | ( )
S

jj A
o nβ −

∈
=∑  as n →∞ .  The large jβ ’s 

satisfy 1/2 | |jn β →∞  as n →∞ .  Thus, the small jβ ’s are smaller in magnitude than the random 

sampling errors of their estimates, and the large jβ ’s are larger in magnitude than random sampling 

error.  Let q  denote the number of large jβ ’s, and suppose that q  remains fixed as n →∞ .  Then using 

the algebra of ordinary least squares, it can be shown that the large jβ ’s can be estimated with a smaller 

mean-square error if the covariates with small jβ ’s are omitted from model (2.1) (or, equivalently, the 

small jβ ’s are set equal to zero a priori).  Accordingly, a model selection method is said to be model-

selection consistent if it discriminates correctly between large and small jβ ’s (that is between 0A  and 

SA ) with probability approaching 1 as n →∞ .  An estimation method is said to be oracle efficient if the 

estimates of the large jβ ’s have the same asymptotic distribution that they would have if the small jβ ’s 
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were known, the covariates ijX  ( Sj A∈ ) were dropped from (2.1), and the large coefficients were 

estimated by OLS applied to the resulting reduced version of (2.1). 

 If p n> , then model (2.1) cannot be estimated by OLS.  OLS estimation is possible if p n< , but 

OLS estimates of the jβ ’s cannot be zero.  Even if 0jβ =  for some j , its OLS estimate can be 

anywhere in a neighborhood of 0 whose size is 1 1/2[( log ) ]O n n−  under mild regularity conditions.  

Therefore, OLS cannot be used to discriminate between zero and non-zero (or small and large) jβ ’s, 

even if p n< .  These problems can be overcome by using penalized least squares estimation (PLS) 

instead of OLS.  In PLS, the estimator of jβ  is the solution to the problem 

(2.2) 
1

2

1
,..., 1 1 1

1minimize : ( ,..., ) (| |),
2p

p pn

n p i j ij j
b b i j j

Q b b Y b X p bλ
= = =

 
 ≡ − +
 
 

∑ ∑ ∑  

where pλ  is a penalty function and λ  is a parameter (the penalization parameter).  For example, PLS 

with (| |) | |j jp b bλ λ=  is called the LASSO.  PLS with 2(| |)j jp b bλ λ=  is called ridge regression.  PLS 

estimators and their properties are discussed in detail in Section 3. 

3.  The Linear Model 

 This section presents a detailed discussion of methods for variable selection and estimation in the 

linear model (2.1).  The discussion focusses on methods, not the finite-sample performance of the 

methods.  Section 5 of this paper and references cited in this section present Monte Carlo results and 

empirical examples illustrating the numerical performance of the methods.   

To begin, assume that p n<  and that either 0jβ =  or jβ δ≥  for some 0δ > .  Let q  be the 

number of non-zero jβ ’s, and assume that q  is fixed as n →∞ .  Assume without loss of generality that 

the jβ ’s are ordered so that 1,..., qβ β  are non-zero and 1,...,q pβ β+  are zero.  Let   denote any subset of 

the indices 1,...,j p=  and | |  denote the number of elements in  .   

 Now let ˆ ˆ{ : }j jβ β= ∈    be the | | 1×  vector of estimated jβ  coefficients ( j∈ ) obtained 

from OLS estimation of model  .  That is 

 
2

: 1

ˆ arg min
j

n

i j ijb j i j
Y b Xβ

∈ = ∈

 
 = −
 
 
∑ ∑

 

. 

Let 2σ̂  denote the mean of the squared residuals from OLS estimation of model  : 
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2

2 1

1

ˆˆ
n

i j ij
i j

n Y Xσ β−

= ∈

 
 = −
 
 
∑ ∑ 



. 

Define 

 2 1ˆlog( ) | | logBIC n nσ −= +  . 

Now consider selecting the model that minimizes BIC  over all possible models   or, equivalently, all 

possible subsets of p  covariates.  This procedure is called subset selection and, under mild regularity 

conditions, it is model-selection consistent (Shao 1997).  However, it requires OLS estimation of 2 1p −  

models and, therefore, is computationally feasible only if p  is small.  For example, applying subset 

selection to the model considered by Sala-i-Martin (1997) would require estimating more than 1710  

models.  Applying subset selection to the empirical example presented in Section 5 of this paper would 

require estimating more than 1410  models. 

 Consistent, computationally feasible model selection in a sparse linear model can be achieved by 

solving the PLS problem (2.2).  One important class of estimators is obtained by setting the penalty 

function ( ) | |p v v γ
λ λ= , where 0γ >  is a constant.  The properties of the resulting PLS estimator depend 

on the choice of γ .  Let ˆ
jβ  denote the resulting estimator of jβ .  If 1γ > , then 1( ,..., )n pQ b b  is a 

continuously differentiable function of its arguments.  Let 1( ,..., )pβ β β ′= , 1
ˆ ˆ ˆ( ,..., )pβ β β ′= , 

1
ˆ ˆ| | (| |,...,| |)pβ β β ′= , 1( ,..., )nY Y Y ′= , X  denote the n p×  matrix whose ( , )i j  element is ijX , and 

1( ,..., )ne ε ε ′= .  Let 0 01 0( ,..., )pβ β β ′=  be the unknown true value of β .  The first-order conditions for 

problem (2.2) are 

 1ˆ ˆ( ) | |Y γβ λγ β −′ − =X X . 

Equivalently 

(3.1) 1
0

ˆ ˆ[ ( )] | |γε β β λγ β −′ − − =X X . 

If 0 0jβ =  for some *j j= , then it follows from (3.1) that ˆ 0jβ =  only if  

(3.2) *

*
0

1

ˆ( ) 0
n

i ij j jij
i j j

X Xε β β
= ≠

 
 − − =
  

∑ ∑ .  

If the iε ’s are continuously distributed, then (3.2) constitutes an exact linear relation among continuously 

distributed random variables and has probability 0.  Therefore, PLS with the penalty function 

( ) | |p v v γ
λ λ=  and 1γ >  cannot yield ˆ 0jβ = , even if 0 0jβ = , and cannot be model-selection consistent. 
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 The situation is different if 0 1γ< ≤ .  Then ( )p vλ  has a cusp at 0v = , and ˆ 0jβ =  can occur 

with non-zero probability.  This can be seen from the first-order conditions for the case 0 1γ< ≤ , which 

are the Karush-Kuhn-Tucker (KKT) conditions: 

(3.3) 1ˆ ˆ( ) | | ; 0j jY γβ λγ β β−′ − = =X X   

and 

(3.4) ˆ ˆ| ( ) | ; 0j jY β λ β′ − ≤ =X X , 

where jX  is the j ’th column of the matrix X .  Condition (3.4) for ˆ 0jβ =  is an inequality and, 

therefore, has non-zero probability.  Thus, in contrast to OLS or ridge regression, PLS estimation with 

( ) | |p v v γ
λ λ=  and 0 1γ< ≤  can give ˆ 0jβ =  with non-zero probability.  

 PLS estimation with ( ) | |p v vλ λ=  is called the LASSO.  The LASSO was proposed by 

Tibshirani (1996).  Knight and Fu (2000) investigated properties of LASSO estimates.  Meinshausen and 

Bühlmann (2006) and Zhao and Yu (2006) showed that the LASSO is model-selection consistent under a 

strong condition on the design matrix X  called the strong irrepresentable condition.  Zhang (2009) gave 

conditions under which the LASSO combined with a thresholding procedure consistently distinguishes 

between coefficients that are zero and coefficients whose magnitudes as n →∞  exceed sn−  for some 

1/ 2s < .  Bühlmann and van de Geer (2011) provide a highly detailed treatment of the LASSO.   There is 

also a literature on the use of LASSO for the problem of prediction.  See, for example, Greenshtein and 

Ritov (2004) and Bickel, Ritov, and Tsybakov (2009).  Computational feasibility with a large p  is an 

important issue in high-dimensional estimation.  Osborne, Presnell, and Turlach (2000); Efron, Hastie, 

Johnstone, and Tibshirani (2004); and Friedman, Hastie, Höfling, and Tibshirani (2007) present fast 

algorithms for computing LASSO estimators.  

 The irrepresentable condition required for model selection consistency of the LASSO is very 

restrictive.  Among other things, it requires the coefficient estimates obtained from the OLS regression of 

the irrelevant covariates (covariates with 0jβ = ) on the relevant covariates to have magnitudes that are 

smaller than one (Zhao and Yu 2006).  Zou (2006) gives a simple example in which this condition is 

violated.  Zhang and Huang (2008) showed that if ( )logO n pλ =  and certain other conditions (but not 

the irrepresentable condition) are satisfied, then the LASSO selects a model of finite dimension that is too 

large.  That is, with probability approaching 1 as n →∞  the selected model contains all the covariates 

with non-zero jβ ’s but also includes some covariates for which 0jβ = . 
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3.1 The Adaptive LASSO 

 The LASSO is not model selection consistent when the irrepresentable condition does not hold 

because its penalty function does not penalize small coefficients enough relative to large ones.  This 

problem is overcome by a two-step method called the adaptive LASSO (AL) (Zou 2006).  The first step is 

ordinary LASSO estimation of the jβ ’s.  Denote the resulting estimator by 1( ,..., )pβ β β ′=   .  Then 

(3.5) 
1

2

1,..., 1 1 1

1arg min | |
2p

p pn

i j ij jb b i j j
Y b X bβ λ

= = =

 
 = − +
 
 

∑ ∑ ∑ , 

where ( )1 logO n pλ =  is the penalization parameter.  In the second step, variables ijX  for which 

0jβ =  are dropped from model (2.1).  Let ˆ 0jβ =  if 0jβ = .  Define the remaining components of the 

vector 1
ˆ ˆ ˆ( ,..., )pβ β β ′=  by 

(3.6) 

2

1
2

: 0 1 : 0 : 0

1ˆ arg min | |
2j j

j j

n

i j ij j jb i j j
Y b X b

β β β
β λ β −

≠ = ≠ ≠

 
 = − +
 
 

∑ ∑ ∑


 

 , 

where 2λ  is a penalty parameter that increases slowly as n →∞ .  The AL estimator of jβ  is ˆ
jβ .  Zou 

(2006) gives conditions under which the AL is model-selection consistent and oracle efficient when the 

values of p  and the jβ ’s are fixed.  Horowitz and Huang (2013) give conditions under which the AL is 

model-selection consistent if some jβ ’s may be small but non-zero in the sense defined in Section 2 and 

p  may be larger than n .  Oracle efficiency follows from the result of Zou (2006) and the observation that 

asymptotically, the LASSO selects a model of bounded size that contains all variables with large 

coefficients.  The precise definitions of large and small jβ ’s and the rate of increase of 2λ  as n →∞  

depend on p  and are given by Horowitz and Huang (2013).  If the large jβ ’s are bounded away from 

zero and the small jβ ’s are zero, then the required rate is 1/2
2 ( )o nλ = .  Although p n>  is allowed, p  

cannot increase too rapidly as n  increases.  The rate at which p  is limited by the requirement that the 

eigenvalues of the matrix / n′X X  not decrease to zero too rapidly.  This usually requires ( )ap O n=  for 

some 0a > .   

Models in which anp e∝  for some 0a >  are called ultra-high dimensional.  In applications, 

these are models in which p  is much larger than n  (e.g., 100n = , 10,000p = ).  Such models are rare in 

economics but arise in genomics.  PLS estimators do not work well in ultra-high dimensional settings, 
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and other methods have been developed to deal with them.  See, for example, Fan and Lv (2008) and 

Meinshausen and Bühlmann (2010).   

 We now provide further intuition for model-selection consistency and oracle efficiency of the AL  

Assume that p  is fixed and, therefore, that p n<  if n  is sufficiently large.  Let 1,..., 0qβ β =   and 

1,..., 0q pβ β+ = .  Asymptotically, β  has r  non-zero components, where q r p≤ ≤ .  Order the 

components of β  so that 1,..., rβ β   are non-zero and 1,...,r pβ β+
   are zero.  Define 0 1( ,..., )rβ β β ′= .  Let 

ˆ
ALβ  be the second-step AL estimator of 0β , and let 1( ,..., )rb b b ′=  be any 1r ×  vector.  Define 

1/2
0( )u n b β= − .  Assume that 2λ →∞  and 1/2

2 0n λ− →  as n →∞ , where 2λ  is the penalty parameter 

in the second AL step.   

 Some algebra shows that (3.6), the second AL step, is equivalent to 

(3.7) 
2

1/2 1/2 1 1/2
0 2 0 0

1 1 1

ˆ( ) arg min | | (| | | |)
n r r

AL i j ij j j j ju i j j
n n b X n uβ β ε λ β β β− − −

= = =

 
 − = − + + −
 
 

∑ ∑ ∑  .  

If 0 0jβ = , then 1/2| | ( )j pO nβ −=  and  

 1 1/2
2 0 0 2| | (| | | |) | |j j j j jn u uλ β β β λ− −+ − ≈   

Therefore, if 0ju ≠ , the penalty term on the right-hand side of (3.7) becomes arbitrarily large as n →∞ .  

It follows that 0ju ≠  cannot be part of the argmin in (3.7) if n  is sufficiently large, and , 0
ˆ

AL j jβ β=  for 

all sufficiently large n .  If 0 0jβ ≠ , then 

 1 1/2 1/2 1/2
2 0 0 2 2| | (| | | |) | | (1) 0p

j j j j j pn u n u n Oλ β β β λ λ− − − −+ − ≈ = → . 

Therefore, as n →∞ , (3.6) and (3.7) become equivalent to OLS estimation of the non-zero components 

of 0 jβ .  Thus, the AL is model-selection consistent and oracle efficient. 

3.2  Other Penalty Functions 

Another way to achieve a model-selection consistent PLS estimator is to use a penalty function 

that is concave and has a cusp at the origin.  This section presents several such functions.  Lv and Fan 

(2009) and Zou and Zhang (2009) describe additional penalization methods.   

 1.  The bridge penalty function (Knight and Fu 2001; Huang, Horowitz, and Ma 2008): 

 ( ) | |p v v γ
λ λ= , 

where γ  is a constant satisfying 0 1γ< < . 
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 2.  The smoothly clipped absolute deviation (SCAD) penalty function (Antoniadis and Fan 2001, 

Fan and Peng 2004).  This penalty function is defined by its derivative: 

 
1

1 1
1

( )( ) [ ( ) ( )]
( 1)
an vp v I v n I v n
a nλ

λλ λ λ
λ

−
− −+

−
−′ = ≤ + >

−
;  0v ≥ , 

where I  is the indicator function and 2a >  is a constant.   

 3.  The minimax concave (MC) penalty function (Zhang 2010): 

  
0

( ) 1
v nxp v dx

aλ λ
λ +

 = − 
 ∫ ;  0v ≥ , 

where 0a >  is a constant..   

 Fan and Peng (2004); Huang, Horowitz, and Ma (2008); Kim, Choi, and Oh (2008); Zhang 

(2010); and Horowitz and Huang (2013) give conditions under which PLS estimation with these penalty 

functions is model-selection consistent and oracle efficient.  The precise definitions of large and small 

(but non-zero) jβ ’s and the rate at which λ →∞  differ among penalty functions.  Details and 

computational methods are given in the foregoing references.   

 Examples of the three penalty functions are displayed in Figure 1 for 0v ≥ .  All are steeply 

sloped near 0v =  and have a cusp at 0v = .  However, the SCAD and MC penalty functions are flat at 

large values of | |v , whereas the bridge penalty function continues increasing as | |v  increases.  Positive 

values of the penalty function drive the parameter estimates toward zero creating a penalization bias.  

This bias is smaller with the SCAD and MC penalty functions than with the bridge penalty function 

because of the flattening of the SCAD and MC penalties at large values of | |v .  However, the 

penalization bias of the bridge estimator can be removed by carrying out OLS estimation of the 

parameters of the selected model. 

3.4  Choosing the Penalty Parameter 

 This section describes a method due to Wang, Li, and Leng (2009) for choosing the penalty 

parameter in PLS estimation of a linear model with any of a variety of penalty functions.  Wang, Li, and 

Tsai (2007) present an earlier version of the same method. 

 Let ˆ
λβ  and | |λ , respectively, denote the PLS parameter estimator and number of non-zero 

ˆ
jβ ’s when the penalty parameter is λ .  Define 

 
2

2 1

1 1

ˆˆ
pn

i j ij
i j

n Y Xλ λσ β−

= =

 
 = −
 
 

∑ ∑ . 

For any sequence of constants { }nC  such that nC →∞ , define 
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 2 1ˆlog( ) | | lognBIC C n nλ λ λσ −= +  . 

Wang, Li, and Leng (2009) give conditions under which choosing λ  to minimize BICλ  yields a model-

selection consistent AL or PLS estimator.  Wang, Li, and Tsai (2007) show that the use of generalized 

cross validation to select λ  does not necessarily achieve model-selection consistency. 

4.  Nonlinear, Semiparametric, and Nonparametric Models 

 This section extends the PLS approach of Section 3 to a variety of parametric, semiparametric, 

and nonparametric models.  As in section 3, the discussion here focusses on methods.  The cited 

references provide Monte Carlo results and empirical examples that illustrate the numerical performance 

of the methods. 

4.1  Finite-Dimensional Parametric Models 

 Equation (2.2) is a penalized version of the (negative) log-likelihood of a normal linear model.  

Fan and Li (2001) and Fan and Peng (2004) extend the penalization approach to maximum likelihood 

estimation of a more general class of high-dimensional models.  Let V  denote a possibly vector-valued 

random variable whose probability density ( , )f β⋅  function depends on a parameter β .  Let 

{ : 1,..., }iV i n=  denote a random sample of V , and let 
1

( , ) log ( , )
n

n i
i

V f Vβ β
=

=∑  denote the log-

likelihood function of V .  Maximum likelihood estimation of β  is equivalent to minimizing ( , )n V β−  

over β .  Accordingly, penalized maximum likelihood estimation β  consists of solving the problem 

(4.1) 
1

2
1 1

,..., 1
minimize : ( ,..., ) ( , ,..., ) (| |)

p

p

n p n p j
b b j

Q b b V b b p bλ
=

≡ − +∑ . 

Fan and Li (2001) and Fan and Peng (2004) give conditions under which (4.1) gives a model-selection 

consistent, oracle-efficient estimator of β .  Fan and Li (2001) present a method for computing the 

penalized maximum likelihood estimator. 

 Belloni and Chernozhukov (2011) consider penalized estimation of a linear-in-parameters 

quantile regression model.  The model is 

(4.2) 1
1

; ( 0 | ,..., ) ; 1,...,
p

i j ij i i i ip
j

Y X P X X i nβ ε ε τ
=

= + ≤ = =∑  

where 0 1τ< < .  If p n< , then the jβ ’s in model (4.2) can be estimated by solving the problem 

 
1,... 1 1

minimize :
p

pn

i j ij
b b i j

Y b Xτρ
= =

 
 −
 
 

∑ ∑ , 
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where ( ) [ ( 0)]u I u uτρ τ= − ≤  is the check function.  The penalized estimator considered by Belloni and 

Chernozhukov (2011) is  

(4.3) 
1

1
,... 1 1 1

ˆ arg min ( ,..., ) | |
p

p pn

n p i j ij j
b b i j j

Q b b Y b X bτ τβ ρ λ
= = =

 
 = = − +
 
 

∑ ∑ ∑ , 

where λ  is the penalty parameter and the covariates are scaled so that 1 2
1

1n
iji

n X−
=

=∑ .  To state the 

properties of β̂ , let s  denote the number of non-zero jβ ’s, including jβ ’s that are “small” but non-

zero.  Let 0 jβ  denote the true value of jβ , and define 

 
1/2

2
0 0

1

ˆ ˆ( )
p

j j
j

β β β β
=

 
 − = −
  
∑ . 

Belloni and Chernozhukov (2011) give conditions under which the following hold as n →∞ : 

 1.  ( )0
ˆ ( / ) log( )pO s n n pβ β− = ∨ , 

where max( , )s n s n∨ = . 

 2.  The number of non-zero ˆ
jβ ’s is ( )pO s .  That is, 

1
ˆ(| | 0) ( )p

j pj
I O sβ

=
> =∑ . 

 3.  The set of covariates with non-zero ˆ
jβ ’s contains the set of covariates with non-zero 0 jβ ’s.  

That is 0
ˆ{ : | | 0} { : | | 0}j jj jβ β> ⊂ > . 

Result 3 requires the magnitudes of the non-zero jβ ’s to exceed the sizes of the random sampling errors 

of the ˆ
jβ ’s.  Thus, result 3 requires all non-zero jβ ’s to be “large.”   

The penalized estimator (4.3) is a quantile-regression version of the LASSO and, like the 

LASSO, is not model-selection consistent in general.  Belloni and Chernozhukov give conditions under 

which model-selection consistency is achieved by a thresholding procedure that sets ˆ 0jβ =  if ˆ| |jβ  is 

“too small.”  It is likely that model-selection consistency can be achieved through a quantile version of 

the AL or through using the SCAD or MC penalty functions, but such results have not been proved. 

4.2  Semiparametric Single-Index and Partially Linear Models 

 In a semiparametric single-index model, the expected value of a dependent variable Y  

conditional on a p -dimensional vector of explanatory variables X  is 

(4.4) ( | ) ( )E Y X g Xβ ′= , 
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where g  is an unknown function and pβ ∈  is an unknown vector.  Methods for estimating g  and β  

when p  is small have been developed by Powell, Stock and Stoker (1989); Ichimura (1993); Horowitz 

and Härdle (1996); and Hristache, Juditsky, and Spokoiny (2001) among others.  Kong and Xia (2007) 

proposed a method for selecting variables in low-dimensional single-index models.  However, these 

methods are not computationally feasible when p  is large.  Accordingly, achieving computational 

feasibility is the first step in model selection and estimation of high-dimensional single-index models.   

 Wang, Xu, and Zhu (2012) achieve computational feasibility by assuming that ( | )E X Xβ ′  is a 

linear function of Xβ ′ .  Call this the linearity assumption.  It is a strong assumption, although Hall and 

Li (1993) show that it holds approximately in many settings when dim( )p X=  is large.  Let Σ  denote the 

covariance matrix of X , and assume that Σ  is positive definite.  Define cov[ , ( )]h X h Yσ =  for any 

bounded function h .  Wang, Xu, and Zhu (2012) show that under the linearity assumption, 

1
h hβ σ β−≡ Σ ∝ .  Accordingly, if p n< , β  can be estimated up to a proportionality constant by  

(4.4) [ ]2 1

1

ˆ arg min ( ) ( ) ( )
n

h i ib i
h Y b X hβ −

=

′ ′ ′= − =∑ X X X Y , 

where X  is the matrix of observed values of the covariates and Y  is the vector of observations of Y .  

Wang, Xu, and Zhu (2012) give conditions under which ˆ
hβ  estimates hβ  consistently,  The scale of β  

in a single-index model is not identified and must be set by normalization.  If the proportionality constant 

relating hβ  to β  is not zero, then hβ  can be rescaled to accommodate any desired scale normalization of 

β , and the rescaled version of ˆ
hβ  estimates β  consistently.   

Wang, Xu, and Zhu (2012) propose setting 

(4.5) ( ) ( ) 1 / 2nh y F y= − , 

where nF  is the empirical distribution of Y .  They then consider the resulting penalized version of (4.4), 

which consists of minimizing 

(4.6) 2

1 1
( ) [ ( ) 1 / 2 ] (| |)

pn

n n i i j
i j

Q b F Y b X p bλ
= =

′= − − +∑ ∑ , 

where pλ  is the SCAD or MC penalty function.  Let 1
ˆ
hβ  be the estimator of the non-zero components of 

hβ  that would be obtained from (4.4) with ( )h y  as in (4.5) if the covariates with coefficients of zero 

were omitted from the model.  Let 0 1
ˆ ˆ( ,0 )h h p qβ β −= .  Wang, Xu, and Zhu (2012) give conditions under 

which 0β̂  is contained in the set of local minimizers of ( )nQ b  in (4.6) with probability approaching 1 as 
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n →∞ .  This result shows that with probability approaching 1, the oracle estimator of ˆ
hβ  is a local 

minimizer of (4.6).  However, it has not been proved that the oracle estimator is the global minimizer of 

(4.6) or that solving (4.6) achieves model-selection consistency.  It would be useful for further research to 

focus on establishing these properties and removing the need for the linearity assumption.   

4.3  Partially Linear Models 

 A partially linear conditional-mean model has the form 

(4.7) ( ) ; ( | , ) 0Y X g Z E X Zβ ε ε′= + + = , 

where X  is a 1p×  vector of explanatory variables, β  is a 1p×  vector of constants, g  is an unknown 

function, and Z  is a scalar or vector explanatory variable.  Robinson (1988) showed that when p  is 

fixed, β  can be estimated 1/2n− -consistently without knowing g .  Xie and Huang (2009) consider a 

version of (4.7) in which Z  is a scalar and p  can increase as n  increases.   

 Xie and Huang (2009) approximate g  by the truncated series expansion 

(4.8) 
1

( ) ( )
K

k k
k

g z a zψ
=

≈∑ , 

where { : 1,2,...}k kψ =  are basis functions, { : 1,2,...}ka k =  are constants that must be estimated from 

data, and K  is the truncation point that increases as n  increases.  Xie and Huang (2009) use a 

polynomial spline basis, but other bases presumably could be used.  Xie and Huang (2009) use PLS with 

the SCAD penalty function to estimate β  and the ka ’s.  That is, they solve 

(4.9) 
1

2

, ,..., 1 1 1
minimize : ( ) (| |)

K

pn K

i i k k i j
b a a i k j

Y b X a Z p bλψ
= = =

 
′− − + 

  
∑ ∑ ∑ , 

where pλ  is the SCAD penalty function.  Problem (4.9) differs from the PLS estimation problem (2.2) 

for the linear model (2.1) because (4.8) is only an approximation to the unknown function g .  Xie and 

Huang (2009) give conditions under which the estimator obtained by solving (4.9) is model-selection 

consistent and oracle efficient.   

 It is likely that the result of Xie and Huang (2009) holds if Z  is a vector of whose dimension is 

fixed as n →∞ .  Lian (2012) generalizes (4.7) to a model in which 1( ,..., )rZ Z Z ′=  may be high-

dimensional and g  has the nonparametric additive form 

 1 1( ) ( ) ... ( )r rg Z g Z g Z= + + , 

where 1,..., rg g  are unknown functions with scalar arguments.   
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Estimation of a partially linear model when Z  is high-dimensional and g  is fully nonparametric has not 

been investigated. 

4.5  Nonparametric Additive Models 

 A nonparametric additive model for a conditional mean function has the form 

(4.10) 1 1 1( ) ... ( ) ; ( | ,..., ) 0i i p ip i i i ipY f X f X E X Xε ε= + + + = , 

where n  is the sample size, ijX  ( 1,..., ; 1,...,i n j p= = ) is the i ’th observation of the j ’th component of 

the p -dimensional random vector X  and the jf ’s are unknown functions.  Horowitz and Mammen 

(2004), Mammen and Park (2006), and Wang and Yang (2009), among others, have developed 

nonparametric estimators of the jf ’s that are oracle efficient when p  is fixed.  Oracle efficient in this 

context means that the estimator of each jf  has the same asymptotic distribution that it would have if the 

other jf ’s were known. 

 Huang, Horowitz, and Wei (2010) consider a version of (4.10) in which p  may exceed n , but 

the number of non-zero jf ’s is fixed.  They develop a two-step AL method for identifying the non-zero 

f ’s correctly with probability approaching 1 as n →∞  and estimating the non-zero jf ’s with the 

optimal nonparametric rate of convergence.  Huang, Horowitz, and Wei (2010) approximate each jf  by a 

truncated series expansion.  Thus, 

 
1

( ) ( )
K

j jk k
k

f x b xψ
=

≈∑ , 

where { : 1,2,...}k kψ =  are B-spline basis functions and the jkb ’s are coefficients to be estimated.  The 

first step of the estimation procedure consists of estimating the jkb ’s by solving the problem 

(4.11) 
2 1/2

2
1: 1,..., ; 1,..., 1 1 1 1 1

arg min ( )
jk

p pn K K

j i jk k ij jkb j p k K i j k j j
Y b X bβ ψ λ

= = = = = = =

   
  = − +
     

∑ ∑∑ ∑ ∑ , 

where 1( ,..., )j j jkβ β β ′=    is the 1K ×  vector of estimates of jkb  ( 1,...,k K= ) and 1λ  is the penalty 

parameter.  The second term on the right-hand side of (4.11) is called a group LASSO penalty function.  

Instead of penalizing individual jkb ’s, it penalizes all the jkb ’s associated with a given function jf .  

This enables the estimation procedure to set the estimate of an entire function equal to zero and not just 

individual coefficients of its series approximation.  To state the second step, define weights 
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1/2
2 2

1 1

2

1

if  0

if 0.  

p p

jk jk
k k

nj
p

jk
k

w

β β

β

−

= =

=

  ≠   = 

∞ ≠


∑ ∑

∑

 



 

The second estimation step consists of solving the problem 

(4.12) 
2 1/2

2
2: 1,..., ; 1,..., 1 1 1 1 1

ˆ arg min ( )
jk

p pn K K

j i jk k ij nj jkb j p k K i j k j j
Y b X w bβ ψ λ

= = = = = = =

   
  = − +
     

∑ ∑∑ ∑ ∑ . 

Huang, Horowitz, and Wei (2010) give conditions under which the estimator (4.12) is model-selection 

consistent in the sense that with probability approaching 1 as n →∞ , the non-zero jf ’s have non-zero 

estimates and the other jf ’s are estimated to be zero.   

5.  Monte Carlo Evidence and an Empirical Example 

5.1  Monte Carlo Evidence 

This section presents the results of Monte Carlo experiments that demonstrate the performance of 

the LASSO and adaptive LASSO estimators.  The designs of the experiments are motivated by the 

empirical example presented in Section 5.2.  Samples of size 100n =  are generated by simulation from 

the model 

 
50

1
i j ij i

j
Y X Uβ

=

= +∑ ;     ~ (0,10)iU N . 

In this model, 1,..., 1dβ β =  for 2d = , 4, or 6.  These coefficients are “large.”  In addition 

1 25,..., 0.05dβ β+ = .  These coefficients are “small” but non-zero.  Finally, 26 50,..., 0β β = .  The 

covariates ijX  are fixed in repeated samples and are centered and scaled so that 

 1

1
0;

n

ij
i

n X−

=

=∑ 1

1
0; 1,...,

n

ij
i

n X i n−

=

= =∑ . 

The covariates are generated as follows.  Set 1 0.5ρ =  and 2 0.1ρ = .  Define 

 
1/2

1

1
; 1,..., ; 1,...,25

1ij ij i i n jρξ ζ ν
ρ

 
= + = = − 
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1/2

2

2
; 1,..., ; 25,...,50

1ij ij i i n jρξ ζ ν
ρ

 
= + = = − 

, 

where the ijζ ’s and iν ’s are independently distributed as (0,1)N   Also define 

 1 2 1 2

1 1
; ( )

n n

j ij j ij j
i i

n s nξ ξ ξ ξ− −

= =

= = −∑ ∑ . 

Then 

 ij j
ij

j
X

s
ξ ξ−

= . 

Moreover,  

 
0.5 if 1 , 25

( , ) 0.1 if 25 , 50
0.22 if 25 50

ij ik

j k
corr X X j k

j k

≤ ≤
= < <
 ≤ < ≤

 

The coefficient of interest in the experiments is 1β .  The penalization parameter is obtained by 

minimizing the BIC.   

 The results of the experiments are shown in Table 1.  Columns 2 and 3 show the mean-square 

errors (MSEs) of the OLS estimates of 1β  using a model with all 50 covariates and only the covariates 

with large coefficients.  These MSEs were calculated analytically using the algebra of OLS, not through 

simulation.  Columns 4 and 5 show the MSEs obtained by applying the LASSO and adaptive LASSO to 

the model with all 50 covariates.  These MSEs were computed by simulation.  Both estimation methods 

reduce the MSE of the estimate of 1β .  The adaptive LASSO reduces it to nearly the same value that it 

would have if the covariates with large coefficients were known a priori and the other covariates were 

dropped from the model.  Columns 6 and 7 show the average numbers of covariates in the models 

selected by the LASSO and adaptive LASSO.  Not surprisingly, the average size of the selected model is 

smaller with the adaptive LASSO than with the LASSO.  Columns 8 and 9 show the empirical 

probabilities that the selected model includes all the covariates with large coefficients.  These 

probabilities are larger for the LASSO than the adaptive LASSO, reflecting the tendency of the latter 

procedure to select a smaller model. 

5.2  An Empirical Example 

 This section presents an empirical example in which a wage equation is estimated.  The model is 

 
47

0 1 1
2

log( ) ; ( | ) 0j j
j

W X X U E U Xβ β β
=

= + + + =∑ , 
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where W  is an individual’s wage and 1X  is a dummy variable equal to 1 if an individual graduated from 

college and 0 otherwise.  2 47X X−  are other covariates including a dummy variable for high-school 

graduation, scores on 10 sections of the Armed Forces Qualification Test, and personal characteristics.  

Possible problems of endogeneity of one or more covariates are ignored for purposes of this example.  

The data are from the National Longitudinal Survey of Youth and consist of observations of 159n =  

white males between the ages of 40 and 49 years living in the northeastern United States.  The coefficient 

of interest is 1β , the return to college graduation. 

 Estimation was carried out by applying OLS to the full model (all 47 covariates) and by the 

adaptive LASSO with the penalty parameter chosen by the BIC.  The adaptive LASSO selected only two 

covariates, 1X  and the score on the mathematics section of the Armed Forces Qualification Test.  The 

dummy for high-school graduation was not selected.  This is not surprising because there are only six 

observations of individuals who did not graduate from high school.  The estimates of 1β  are 

Method Estimate of 1β  Standard Error 

OLS 0.25 0.20 

Adaptive 

LASSO 

0.47 0.08 

The adaptive LASSO estimates 1β  precisely, whereas OLS applied to the full model gives an imprecise 

estimate owing to the presence of so many irrelevant covariates in the full model.  The difference between 

the point estimates of 1β  produced by OLS and the adaptive LASSO is large but, because the OLS 

estimate is imprecise, the difference is only slightly larger than one standard error of the OLS estimate.   

6.  Conclusions 

 High-dimensional covariates arise frequently in economics and other empirical fields.  Often, 

however, only a few covariates are substantively important to the phenomenon of interest.  This paper has 

reviewed systematic, theoretically justified methods for discriminating between important and 

unimportant covariates.  Methods are available for a wide variety of models, including quantile regression 

models, non- and semiparametric models, and a variety of nonlinear parametric models, not just the linear 

mean-regression models for which the methods were originally developed.  The performance of the 

LASSO and adaptive LASSO in finite samples has been illustrated through Monte Carlo simulations.  An 

empirical example has illustrated the usefulness of these methods.. 
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Table 1:  Results of Monte Carlo Experiments 

 

d  MSE OLS  MSE OLS 
with True 

Model 

MSE 
LASSO 

MSE AL LASSO 
SIZE 

AL SIZE LASSO 
PROB 

LARGE 

AL PROB 
LARGE 

2. 0.67 0.22 0.27 0.19 7.9 5.8 0.88 0.67 

4 0.67 0.19 0.29 0.17 10.6 8.0 0.81 0.64 

6 0.67 0.16 0.40 0.19 13.3 10.2 0.67 0.43 
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Figure 1:  Bridge penalty function (solid line), SCAD penalty function (dashed line), MC penalty function 

(dotted line). 
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