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Abstract

This paper makes several contributions to the literature on the important yet difficult prob-
lem of estimating functions nonparametrically using instrumental variables. First, we derive the
minimax optimal sup-norm convergence rates for nonparametric instrumental variables (NPIV)
estimation of the structural function h0 and its derivatives. Second, we show that a compu-
tationally simple sieve NPIV estimator can attain the optimal sup-norm rates for h0 and its
derivatives when h0 is approximated via a spline or wavelet sieve. Our optimal sup-norm rates
surprisingly coincide with the optimal L2-norm rates for severely ill-posed problems, and are
only up to a [log(n)]ε (with ε < 1/2) factor slower than the optimal L2-norm rates for mildly
ill-posed problems. Third, we introduce a novel data-driven procedure for choosing the sieve di-
mension optimally. Our data-driven procedure is sup-norm rate-adaptive: the resulting estimator
of h0 and its derivatives converge at their optimal sup-norm rates even though the smoothness
of h0 and the degree of ill-posedness of the NPIV model are unknown. Finally, we present two
non-trivial applications of the sup-norm rates to inference on nonlinear functionals of h0 under
low-level conditions. The first is to derive the asymptotic normality of sieve t-statistics for exact
consumer surplus and deadweight loss functionals in nonparametric demand estimation when
prices, and possibly incomes, are endogenous. The second is to establish the validity of a sieve
score bootstrap for constructing asymptotically exact uniform confidence bands for collections
of nonlinear functionals of h0. Both applications provide new and useful tools for empirical
research on nonparametric models with endogeneity.
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1 Introduction

This paper investigates how well one may estimate an unknown structural function h0 of endogenous

regressors in sup-norm loss, where h0 is identified by a nonparametric instrumental variables (NPIV)

model: E[Yi − h0(Xi)|Wi] = 0, where Xi is a vector of endogenous regressors and Wi is a vector of

instrumental variables. We show that a computationally simple sieve NPIV estimator, which is also

called a sieve minimum distance or series 2SLS estimator (Newey and Powell, 2003; Ai and Chen,

2003; Blundell, Chen, and Kristensen, 2007), can attain the best possible sup-norm convergence

rates when spline or wavelet sieves are used to approximate the unknown h0. We introduce a novel

data-driven procedure to choose the key regularization parameter, namely the sieve dimension (for

approximating h0), of the sieve NPIV estimator. The procedure is shown to be sup-norm rate

adaptive to the unknown smoothness of h0 and the unknown degree of ill-posedness of the NPIV

model. In fact, we show that the same data-driven choice of the sieve dimension simultaneously

leads to the optimal sup-norm rates for estimating h0 and its derivatives.

Sup-norm (uniform) convergence rates for nonparametric estimators of h0 and its derivatives provide

sharper measures on how well the unknown function h0 and its derivatives could be estimated

given a sample of size n. Equally or perhaps more importantly, they are very useful to control

the nonlinearity bias when conducting inference on nonlinear functionals of h0, such as the exact

consumer surplus and deadweight loss welfare functionals in nonparametric demand estimation

(Hausman and Newey, 1995; Vanhems, 2010; Blundell, Horowitz, and Parey, 2012).

NPIV estimation has been the subject of much recent research, both because of its importance

to applied economics and its prominent role in the literature on ill-posed inverse problems with

unknown operators. In addition to the sieve NPIV estimator (Newey and Powell, 2003; Ai and

Chen, 2003; Blundell et al., 2007), other estimators have also been considered in the literature;

see Hall and Horowitz (2005); Carrasco, Florens, and Renault (2007); Darolles, Fan, Florens, and

Renault (2011); Horowitz (2011); Liao and Jiang (2011); Gagliardini and Scaillet (2012); Chen

and Pouzo (2012); Florens and Simoni (2012); Kato (2013) and references therein. To the best

of our knowledge, all the published works on convergence rates for various NPIV estimators have

only studied L2-norm (or closely related Hilbert-norm) convergence rates. In particular, Hall and

Horowitz (2005) are the first to establish the minimax lower bound in L2-norm loss for estimating h0

for mildly ill-posed NPIV models, and show that their estimators attain the lower bound. Chen and

Reiss (2011) derive the minimax lower bound in L2-norm loss for estimating h0 for NPIV models

that could be mildly or severely ill-posed, and show that the sieve NPIV estimator achieves the

lower bound.1 Recently, for Horowitz (2011)’s modified orthogonal series NPIV estimator, Horowitz

(2014) proposed a data-driven procedure for choosing the orthogonal series dimension that is near

L2-norm rate-adaptive in that his procedure attains the optimal L2-norm rate up to a [log(n)]1/2

1Subsequently, some other NPIV estimators have also been shown to attain the optimal L2-norm rates.
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factor for both mildly or severely ill-posed models. As yet there are no published results on sup-

norm convergence rates for any NPIV estimator, nor are there results on what are the minimax

lower bounds in sup-norm loss for any class of NPIV models. Further, there is no prior work on any

data-driven procedure that is sup-norm rate adaptive to the unknown smoothness of the function

h0 and the unknown degree of ill-posedness of the NPIV model.

In this paper we study the sup-norm convergence properties of the sieve NPIV estimator of the

unknown h0 and its derivatives. We focus on this estimator because, in addition to its known L2-

norm rate optimality for estimating h0, it has been used extensively in empirical work and can

be implemented as a simple two stage least squares (2SLS) estimator even when Xi contains both

endogenous and exogenous regressors. We first establish a general upper bound on the sup-norm

convergence rate of any sieve NPIV estimator. When h0 belongs to a Hölder ball of functions with

smoothness p > 0, we obtain the sup-norm convergence rates of the spline and wavelet sieve NPIV

estimators for estimating h0 and its derivatives jointly. We then derive the minimax lower bounds

in sup-norm loss for h0 and its derivatives uniformly over a Hölder ball of functions. The lower

bounds are shown to equal our sup-norm convergence rates for the spline and wavelet sieve NPIV

estimators of h0 and its derivatives. Surprisingly, these optimal sup-norm convergence rates for

estimating h0 and its derivatives coincide with the optimal L2-norm rates for severely ill-posed

problems, and are a factor of [log(n)]ε (with 0 < ε < p/(2p+ 1)) slower than the optimal L2-norm

rates for mildly ill-posed problems.2

In practice, to attain the optimal sup-norm convergence rates of the sieve NPIV estimator one

must choose the sieve dimension to balance the sup-norm bias term and the sup-norm sampling

error term (loosely called the “standard deviation” term). The sup-norm bias term depends on the

smoothness of the unknown function h0 and the sup-norm standard deviation term depends on the

degree of ill-posedness of the unknown NPIV operator. Therefore, it is important to have a method

for choosing the optimal sieve dimension without knowing these unknowns. We introduce a new

data-driven procedure for choosing the sieve dimension for approximating h0. We show that our

data-driven choice of sieve dimension is optimal in that the resulting sieve NPIV estimators of h0

and its derivatives attain their optimal sup-norm rates. Interestingly, our data-driven procedure

automatically leads to optimal L2-norm rate adaptivity for severely ill-posed models, and optimal

L2-norm rate adaptivity up to a factor of [log(n)]ε (with 0 < ε < p/(2p + 1)) for mildly ill-posed

models. Our data-driven procedure is different from the model selection procedure proposed by

Horowitz (2014) for his modified orthogonal series NPIV estimator, which might explain why our

procedure leads to a L2-norm rate that is faster than his procedure. A Monte Carlo study indicates

that our sup-norm rate-adaptive procedure performs well in finite samples.

We illustrate the usefulness of the sup-norm convergence rate results with two non-trivial applica-

2See Subsection 2.4 for the expression of ε and the complementary results on L2-norm rate optimality of sieve
NPIV estimators for estimating the derivatives of h0.
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tions, each of which makes new contribution to inference on nonlinear welfare functionals in NPIV

estimation. Inference on nonlinear functionals of h0 in a NPIV model is very difficult because of

the combined effects of nonlinearity bias and slow rates of convergence of any NPIV estimators

in Lq norms for 1 ≤ q ≤ ∞. In the first application, we extend the important work by Hausman

and Newey (1995) on nonparametric estimation of exact consumer surplus and deadweight loss

functionals to allow for prices, and possibly incomes, to be endogenous. Specifically, we use our

sup-norm convergence rates for estimating the demand function h0 and its derivatives to linearize

plug-in estimators of exact consumer surplus and deadweight loss functionals. This linearization

immediately leads to asymptotic normality of sieve t statistics for exact consumer surplus and dead-

weight loss using our pointwise limit theory in Appendix A.3 Our second important application is

to sieve score bootstrap uniform confidence bands for collections of nonlinear functionals of h0; see

Appendix B for details.

The rest of the paper is organized as follows. Section 2 establishes the optimal rates of convergence

for estimating h0 and its derivatives in a NPIV model. Section 3 introduces a data-driven sup-norm

rate-adaptive procedure for sieve NPIV estimators. Section 4 provides an application to inference

on exact consumer surplus and deadweight loss functionals in nonparametric demand estimation

with endogeneity. Appendices A and B present low-level conditions for pointwise and bootstrap

uniform limit theories for sieve t statistics of general nonlinear functionals of h0 in a NPIV model

respectively. Appendix C contains background materials on B-spline and wavelet sieve spaces.

The online appendix contains technical lemmas, the proofs of all results in the main text, and

supplementary useful lemmas on random matrices.

Notation: Throughout we work on a complete probability space (Ω,F ,P). Ac denotes the comple-

ment of a measurable event A ∈ F . We abbreviate “with probability approaching one” to “wpa1”,

and say that a sequence of events {An} ⊂ F holds wpa1 if P(Acn) = o(1). For a random variable

X we define the space Lq(X) as the equivalence class of all measurable functions of X with finite

qth moment if 1 ≤ q <∞; when q =∞ with some abuse of notation we take L∞(X) to mean the

set of all bounded measurable f : X → R endowed with the sup norm ‖f‖∞ = supx |f(x)|. We let

〈·, ·〉X denote the inner product on L2(X). For matrix and vector norms, ‖·‖`q denotes the vector `q

norm when applied to vectors and the operator norm induced by the vector `q norm when applied

to matrices. If a and b are scalars we let a ∨ b := max{a, b} and a ∧ b := min{a, b}.
3By exploiting the sup-norm rates and the close form expression of the sieve NPIV estimator, Appendix A de-

rives the pointwise asymptotic normality of sieve t statistics of nonlinear functionals of NPIV under lower-level
conditions with faster growth of sieve dimension than those in Chen and Pouzo (2014) for functionals of general
semi/nonparametric conditional moment restrictions.
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2 Optimal sup-norm convergence rates

This section consists of several subsections. Subsection 2.1 outlines the NPIV model and the esti-

mator. Subsections 2.2 and 2.3 first establish a general upper bound on the sup-norm convergence

rates for any sieve NPIV estimator and then the minimax lower bound in sup-norm loss, allowing

for both mildly and severely ill-posed problems. These results together lead to the optimal sup-norm

convergence rates for spline and wavelet sieve NPIV estimators for estimating h0 and its deriva-

tives. Subsection 2.4 shows that the sieve NPIV estimator attains the optimal L2-norm convergence

rates for estimating h0 and its derivatives under much weaker conditions. Finally Subsection 2.5

considers an extended NPIV model with endogenous and exogenous regressors.

2.1 The NPIV model, the estimator and the measure of ill-posedness

Throughout the paper the data {(Yi, Xi,Wi)}ni=1 is assumed to be a random sample from the

nonparametric instrumental variables (NPIV) model

Yi = h0(Xi) + ui

E[ui|Wi] = 0,
(1)

where Yi ∈ R is a scalar response variable, Xi ∈ X ⊆ Rd is a d-dimensional endogenous regressor,

and Wi ∈ W ⊆ Rdw is a dw vector of (conditional) instrumental variables.

The sieve NPIV (or series 2SLS) estimator ĥ of h0 may be written in matrix form as

ĥ(x) = ψJ(x)′ĉ with ĉ = [Ψ′B(B′B)−B′Ψ]−Ψ′B(B′B)−B′Y

where Y = (Y1, . . . , Yn)′ and

ψJ(x) = (ψJ1(x), . . . , ψJJ(x))′ Ψ = (ψJ(X1), . . . , ψJ(Xn))′

bK(w) = (bK1(w), . . . , bKK(w))′ B = (bK(W1), . . . , bK(Wn))′

(see (Blundell et al., 2007; Newey, 2013)).

The crucial regularization parameter to be chosen is the dimension J of the sieve space used

to approximate the structural function h0. The smoothing parameter K is the dimension of the

instrument space, and is assumed to grow at the order of K = O(J). From the analogy with 2SLS,

it is clear that we need K ≥ J .4 When K = J , bK = ψJ and dw = d, the sieve 2SLS estimator

4Previous Monte Carlo evidences (Blundell et al., 2007; Chen and Pouzo, 2014) have demonstrated that sieve
NPIV estimators often perform better with K > J (the “over identified” case) than with K = J (the “just identified”
case), and that the regularization parameter J is important for finite sample performance while the parameter K is
not important as long as it is larger than J .
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becomes Horowitz (2011)’s modified orthogonal series NPIV estimator.

The coefficient estimator ĉ is the 2SLS estimator of the parameter vector c0,J ∈ RJ satisfying

E[bK(Wi)(Yi − ψJ(Xi)
′c0,J)] = 0 .

Define
Gψ = Gψ,J = E[ψJ(Xi)ψ

J(Xi)
′]

Gb = Gb,K = E[bK(Wi)b
K(Wi)

′]

S = SJK = E[bK(Wi)ψ
J(Xi)

′] .

We assume that S has full column rank J and that Gψ,J and Gb,K are positive definite for each J

and K, i.e., eJ = λmin(Gψ,J) > 0 for each J and eb,K = λmin(Gb,K) > 0 for each K. Then c0,J can

be expressed as

c0,J = [S′G−1
b S]−1S′G−1

b E[bK(Wi)Yi] = [S′G−1
b S]−1S′G−1

b E[bK(Wi)h0(Xi)] .

We refer to ψJ(·)′c0,J as the sieve 2SLS approximation to h0.

To introduce a measure of ill-posedness, let T : L2(X)→ L2(W ) denote the conditional expectation

operator given by

Th(w) = E[h(Xi)|Wi = w] .

The operator T is compact when X is endogenous under mild conditions on the conditional density

of X given W (see, e.g., Newey and Powell (2003); Blundell et al. (2007); Darolles et al. (2011);

Andrews (2011)). Let ΨJ = clsp{ψJ1, . . . , ψJJ} ⊂ L2(X) and BK = clsp{bK1, . . . , bKK} ⊂ L2(W )

denote the sieve spaces for the endogenous and instrumental variables, respectively.5 Let ΨJ,1 =

{h ∈ ΨJ : ‖h‖L2(X) = 1}. The sieve L2 measure of ill-posedness is

τJ = sup
h∈ΨJ :h6=0

‖h‖L2(X)

‖Th‖L2(W )
=

1

infh∈ΨJ,1 ‖Th‖L2(W )
.

Following Blundell et al. (2007), we call a NPIV model:

(i) mildly ill-posed if τJ = O(J ς/d) for some ς > 0; and

(ii) severely ill-posed if τJ = O(exp(1
2J

ς/d)) for some ς > 0.

5The exception is when the vector of regressors contains both endogenous and exogenous variables. See Section
2.5 for a discussion.
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2.2 Upper bounds on sup-norm rates

To derive the sup-norm (uniform) convergence rate we split ‖ĥ − h0‖∞ into so-called bias and

variance terms and derive sup-norm convergence rates for the two terms. Specifically, let

h̃(x) = ψJ(x)′c̃ with c̃ = [Ψ′B(B′B)−B′Ψ]−Ψ′B(B′B)−B′H0

where H0 = (h0(X1), . . . , h0(Xn))′. We say that ‖h̃− h0‖∞ is the “bias” term and ‖ĥ− h̃‖∞ is the

“standard deviation” (or sometimes loosely called “variance”) term. Both are random quantities.

We first introduce some basic conditions on the supports of the data, identification, true residuals

and the sieve spaces.

Assumption 1 (i) Xi has compact rectangular support X ⊂ Rd with nonempty interior and the

density of Xi is uniformly bounded away from 0 and ∞ on X ; (ii) Wi has compact rectangular

support W ⊂ Rdw and the density of Wi is uniformly bounded away from 0 and ∞ on W; (iii)

T : L2(X) → L2(W ) is injective; and (iv) h0 ∈ H ⊂ L∞(X) and ΨJ ⊂ ΨJ ′ for J ′ > J with ∪JΨJ

dense in (H, ‖ · ‖L2(X)).

Assumption 2 (i) supw∈W E[u2
i |Wi = w] ≤ σ2 <∞; and (ii) E[|ui|2+δ] <∞ for some δ > 0.

We say that the sieve basis for ΨJ is Hölder continuous if there exist finite constants ω ≥ 0, ω′ > 0

such that ‖G−1/2
ψ,J {ψ

J(x)− ψJ(x′)}‖`2 . Jω‖x− x′‖ω′`2 for all x, x′ ∈ X . Let

ζψ = ζψ,J = sup
x
‖G−1/2

ψ ψJ(x)‖`2 ζb = ζb,K = sup
w
‖G−1/2

b bK(w)‖`2

ξψ = ξψ,J = sup
x
‖ψJ(x)‖`1

for each J and K and define ζ = ζJ = ζb,K ∨ ζψ,J . Note that ζψ,J has some useful properties:

‖h‖∞ ≤ ζψ,J‖h‖L2(X) for all h ∈ ΨJ , and
√
J = (E[‖G−1/2

ψ ψJ(X)‖2`2 ])1/2 ≤ ζψ,J ≤ ξψ,J/
√
eJ ;

clearly ζb,K has similar properties.

Assumption 3 (i) the basis spanning ΨJ is Hölder continuous; (ii) τJζ
2/
√
n = O(1); and (iii)

ζ(2+δ)/δ
√

(log n)/n = o(1).

Let ΠK : L2(W ) → BK denote the L2(W ) orthogonal projection onto BK (the sieve instrumental

variables space).

Assumption 4 (i) suph∈ΨJ,1 ‖(ΠKT − T )h‖L2(W ) = o(τ−1
J ).
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Assumption 1 is standard. Parts (i) and (ii) just place some mild regularity conditions on the

support of the data. Part (iii) is typically satisfied in models with endogeneity (e.g. Newey and

Powell (2003); Carrasco et al. (2007); Blundell et al. (2007); Andrews (2011)). The parameter

space H for h0 in part (iv) is typically taken to be a Hölder or Sobolev class. Assumption 2(i)(ii)

are also imposed for sup-norm convergence rates for series LS regression without endogeneity (e.g.,

Chen and Christensen (2014)). Assumption 3(i) is satisfied by most commonly used sieve bases.

Assumption 3(ii)(iii) restrict the maximum rate at which J can grow with the sample size. Upper

bounds for ζψ,J and ζb,K are known for commonly used bases under standard regularity conditions.

For instance, under Assumption 1(i)(ii), ζb,K = O(
√
K) and ζψ,J = O(

√
J) for (tensor-product)

polynomial spline, wavelet and cosine bases, and ζb,K = O(K) and ζψ,J = O(J) for (tensor-product)

orthogonal polynomial bases (see, e.g., Huang (1998) and online Appendix C). Assumption 4(i) is

a very mild condition on the approximation properties of the basis used for the instrument space

and is similar to the first part of Assumption 5(iv) of Horowitz (2014). It is trivially satisfied with

‖(ΠKT −T )h‖L2(W ) = 0 for all h ∈ ΨJ when the basis functions for BK and ΨJ form either a Riesz

basis or eigenfunction basis for the conditional expectation operator.

2.2.1 Bound on sup-norm “standard derivation”

Lemma 2.1 Let Assumptions 1(i)(iii), 2(i)(ii), 3(ii)(iii), and 4(i) hold. Then:

(1) ‖ĥ− h̃‖∞ = Op

(
τJξψ,J

√
(log n)/(neJ)

)
.

(2) If Assumption 3(i) also holds, then: ‖ĥ− h̃‖∞ = Op

(
τJζψ,J

√
(log n)/n

)
.

Recall that
√
J ≤ ζψ,J ≤ ξψ,J/

√
eJ . Result (2) of Lemma 2.1 provides a slightly tighter upper bound

on the variance term than Result (1) does, while Result (1) allows for slightly more general basis to

be used to approximate h0. For splines and wavelets, we show in Appendix C that ξψ,J/
√
eJ .

√
J ,

so Results (1) and (2) produce the same tight upper bound τJ
√

(J log n)/n on ‖ĥ− h̃‖∞.

2.2.2 Bound on sup-norm “bias”

Before we provide a bound on the sup-norm “bias” term ‖h̃ − h0‖∞, we introduce various non-

random projections of h0 onto the sieve approximating space ΨJ , which imply different sieve ap-

proximation errors for h0 that have close relations among themselves.

Let ΠJ : L2(X) → ΨJ denote the L2(X) orthogonal projection onto ΨJ and then ΠJh0 =

arg minh∈ΨJ ‖h0 − h)‖L2(X). Let QJh0 = arg minh∈ΨJ ‖ΠKT (h0 − h)‖L2(W ) denote the sieve 2SLS

projection of h0 onto ΨJ , which is QJh0 = ψJ(·)′c0,J . Let πJh0 = arg minh∈ΨJ ‖T (h0 − h)‖L2(W )

denote the IV projection of h0 onto ΨJ .
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Assumption 4 (continued) (ii) τJ × ‖T (h0 −ΠJh0)‖L2(W ) ≤ const× ‖h0 −ΠJh0‖L2(X); and

(iii) ‖QJh0 −ΠJh0‖∞ ≤ O(1)× ‖h0 −ΠJh0‖∞.

Assumption 4(ii) is the usual L2 “stability condition” imposed in the NPIV literature (see Assump-

tion 6 in Blundell et al. (2007) and Assumption 5.2(ii) in Chen and Pouzo (2012) and their sufficient

conditions). Assumption 4(iii) is a new L∞ “stability condition” to control for the sup-norm bias.

Instead of Assumption 4(iii), we could impose the following Assumption 4(iii’).

Assumption 4 (iii’) (ζψ,JτJ)× ‖(ΠKT − T )(QJh0 − πJh0)‖L2(W ) ≤ const× ‖QJh0 − πJh0‖L2(X).

Lemma 2.2 Let Assumptions 1(iii) and 4(ii) hold. Then:

(1) ‖h0 − πJh0‖L2(X) � ‖h0 −ΠJh0‖L2(X);

(2) If Assumption 4(i) also holds, then: ‖QJh0 − πJh0‖L2(X) ≤ o(1)× ‖h0 − πJh0‖L2(X).

(3) Further, if Assumption 4(iii’) and

‖ΠJh0 − πJh0‖∞ ≤ const× ‖h0 −ΠJh0‖∞ (2)

hold then Assumption 4(iii) is satisfied.

In light of Lemma 2.2 results (1) and (2), both Assumption 4(iii’) and Condition (2) seem mild.

In fact, Condition (2) is trivially satisfied when the basis for ΨJ is a Riesz basis because then

πJh0 = ΠJh0 (see section 6 in Chen and Pouzo (2014)). The online Appendix provides further

detail on the relations among ΠJh0, πJh0 and QJh0.

Let h0,J ∈ ΨJ solve infh∈ΨJ ‖h0 − h‖∞. Then:

‖h0 −ΠJh0‖∞ ≤ ‖h0 − h0,J + ΠJ(h0 − h0,J)‖∞
≤ (1 + ‖ΠJ‖∞)× ‖h0 − h0,J‖∞

where ‖ΠJ‖∞ is the Lebesgue constant for the sieve ΨJ (see Lebesgue’s lemma in DeVore and

Lorentz (1993), page 30). Recently it has been established that ‖ΠJ‖∞ . 1 when ΨJ is spanned

by a tensor product B-spline basis (Huang (2003)) or a tensor product CDV wavelet basis (Chen

and Christensen (2014)). See DeVore and Lorentz (1993) and Belloni, Chernozhukov, Chetverikov,

and Kato (2014) for examples of other bases with bounded Lebesgue constant or with Lebesgue

constant diverging slowly with the sieve dimension.

The next lemma provides a bound on the sup-norm “bias” term.

Lemma 2.3 Let Assumptions 1(iii), 3(ii) and 4 hold. Then:

(1) ‖h̃−ΠJh0‖∞ ≤ Op(1)× ‖h0 −ΠJh0‖∞.

(2) ‖h̃− h0‖∞ ≤ Op (1 + ‖ΠJ‖∞)× ‖h0 − h0,J‖∞.
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2.2.3 Sup-norm convergence rates

Lemmas 2.1(1) and 2.3 immediately yield the following general sup-norm rate result.

Theorem 2.1 (1) Let Assumptions 1(i)(iii)(iv), 2(i)(ii), 3(ii)(iii), and 4 hold. Then:

‖ĥ− h0‖∞ = Op

(
‖h0 −ΠJh0‖∞ + τJξψ,J

√
(log n)/(neJ)

)
.

(2) Further, if the linear sieve ΨJ satisfies ‖ΠJ‖∞ . 1 and ξψ,J/
√
eJ .

√
J , then

‖ĥ− h0‖∞ = Op

(
‖h0 − h0,J‖∞ + τJ

√
(J log n)/n

)
.

The following corollary provides concrete sup-norm convergence rates of ĥ and its derivatives. To

introduce the result, let Bp
∞,∞ denote the Hölder space of smoothness p > 0 and ‖ · ‖Bp∞,∞ denote

its norm (see Triebel (2006)). Let B∞(p, L) = {h ∈ Bp
∞,∞ : ‖h‖Bp∞,∞ ≤ L} denote a Hölder

ball of smoothness p > 0 and radius L ∈ (0,∞). Let α1, . . . , αd be non-negative integers, let

|α| = α1 + . . .+ αd, and define

∂αh(x) :=
∂|α|h

∂α1x1 · · · ∂αdxd
h(x) .

Of course, if |α| = 0 then ∂αh = h.6

Corollary 2.1 Let Assumptions 1(i)(ii)(iii) and 4 hold. Let h0 ∈ B∞(p, L), ΨJ be spanned by a

B-spline basis of order γ > p or a CDV wavelet basis of regularity γ > p, BK be spanned by a

cosine, spline or wavelet basis.

(1) If Assumption 3(ii) holds, then

‖∂αh̃− ∂αh0‖∞ = Op

(
J−(p−|α|)/d

)
for all 0 ≤ |α| < p .

(2) Further if Assumptions 2(i)(ii) and 3(iii) hold, then

‖∂αĥ− ∂αh0‖∞ = Op

(
J−(p−|α|)/d + τJJ

|α|/d√(J log n)/n
)

for all 0 ≤ |α| < p .

(2.a) Mildly ill-posed case: with p ≥ d/2 and δ ≥ d/(p + ς), choosing J � (n/ log n)d/(2(p+ς)+d)

implies that Assumption 3(ii)(iii) holds and

‖∂αĥ− ∂αh0‖∞ = Op((n/ log n)−(p−|α|)/(2(p+ς)+d)) .

6If |α| > 0 then we assume h and its derivatives can be continuously extended to an open set containing X so that
∂αh(x) is well defined for all x ∈ X .

10



(2.b) Severely ill-posed case: choosing J = (c0 log n)d/ς with c0 ∈ (0, 1) implies that Assumption

3(ii)(iii) holds and

‖∂αĥ− ∂αh0‖∞ = Op((log n)−(p−|α|)/ς) .

Corollary 2.1 is very useful for linearizing plug-in estimators of nonlinear functionals of h0 to

establish pointwise and uniform limit theory; see Appendices A and B. Corollary 2.1 is also useful

for estimating functions with certain shape properties. For instance, if h0 : [a, b] → R is strictly

monotone and/or strictly concave/convex then knowing that ĥ′(x) and/or ĥ′′(x) converge uniformly

to h′0(x) and/or h′′0(x) implies that ĥ will also be strictly monotone and/or strictly concave/convex

with probability approaching one.

2.3 Lower bounds on sup-norm rates

We now establish (minimax) optimality of the sup-norm rates obtained in Corollary 2.1. Previously,

Hall and Horowitz (2005) and Chen and Reiss (2011) derived optimal L2 norm rates for estimating

h0. We complement their analysis by deriving optimal sup-norm rates for estimating h0 and its

derivatives.

To establish a lower bound we require a link condition which measures how much the conditional

expectation operator T smoothes out the structural function h0. Consider the ball H2(p, L) :=

{h =
∑

j,G,k aj,k,Gψ̃j,k,G : aj,k,G ∈ R,
∑

j,G,k 2jpa2
j,k,G ≤ L2} where ψ̃j,k,G is a tensor product CDV

wavelet basis for [0, 1]d of regularity γ > p > 0 (see Appendix C) and L ∈ (0,∞). The ball H2(p, L)

is equivalent to the Sobolev ball B2(p, L) (see Section 2.4) since for any H2(p, L) there exists

L′, L′′ ∈ (0,∞) such that B2(p, L′) ⊆ H2(p, L) ⊆ B2(p, L′′). Let ν : R+ → R+ be decreasing.

Condition LB (i) Assumption 1(i)–(iii) holds; (ii) E[u2
i |Wi = w] ≥ σ2 > 0 uniformly for w ∈ W;

and (iii) ‖Th‖2L2(W ) .
∑

j,G,k ν(2j)2〈h, ψ̃j,k,G〉2X .

Condition LB(i)–(ii) is standard (see Hall and Horowitz (2005) and Chen and Reiss (2011)). Condi-

tion LB(iii) is a so-called link condition (Chen and Reiss, 2011). In an earlier version of the paper we

derived a lower bound for h0 in the mildly ill-posed case under the condition ‖Th‖2L2(X) � ‖h‖B−ς2,2

for some ς > 0, which corresponds to choosing ν(t) = t−ς in the above condition. Here we also allow

for the severely ill-posed case, which corresponds to choosing ν(t) = exp(−1
2 t
ς).

Let Ph denote the probability measure of the data when the structural function is h.

Theorem 2.2 Let Condition LB hold for the NPIV model with a random sample {(Xi, Yi,Wi)}ni=1.

Then for any 0 ≤ |α| < p:

lim inf
n→∞

inf
ĝn

sup
h∈B∞(p,L)

Ph
(
‖ĝn − ∂αh‖∞ ≥ c(n/ log n)−(p−|α|)/(2(p+ς)+d)

)
≥ c′ > 0
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in the mildly ill-posed case, and

lim inf
n→∞

inf
ĝn

sup
h∈B∞(p,L)

Ph
(
‖ĝn − ∂αh‖∞ ≥ c(log n)−(p−|α|)/ς

)
≥ c′ > 0

in the severely ill-posed case, where inf ĝn denotes the infimum over all estimators of ∂αh based on

the sample of size n, and the finite positive constants c, c′ do not depend on n.

2.4 Optimal L2-norm rates in derivative estimation

Here we show that the sieve NPIV estimator and its derivatives can attain the optimal L2-norm

convergence rates for estimating h0 and its derivatives under much weaker conditions The optimal

L2-norm rates for sieve NPIV derivative estimation presented in this section are new, and should

be very useful for inference on some nonlinear functionals involving derivatives such as f(h) =

‖∂αh‖2L2(X).

Theorem 2.3 Let Assumptions 1(iii) and 4(i)(ii) hold and let τJζ
√

(log J)/n = o(1). Then:

(1) ‖h̃− h0‖L2(X) ≤ Op(1)× ‖h0 −ΠJh0‖L2(X).

(2) Further, if Assumption 2(i) holds then

‖ĥ− h0‖L2(X) = Op

(
‖h0 −ΠJh0‖L2(X) + τJ

√
J/n

)
.

The following corollary provides concrete L2 norm convergence rates of ĥ and its derivatives. To

introduce the result, let ‖ ·‖Bp2,2 denote the Sobolev norm of smoothness p (see Triebel (2006)), Bp
2,2

denote the Sobolev space of smoothness p > 0, and B2(p, L) = {h ∈ Bp
2,2 : ‖h‖Bp2,2 ≤ L} denote a

Sobolev ball of smoothness p > 0 and radius 0 < L <∞.

Corollary 2.2 Let Assumptions 1(i)(ii)(iii) and 4(i)(ii) hold. Let h0 ∈ B2(p, L), ΨJ be spanned

by a cosine basis, B-spline basis of order γ > p, or CDV wavelet basis of regularity γ > p, BK be

spanned by a cosine, spline, or wavelet basis.

(1) If τJ
√

(J log J)/n = o(1) holds, then

‖∂αh̃− ∂αh0‖L2(X) = Op

(
J−(p−|α|)/d

)
for all 0 ≤ |α| < p .

(2) Further if Assumption 2(i) holds, then

‖∂αĥ− ∂αh0‖L2(X) = Op

(
J−(p−|α|)/d + τJJ

|α|/d√J/n) for all 0 ≤ |α| < p .
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(2.a) Mildly ill-posed case: choosing J � nd/(2(p+ς)+d) yields τJ
√

(J log J)/n = o(1) and

‖∂αĥ− ∂αh0‖L2(X) = Op(n
−(p−|α|)/(2(p+ς)+d)).

(2.b) Severely ill-posed case: choosing J = (c0 log n)d/ς for any c0 ∈ (0, 1) yields τJ
√

(J log J)/n =

o(1) and

‖∂αĥ− ∂αh0‖L2(X) = Op((log n)−(p−|α|)/ς) .

The conclusions of Corollary 2.2 hold if an arbitrary basis is used for BK under the condition

τJζb
√

(log J)/n = o(1). Our next theorem shows that the rates obtained in Corollary 2.2 are in

fact optimal. It extends the earlier work by Chen and Reiss (2011) on the minimax lower bound

in L2 loss for estimating h0 to that for estimating the derivatives, allowing for both mildly and

severely ill-posed NPIV problems.

Theorem 2.4 Let Condition LB hold for the NPIV model with a random sample {(Xi, Yi,Wi)}ni=1.

Then for any 0 ≤ |α| < p:

lim inf
n→∞

inf
ĝn

sup
h∈B2(p,L)

Ph
(
‖ĝn − ∂αh‖L2(X) ≥ cn−(p−|α|)/(2(p+ς)+d)

)
≥ c′ > 0

in the mildly ill-posed case, and

lim inf
n→∞

inf
ĝn

sup
h∈B2(p,L)

Ph
(
‖ĝn − ∂αh‖L2(X) ≥ c(log n)−(p−|α|)/ς

)
≥ c′ > 0

in the severely ill-posed case, where inf ĝn denotes the infimum over all estimators of ∂αh based on

the sample of size n, and the finite positive constants c, c′ do not depend on n.

According to Theorems 2.2 and 2.4, the minimax lower bounds in sup-norm loss for estimating h0

and its derivatives coincide with those in L2 loss for severely ill-posed NPIV problems, and are only

a factor of [log(n)]ε (with ε = p−|α|
2(p+ς)+d <

p
2p+d <

1
2) worse than those in L2 loss for mildly ill-posed

problems.

2.5 Models with endogenous and exogenous regressors

We finish by discussing briefly models of the form

Yi = h0(X1i, Zi) + ui (3)

where X1i is a vector of endogenous regressors and Zi is a vector of exogenous regressors. Let

Xi = (X ′1i, Z
′
i)
′. Here the vector of instrumental variables Wi is of the form Wi = (W ′1i, Z

′
i)
′ where

13



W1i are instruments for X1i. We refer to this as the “partially endogenous case”.

The sieve NPIV estimator is implemented in exactly the same way as the “fully endogenous” setting

in which Xi consists only of endogenous variables, just as with 2SLS estimation with endogenous

and exogenous variables (Newey and Powell, 2003; Ai and Chen, 2003; Blundell et al., 2007). Other

NPIV estimators based on first estimating the conditional densities of the regressors variables

and instrumental variables must be implemented separately at each value of z in the partially

endogenous case (Hall and Horowitz, 2005; Horowitz, 2011; Gagliardini and Scaillet, 2012).

Our convergence rates presented in Sections 2.2 and 2.4 apply equally to the partially endogenous

model (3) under the stated regularity conditions: all that differs between the two cases is the

interpretation of the sieve measure of ill-posedness.

Consider first the fully endogenous case where T : L2(X) → L2(W ) is compact. Then T admits

a singular value decomposition (SVD) {φ0j , φ1j , µj}∞j=1 where (T ∗T )1/2φ0j = µjφ0j , µj ≥ µj+1

for each j and {φ0j}∞j=1 and {φ1j}∞j=1 are orthonormal bases for L2(X) and L2(W ), respectively.

Suppose that ΨJ spans φ0j , . . . , φ0J . Then the sieve measure of ill-posedness is τJ = µ−1
J (see

Blundell et al. (2007)). Now consider the partially endogenous case. Similar to Horowitz (2011),

we suppose that for each value of z the conditional expectation operator Tz : L2(X1|Z = z) →
L2(W1|Z = z) given by (Tzh)(w1) = E[h(X1)|W1i = w1, Zi = z] is compact. Then each Tz admits

a SVD {φ0j,z, φ1j,z, µj,z}∞j=1 where Tzφ0j,z = µj,zφ1j,z, (T ∗z Tz )1/2φ0j,z = µj,zφ0j,z, (Tz T
∗
z )1/2φ1j,z =

µj,zφ1j,z, µj,z ≥ µj+1,z for each j and z, and {φ0j,z}∞j=1 and {φ1j,z}∞j=1 are orthonormal bases for

L2(X1|Z = z) and L2(W1|Z = z), respectively, for each z. The following result adapts Lemma 1 of

Blundell et al. (2007) to the partially endogenous setting.

Lemma 2.4 Let Tz be compact with SVD {φ0j,z, φ1j,z, µj,z}∞j=1 for each z. Let µ2
j = E[µ2

j,Zi
] and

φ0j(·, z) = φ0j,z(·) for each z and j. Then: (1) τJ ≥ µ−1
J .

(2) If, in addition, φ01, . . . , φ0J ∈ ΨJ , then: τJ ≤ µ−1
J .

The following stylized example illustrates the behavior in the partially endogenous case relative

to that in the fully endogenous case. Let X1i, W1i and Zi be scalar random variables and let

(X1i,W1i, Zi)
′ be distributed as X1i

W1i

Zi

 ∼ N

 0

0

0

 ,

 1 ρXW ρXZ

ρXW 1 ρWZ

ρXZ ρWZ 1




and ρXW , ρXZ , ρWZ are such that the covariance matrix is positive definite. Then X1i−ρXZz√
1−ρ2XZ

W1i−ρWZz√
1−ρ2WZ

∣∣∣∣∣∣Zi = z

 ∼ N (( 0

0

)
,

(
1 ρXW |Z

ρXW |Z 1

))
(4)
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where

ρXW |Z =
ρXW − ρXZρWZ√

(1− ρ2
XZ)(1− ρ2

WZ)

is the partial correlation between X1i and W1i given Zi.

For each j ≥ 1 let Hj denote the jth Hermite polynomial subject to the normalizations H0(x) = 1

and
∫∞
−∞Hj(x)Hk(x) dΦ(x) = δjk for 0 ≤ j, k < ∞ where δjk denotes the Kronecker delta and Φ

is the standard normal distribution. Since Tz : L2(X1|Z = z)→ L2(W1|Z = z) is compact for each

z, it follows from Mehler’s formula that each Tz has a SVD {φ0j,z, φ1j,z, µj,z}∞j=1 given by

φ0j,z(x1) = Hj−1

(
x1 − ρXZz√

1− ρ2
XZ

)
, φ1j,z(w1) = Hj−1

(
w1 − ρWZz√

1− ρ2
WZ

)
, µj,z = |ρXW |Z |j−1 .

Since µJ,z = |ρXW |Z |J−1 for each z, we have µJ = |ρXW |Z |J−1 � |ρXW |Z |J . If X1i and W1i are

uncorrelated with Zi then µJ = |ρ|J−1 where ρ = ρXW .

Now compare the partially endogenous case just described with the following fully-endogenous

model in which Xi and Wi are bivariate with
X1i

X2i

W1i

W2i

 ∼ N



0

0

0

0

 ,


1 0 ρ1 0

0 1 0 ρ2

ρ1 0 1 0

0 ρ2 0 1




where ρ1 and ρ2 are such that the covariance matrix is invertible. It is straightforward to verify

that T has singular value decomposition with

φ0j(x) = Hj−1(x1)Hj−1(x2) φ1j(w) = Hj−1(w1)Hj−2(w2), µj = |ρ1ρ2|j−1 .

In particular, when ρ1 = ρ2 = ρ we have µJ = ρ2(J−1).

In both of the preceding examples, h0 is a function of two random variables (X1, Z). The degree

of ill-posedness in the partially endogenous case is |ρ|−(J−1) where ρ is the correlation between the

endogenous regressor and its instrument. The degree of ill-posedness increases to (ρ2)−(J−1) in the

fully endogenous case when each endogenous regressor has correlation ρ with its instrument.

3 Adaptive estimation in sup-norm loss

We now propose a simple, data-driven method for choosing the sieve dimension, which is a novel

extension of the balancing principle of Lepskii (1990) to nonparametric models with endogeneity.
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Our selection criterion is optimal in that the resulting sieve NPIV estimator of h0 and its derivatives

attain the optimal sup-norm rates.

To describe our data-driven method for choosing J , let Jmin = blog lognc and let Jmax and J̄max be

increasing sequences of integers which index the sieve dimension ΨJ where Jmin < Jmax ≤ J̄max.7

Let N∗ denote the sequence of integers which index the dimension of the sieve spaces ΨJ and let

IJ = {j ∈ N∗ : Jmin ≤ j ≤ Jmax} and ĪJ = {j ∈ N∗ : Jmin ≤ j ≤ J̄max}. Finally, let Ĵmax be

a possibly random integer such that Jmax ≤ Ĵmax ≤ J̄max wpa1 (we introduce such a data-driven

choice below) and let ÎJ = {j ∈ N∗ : Jmin ≤ j ≤ Ĵmax}.

The oracle and data-driven index sets are defined as

J0 =
{
j ∈ IJ : ‖h0 −Πjh0‖∞ ≤ C0Vsup(j)

}
Ĵ =

{
j ∈ ÎJ : ‖ĥj − ĥl‖∞ ≤

√
2σ(V̂sup(j) + V̂sup(l)) for all l ∈ ÎJ with l ≥ j

}
respectively, where C0 is a finite positive constant and

Vsup(j) = τjξψ,j

√
(log n)/(nej)

V̂sup(j) = τ̂jξψ,j

√
(log n)/(nêj)

where êj = λmin(Ĝψ,j) with Ĝψ,j = Ψ′Ψ/n, and τ̂j is an estimator of the degree of ill-posedness τj :

τ̂j = sup
h∈Ψj :h6=0

√
1
n

∑n
i=1 h(Xi)2

1
n

∑n
i=1 Ê[h(Xi)|Wi]2

where

Ê[h(Xi)|Wi = w] = bK(w)(B′B/n)−

(
1

n

n∑
i=1

bK(Wi)h(Xi)

)
.

is a series regression estimator of E[h(Xi)|Wi = w]. The variational characterization of singular

values gives an alternative, computationally simple expression for τ̂j , namely:

τ̂j =
1

smin

(
(B′B/n)−1/2(B′Ψ/n)(Ψ′Ψ/n)−1/2

) (5)

where smin(A) denotes the smallest singular value of the matrix A and −1/2 denotes the inverse of

the positive definite square root. We specify the smoothing parameter K as a known function of

the regularization parameter J according to a rule K : N → N for which j ≤ K(j) ≤ CKj for all

j ∈ N and for some 1 ≤ CK <∞, such as K(j) = j or K(j) = 2j. In what follows we let ĥJ denote

the sieve NPIV estimator with regularization parameter J and smoothing parameter K = K(J).

7This choice of Jmin ensures Jmin grows slower than the optimal choice of J in the mildly and severely ill-posed
cases. For NPIV models in which τJ grows faster than the severely ill-posed case, we can take Jmin to be an even
more slowly growing function of n than blog lognc.
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The set J0 is the unobservable oracle set : it depends on the unknown smoothness of h0 and the

unknown degree of ill-posedness. We refer to

J0 = min
j∈J0

j

as the oracle choice of J as it balances the bias and variance terms asymptotically. As a consequence,

we will refer to ĥJ0 as the oracle estimator.

The set Ĵ is straightforward to construct from the data as it depends entirely on observables and

σ, about which the researcher may have a priori information.8 Our data-driven choice of J is

Ĵ = min
j∈Ĵ

j

and ĥ
Ĵ

is our data-driven sieve NPIV estimator. Below we will establish an oracle inequality which

shows that, with high probability, the sup-norm loss of the data-driven estimator ĥ
Ĵ

is bounded by

a multiple of the sup-norm loss of the oracle estimator ĥJ0 .

Our adaptive procedure relies on balancing the bias and variance terms asymptotically, so we need

to bound the variance term up to known or estimable constants, which explains why we use the

variance bound in Lemma 2.1(1), i.e., Vsup(j) = τjξψ,j
√

(log n)/(nej). This variance bound ensures

that ‖ĥj − h̃j‖∞ ≤
√

2σVsup(j) holds uniformly over a range of j wpa1, and does not affect the

attainability of the optimal sup-norm rates using spline or wavelet bases for ΨJ (see Corollary 2.1).

3.1 Sup-norm rate-adaptivity to the oracle

In this section we establish oracle properties of our data-driven estimator ĥ
Ĵ
.

Let κb(K) denote the condition number of Gb,K and let κψ(j) denote the condition number of

Gψ,j . To simplify the notation in the following presentation, we assume for simplicity that ζb,K(j),

ζψ,j , τj , e
−1
j , κb(K(j)), κψ(j) are all (weakly) increasing on ĪJ . Our proofs and conditions can

easily be adapted to dispense with this assumption at the cost of more complicated notation. Let

Kmax = K(J̄max) and ζ̄ = ζ(J̄max) = ζb,Kmax
∨ ζψ,J̄max

.

Assumption 3 (continued) (iv) τJ̄max
ζ̄2
√

(log n)/n = o(1) and J̄2+ε
max/n = O(1) for some ε > 0;

(v) ζ̄(2+δ)/δ
√

(log n)/n = o(1); (vi) κb(K) = O(ζb,K) and κψ(J) = O(ζψ,J).

Assumption 3(iv)(v) are uniform (for j ∈ ĪJ) versions of Assumption 3(ii)(iii). The second part

of Assumption 3(iv) may be replaced be an “enough ill-posedness” condition requiring τJ to grow

8Our procedure remains valid whenever σ in the definition of Ĵ is replaced by a consistent estimator. Further, we
show in the Monte Carlo exercise below that the procedure is reasonably robust to choosing too small a value of σ.
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faster than Jα for some α > 0 (cf. Assumption 6(iii) of Horowitz (2014)). Assumption 3(vi) is a

further condition on Jmax which allows for consistent estimation of τj and ej for all j ∈ IJ . We

show in Appendix C that κb(K) = O(1) and κψ(J) = O(1) when BK and ΨJ are spanned by

(tensor-product) spline or wavelet bases, in which case Assumption 3(vi) holds trivially.

Theorem 3.1 Let Assumptions 1, 2(i)(ii), 3(iv)(vi), and 4 hold and let Jmax ≤ Ĵmax ≤ Jmax hold

wpa1. Then:

‖ĥ
Ĵ
− h0‖∞ ≤ ‖ĥJ0 − h0‖∞ + 3σVsup(J0)

holds wpa1, and so

‖ĥ
Ĵ
− h0‖∞ = Op

(
‖h0 −ΠJ0h0‖∞ + τJ0ξψ,J0

√
(log n)/(neJ0)

)
.

Corollary 3.1 Let the assumptions of Theorem 3.1 hold with h0 ∈ B∞(p, L) and let ΨJ be spanned

by a (tensor product) B-spline or CDV wavelet basis. Then:

‖∂αĥ
Ĵ
− ∂αh0‖∞ = Op

(
J
−(p−|α|)/d
0 + τJ0J

|α|/d
0

√
(J0 log n)/n

)
for all 0 ≤ |α| < p .

(1) Mildly ill-posed case: if p > d/2 and δ > d/(p+ ς) then for all 0 ≤ |α| < p,

‖∂αĥ
Ĵ
− ∂αh0‖∞ = Op((n/ log n)−(p−|α|)/(2(p+ς)+d)) .

(2) Severely ill-posed case: for all 0 ≤ |α| < p,

‖∂αĥ
Ĵ
− ∂αh0‖∞ = Op((log n)−(p−|α|)/ς) .

Previously, Horowitz (2014) introduced a model selection procedure to choose J for his modified

orthogonal series NPIV estimator (i.e., a series 2SLS estimator with K(J) = J , bK = ψJ being

orthonormal basis in L2([0, 1])), and showed that his data-driven choice leads to near L2-norm rate

adaptivity in that his estimator is a factor of
√

log n slower than the optimal L2 norm convergence

rate for estimating h0 (see Theorem 3.2 of Horowitz (2014)).9 It follows from Corollary 3.1 with

|α| = 0 that our data-driven estimator ĥ
Ĵ

converges in sup norm (and therefore in L2 norm) faster

than that of Horowitz (2014))’s in L2 norm.

Recently, Breunig and Johannes (2013) also applied Lepski’s method to study near L2-norm adap-

tive estimation of linear functionals of NPIV models.10 Gautier and LePennec (2011) proposed a

data-driven method for choosing the regularization parameter in a random coefficient binary choice

9See Loubes and Marteau (2012) and Johannes and Schwarz (2013) for near L2-norm rate adaptivity of estimators
similar to Horowitz (2014)’s when the eigenfunctions of the conditional expectation operator are known.

10Lepski methods have been used elsewhere in econometrics. See, e.g., Andrews and Sun (2004) for adaptive
estimation of the long memory parameter.
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model that is sup-norm rate adaptive for a mildly ill-posed deconvolution type problem. See Hoff-

mann and Reiss (2008) and references therein for other L2-norm rate-adaptive schemes for ill-posed

inverse problems in which the operator is known up to a random perturbation but is not estimated

from the data. In work that is concurrent with ours, Liu and Tao (2014) show that the model

selection approach of Li (1987) may be used to choose the sieve dimension to minimize empirical

MSE in NPIV models with known homoskedastic errors.11 Our procedure appears to be the first to

attain both sup-norm and L2-norm rate-adaptive estimation of h0 and its derivatives for severely

ill-posed NPIV models, and sup-norm rate-adaptive and near L2-norm rate adaptive for mildly

ill-posed NPIV models.

3.2 A data-driven upper bound for the index set

Theorem 3.1 is valid for an arbitrary estimator Ĵmax of the upper level of the index set Ĵ . We now

propose such an estimator and show that it verifies the conditions of Theorem 3.1.

We propose choosing the maximum Ĵmax of Ĵ using the estimator

Ĵmax := min
{
J > Jmin : τ̂J [ζ(J)]2

√
L(J)(log n)/n ≥ 1

}
(6)

where L(J) = a log log J for some positive constant a and we take [ζ(J)]2 = J if BK and ΨJ

are spanned by a spline, wavelet, or cosine basis, and [ζ(J)]2 = J2 if BK and ΨJ are spanned

by orthogonal polynomial basis. The following result shows that Ĵmax defined in (6) satisfies the

conditions of Theorem 3.1.

Theorem 3.2 Let Assumptions 1(iii), 3(vi) and 4(i) hold. Then there exists deterministic se-

quences of integers Jmax, J̄max ↗∞ such that τJ̄max
ζ̄2
√

(log n)/n = o(1) and Jmax ≤ Ĵmax ≤ J̄max

holds wpa1.

3.3 Monte Carlo

In this section we evaluate the performance of our adaptive procedure. We use the experimental

design of Newey and Powell (2003), in which IID draws are generated from Ui

V ∗i
W ∗i

 ∼ N

 0

0

0

 ,

 1 0.5 0

0.5 1 0

0 0 1




11See Centorrino (2014) and Sueishi (2012) for data-driven choice of regularization parameters based on minimizing
reduced-form empirical MSE. These papers do not study whether or not their procedures might lead to optimal or
near-optimal convergence rates for estimating h0.
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from which we then set X∗i = W ∗i +V ∗i . To ensure compact support of the regressor and instrument,

we rescale X∗i and W ∗i by defining Xi = Φ(X∗i /
√

2) and Wi = Φ(W ∗i ) where Φ is the Gaussian cdf.

We use h0(x) = 4x−2 for our linear design and h0(x) = log(|6x−3|+1)sgn(x− 1
2) for our nonlinear

design (our nonlinear h0 is a re-scaled version of the h0 used in Newey and Powell (2003)). Note

that the nonlinear h0 belongs to a Hölder ball of smoothness p with 1 < p < 2.

For both designs, we generate 1000 samples of length n = 1000 and n = 5000 and implement

our procedure using cubic and quartic B-spline bases with interior knots placed evenly. We use

0, 1, 3, 7, 15, . . . interior knots so that the sieve spaces BK and ΨJ are nested as K, J increase. We

then repeat the experiments using Legendre polynomial bases (orthonormalized with respect to the

L2([0, 1]) inner product). Note that the results using a Legendre polynomial basis for the space ΨJ

are incompatible with our earlier theory on attainability of optimal sup-norm rates. We set σ = 1

in Ĵ for all simulation designs and then repeat the experiments with σ = 0.1 to investigate the

sensitivity of our estimator to the user-specified value σ (σ = 1 is the correct conditional variance

of u). We choose Ĵmax as described in Section 3.2 with a = 1
10 (the results were insensitive to the

choice of a). For each sample we calculate the sup-norm and L2-norm loss of our estimator ĥ
Ĵ

and

the sup-norm relative error ratio

‖ĥ
Ĵ
− h0‖∞

‖ĥJ∞ − h0‖∞
where J∞ = argminj∈IJ‖ĥj − h0‖∞ (7)

and the L2-norm relative error ratio

‖ĥ
Ĵ
− h0‖L2(X)

‖ĥJ2 − h0‖L2(X)

where J2 = argminj∈IJ‖ĥj − h0‖L2(X) (8)

where J∞ and J2 are the (infeasible) choices of J which minimize the sup and L2-norm errors of hJ

in the sample. Finally, we take the average of each of ‖ĥ
Ĵ
− h0‖∞, ‖ĥ

Ĵ
− h0‖L2(X), and equations

(7) and (8) across the 1000 samples.

The results of the MC exercise with n = 1000 are presented in Tables 1 and 2 and may be

summarized as follows:

(1) When implemented with a B-spline basis for ΨJ , the sup-norm loss of our data-driven estimator

ĥ
Ĵ

is at most 11% larger than that of the infeasible estimator which minimizes the sup-norm loss

in each sample. Further, the L2-norm loss of ĥ
Ĵ

is at most 6% larger than that of the infeasible

estimator which minimizes the L2-norm loss in each sample.

(2) Reducing σ from 1 (correct) to 0.1 (incorrect) has little, if any, effect on the performance of ĥ
Ĵ

when a B-spline basis is used for ΨJ .

(3) The data-driven estimator ĥ
Ĵ

again performs well with Legendre polynomial bases and σ = 1,

with sup-norm loss at most 1% larger than that of the infeasible choice of J for the linear design,

and at most 15% larger than that of the infeasible choice in the nonlinear design. Similar results
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K(J) = J K(J) = 2J
σ = 1 σ = 0.1 σ = 1 σ = 0.1

rJ rK sup L2 sup L2 sup L2 sup L2

Design 1: Linear h0

4 4 1.0287 1.0003 1.0326 1.0030 1.0874 1.0383 1.0994 1.0530
4 5 1.0696 1.0293 1.0835 1.0447 1.0579 1.0196 1.0879 1.0456
5 5 1.0712 1.0198 1.0712 1.0198 1.1092 1.0560 1.1092 1.0560
4 Leg 1.0332 1.0005 1.0385 1.0067 1.0469 1.0106 1.1004 1.0569
5 Leg 1.0745 1.0208 1.0745 1.0208 1.0558 1.0278 1.0558 1.0278

Leg Leg 1.0150 1.0000 4.6014 3.1509 1.0175 1.0031 6.2664 4.1851
Design 2: Nonlinear h0

4 4 1.0235 1.0006 1.0278 1.0032 1.0782 1.0325 1.0885 1.0479
4 5 1.0623 1.0266 1.0691 1.0346 1.0486 1.0167 1.0804 1.0401
5 5 1.0740 1.0216 1.0740 1.0216 1.1138 1.0605 1.1138 1.0605
4 Leg 1.0280 1.0016 1.0336 1.0078 1.0406 1.0104 1.0914 1.0520
5 Leg 1.0785 1.0231 1.0785 1.0231 1.0613 1.0355 1.0613 1.0355

Leg Leg 1.1185 1.1516 1.8019 1.4263 1.1418 1.1883 1.7814 1.4307

Table 1: Average sup-norm and L2-norm relative error ratios (see equations (7)
and (8)) across MC simulations with n = 1000. Results are presented for B-spline
and Legendre polynomial bases with two different rules for K(J). Results for rJ = 4
(rJ = 5) use a cubic (quartic) B-spline basis for ΨJ , rJ = Leg use a Legendre poly-
nomial basis for ΨJ . The rK column specifies the basis for BK similarly. Columns
headed σ = 1 and σ = 0.1 correspond to implementing ĥĴ with the correct and
incorrect value of σ, respectively.

K(J) = J K(J) = 2J
σ = 1 σ = 0.1 σ = 1 σ = 0.1

rJ rK sup L2 sup L2 sup L2 sup L2

Design 1: Linear h0

4 4 0.4262 0.1547 0.4298 0.1556 0.4188 0.1526 0.4233 0.1548
4 5 0.4179 0.1524 0.4226 0.1545 0.3918 0.1439 0.4038 0.1483
5 5 0.6633 0.2355 0.6633 0.2355 0.6366 0.2277 0.6366 0.2277
4 Leg 0.4262 0.1547 0.4312 0.1566 0.3778 0.1388 0.3962 0.1452
5 Leg 0.6633 0.2355 0.6633 0.2355 0.5977 0.2155 0.5977 0.2155

Design 2: Nonlinear h0

4 4 0.4343 0.1621 0.4380 0.1631 0.4271 0.1601 0.4324 0.1628
4 5 0.4262 0.1600 0.4290 0.1613 0.4002 0.1518 0.4123 0.1560
5 5 0.6726 0.2407 0.6726 0.2407 0.6471 0.2330 0.6471 0.2330
4 Leg 0.4343 0.1621 0.4394 0.1640 0.3854 0.1475 0.4030 0.1534
5 Leg 0.6726 0.2407 0.6726 0.2407 0.6068 0.2215 0.6068 0.2215

Table 2: Average sup-norm error and L2-norm error of ĥĴ across MC simulations
with n = 1000. Columns and row headings are as described in Table 1.
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K(J) = J K(J) = 2J
σ = 1 σ = 0.1 σ = 1 σ = 0.1

rJ rK sup L2 sup L2 sup L2 sup L2

Design 1: Linear h0

4 4 1.0239 1.0004 1.0239 1.0004 1.0638 1.0345 1.0653 1.0358
4 5 1.0533 1.0274 1.0533 1.0274 1.0415 1.0091 1.0444 1.0120
5 5 1.0616 1.0048 1.0616 1.0048 1.0987 1.0418 1.0987 1.0418
4 Leg 1.0244 1.0004 1.0244 1.0004 1.0339 1.0094 1.0339 1.0094
5 Leg 1.0635 1.0043 1.0635 1.0043 1.0467 1.0143 1.0467 1.0143

Leg Leg 1.0136 1.0000 4.3937 3.0114 1.0135 1.0010 3.9764 2.7687
Design 2: Nonlinear h0

4 4 1.0168 1.0027 1.0168 1.0027 1.0435 1.0231 1.0448 1.0244
4 5 1.0377 1.0200 1.0377 1.0200 1.0233 1.0092 1.0258 1.0123
5 5 1.0715 1.0175 1.0715 1.0175 1.0967 1.0508 1.0967 1.0508
4 Leg 1.0181 1.0028 1.0181 1.0028 1.0192 1.0091 1.0192 1.0091
5 Leg 1.0743 1.0176 1.0743 1.0176 1.0588 1.0386 1.0588 1.0386

Leg Leg 1.3855 1.6588 1.5866 1.4010 1.4246 1.7316 1.4740 1.3321

Table 3: Average sup-norm and L2-norm relative error ratios (see equations (7)
and (8)) across MC simulations with n = 5000. Columns and row headings are as
described in Table 1.

K(J) = J K(J) = 2J
σ = 1 σ = 0.1 σ = 1 σ = 0.1

rJ rK sup L2 sup L2 sup L2 sup L2

Design 1: Linear h0

4 4 0.1854 0.0669 0.1854 0.0669 0.1851 0.0668 0.1857 0.0669
4 5 0.1851 0.0667 0.1851 0.0667 0.1735 0.0626 0.1742 0.0628
5 5 0.3012 0.1051 0.3012 0.1051 0.2893 0.1018 0.2893 0.1018
4 Leg 0.1854 0.0669 0.1854 0.0669 0.1703 0.0616 0.1703 0.0616
5 Leg 0.3012 0.1051 0.3012 0.1051 0.2684 0.0965 0.2684 0.0965

Design 2: Nonlinear h0

4 4 0.2037 0.0822 0.2037 0.0822 0.2031 0.0820 0.2037 0.0822
4 5 0.2031 0.0820 0.2031 0.0820 0.1921 0.0786 0.1928 0.0789
5 5 0.3150 0.1157 0.3150 0.1157 0.3044 0.1128 0.3044 0.1128
4 Leg 0.2037 0.0822 0.2037 0.0822 0.1889 0.0779 0.1889 0.0779
5 Leg 0.3150 0.1157 0.3150 0.1157 0.2844 0.1082 0.2844 0.1082

Table 4: Average sup-norm error and L2-norm error of ĥĴ across MC simulations
with n = 5000. Columns and row headings are as described in Table 1.
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are obtained for L2 loss.

(4) With a Legendre basis, the estimator appears to perform considerably worse with the (incorrect)

σ = 0.1, especially in the linear design. This merits an explanation. In the linear case, the true

model is obtained with J = 2. As such, the L2 and sup-norm error of the infeasible estimators are

very small. When σ = 0.1 the Lepski procedure is less conservative and the data-driven estimator

ĥ
Ĵ

is slightly more noisy. This noise is amplified in the relative error ratios because the loss for the

infeasible estimators in this design is very small.

(5) The relative error of the estimators with K > J is similar to than that obtained with K = J .

The absolute error (see Table 2) of the estimators with K > J was slightly better than that

with K = J . This emphasizes that the critical smoothing parameter is J ; the choice of K is of

higher-order importance.

Tables 3 and 4 display the results for the MC simulations repeated with n = 5000. Similar conclu-

sions are obtained, except the absolute errors are smaller with this larger sample size.

4 Application: inference in nonparametric demand estimation with

endogeneity

We now turn to inference on policy-relevant welfare functionals in nonparametric demand estima-

tion. Following a large literature on nonparametric demand estimation (see, e.g., Hausman and

Newey (1995); Vanhems (2010); Blundell et al. (2012); Blundell, Horowitz, and Parey (2013) and

references therein), we assume that the demand of consumer i for some good is given by:

Qi = h0(Pi,Yi) + ui (9)

where Qi is the quantity of some good demanded, Pi is the price paid, and Yi is the income of

consumer i, and ui is an error term.12 Hausman and Newey (1995) provided limit theory for con-

sumer surplus and deadweight loss functionals of the nonparametric demand function h0 assuming

prices and incomes are exogenous. In certain settings it is reasonable to allow prices, and possibly

incomes, to be endogenous. One example is estimation the of gasoline demand from household-level

data (Schmalensee and Stoker, 1999; Yatchew and No, 2001; Blundell et al., 2012, 2013). Even with

household-level data there is evidence of endogeneity in prices (Yatchew and No, 2001; Blundell

et al., 2013). Gasoline prices in a small local area and distance to the Gulf Coast have been sug-

gested as instruments for gasoline price (see Yatchew and No (2001) and Blundell et al. (2013),

respectively). In this case, model (9) falls into the class of models discussed in Section 2.5. Another

example is the estimation of static models of labor supply, in which Qi represents hours worked, Pi

is the wage, and Yi is other income. In this setting it is reasonable to allow for endogeneity of both

12We have followed Blundell et al. (2012) in modeling Q as the dependent variable, but the following analysis can
easily be extended to take some transformation of Q as the dependent variable, as in Hausman and Newey (1995).
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Pi and Yi (see Blundell, Duncan, and Meghir (1998), Blundell, MaCurdy, and Meghir (2007), and

references therein). Therefore, we extend the analysis of Hausman and Newey (1995) to allow for

potential endogeneity in prices and incomes.

Previously, Vanhems (2010) established convergence rates for plug-in estimators of consumer surplus

allowing for endogeneity of prices. More recently, Blundell et al. (2012) nonparametrically estimated

exact deadweight loss from a first-stage kernel-based estimate of the demand function h0 (subject

to the Slutsky inequality restriction) allowing for endogeneity of prices. Neither of these papers

established asymptotic distribution of their estimators.

The first functional of interest is exact consumer surplus (CS), namely the equivalent variation

of a price change from p0 to p1 at income level y (fixed over the price change), which we denote

by Sy(p
0). Let p : [0, 1] → R denote a twice continuously differentiable path with p(0) = p0 and

p(1) = p1. Hausman (1981) shows that Sy(p
0) is the solution to

∂Sy(p(t))

∂t
= −h0

(
p(t), y − Sy(p(t))

)dp(t)

dt

Sy(p(1)) = 0 .

(10)

The second functional of interest is the deadweight loss (DWL) of the price change from p0 to p1

at income level y:

Dy(p
0) = Sy(p

0)− (p1 − p0)h0(p1, y) . (11)

In what follows we use the notation

fCS(h) = solution to (10) with h in place of h0

fDWL(h) = fCS(h)− (p1 − p0)h(p1, y) .

In this notation we have Sy(p
0) = fCS(h0) and Dy(p

0) = fDWL(h0). We estimate CS and DWL

using the plug-in estimators fCS(ĥ) and fDWL(ĥ).13

As is evident from Hausman and Newey (1995), sup-norm convergence rates of ĥ and its derivatives

are required to control the nonlinearity bias when estimating CS and DWL using the plug-in

estimators fCS(ĥ) and fDWL(ĥ).14

Both CS and DWL will typically be irregular (i.e. slower than
√
n-estimable) functionals of h0 when

prices and incomes are allowed to be endogenous. Inference on CS and DWL may be performed

13Modulo other considerations, the functional form of our DWL estimator is different from that used recently by
Blundell et al. (2012), namely ê(p1)− ê(p0)− (p1 − p0)ĥ(p1, ê(p1)) where ê(p) is an estimated expenditure function
which is obtained as the solution to a differential equation which, up to a change of sign, is the same as (10).

14The exception is when demand is independent of income, i.e. h0(p, y) = h0(p), in which case Sy(p
0) and Dy(p

0)
are linear functionals of h0.
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using studentized sieve t-statistics. To estimate the sieve variance of fCS(ĥ) and fDWL(ĥ), define

∂fCS(ĥ)

∂h
[ψJ ] =

∫ 1

0

(
ψJ(p(t), y − Ŝy(t))e

−
∫ t
0 ∂2ĥ(p(v),y−Ŝy(v))p′(v) dvp′(t)

)
dt

∂fDWL(ĥ)

∂h
[ψJ ] =

∂fCS(ĥ)

∂h
[ψJ ] + (p1 − p0)ψJ(p1, y)

where p′(t) = dp(t)
dt and ∂2h denotes the partial derivative of h with respect to its second argument

and Ŝy(t) denotes the solution to (10) with ĥ in place of h0. The sieve variances of fCS and fDWL

are

V̂CS,n =
∂fCS(ĥ)

∂h
[ψJ ]′[Ŝ′Ĝ−1

b Ŝ]−1Ŝ′Ĝ−1
b Ω̂Ĝ−1

b Ŝ[Ŝ′Ĝ−1
b Ŝ]−1∂fCS(ĥ)

∂h
[ψJ ]

V̂DWL,n =
∂fDWL(ĥ)

∂h
[ψJ ]′[Ŝ′Ĝ−1

b Ŝ]−1Ŝ′Ĝ−1
b Ω̂Ĝ−1

b Ŝ[Ŝ′Ĝ−1
b Ŝ]−1∂fDWL(ĥ)

∂h
[ψJ ]

where Ŝ = B′Ψ/n, Ĝb = B′B/n, and Ω̂ = n−1
∑n

i=1 û
2
i b
K(Wi)b

K(Wi)
′ with ûi = (Qi − ĥ(Xi)) and

Xi = (Pi,Yi)
′. We take Wi to be a 2× 1 vector of instruments when Pi and Yi are endogenous, and

we take Wi = (W1i,Yi)
′ when Yi is exogenous where W1i an instrument for Pi.

We now present regularity conditions under which sieve t-statistics for fCS(ĥ) and fDWL(ĥ) are

asymptotically N(0, 1). In the case in which both Pi and Yi are endogenous, let T : L2(X)→ L2(W)

be compact with singular value decomposition {φ0j , φ1j , µj}∞j=1 where

Tφ0j = µjφ1j , (T ∗T )1/2φ0j = µjφ0j , (TT ∗)1/2φ1j = µjφ1j

and {φ0j}∞j=1 and {φ0j}∞j=1 are orthonormal bases for L2(X) and L2(W), respectively. In the case in

which Pi is endogenous but Yi is exogenous, we let Ty : L2(P|Y = y)→ L2(W1|Y = y) be compact

with singular value decomposition {φ0j,y, φ1j,y, µj,y}∞j=1 for each y where

Tyφ0j,y = µj,yφ1j,y, (T ∗y Ty )1/2φ0j,y = µj,yφ0j,y, (Ty T
∗
y )1/2φ1j,y = µj,yφ1j,y

and {φ0j,y}∞j=1 and {φ0j,y}∞j=1 are orthonormal bases for L2(P|Y = y) and L2(W1|Y = y), respec-

tively. In this case, we define φ0j(p, y) = φ0j,y(p), φ1j(w1, y) = φ1j,y(w1), and µ2
j = E[µ2

j,Yi
] (see

Section 2.5 for further details). In both cases, for fixed p0, p1, y we define

aj = aj(p
0, p1, y) =

∫ 1

0

(
φ0j(p(t), y − Sy(t))e−

∫ t
0 ∂2h0(p(v),y−Sy(v))p′(v) dvp′(t)

)
dt (12)

for each j ≥ 1. We also follow Chen and Pouzo (2014) and assume that ΨJ and BK are Riesz bases

in that they span φ01, . . . , φ0J and φ11, . . . , φ1J , respectively.
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Assumption CS (i) Xi and Wi both have compact rectangular support and densities bounded

away from 0 and ∞; (ii) h0 ∈ B∞(p, L) with p > 2 and 0 < L <∞; (iii) E[u2
i |Wi = w] is uniformly

bounded away from 0 and ∞, E[|ui|2+δ] is finite, and supw E[u2
i {|ui| > `(n)}|Wi = w] = o(1) for

any positive sequence with `(n) ↗ ∞; (iv) ΨJ is spanned by a (tensor-product) B-spline basis of

order γ > p or continuously differentiable wavelet basis of regularity γ > p and BK is spanned by a

(tensor-product) B-spline, wavelet or cosine basis; and (v)

√
n(∑J

j=1(aj/µj)2
)1/2

×
(
J−p/2 +

(
J−p/2 + µ−1

J

√
(J log n)/n

)2
(1 + J1/2)

)
= o(1) ,

(J (2+δ)/(2δ) ∨ J3/2µ−1
J ∨ J2µ−2

J (
∑J

j=1(aj/µj)
2)−1/2)

√
(log n)/n = o(1).

Assumption CS(i)–(iv) is very similar to Assumptions 1, 2, 7, and 8 in Hausman and Newey (1995)

with the exception that Hausman and Newey (1995) use a power series basis and work with log

prices, log incomes, and log demand.

Our first result is asymptotic normality of sieve t-statistics for CS functionals.

Theorem 4.1 Let Assumption CS hold. Then:

√
n
fCS(ĥ)− fCS(h0)

V̂
1/2
CS,n

⇒ N(0, 1) .

We now present a corresponding result for DWL functionals. To introduce the result, define āj =

aj + (p1 − p0)φ0j(p
1, y).

Theorem 4.2 Let Assumption CS hold with āj in place of aj. Then:

√
n
fDWL(ĥ)− fDWL(h0)

V̂
1/2
DWL,n

⇒ N(0, 1) .

Hausman and Newey (1995) suggest that aj = o(āj) as j → ∞ because aj is a smooth integral

functional whereas āj depends on the functions evaluated at a particular point. Therefore we should

expect that the convergence rate of fDWL(ĥ) to be slower than that of fCS(ĥ). For this reason we

do not derive the joint asymptotic distribution of fCS(ĥ) and fDWL(ĥ).

We now provide more concrete conditions under which the sieve t-statistics for exact consumer

surplus are asymptotically normal, allowing for endogeneity. Analogous results hold for deadweight

loss if we replace aj by āj in what follows.
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Corollary 4.1 Let Assumption CS(i)–(iv) hold and let aj � ja/2. Then:

(1) Mildly ill-posed case: let µj � j−ς/2 with a + ς ≥ −1 and δ ≥ 2/(2 + ς − (a ∧ 0)) and let

nJ−(p+a+ς+1) = o(1) and J3+ς−(a∧0)(log n)/n = o(1). Then: the population counterpart VCS,n of

V̂CS,n behaves like

VCS,n �
∑J

j=1(aj/µj)
2 �

∑J
j=1 j

a+ς � J (a+ς)+1 ,

Assumption CS(v) holds, and the sieve t-statistic for fCS(h0) is asymptotically N(0, 1).

(2) Severely ill-posed case: let µj � exp(−1
2j
ς/2) and a > 0 and take J = (log(n/(log n)%))2/ς where

% > 0 is chosen such that %ς > (6+ ς)∨ (8−2a+ ς)∨ (6+2ς−2a). Then: the population counterpart

VCS,n of V̂CS,n behaves like

VCS,n &
n

(log n)%
× (log(n/(log n)%))2a/ς ,

Assumption CS(v) holds, and the sieve t-statistic for fCS(h0) is asymptotically N(0, 1).

Note that we may choose J satisfying the stated conditions for the mildly ill-posed case provided

p > 2 − a − (a ∧ 0), which is trivially true if p > 2 whenever a ≥ 0. We may also choose such a %

for the severely ill-posed case whenever 4p > [(6 + ς) ∨ (8− 2a+ ς) ∨ (6 + 2ς − 2a)]− 2a+ 2.

We finish this section by stating conditions for asymptotic normality of fCS(ĥ) in the exogenous

case in which τJ = 1 and the sieve NPIV estimator reduces to the usual series LS estimator. Let

the basis functions span an orthonormal basis φ1, . . . , φJ for each J and let aj be as defined in

(12) with φj in place of φ0j . Assumption CS(v) then applies with µj = 1 for each j. The following

result describes the regularity conditions for asymptotic normality of fCS(ĥ). Analogous results for

fDWL(ĥ) hold if we replace aj by āj = aj + (p1 − p0)φj(p
1, y) in what follows.

Corollary 4.2 Let Assumption CS(i)–(iv) hold, let aj � ja/2 with a ≥ −1, and let nJ−(p+a+1) =

o(1) and J3−(a∧0)(log n)/n = o(1) and δ ≥ 2/(2− (a ∧ 0)). Then: the population counterpart VCS,n

of V̂CS,n behaves like VCS,n � Ja+1, Assumption CS(v) holds, and the sieve t-statistic for fCS(h0)

is asymptotically N(0, 1).

Hausman and Newey (1995) establish asymptotic normality of t-statistics for exact CS and DWL

plug-in estimators based on a kernel estimator of demand. They also establish asymptotic normality

of t-statistics for averaged exact CS and DWL plug-in estimators (i.e. exact CS/DWL averaged over

a range of incomes) based on a series LS estimator of demand with power series basis, assuming

h0 to be infinitely times differentiable and J22/n = o(1). Newey (1997) establishes asymptotic

normality of t-statistics for approximate CS functionals based on series LS estimators of demand

under weaker conditions (i.e. nJ−p = o(1) and either J6/n = o(1) for power series or J4/n = o(1)
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for splines), but also without endogeneity.15 Corollary 4.2 complements their analysis by providing

conditions for asymptotic normality of exact CS and DWL functionals based on series LS estimators

of demand.

Appendix A Pointwise asymptotic normality of sieve t-statistics

In this section we establish asymptotic normality of sieve t-statistics for f(h0) where f : L∞(X)→ R
is any nonlinear functional of NPIV. Under some high-level conditions, Chen and Pouzo (2014)

established the pointwise asymptotic normality of the sieve t statistics for (possibly) nonlinear

functionals of h0 satisfying general semi/nonparametric conditional moment restrictions including

NPIV and nonparametric quantile IV as special cases. As the sieve NPIV estimator ĥ has a closed-

form expression (unlike, say, nonparametric quantile IV) we derive the limit theory directly rather

than appealing to the general theory in Chen and Pouzo (2014). Our regularity conditions are

tailored to the case in which f(h0) is irregular (i.e. slower than root-n estimable).

Denote the derivative of f at h0 in the direction v ∈ V := (L2(X)− {h0}) by

∂f(h0)

∂h
[g] = lim

δ→0+

f(h0 + δg)

δ
.

If f is a linear functional then ∂f(h0)
∂h [g] = f(g). The sieve 2SLS Riesz representer of ∂f(h0)

∂h is

v∗n(x) = ψJ(x)′[S′G−1
b S]−1∂f(h0)

∂h
[ψJ ]

where ∂f(h0)
∂h [ψJ ] denotes the vector formed by applying ∂f(h0)

∂h [·] to each element of ψJ . Define the

weak norm ‖ · ‖ on ΨJ as ‖h‖ = ‖ΠKTh‖L2(W ). Then

‖v∗n‖2 =
∂f(h0)

∂h
[ψJ ]′[S′G−1

b S]−1∂f(h0)

∂h
[ψJ ] .

We say that the functional f is an irregular (i.e. slower than
√
n-estimable) functional of h0 if

‖v∗n‖ ↗ ∞ and a regular (i.e.
√
n-estimable) functional of h0 if ‖v∗n‖ ↗ ‖v∗‖ <∞.

The sieve 2SLS variance ‖v∗n‖2sd is defined as

‖v∗n‖2sd =
∂f(h0)

∂h
[ψJ ]′[S′G−1

b S]−1S′G−1
b ΩG−1

b S[S′G−1
b S]−1∂f(h0)

∂h
[ψJ ]

15Using the results in Chen and Christensen (2014), one can show that sieve t-statistics for approximate CS
based on spline or wavelet LS estimates of log demand without endogeneity are asymptotically normal under
assumptions comparable to Assumption CS(i)–(iii) provided nJ−(p+a+1) = o(1), J1−(a∧0)(logn)2/n = o(1), and
J(2+δ)/δ(logn)/n = o(1).
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where Ω = ΩK = E[u2
i b
K(Wi)b

K(Wi)
′]. Our estimator of ‖v∗n‖2sd is

‖̂v∗n‖
2

sd =
∂f(ĥ)

∂h
[ψJ ]′[Ŝ′Ĝ−1

b Ŝ]−1Ŝ′Ĝ−1
b Ω̂Ĝ−1

b Ŝ[Ŝ′Ĝ−1
b Ŝ]−1∂f(ĥ)

∂h
[ψJ ]

where Ω̂ = n−1
∑n

i=1 û
2
i b
K(Wi)b

K(Wi)
′ with ûi = (Yi − ĥ(Xi)), which is analogous to the usual

linear 2SLS variance estimator. The scaled sieve Riesz representer

u∗n = v∗n/‖v∗n‖sd

has the property that ‖u∗n‖ � 1 irrespective of whether f(h0) is regular or irregular. Finally, denote

v̂∗n(x) = ψJ(x)′[S′G−1
b S]−1∂f(ĥ)

∂h
[ψJ ]

where clearly v∗n = v̂∗n whenever f(·) is linear.

Assumption 2 (continued) (iii) E[u2
i |Wi = w] ≥ σ2 > 0 uniformly for w ∈ W; and (iv)

supw E[u2
i {|ui| > `(n)}|Wi = w] = o(1) for any positive sequence with `(n)↗∞.

Assumption 5 Either (a) or (b) of the following hold:

(a) f is a linear functional and ‖v∗n‖−1(f(h̃)− f(h0)) = op(n
−1/2); or

(b) (i) g 7→ ∂f(h0)
∂h [g] is a linear functional; (ii)

√
n

(f(ĥ)− f(h0)

‖v∗n‖
=
√
n
∂f(h0)
∂h [ĥ− h̃]

‖v∗n‖
+ op(1) ;

and (iii) ‖v̂
∗
n−v∗n‖
‖v∗n‖

= op(1).

Assumption 2(iv) is a mild condition which is trivially satisfied if E[|ui|2+ε|Wi = w] is uniformly

bounded for some ε > 0. Assumption 5(a) and (b)(i)(ii) is similar to Assumption 3.5 of Chen and

Pouzo (2014). Assumption 5(b)(iii) controls any additional error arising in the estimation of ‖̂v∗n‖sd
due to nonlinearity of f(·) and is not required when f(·) is a linear functional. Previously, Chen and

Pouzo (2014) verified their Assumption 3.5 using a plug-in sieve minimum distance estimator of

a weighted quadratic functional example. However, without a sup-norm convergence rate, it could

be difficult to verify the high-level conditions for nonlinear functionals that are more complicated

than a quadratic functional of NPIV.

Remark A.1 Let Hn ⊆ H be a neighborhood of h0 such that ĥ, h̃ ∈ Hn wpa1. Sufficient conditions

for Assumptions 5(a) and (b)(i)(ii) are:
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(a’) (i) f is a linear functional and there exists α with |α| ≥ 0 s.t. |f(h− h0)| . ‖∂αh− ∂αh0‖∞
for all h ∈ Hn; and (ii) ‖v∗n‖−1‖∂αh̃− ∂αh0‖∞ = op(n

−1/2); or

(b’) (i) g 7→ ∂f(h0)
∂h [g] is a linear functional and there exists α with |α| ≥ 0 s.t. |∂f(h0)

∂h [h − h0]| .
‖∂αh− ∂αh0‖∞ for all h ∈ Hn; (ii) there exists α1, α2 with |α1|, |α2| ≥ 0 s.t.∣∣∣∣f(ĥ)− f(h0)− ∂f(h0)

∂h
[ĥ− h0]

∣∣∣∣ . ‖∂α1 ĥ− ∂α1h0‖∞‖∂α2 ĥ− ∂α2h0‖∞ ;

and (iii) ‖v∗n‖−1(‖∂α1 ĥ− ∂α1h0‖∞‖∂α2 ĥ− ∂α2h0‖∞ + ‖∂αh̃− ∂αh0‖∞) = op(n
−1/2).

Condition (a’)(i) is trivially satisfied for any evaluation functional of the form f(h) = ∂αh(x̄) for

fixed x̄ ∈ X with Hn = H. Condition (b’)(i)(ii) are satisfied by typical nonlinear welfare functionals

such as exact consumer surplus and deadweight loss functionals (see Hausman and Newey (1995)).

Conditions (a’)(i) and (b’)(iii) can be verified given the sup-norm rate results in Section 2.

Theorem A.1 (1) Let Assumptions 1(iii), 2(i)(iii)(iv), 4(i), and either 5(a) or 5(b)(i)(ii) hold,

and let τJζ
√

(J log n)/n = o(1). Then:

√
n

(f(ĥ)− f(h0))

‖v∗n‖sd
⇒ N(0, 1) .

(2) If ‖ĥ − h0‖∞ = op(1) and Assumptions 2(ii) and 3(iii) hold (and 5(b)(iii) also holds if f is

nonlinear), then: ∣∣∣∣∣ ‖̂v∗n‖sd‖v∗n‖sd
− 1

∣∣∣∣∣ = op(1)

√
n

(f(ĥ)− f(h0))

‖̂v∗n‖sd
⇒ N(0, 1) .

Chen and Pouzo (2014) establish asymptotic normality of plug-in estimators of possibly nonlinear

functionals in general semi/nonparametric conditional moment restriction models with endogeneity.

By exploiting the close form expression of the sieve NPIV estimator and by applying exponential

inequalities for random matrices, Theorem A.1 derives the limit theory allowing for faster growth

rate of J than Remark 6.1 in Chen and Pouzo (2014).

Appendix B Bootstrap uniform limit theory for sieve t-statistics

We now show how our sup-norm rate results and tight bounds on random matrices can be used to

derive bootstrap uniform confidence bands for a class of general nonlinear functionals {ft(·) : t ∈ T }
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of h0 in a NPIV model where T is a (possibly infinite dimensional) index set. In particular, we

establish validity of a sieve score bootstrap for estimating the distribution of supremum of the sieve

t-statistic process (i.e. the process formed by calculating the sieve t-statistic for each ft(h0)), which

leads to asymptotically exact uniform confidence bands for {ft(h0) : t ∈ T }.

Let T be a closed subset of a separable metric space and let ft : L∞(X) → R for each t ∈ T . For

each t ∈ T we define

∂ft(h0)

∂h
[g] = lim

δ→0+

ft(h0 + δg)

δ

v∗n,t(x) = ψJ(x)′[S′G−1
b S]−1∂ft(h0)

∂h
[ψJ ]

v̂∗n,t(x) = ψJ(x)′[S′G−1
b S]−1∂ft(ĥ)

∂h
[ψJ ]

‖v∗n,t‖2 =
∂ft(h0)

∂h
[ψJ ]′[S′G−1

b S]−1∂ft(h0)

∂h
[ψJ ]

‖v∗n,t‖2sd =
∂ft(h0)

∂h
[ψJ ]′[S′G−1

b S]−1S′G−1
b ΩG−1

b S[S′G−1
b S]−1∂ft(h0)

∂h
[ψJ ]

‖̂v∗n,t‖
2

sd
=
∂ft(ĥ)

∂h
[ψJ ]′[Ŝ′Ĝ−1

b Ŝ]−1Ŝ′Ĝ−1
b Ω̂Ĝ−1

b Ŝ[Ŝ′Ĝ−1
b Ŝ]−1∂ft(ĥ)

∂h
[ψJ ]

u∗n,t(x) = v∗n,t(x)/‖v∗n,t‖sd

with ‖ · ‖, Ω, and Ω̂ as defined in Appendix A.

To construct uniform confidence bands for {ft(h0) : t ∈ T } we propose the following sieve score

bootstrap procedure. Let $1, . . . , $n be a bootstrap sample of IID random variables drawn inde-

pendently of the data, with E[$i|Zn] = 0, E[$2
i |Zn] = 1, E[|$i|2+ε|Zn] < ∞ for some ε ≥ 1.

Common examples of distributions for $i include N(0, 1), recentered exponential, Rademacher, or

the two-point distribution of Mammen (1993).16 The sieve score bootstrap process {Z∗n(t) :∈ T } is

given by

Z∗n(t) =
∂ft(ĥ)
∂h [ψJ ]′[Ŝ′Ĝ−1

b Ŝ]−1Ŝ′Ĝ−1
b

‖̂v∗n,t‖sd

(
1√
n

n∑
i=1

bK(Wi)ûi$i

)

for each t ∈ T , where ûi = Yi − ĥ(Xi).

Assumption 2 (iv’) supw E[|ui|3|Wi = w] <∞.

Assumption 5’ Let ηn and η′n be sequences of positive constants such that ηn = o(1) and η′n = o(1).

Either (a) or (b) of the following holds:

16To generate recentered exponential weights let ei be a draw from the exponential distribution with mean 1 and
let $i = ei − 1. The Rademacher weights put probability 0.5 on both 1 and −1. Mammen’s two-point distribution

puts probability
√
5+1

2
√
5

on 1−
√
5

2
and probability 1−

√
5+1

2
√
5

on
√
5+1√
2

.
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(a) ft is a linear functional for each t ∈ T and supt∈T
√
n‖v∗t,n‖−1|ft(h̃)− ft(h0)| = Op(ηn); or

(b) (i) g 7→ ∂ft(h0)
∂h [g] is a linear functional with ‖v∗n,t‖ 6= 0 for each t ∈ T ; (ii)

sup
t∈T

∣∣∣∣∣√n(ft(ĥ)− f(h0)

‖v∗n,t‖
−
√
n
∂ft(h0)
∂h [ĥ− h̃]

‖v∗n,t‖

∣∣∣∣∣ = Op(ηn) ;

and (iii) supt∈T
‖v̂∗n,t−v∗n,t‖
‖v∗n,t‖

= Op(η
′
n).

Let dn denote the intrinsic semi-metric on T given by dn(t1, t2)2 = E[(u∗n,t1(Xi)− u∗n,t2(Xi))
2] and

let N(T , dn, ε) denote the ε-entropy of T with respect to dn. Let δh,n be a sequence of positive

constants such that δh,n = o(1) and define δV,n = (ζ
(2+δ)/δ
b,K

√
(logK)/n)δ/(1+δ) + τJζ

√
(log J)/n).

Assumption 6 (i) (T , dn) is separable for each n;

(ii) there exists a sequence of finite positive constants cn such that

1 +

∫ ∞
0

√
logN(T , dn, ε) dε = O(cn) ;

and (iii) there exists a sequence of positive constants rn with rn = o(1) such that

ζb,KJ
2

r3
n

√
n

= o(1)

and

ηn + η′n
√
J + rn + (δV,n + δh,n + η′n)× cn = o(c−1

n )

where ‖ĥ− h0‖∞ = Op(δh,n) = op(1) and η′n ≡ 0 if the ft are linear.

Assumptions 2(iv’) is a mild condition used to derive the uniform limit theory. Assumption 5’ is a

uniform (in t) version of Assumption 5. Assumption 5’(iii) is only required for consistent variance

estimation. Assumption 6 is a mild regularity condition requiring the class {u∗t : t ∈ T } not be too

complex. This condition is used to place tight bounds on the supremum of the bootstrap t-statistic

processes.

Remark B.1 Let Hn ⊆ H be a neighborhood of h0 such that ĥ, h̃ ∈ Hn wpa1 and let vn be such

that inft∈T ‖v∗n,t‖sd ≥ vn > 0 for each n. Sufficient conditions for Assumptions 5’(a) and (b)(i)(ii)

are:

(a’) (i) ft is a linear functional for each t ∈ T and there exists α with |α| ≥ 0 s.t. supt |ft(h−h0)| .
‖∂αh− ∂αh0‖∞ for all h ∈ Hn; and (ii) v−1

n ‖∂αh̃− ∂αh0‖∞ = op(n
−1/2); or
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(b’) (i) g 7→ ∂ft(h0)
∂h [g] is a linear functional for each t ∈ T and there exists α with |α| ≥ 0 s.t.

supt |
∂ft(h0)
∂h [h−h0]| . ‖∂αh−∂αh0‖∞ for all h ∈ Hn; (ii) there exists α1, α2 with |α1|, |α2| ≥ 0

s.t.

sup
t

∣∣∣∣ft(ĥ)− ft(h0)− ∂ft(h0)

∂h
[ĥ− h0]

∣∣∣∣ . ‖∂α1 ĥ− ∂α1h0‖∞‖∂α2 ĥ− ∂α2h0‖∞ ;

and (iii) v−1
n (‖∂α1 ĥ− ∂α1h0‖∞‖∂α2 ĥ− ∂α2h0‖∞ + ‖∂αh̃− ∂αh0‖∞) = op(n

−1/2).

Condition (a’)(i) is satisfied for any evaluation functional of the form ft(h) = ∂αh(t) with T ⊆ X
and Hn = H.

Remark B.2 Let T ⊂ RdT be compact and let there exist sequence of positive constants Γn, γn

such that

sup
h∈ΨJ :‖h‖L2(X)=1

|ft1(h)− ft2(h)| ≤ Γn‖t1 − t2‖γn`2

if the ft are linear functionals, or

sup
h∈ΨJ :‖h‖L2(X)=1

∣∣∣∣(∂ft1(h0)

∂h
[h]− ∂ft2(h0)

∂h
[h]

)∣∣∣∣ ≤ Γn‖t1 − t2‖γn`2

if the ft are nonlinear, and let Assumption 1(iii) and 4(i) hold. Then: Assumption 6(i)(ii) holds

with cn = 1 +
∫∞

0

√
dT {log(τJΓnε−γn/vn) ∨ 0}dε.

Let P∗ denote the probability measure of the bootstrap innovations $1, . . . , $n conditional on the

data Zn := {(X1, Y1,W1), . . . , (Xn, Yn,Wn)}.

Theorem B.1 Let Assumptions 1(iii), 2(i)–(iii)(iv’), 3(iii), 4(i), 5’, and 6 hold and τJζ
√

(J log n)/n =

o(1). Then:

sup
s∈R

∣∣∣∣∣∣P
sup
t∈T

∣∣∣∣∣∣
√
n(ft(ĥ)− ft(h0))

‖̂v∗n,t‖sd

∣∣∣∣∣∣ ≤ s
− P∗

(
sup
t∈T
|Z∗n(t)| ≤ s

)∣∣∣∣∣∣ = op(1) .

Theorem B.1 establishes consistency of our sieve score bootstrap procedure for estimating the

critical values of the uniform sieve t-statistic process for a NPIV model.

Remark B.3 Theorem B.1 applies to uniform confidence bands for ∂αh0 as a special case in

which ft(h) = h(t) and T ⊆ X provided Assumptions 1, 2(i)–(iii)(iv’), 3(iii), and 4 hold, ΨJ

is formed from a B-spline basis of regularity γ > (p ∨ 2 + |α|), BK is spanned by a B-spline,

wavelet, or cosine basis, ‖v∗n,t‖sd � τJJa for some a > 0 uniformly in t, and τJJ
√

(log n)/n = o(1),

J−p/d = o(τJ
√

(J2a log n)/n), J5(log J)6/n = o(1), and J (2+δ)(log J)(1+2δ) = o(nδ).
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Theorem B.1 contributes to the recent literature on inference for irregular (possibly) nonlinear func-

tionals of nonparametric ill-posed inverse problems. For (pointwise) inference on irregular (possibly)

nonlinear functionals of general semi/nonparametric conditional moment restrictions with endo-

geneity, Chen and Pouzo (2014) establish the validity of generalized residual bootstrap sieve t and

sieve QLR statistics, and also present a sieve score bootstrap in their supplemental Appendix D.

Horowitz and Lee (2012) were the first to derive uniform confidence bands for h0 in a NPIV model

based on the modified orthogonal series NPIV estimator of Horowitz (2011).17 Our Theorem B.1

and Remark B.3 include uniform confidence bands for h0 as a special case in which ft(h) = h(t)

and T ⊆ X .18 In an important paper on series least squares (LS) regression without endogeneity,

Belloni et al. (2014) extend the Gaussian simulation (conditional Monte Carlo) of Chernozhukov,

Lee, and Rosen (2013) to construct uniform confidence bands for sieve t-statistics for linear func-

tionals (see their Theorem 5.6).19 In work that is concurrent with ours, Tao (2014) (Theorem 3.5)

extends Belloni et al. (2014)’s results to uniform confidence bands for possibly nonlinear functionals

of semi/nonparametric conditional moment restrictions under high-level conditions that are slightly

stronger but are similar to those in Chen and Pouzo (2014). Our Theorem B.1 appears to be the

first in the literature which establishes consistency of a sieve score bootstrap for uniform inference

on general nonlinear functionals of NPIV under low-level conditions.

B.1 Monte Carlo

We now evaluate the performance of our limit theory for uniform confidence bands for h0. Using

the MC design described in Section 3.3, we generate 1000 samples of length 1000 and implement

our procedure using B-spline and Legendre polynomial bases as described in Section 3.3. We use a

data-driven approach to choose the sieve dimension, taking Ĵmax as described in Section 3.2. For

each simulation, we calculate the 90%, 95%, and 99% uniform confidence bands for h0 over the full

support [0.05, 0.95] with 1000 bootstrap replications for each simulation. We draw the innovations

for the sieve score bootstrap from the two-point distribution of Mammen (1993). We then calculate

the MC coverage probabilities of our uniform confidence bands.

Figure 1 displays the estimate ĥ, the structural function h0, and 90%, 95% and 99% uniform

confidence bands for h0 for a representative sample. Figure 2 displays the estimated structural

function and confidence bands together with a scatterplot of the sample (Xi, Yi) data.

The results of this MC experiment are presented in Table 5. Comparing the MC coverage probabili-

ties with their nominal values, it is clear that the uniform confidence bands for the linear design are

17Horowitz and Lee (2012) interpolate h0 at finitely many grid points with grid size going to zero slowly and prove
bootstrap consistency in the case in which the number of interpolation points is finite and fixed.

18The assumptions on the moments of ui and growth conditions on J in Remark B.3 are very similar to those in
Horowitz and Lee (2012).

19Belloni et al. (2014) also derive a weighted bootstrap uniform Gaussian approximation for linear functionals of
series LS when the variance is known (see their Theorem 4.5).
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slightly too conservative. However, the uniform confidence bands for the nonlinear design have MC

and nominal converge probabilities much closer, with the exception of the quartic B-spline basis.

Coverage probabilities of the bands formed using Legendre polynomial bases are particularly good

in the nonlinear case.

K(J) = J K(J) = 2J
rJ rK 90% CI 95% CI 99% CI 90% CI 95% CI 99% CI

Design 1: Linear h0

4 4 0.933 0.966 0.996 0.944 0.971 0.994
4 5 0.937 0.975 0.995 0.937 0.963 0.994
5 5 0.961 0.983 0.997 0.959 0.985 0.997

Leg Leg 0.937 0.964 0.997 0.928 0.959 0.989
Design 2: Nonlinear h0

4 4 0.884 0.945 0.987 0.912 0.956 0.989
4 5 0.894 0.946 0.987 0.906 0.951 0.987
5 5 0.956 0.978 0.995 0.951 0.979 0.996

Leg Leg 0.901 0.952 0.988 0.906 0.948 0.989

Table 5: MC coverage probabilities of uniform confidence bands for h0. Results
are presented for B-spline bases for ΨJ and BK of orders rJ and rK and Legendre
polynomial bases, with two different rules for K(J).

Appendix C Spline and wavelet bases

In this section we bound the terms ξψ,J , eJ = λmin(Gψ,J) and κψ(J) for B-spline and CDV wavelet

bases. Although we state the results for the space ΨJ , they may equally be applied to BK when

BK is constructed using B-spline or CDV wavelet bases.

C.1 Spline bases

We construct a univariate B-spline basis of order r ≥ 1 (or degree r − 1 ≥ 0) with m ≥ 0 interior

knots and support [0, 1] in the following way. Let 0 = t−(r−1) = . . . = t0 ≤ t1 ≤ . . . ≤ tm ≤ tm+1 =

. . . = tm+r = 1 denote the extended knot sequence and let I1 = [t0, t1), . . . , Im = [tm, tm+1]. A basis

of order 1 is constructed by setting

Nj,1(x) =

{
1 if x ∈ Ij
0 otherwise

for j = 0, . . .m. Bases of order r > 1 are generated recursively according to

Nj,r(x) =
x− tj

tj+r−1 − tj
Nj,r−1(x) +

tj+r − x
tj+r − tj+1

Nj+1,r−1(x)
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Figure 1: 90%, 95% and 99% uniform confidence bands for h0 (dashed lines;

innermost are 90%, outermost are 99%), estimate ĥ (solid line), and true structural
function h0 (dot-dashed line) for the nonlinear design.
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Figure 2: 90%, 95% and 99% uniform confidence bands for h0 (dashed lines), esti-

mate ĥ (solid line), and true structural function h0 (dot-dashed line), with (Xi, Yi)
data (circles) for the nonlinear design.
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for j = −(r−1), . . . ,m where we adopt the convention 1
0 := 0 (see Section 5 of DeVore and Lorentz

(1993)). This results in a total of m+ r splines of order r, namely N−(r−1),r, . . . , Nm,r. Each spline

is a polynomial of degree r− 1 on each interior interval I1, . . . , Im and is (r− 2)-times continuously

differentiable on [0, 1] whenever r ≥ 2. The mesh ratio is defined as

mesh(m) =
max0≤j≤m(tj+1 − tj)
min0≤j≤m(tj+1 − tj)

.

Clearly mesh(m) = 1 whenever the knots are placed evenly (i.e. ti = i
m+1 for i = 1, . . . ,m and

m ≥ 1) and we say that the mesh ratio is uniformly bounded if mesh(m) . 1 as m → ∞. Each

of has continuous derivatives of orders ≤ r − 2 on (0, 1). We let the space BSpl(r,m, [0, 1]) be the

closed linear span of the m+ r splines N−(r−1),r, . . . , Nm,r.

We construct B-spline bases for [0, 1]d by taking tensor products of univariate bases. First generate

d univariate bases N−(r−1),r,i, . . . , Nm,r,i for each of the d components xi of x as described above.

Then form the vector of basis functions ψJ by taking the tensor product of the vectors of univariate

basis functions, namely:

ψJ(x1, . . . , xd) =

d⊗
i=1


N−(r−1),r,i(xi)

...

Nm,r,i(xi)

 .

The resulting vector ψJ has dimension J = (r +m)d. Let ψJ1, . . . , ψJJ denote its J elements.

Stability properties: The following two Lemmas bound ξψ,J , and the minimum eigenvalue and

condition number of Gψ = Gψ,J = E[ψJ(Xi)ψ
J(Xi)

′] when ψJ1, . . . , ψJJ is constructed using

univariate and tensor-products of B-spline bases with uniformly bounded mesh ratio.

Lemma C.1 Let X have support [0, 1] and let ψJ1 = N−(r−1),r, . . . , ψJJ = Nm,r be a univariate

B-spline basis of order r ≥ 1 with m = J − r ≥ 0 interior knots and uniformly bounded mesh ratio.

Then: (a) ξψ,J = 1 for all J ≥ r; (b) If the density of X is uniformly bounded away from 0 and

∞ on [0, 1], then there exists finite positive constants cψ and Cψ such that cψJ ≤ λmax(Gψ)−1 ≤
λmin(Gψ)−1 ≤ CψJ for all J ≥ r; (c) λmax(Gψ)/λmin(Gψ) ≤ Cψ/cψ for all J ≥ r.

Lemma C.2 Let X have support [0, 1]d and let ψJ1, . . . , ψJJ be a B-spline basis formed as the

tensor product of d univariate bases of order r ≥ 1 with m = J1/d − r ≥ 0 interior knots and

uniformly bounded mesh ratio. Then: (a) ξψ,J = 1 for all J ≥ rd; (b) If the density of X is uniformly

bounded away from 0 and ∞ on [0, 1]d, then there exists finite positive constants cψ and Cψ such

that cψJ ≤ λmax(Gψ)−1 ≤ λmin(Gψ)−1 ≤ CψJ for all J ≥ rd; (c) λmax(Gψ)/λmin(Gψ) ≤ Cψ/cψ for

all J ≥ rd.
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C.2 Wavelet bases

We construct a univariate wavelet basis with support [0, 1] following Cohen, Daubechies, and Vial

(1993) (CDV hereafter). Let (ϕ,ψ) be a Daubechies pair such that ϕ has support [−N + 1, N ].

Given j such that 2j−2N > 0, the orthonormal (with respect to the L2([0, 1]) inner product) basis

for the space Vj includes 2j−2N interior scaling functions of the form ϕj,k(x) = 2j/2ϕ(2jx−k), each

of which has support [2−j(−N+1+k), 2−j(N+k)] for k = N, . . . , 2j−N−1. These are augmented

with N left scaling functions of the form ϕ0
j,k(x) = 2j/2ϕlk(2

jx) for k = 0, . . . , N − 1 (where

ϕl0, . . . , ϕ
l
N−1 are fixed independent of j), each of which has support [0, 2−j(N + k)], and N right

scaling functions of the form ϕj,2j−k(x) = 2j/2ϕr−k(2
j(x−1)) for k = 1, . . . , N (where ϕr−1, . . . , ϕ

r
−N

are fixed independent of j), each of which has support [1 − 2−j(1 − N − k), 1]. The resulting 2j

functions ϕ0
j,0, . . . , ϕ

0
j,N−1, ϕj,N , . . . , ϕj,2j−N−1, ϕ

1
j,2j−N , . . . , ϕ

1
j,2j−1

form an orthonormal basis (with

respect to the L2([0, 1]) inner product) for their closed linear span Vj .

An orthonormal wavelet basis for the space Wj , defined as the orthogonal complement of Vj in

Vj+1, is similarly constructed form the mother wavelet. This results in an orthonormal basis of 2j

functions ψ0
j,0, . . . , ψ

0
j,N−1, ψj,N , . . . , ψj,2j−N−1, ψ

1
j,2j−N , . . . , ψ

1
j,2j−1

(we use this conventional nota-

tion without confusion with the ψJj basis functions spanning ΨJ) where the “interior” wavelets

ψj,N , . . . , ψj,2j−N−1 are of the form ψj,k(x) = 2j/2ψ(2jx− k). To simplify notation we ignore the 0

and 1 superscripts on the left and right wavelets and scaling functions henceforth. Let L0 and L be

integers such that 2N < 2L0 ≤ 2L. A wavelet space at resolution level L is the 2L+1-dimensional

set of functions given by

Wav(L, [0, 1]) =


2L0−1∑
k=0

aL0,kϕL0,k +

L∑
j=L0

2j−1∑
k=0

bj,kψj,k : aL0,k, bj,k ∈ R

 .

We say that Wav(L, [0, 1]) has regularity γ if ψ ∈ Cγ (which can be achieved by choosing N

sufficiently large) and write Wav(L, [0, 1], γ) for a wavelet space of regularity γ with continuously

differentiable basis functions.

We construct wavelet bases for [0, 1]d by taking tensor products of univariate bases. We again take L0

and L to be integers such that 2N < 2L0 ≤ 2L. Let ψ̃j,k,G(x) denote an orthonormal tensor-product

wavelet for L2([0, 1]d) at resolution level j where k = (k1, . . . , kd) ∈ {0, . . . , 2j − 1}d and where

G ∈ Gj,L ⊆ {wϕ, wψ}d denotes which elements of the tensor product are ψj,ki (indices corresponding

to wψ) and which are ϕj,ki (indices corresponding to wϕ). For example, ψ̃j,k,wdψ
=
∏d
i=1 ψj,ki(xi).

Note that each G ∈ Gj,L with j > L has an element that is wψ (see Triebel (2006) for details). We

have #(GL0,L0) = 2d, #(Gj,L0) = 2d − 1 for j > L0. Let Wav(L, [0, 1]d, γ) denote the space

Wav(L, [0, 1]d, γ) =


L∑

j=L0

∑
G∈Gj,L0

∑
k∈{0,...,2j−1}d

aj,k,Gψ̃j,k,G : aj,k,G ∈ R

 (13)
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where each univariate basis has regularity γ. This definition clearly reduces to the above definition

for Wav(L, [0, 1], γ) in the univariate case.

Stability properties: The following two Lemmas bound ξψ,J , as well as the minimum eigenvalue

and condition number of Gψ = Gψ,J = E[ψJ(Xi)ψ
J(Xi)

′] when ψJ1, . . . , ψJJ is constructed using

univariate and tensor-products of CDV wavelet bases.

Lemma C.3 Let X have support [0, 1] and let be a univariate CDV wavelet basis of resolution level

L = log2(J)−1. Then: (a) ξψ,J = O(
√
J) for each sieve dimension J = 2L+1; (b) If the density of X

is uniformly bounded away from 0 and ∞ on [0, 1], then there exists finite positive constants cψ and

Cψ such that cψ ≤ λmax(Gψ)−1 ≤ λmin(Gψ)−1 ≤ Cψ for each J ; (c) λmax(Gψ)/λmin(Gψ) ≤ Cψ/cψ

for each J .

Lemma C.4 Let X have support [0, 1]d and let ψJ1, . . . , ψJJ be a wavelet basis formed as the

tensor product of d univariate bases of resolution level L. Then: (a) ξψ,J = O(
√
J) each J ; (b)

If the density of X is uniformly bounded away from 0 and ∞ on [0, 1]d, then there exists finite

positive constants cψ and Cψ such that cψ ≤ λmax(Gψ)−1 ≤ λmin(Gψ)−1 ≤ Cψ for each J ; (c)

λmax(Gψ)/λmin(Gψ) ≤ Cψ/cψ for each J .

Wavelet characterization of Besov norms: When the wavelet basis just described is of reg-

ularity γ > 0, the norms ‖ · ‖Bp∞,∞ for p < γ can be restated in terms of the wavelet coefficients.

We briefly explain the multivariate case as it nests the univariate case. Any f ∈ L2([0, 1]d) may be

represented as

f =
∑
j,G,k

aj,k,G(f)ψ̃j,k,G

with the sum is understood to be taken over the same indices as in display (13). If f ∈ Bp
∞,∞([0, 1]d)

then

‖f‖Bp∞,∞ � ‖f‖bp∞,∞ := sup
j,k,G

2j(p+d/2)|aj,k,G(f)| .

and if f ∈ Bp
2,2([0, 1]) then

‖f‖2Bp2,2 � ‖f‖
2
bp2,2

:=
∑
j,k,G

2jpaj,k,G(f)2

Ssee Johnstone (2013) and Triebel (2006) for a more thorough discussion.
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