cemmap

centre for microdata methods and practice

MCMC Confidence Sets for
|dentified Sets

Xiaohong Chen

Timothy M. Christensen
Keith O'Hara

Elie Tamer

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP28/16

An ESRC Research Centre



MCMC Confidence Sets for Identified Sets*

Xiaohong Chen' Timothy M. Christensent Keith O’Hara® Elie Tamer?

First draft: August 2015; Revised July 5, 2016

Abstract

In complicated /nonlinear parametric models, it is generally hard to determine whether the
model parameters are (globally) point identified. We provide computationally attractive pro-
cedures to construct confidence sets (CSs) for identified sets of parameters in econometric
models defined through a likelihood or a vector of moments. The CSs for the identified set
or for a function of the identified set (such as a subvector) are based on inverting an optimal
sample criterion (such as likelihood or continuously updated GMM), where the cutoff values
are computed via Monte Carlo simulations directly from a quasi posterior distribution of the
criterion. We establish new Bernstein-von Mises type theorems for the posterior distributions
of the quasi-likelihood ratio (QLR) and profile QLR statistics in partially identified models,
allowing for singularities. These results imply that the Monte Carlo criterion-based CSs have
correct frequentist coverage for the identified set as the sample size increases, and that they
coincide with Bayesian credible sets based on inverting a LR statistic for point-identified
likelihood models. We also show that our Monte Carlo optimal criterion-based CSs are uni-
formly valid over a class of data generating processes that include both partially- and point-
identified models. We demonstrate good finite sample coverage properties of our proposed
methods in four non-trivial simulation experiments: missing data, entry game with correlated
payoff shocks, Euler equation and finite mixture models. Finally, our proposed procedures
are applied in two empirical examples.
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1 Introduction

In complicated (nonlinear) structural models, it is typically difficult to verify that the model
parameters are (globally) point identified. This is especially important when one is interested
in conducting a sensitivity analysis to examine the impact of various assumptions on parameter
estimates where weaker assumptions may lead to loss of point identification. This motivation
naturally calls for computationally simple and theoretically attractive inference methods that
are valid whether or not the parameter of interest is identified. For example, if we are interested
in estimating parameters characterizing the profits of firms using entry data, an important ques-
tion is whether the estimates obtained from standard methods such as maximum likelihood are
sensitive to the functional forms and/or distributional assumptions used to obtain these esti-
mates. Relaxing some of these suspect assumptions (such as replacing the normality assumption
on the unobserved fixed costs distribution with a mixture of normals, say) calls into question
whether these profit parameters remain (globally) point identified. Our aim is to contribute to

this sensitivity literature in parametric models allowing for partial identification.

To that extent, we provide computationally attractive and asymptotically valid confidence set
(CS) constructions for the identified set (IdS) or functions of the IdS in models defined through
a likelihood or a vector of moments.! In particular, we propose Monte Carlo (MC) criterion-
based CS for the IdS of the entire structural parameter and for functions of the structural
parameter (such as subvectors). The proposed procedures do not require the choice of extra
tuning (smoothing) parameters beyond the ability to simulate a draw from the quasi posterior of
an optimally weighted sample criterion. As a sensitivity check in an empirical study, a researcher
could report a conventional CS based on inverting a ¢ or Wald statistic that is valid under point
identification only, and our new MC criterion-based CSs that are robust to failure of point

identification.

Following Chernozhukov, Hong, and Tamer (2007) (CHT) and the subsequent literature on the
construction of CSs for the IdS, our inference approach is also criterion function based and
includes likelihood and generalized method of moment (GMM) models.? That is, contour sets of
the sample criterion function are used as CSs for the IdS. However, unlike CHT and Romano and
Shaikh (2010) who use subsampling to estimate critical values, we instead use the quantile of the
stmulated sample criterion chain from a (quasi) posterior to build a CS that has (frequentist)

prescribed coverage probability. This posterior combines an optimally weighted sample criterion

!Following the literature, the identified set (IdS) ©r is the argmax of the population criterion in the parameter
space ©. A model is point identified if the IdS is a singleton {6y}, and partially identified if the IdS is strictly
larger than a singleton but strictly smaller than the whole parameter space.

2Unconditional moment inequality based models are a special case of moment (equality) based models in
that one can add a nuisance parameter to transform a (unconditional) moment inequality into an equality. See
Subsection 4.2.1 for details.



function (or a transformation of it) with a given prior (over the parameter space ©). We draw
a MC sample (chain) {#',...,6B} from the posterior, compute the quantile of the optimally
weighted sample criterion evaluated at these draws at a pre-specified level, and then define our
CS for the IdS O as the contour set at the pre-specified level. The computational complexity
of our proposed method for covering the IdS ©; of the entire structural parameter is just as
hard as the problem of taking draws from a (quasi) posterior. The latter problem is a well
researched and understood area in the literature on Monte Carlo (MC) methods in Bayesian
posterior computations (see, e.g., Liu (2004), Robert and Casella (2004) and the references
therein). There are many different MC samplers one could use for fast simulation from a (quasi)
posterior,> and no optimization is involved for our CS for the IdS ©;. For functions of the
IdS (such as a subvector), an added computation step is needed at the simulation draws to
obtain level sets that lead to the exact asymptotic coverage of this function of the I1dS.* We
demonstrate the computational feasibility and the good finite sample coverage properties of our
proposed methods in four non-trivial simulation experiments: missing data, entry game with

correlated shocks, Euler equation and finite mixture models.

Theoretically, the validity of our MC CS construction requires the analysis of the large-sample
behavior of the quasi posterior distribution of the likelihood ratio (LR) or optimal GMM crite-
rion under lack of point identification. We establish new Bernstein-von Mises type theorems for
quasi-likelihood-ratio (QLR) and profile QLR statistics in partially identified models allowing
for singularities. Under regularity conditions, these theorems state that, even for partially iden-
tified models, the posterior distributions of the (not-necessarily optimally weighted) QLR and
the profile QLR statistics coincide with those of the optimally weighted QLR and the profile
QLR statistics as sample size increases to infinity. More precisely, the main text presents some
regularity conditions under which the limiting distributions of the posterior QLR and of the
maximized (over the IdS ©;) sample QLR statistics coincide with a chi-square distribution with
an unknown degree of freedom, while Appendix E presents more general regularity conditions
under which these limiting distributions coincide with a gamma distribution with an unknown
shape parameter and scale parameter of 2. These results allow us to consistently estimate quan-
tiles of the optimally weighted criterion by the quantiles of the MC criterion chains (from the
posterior), which are sufficient to construct CSs for the IdS. In addition, we show in Appendix
B that our MC CSs are uniformly valid over DGPs that include both partially- and point-

identified models. We also present results on local power in Appendix D.

Our MC CSs are equivalent to Bayesian credible sets based on inverting a LR statistic in point-

3While many MC samplers could be used, in this paper we often use the terms “Markov Chain Monte Carlo”
(MCMC) and “chains” for pedagogical convenience.

4We also provide a computationally extremely simple but slightly conservative CS for the identified set of a
scalar subvector of a class of partially identified models, which is an optimally weighted profile QLR contour set
with its cutoff being the quantile of a chi-square distribution with one degree of freedom.



identified likelihood models, which, with flat priors, are also the Bayesian highest posterior
density (HPD) credible regions. More generally, for point-identified likelihood or moment-based
models our MC CSs asymptotically coincide with frequentist CSs based on inverting an optimally
weighted QLR (or a profile QLR) statistic, even when the true structural parameter may not
be root-n consistently, asymptotically normally estimable.® Note that our MC CSs are different
from those of Chernozhukov and Hong (2003) (CH). For point-identified root-n asymptotically
normally estimable parameters in likelihood and optimally weighted GMM problems, CH takes
the upper and lower 100(1 — «)/2 percentiles of the Markov Chain Monte Carlo (MCMC)
parameter chain {9}, e ,0]3} to construct a CS for a scalar parameter 6; for j = 1,...,dim(#).
For such problems, CH’s MCMC CS asymptotically coincides with a frequentist CS based on
inverting a t statistic. Therefore, our CS and CH’s CS are asymptotically first-order equivalent
for point-identified scalar parameters that are root-n asymptotically normally estimable, but
they differ otherwise. In particular, our methods (which take quantiles of the criterion chain)
remain valid for partially-identified models whereas percentile MCMC CSs (which takes quantiles
of the parameter chain) undercover. Intuitively this is because the parameter chain fails to
stabilize under partial identification while the criterion chain still converges.5 Indeed, simulation
studies demonstrate that our MC CSs have good finite sample coverage properties uniformly

over partially-identified or point-identified models.

Several papers have recently proposed Bayesian (or pseudo Bayesian) methods for constructing
CSs for IdS ©; that have correct frequentist coverage properties. See the 2009 NBER working
paper version of Moon and Schorfheide (2012), Kitagawa (2012), Kline and Tamer (2015), Liao
and Simoni (2015) and the references therein.”® Theoretically, all these papers consider separable
models and use various renderings of a similar intuition. First, there exists a finite-dimensional
reduced-form parameter, say ¢, that is (globally) point-identified and root-n consistently and
asymptotically normal estimable from the data, and is linked to the structural parameter of
interest 6 via a known (finite-dimensional) global mapping. Second, a prior is placed on the
reduced-form parameter ¢, and third, a classical Bernstein-von Mises theorem stating the asymp-

totic normality of the posterior distribution for ¢ is assumed to hold. Finally, the known global

5In this case an optimally weighted QLR may not be asymptotically chi-square distributed but could still be
asymptotically gamma distributed. See Fan, Hung, and Wong (2000) for results on LR statistic in point-identified
likelihood models and our Appendix E for an extension to an optimally weighted QLR statistic.

S Alternatively, the model structural parameter 6 could be point- or partially- identified while the maximal
population criterion is always point-identified.

"Norets and Tang (2014) propose a method similar to that in the working paper version of Moon and
Schorfheide (2012) for constructing CSs for O; in the context of a dynamic binary choice model but do not
study formally the frequentist properties of their procedure.

8 Also, Kitagawa (2012) establishes “bounds” on the posterior for the structural due to a collection of priors. The
prior is specified only over the “sufficient parameter.” Intuitively, the “sufficient parameter” is a point-identified
re-parametrization of the likelihood. He then establishes that this “robust Bayes” approach could deliver a credible
set that has correct frequentist coverage under some cases.



mapping between the reduced-form and the structural parameters is inverted, which, by step 3,
guarantees correct coverage for the IdS ©; in large samples. Broadly, all these papers focus on
a class of separable models with known specific structures that map some (globally) identified

regular reduced-form parameters to the structural parameters.

Our MC approach to set inference does not require any kind of separability, nor does it require
the existence of root-n consistently asymptotically normally estimable reduced-form parameter
¢ of a known finite dimension. Rather, we show that for general (separable or non-separable)
partially identified likelihood or GMM models, a local reduced-form reparameterization exists
under regularity conditions. We then use this reparametrization to show that the posterior
distribution of the optimally weighted QLR statistic has a frequentist interpretation when the
sample size is large, which enables the use of MC samplers to estimate consistently the relevant
quantile of this statistic. Importantly, our local reparametrization is a proof device only, and
so a practitioner does not need to know this reparametrization or its dimension explicitly for
the actual construction of our proposed MC CSs for ©;. Our more general Bernstein-von Mises
type theorem for the posterior of QLR in Appendix E even permits the support of the data to
depend on the local reduced-form reparametrization (and hence makes it unlikely to estimate
the local reduced-form parameter root-n consistently and asymptotically normal). In particular,
while most of the existing Bayesian works on set inference place a prior on the reduced-form
parameters,? we place a prior on the structural parameter § € © only, and characterize the

large-sample behaviors of the posterior distributions of the QLR and the profile QLR statistics.

There are several published works on consistent CS constructions for IdSs from the frequentist
perspective. See, for example, CHT and Romano and Shaikh (2010) where subsampling based
methods are used for general partially identified models, Bugni (2010) and Armstrong (2014)
where bootstrap methods are used for moment inequality models, and Beresteanu and Molinari
(2008) where random set methods are used when IdS is strictly convex. Also, for inference on
functions of the IdS (such as subvectors), both subsampling based papers of CHT and Romano
and Shaikh (2010) deliver valid tests with a judicious choice of the subsample size for a profile
version of a criterion function. The subsampling based CS construction allows for general cri-
terion functions and general partially identified models, but is computationally demanding and
sensitive to choice of subsample size in realistic empirical structural models.'® Our proposed

methods are computationally attractive and typically have asymptotically correct coverage, but

9A few Bayesian approaches place a joint prior on both the reduced-form and the structural parameters.

0There is a large literature on frequentist approach for inference on the true parameter in an IdS (e.g., Imbens
and Manski (2004), Rosen (2008), Andrews and Guggenberger (2009), Stoye (2009), Andrews and Soares (2010),
Andrews and Barwick (2012), Canay (2010), Romano, Shaikh, and Wolf (2014), Bugni, Canay, and Shi (2016) and
Kaido, Molinari, and Stoye (2016) among many others), which generally requires working with discontinuous-in-
parameters asymptotic (repeated sampling) approximations to test statistics. These existing frequentist methods
based on a guess and verify approach are difficult to implement in realistic empirical models.



require an optimally weighted criterion.

We study two important examples in detail. The first example considers a generic model of
missing data. This model is important since its analysis illustrates the conceptual difficulties
that arise in a simple and transparent setup. In particular, both numerically and theoretically,
we study the behaviors of our CSs when this model is close to point identified, when it is point
identified and when it is partially identified. The second model we study is a complete information
entry game with correlated payoff shocks. Both these models have been studied in the existing
literature as leading examples of partially-identified moment inequality models. We instead use
them as examples of likelihood and moment equality models. Simulations demonstrate that our
proposed CSs have good coverage in small samples. Appendix A contains simulation studies
of two additional examples: a weakly identified Euler equation model of Hansen, Heaton, and
Yaron (1996) and Stock and Wright (2000), and a mixture of normals example. Finally, our
construction is applied to two empirical examples. In the first model based on trade data, we
estimate more than 40 parameters using our MC methods, while in the the second example
based on airline entry data, we estimate confidence sets for 17 parameters. In both cases, the

our procedure show reasonable results.

The rest of the paper is organized as follows. Section 2 describes our new procedures, and
demonstrates their good finite sample performance using missing data and entry game examples.
Section 3 establishes new Bernstein-von Mises type theorems for QLR and profile QLR statistics
in partially-identified models without or with singularities. Section 4 provides some sufficient
conditions in several class of models. Section 5 presents an empirical trade application and
an airline entry game illustration. Section 6 briefly concludes. Appendix A contains additional
simulation evidence using Euler equation and finite mixture models. Appendix B shows that
our new CSs for the identified set and its functionals are uniformly valid (over DGPs), and
Appendix D presents results on local power. Appendix E establishes a more general Bernstein-
von Mises type theorem, showing that the limiting distribution of the posterior QLR in a partially
identified parametric model is a gamma distribution with scale parameter 2 but a unknown shape
parameter. There, results on models with parameter-dependent support for example are given.

Appendix F contains all the proofs and additional lemmas.

2 Description of the Procedures

Let X,, = (X1,...,X,) denote a sample of i.i.d. or strictly stationary and ergodic data of size

n.'! Consider a population objective function L : © — R where L can be a log likelihood func-

"Throughout we work on a probability space (€2, F,P). Each X; takes values in a separable metric space 2~
equipped with its Borel o-algebra #(2"). We equip © with its Borel o-algebra #(0).



tion for correctly specified likelihood models, an optimally-weighted GMM objective function,
a continuously-updated GMM objective function, or a sandwich quasi-likelihood function. The

function L is assumed to be an upper semicontinuous function of § with supyeg L(0) < oc.

The key problem is that the population objective L may not be maximized uniquely over O, but
rather its maximizers, the identified set, may be a nontrivial set of parameters. The identified
set (IdS) is defined as follows:

0 = {9 €0 L(0) = sup L(z?)} .

The set O is our parameter of interest. We propose methods to construct confidence sets (CSs)
for ©; that are computationally attractive and have (asymptotically) correct frequentist coverage

probabilities.

To describe our approach, let L,, denote an (upper semicontinuous) sample criterion function
that is a jointly measurable function of the data X,, and 6. This objective function L,(-) can be

a natural sample analog of L. We give a few examples of objective functions that we consider.

Parametric likelihood: Given a parametric model: {FPy : § € ©}, with a corresponding den-
sity'? p(.;0), the identified set can be defined as ©; = {# € © : Py = Py} where Py is the true
data distribution. We take L,, to be the average log-likelihood function:

Ln(0) = > logp(Xis0). (1
i=1

We cover likelihood based models with lack of (point) identification. We could also take L, to

be the average sandwich log-likelihood function in misspecified models (see Remark 3).

GMM models: Consider a set of moment equalities E[p(X;,0)] = 0 such that the solution to
this vector of equalities may not be unique. Here, we define the set of interest as Oy = {0 €
© : E[p(X;,0)] = 0}. The sample objective function L,, can be the continuously-updated GMM

objective function:

L (0) ( ZpXZﬂ) ( ZpX,,e XZ,9> ( Z,;Xﬁ) (2)

where A~ denotes a generalized inverse of a matrix A,'? or an optimally-weighted GMM objective

12This density of Py is understood to be with respect to a common o-finite dominating measure.

13We could also take the continuously-updated weighting matrix to be (% (X, 0)p(X;,0) —
(230 p(X6,0)(2 30, p(X4,0)))” or, for time series data, a form that takes into account any autocorre-

n

lations in the residual functions p(Xj, ). See, e.g., Hansen et al. (1996).



function:
Laf6) = —5 (fb mei,e)) W (; me,e)) 3)
=1 =1

for suitable weighting matrix W. We could also take L, to be a generalized empirical likelihood

objective function.

The question we pose is given X,,, how to construct computationally attractive CS that covers
the IdS O or functions of the IdS with a prespecified probability (in repeated samples) as sample

size gets large.

We first describe our computational method (Procedure 1) for covering the IdS ©;. We then
describe methods (including Procedure 2) for covering a function of Oy, such as a subvector.
We also present an extremely simple method (Procedure 3) for covering the identified set for a

scalar subvector in certain situations.

Our main CS constructions (Procedures 1 and 2) are based on Monte Carlo (MC) simulation
methods using a well defined quasi posterior. Given L, and a prior measure II on (0, %(0))

(such as a flat prior), the quasi-posterior distribution II,, for 6 given X,, is defined as

[y e @ari(e)
= f@ enLn(H)dH(g)

I, (A | X,) for A € B(O) . (4)

In the following we use MCMC chains for pedagogical convenience, although many MC samplers

could be used to draw a sample {61!, ... N } from the quasi-posterior II,,.

2.1 Confidence sets for the identified set

Given X,,, we seek to construct a 100a% CS O, for ©; using L,(0) that has asymptotically
exact coverage, i.e.:
lim P(©; C B,) = a.

n—o0

We propose an MCMC based method to obtain (:)a as follows.
[PROCEDURE 1: CONFIDENCE SETS FOR THE IDENTIFIED SET)|

1. Draw an MCMC chain {#!,...,65} from the quasi-posterior distribution II,, in (4).

2. Calculate the (1 — &) quantile of {L,(6'),...,L,(6%)} and call it {JS.



3. Our 100a% MCMC confidence set for Oy is then:

Ou =1{0€0:L,(0) >} (5)

Notice that no optimization of L,, itself is required in order to construct @a. Further, an exhaus-
tive grid search over the full parameter space © is not required as the MCMC draws {6!,...,07}

will concentrate around ©; and thereby indicate the regions in © over which to search.

CHT considered inference on the set of minimizers of a nonnegative population criterion function
Q@ : © — R, using a sample analogue @, of Q. Let &, , denote a consistent estimator of the o
quantile of supycg, @n(#). The 100a% CS for O at level o € (0,1) proposed is OCHT — (g ¢
© : Qn(f) < &nat- In the existing literature, subsampling or bootstrap based methods have
been used to compute &, . The next remark provides an equivalent approach to Procedure 1
but that is constructed in terms of (),,, which is the quasi likelihood ratio statistic associated
with L,. So, instead of computationally intensive subsampling and bootstrap, our procedure

replaces &, o with a cut off based on Monte Carlo simulations.

Remark 1. Let § € © denote an approzimate mazximizer of Ly, i.e.:

L(8) = sup Ly (6) + op(n ")
0cO

and define the quasi-likelihood ratio (QLR) (at a point 6 € ©) as:

Qn(0) = 2n[Ln(0) — Ln(0)]. (6)
Let &, denote the a quantile of {Qn(01), ..., Qn(08)}. The confidence set:

O, ={0c0:Qu0) <&

is equivalent to O defined in (5) because Ly (0) > ¢’ if and only if Qn(0) < .

In Procedure 1 and Remark 1 above, the posterior like quantity involves the use of a prior
distribution II over ©. This prior is user defined and typically would be the uniform prior
but other choices are possible, and in our simulations, the various choices of this prior did
not seem to matter much when the parameter space © is compact. Here, the way to obtain
the draws {#',...,08} will rely on a Monte Carlo sampler. We use existing sampling methods
to do this. Below we describe how these methods are tuned to our examples. For partially-
identified models, the parameter chain {6',... 0"} may not settle down but the criterion chain
{Qn(0Y),...,Qn(6P)} still converges. Our MCMC CSs are constructed based on the quantiles

of a criterion chain and are intuitively robust to lack of point identification.



The next lemma presents high-level conditions under which any 100a% criterion-based CS for
©; is asymptotically valid. Similar statements appear in CHT and Romano and Shaikh (2010).
Let Fyy(c) := Pr(W < ¢) denote the (probability) distribution function of a random variable
W and w, := inf{c € R: Fiy(c) > a} be the a quantile of W.

Lemma 2.1. Let (i) suppeg, @n(0) ~ W where W is a random variable whose distribution
function Fy () is continuous at its o quantile (denoted by wy ), and (ii) (Wp.q)nen be a sequence

of random wvariables such that wy o > wo + op(1). Define:

éa = {0 €0: Qn(g) < wn,a} :

Then: liminf,, . P(©; C (:)a) > «. Moreover, if condition (ii) is replaced by the condition
Wn,o = Wo + op(1), then: lim, o P(O C (:)a) = q.

Our MCMC CSs for ©; are shown to be valid by verifying parts (i) and (ii) with wp o = §'g.
To verify part (ii), we shall establish a new Bernstein-von Mises (BvM) result for the posterior
distribution of the QLR under loss of identifiability for likelihood and GMM models. Therefore,

14

although our Procedure 1 above appears Bayesian,”* we show that @a has correct frequentist

coverage.

2.2 Confidence sets for functions of the identified set

In many applications, it may be of interest to provide a CS for a subvector of interest. Suppose
that the object of interest is a function of 6, say p(6), for some continuous function x : © — R*
for 1 < k < dim(#). This includes as a special case in which p(6) is a subvector of  itself (i.e.,
0 = (u,n) with p being the subvector of interest and 1 the nuisance parameter). The identified
set for u(0) is:

Mp={u):0€0r}.

We seek a CS ]\/Za for M; such that:

lim P(M; C M,) = o.

n—o0

A well known method to construct a CS for My is based on projection, which maps a CS @)a

for O into one that covers a function of ©;. In particular, the following MCMC CS:

MPoI = {1(0) : 0 € ©,} (7)

1411 correctly specified likelihood models with flat priors one may interpret O, as a highest posterior density
100a% Bayesian credible set (BCS) for ©;. Therefore, O, will have the smallest volume of any BCS for O;.

10



is a valid 100a% CS for M; whenever O, is a valid 100a% CS for ©7. As is well known, MZ™ is
typically conservative, and could be very conservative when the dimension of y is small relative
to the dimension of f. Our simulations below indicate that M2 is very conservative even in

reasonably low-dimensional parametric models.

In the following we propose CSs ]\/Za for M7 that could have asymptotically exact coverage based
on a profile criterion for M;. Let M = {u(f) : 0 € ©} and = : M — O, i.e., ui(m) = {0 €
© : u(0) = m} for each m € M. The profile criterion for a point m € M is

sup Ly (6), (8)
fep=t(m)

and the profile criterion for the identified set M is

inf  sup L,(0). 9)
meMy 0cpu—1(m)

Let A(0°) = {0 € © : L(0) = L(0°)} be an equivalence set for #°, b = 1,..., B. For example, in
correctly specified likelihood models we have A(6°) = {# € © : p(;0) = p(-;6°)} and in GMM
models we have A(6°) = {0 € © : E[p(X;,0)] = E[p(X;,0°)]}.

[PROCEDURE 2: CSS FOR FUNCTIONS OF THE IDENTIFIED SET]

1. Draw an MCMC chain {6!,..., 68} from the quasi-posterior distribution II,, in (4).

2. Calculate the (1 — «) quantile of {inmeM(A(gb)) SUPgey-—1(m) Ln(0) 10 =1,... ,B} and call

it (oot
3. Our 100a% MCMC confidence set for M7 is then:

M, = {m eEM: sup L,(0)> g;jjgp}. (10)
gep=t(m)

By forming ]/\4\& in terms of the profile criterion we avoid having to do an exhaustive grid
search over ©. An additional computational advantage is that the MCMC {u(0'),..., u(0%)}

concentrate around M7, thereby indicating the region in M over which to search.

The following remark describes the numerical equivalence between the CS M, in (10) and a CS
for M7 based on the profile QLR.

11



Remark 2. Recall the definition of the QLR Q,, in (6). Let &n.a? denote the o quantile of the
profile QLR chain:

sup inf  Qp0):b=1,...,B¢.
{mEp(A(Hb)) Oep="t(m) (6) }

The confidence set:
M= {m €M: inf  Qn(0) < ngvP}

0cp—1(m e

is equivalent to M, in (10) because suPge -1y Ln(0) > Cia™ if and only if infge ;-1 () Qn(0) <

mce,p
n,o -

Our Procedure 2 and Remark 2 above are different from taking quantiles of the MCMC param-
eter chain. Given the MCMC chain {6!,..., 65} for 6, a popular percentile MCMC CS (denoted
as ]\/dem) for a scalar parameter p is computed by taking the upper and lower 100(1 — «)/2
percentiles of the parameter chain {u(6'), ..., u(62)}. For models with point-identified root-n
estimable parameters 6, this approach is known to be valid for likelihood models in standard
Bayesian literature and its validity for optimally weighted GMM models has been established
by Chernozhukov and Hong (2003). However, this approach is no longer valid and severely

undercovers in partially-identified models, as evidenced in the simulation results below.

The following result presents high-level conditions under which any 100a% criterion-based CS

for M7 is asymptotically valid. A similar statement appears in Romano and Shaikh (2010).

Lemma 2.2. Let (i) sup,,ep, infoc,—1(m) @n(0) ~ W where W is a random variable whose
distribution Fyy () is continuous at its o quantile (denoted by wy) and (i) (Wy,a)nen be a sequence

of random variables such that wy o > we + op(1). Define:

o~

M, = {m eM: inf Qu) < wn,a} .

fep=1(m)
Then: liminf,, . P(M; C ]\/4\a) > «. Moreover, if condition (ii) is replaced by the condition
Wn,o = Wo + op(1), then: limy, oo P(M; C ]\/Za) =a.

Our MCMC CSs for M| are shown to be valid by verifying parts (i) and (ii) with wy, o = &ra’-

2.3 A simple but slightly conservative CS for scalar subvectors

For a class of partially identified models with one-dimensional subvectors M; = {u(f) € R :
0 € ©1}, we now propose another CS ]/\4\35 which is extremely simple to construct. This new CS

for M is slightly conservative (whereas ]\/Za could be asymptotically exact), but it’s coverage is

much less conservative than that of the projection-based CS ]\/Igmj .
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[PROCEDURE 3: SIMPLE CONSERVATIVE CSS FOR SCALAR SUBVECTORS)]

1. Calculate a maximizer § for which L, (0) > supgcg Ln(0) + op(n™1).

2. Our 100a% confidence set for M is then:

o~

X — : 1 < 2
MX {m eEMCR GE,ulPlf(m) Qn(0) < Xl,a} (11)

where Q, is the QLR in (6) and x3i , denotes the o quantile of the xi distribution.

Procedure 3 above is justified when the limit distribution of the profile QLR for M; = {u(0) €
R : 0 € O} is stochastically dominated by the x? distribution (i.e., Fyy(z) > Fl2(z) forall 2 > 0
in Lemma 2.2). This allows for computationally simple construction using repeated evaluations
on a scalar grid. Unlike ]\/Ia, the CS ]\/4\35 for My is typically asymptotically conservative and is
only valid for scalar functions of O (see Section 3.3). Nevertheless, the CS MY is asymptotically
exact when M; happens to be a singleton belonging to the interior of M, and, for confidence
levels of av > 0.85, its degree of conservativeness for the set M is negligible (see Section 3.3). It is
extremely simple to implement and performs very favorably in simulations. As a sensitivity check
in empirical estimation of a complicated structural model, one could report the conventional CS
based on a t-statistic (that is valid under point identification only) as well as our CS MY (that

remains valid under partial identification); see Section 5.

2.4 Simulation evidence

In this section we investigate the finite sample behavior of our proposed CSs in the leading
missing data and entry game examples. Further simulation evidences for weakly-identified Eu-
ler equation models and finite mixture models are presented in Appendix A. We use samples
of size n = 100, 250, 500, and 1000. For each sample, we calculate the posterior quantile of
the QLR statistic using 10000 draws from a random walk Metropolis-Hastings scheme with a
burnin of an additional 10000 draws. The random walk Metropolis-Hastings scheme is tuned so
that its acceptance rate is approximately one third.'® Note that for partially-identified models,
the parameter chain may not settle down but the criterion chain is stable. We replicate each

experiment 5000 times.

5There is a large literature on tuning Metropolis-Hastings algorithms (see, e.g., Besag, Green, Higdon, and
Mengersen (1995), Gelman, Roberts, and Gilks (1996) and Roberts, Gelman, and Gilks (1997)). Optimal accep-
tance ratios for Gaussian models are known to be between 0.23 and 0.44 depending on the dimension of the
parameter (Gelman et al., 1996). For concreteness we settle on 0.33, though similar results are achieved with
different acceptance rates. To implement the random walk Metropolis-Hastings algorithm we rescale each param-
eter to have full support R via a suitably centered and scaled vector logit transform ¢ : © — R%. We draw each
proposal 271 := ¢(8°T") from N(¢°, cI) where ¢ is chosen so that the acceptance rate is approximately one third.
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2.4.1 Missing data

We first consider the simplest but most insightful missing data example. Suppose we observe a
random sample {(D;,Y;D;)}? | where both the outcome variable Y; and the selection variable
D, take values in {0, 1}. The main parameter of interest is (usually) the true mean po = E[Y].
Without further assumptions, yg is not point identified when Pr(D; = 0) > 0 as we only observe
Y; when D; = 1. We assume that 0 < Pr(Y; = 1|D; = 1) < 1. The true probabilities of observing
(D;,Y;D;) = (1,1), (0,0) and (1,0) are k11, koo, and k19 = 1 — K11 — Koo respectively. We view
these as true reduced-form parameters that can be consistently estimated from the data. The
reduced-form parameters are functions of the structural parameter 6 = (p, 3, p) where p = E[Y]],
B ="Pr(Y; =1|D; =0), and p = Pr(D; = 1). Using the model and the parametrization above, 6

is related to the reduced form parameters via the following equalities:

k11(0) = p— B(1 = p) k10(0) = p — p+ B(1 - p) koo(0) =1—p.

and so the parameter space © for 0 is defined as:

O ={(11,8,p) ER’:0< p—B(1—p)<p,0<B<1,0<p <1} (12)

The likelihood of the i-th observation (D;, Y;D;) = (d, yd) is
p(d,yd; 0) = (k11 (0)]*/(1 — k11.(8) — woo(8)) " *[roo(8)]' 7.
In some simulations we also use a continuously-updated GMM objective function based on the

moments:

E[ﬂ((DuYiDi) = (1,1)) - 511(9)} =0

E[1(D; = 0) = oo(6)| = 0.

Defining the model via moment equalities, we obtain a quasi posterior based on an optimal

objective function.

The identified set for 8 is:

Or ={(n,B,p) €0 :p—B(1—p)=r11,p=1— Koo} (13)

Here, p is always identified but only an affine combination of y and S are identified. This

combination results in the identified set for (u,3) being a line segment. The identified set for
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the subvector u = E[Y] is

M = [k11, K11 + Koo

In the existing literature one typically uses the following moment inequality model for inference
on u=E[Y] e M

Generally, all moment inequality models (with finitely many moment inequalities) can be written

as moment equality models by adding nuisance parameters with a known sign (see Subsection
42.1).

We use two kinds of priors on ©:
1. A flat prior
2. A curved prior: take 7(u,3,p) = wp(B)7p(p)mM B, P(1IB,p) With mp(8) = Beta(3,8),
7p(p) = Beta(s, 1), and Tasys (113, p) = U[B(1 — p), p+ B(1 — p)] (see Figure 6).

We set pg = 0.5, fp = 0.5, and vary pg, covering both point- (pg = 1) and partially-identified
(po < 1) cases.

CSs for the identified set ©;: Table 1 displays the MC coverage probabilities of (:)a (Procedure
1 with a likelihood criterion and a flat prior) for different values of p, different sample sizes and
different nominal coverage probabilities. The coverage probability should be equal to its nominal
value in large samples when p < 1 (see Theorem 3.1 below). It is perhaps surprising that the
nominal and coverage probabilities are this close even in samples as small as n = 100; the only
exception is the case p = 0.99 in which the CSs are slightly conservative when n = 100. When
p = 1 the CSs (based on the likelihood criterion) for ©; are expected to be conservative (see
Theorem 3.2 below), which they are. The coverage probabilities are quite insensitive to the size
of small to moderate values of p. For instance, the coverage probabilities are very similar for
p = 0.20 (corresponding to 80% of data missing) and p = 0.95 (corresponding to 5% of data
missing). Table 2 presents results for the case a curved prior is used. Whether a flat or curved
prior is used makes virtually no difference, except for (:)a with p = 0.20 with smaller values of
n. In this case the MCMC CS over covers because the prior is of the order of 107* at p = 0.20.
The posterior distribution assigns very low weight to values of p less than one half. The MCMC
chain for p concentrates relatively far away from p = 0.20, and, as a consequence, the posterior
distribution of the likelihood ratio is larger than it should be. In sum, the performance under

both priors is similar and adequate.

Results for CSs O, using Procedure 1 with a continuously-updated GMM criterion and a flat

15



p=020 p=080 p=095 p=099 p=1.00
n = 100

a=090| 0.8904 0.8850  0.8856  0.9378  0.9864

a=095| 09458 09422  0.9452 09702  0.9916

a=099 | 09800 0.9868  0.9884  0.9938  0.9982

n = 250

a=090| 0.8962 0.8954  0.8980  0.9136  0.9880

a=095| 09454 09436  0.9466  0.9578  0.9954

=099 | 09888  0.9800  0.9876  0.9936  0.9986

n = 500

a=090| 0.8800  0.8974  0.9024  0.8952  0.9860

a=095| 09494 09478  0.9494 09534  0.9946

a=099 | 09910  0.9900  0.9884  0.9900  0.9994

n = 1000

a=090| 09018 09038  0.8968  0.8994  0.9878

a=095| 09462 09520  0.9528  0.9532  0.9956

=099 | 09802  0.9916  0.9908  0.9894  0.9994

Table 1: MC coverage probabilities of ©,, (Procedure 1) using a likelihood for
L,, and a flat prior on O.

p=020 p=080 p=095 p=099 p=1.00
n = 100

a=090| 09750 0.8900  0.8722  0.9316  0.9850

a=095| 09906 09460  0.9400  0.9642  0.9912

=099 | 09992 009870  0.9850  0.9912  0.9984

n = 250

a=090| 09526 0.8958  0.8932  0.9072  0.9874

a=095| 09794 009456  0.9438  0.9560  0.9954

a=099 | 09978 009896  0.9864  0.9924  0.9986

n = 500

a=090| 09306 0.8956  0.8996  0.8926  0.9848

a=095| 09710 009484  0.9498  0.9518  0.9944

=099 | 09966 09900  0.9880  0.9906  0.9994

n = 1000

a=090| 09222 009046  0.8960  0.8988  0.9880

a=095| 09582 09536  0.9500  0.9518  0.9958

a=099 | 09942 09918  0.9902  0.9888  0.9992

Table 2: MC coverage probabilities of ©, (Procedure 1) using a likelihood for
L,, and a curved prior on O.
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prior are presented in Table 3. As can be seen, the results look similar to those based on the
likelihood. Even at sample size 100, the coverage is adequate even p = 1. Theoretical coverage

results for the GMM case are provided in Section 4.2 below.

CSs for the identified set of subvectors M;: We now consider various CSs for the identified
set M; for . We first compute the MCMC projection CS M2 | as defined in (7), for M;. The
coverage results are reported in Table 4. As we can see from the table, for the case when o = .90,
the lowest coverage probabilities is above .96. Even when n = 1000 and for all values of p we

tried, the coverage is larger than 96%. So the projection CS MZ"® is valid but too conservative.

One may be tempted to use the parameter () chain itself to construct confidence regions.
Figure 1 plots the MCMC chain for a sample with p = .8. The chain is stable for p that
is point identified, but the chains for g and 5 bounce around their respective identified sets
M7 = [k11, k11 + Koo] and [0, 1]. One might be tempted to report the simple percentile MCMC
CS ME" for M; (of 1) by taking the upper and lower 100(1 — a) /2 percentiles of the parameter
chain {u(61),. .., u(65)}. Table 5 reports the MC coverage probabilities of this simple percentile
MCMC CS for pu. It has correct coverage when p is point identified (i.e. when p = 1). However,
it dramatically undercovers as soon as  is not point identified, even when only a small amount
of data is missing. For instance, with a relatively large sample size n = 1000, the coverage of
a 90% CS is less than 2% when 20% of data is missing (p = .80), around 42% when only 5%
of data is missing (p = .95), and less than 83% when only 1% of data is missing (p = .99).
This approach to constructing CSs for M by taking quantiles of the parameter chain severely

undercovers in partially-identified models, and is not recommended.

In contrast, our MCMC CS procedures are based on the criterion chain and remains valid
under partial identification. Validity under loss of identifiability is preserved because our pro-
cedure effectively samples from the quasi-posterior distribution for an identifiable reduced form
parameter. The bottom panel of Figure 1 shows the MCMC chain for @, (6) is stable. Figure
7 (in Appendix A), which is computed from the draws for the structural parameter presented
in Figure 1, shows that the MCMC chain for the reduced-form probabilities is also stable. In
Table 6, we provide coverage results for J/W\a using Procedure 2 with a likelihood criterion and a
flat prior. Theoretically, we show below (see Theorem 3.3) that the coverage probabilities of ]\/Za
(for My) should be equal to their nominal values a when n is large irrespective of whether the
model is partially identified with p < 1 or point identified (with p = 1). Further, Theorem B.2
shows that our Procedure 2 remains valid uniformly over sets of DGPs that include both point-
and partially-identified cases. The results in Table 6 show that this is indeed the case, and that
the coverage probabilities are close to their nominal level even when n = 100. This is remarkable
as even in the case when p = .8,.95, or 1, the coverage is very close to the nominal level even

when n = 100. The exception is the case in which p = 0.20, which slightly under-covers in small
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p=020 p=080 p=095 p=099 p=100
n = 100

a=090| 08504 0.8810  0.8242  0.9202  0.9032

a=095| 09048 09336 09062  0.9604  0.9396

=099 | 09498  0.9820  0.9556  0.9902  0.9870

n = 250

a=090| 08932 0.8934 08788  0.9116  0.8930

a=095| 09338 09404  0.9326  0.9570  0.9476

a=099 | 09770 09874 09754  0.9920  0.9896

n = 500

=090 | 0.8846  0.8938  0.8978  0.8278  0.8914

a=095| 09416 09478  0.9420  0.9120  0.9470

=099 | 09848  0.9888  0.9842  0.9612  0.9384

n = 1000

a=090| 08970  0.9054  0.8958  0.8698  0.9000

a=095| 09474 09516  0.9446  0.9260  0.9494

a=099 | 0986 09902 09882  0.9660  0.9908

Table 3: MC coverage probabilities of O, (Procedure 1) using a CU-GMM
for L,, and a flat prior on ©.

p=020 p=080 p=095 p=099 p=1.00
n = 100

=090 | 0.968  0.9658  0.9692  0.9784  0.9364

a=095| 09864 09854 09856  0.9888  0.9916

a=099 | 09978  0.9972  0.9968  0.9986  0.9982

n = 250

a=090| 09696 0.9676  0.9684  0.9706  0.9380

a=095| 09872  0.9846  0.9866  0.9854  0.9954

a=099 | 09976  0.9970  0.9978  0.9986  0.9986

n = 500

=090 | 0968  0.9674  0.9688  0.9710  0.9860

a=095| 09904 09838 09864  0.9862  0.9946

=099 | 09988  0.9976  0.9966  0.9970  0.9994

n = 1000

a=090| 09672 09758  0.9706  0.9720  0.9878

a=095| 09854 09876  0.9876  0.98386  0.9956

a=099 | 09978  0.9980  0.9976  0.9970  0.9994

Table 4: MC coverage probabilities of projection CS M\g”’j for M; using a
likelihood for L,, and a flat prior on O.
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samples. Note however that the identified set in this case is the interval [0.1,0.9], so the poor
performance is likely attributable to the fact that the identified set for u covers close to the

whole parameter space for p.

In section 4.1.1 below we show that in the missing data case the asymptotic distribution of the
profile QLR for M is stochastically dominated by the x? distribution. Using Procedure 3 above
we construct MY as in (11) and present the results in Table 7 for the likelihood and Table 8
for the continuously-updated GMM objective functions. As we can see from these tables, the
coverage results look remarkably close to their nominal values even for small sample sizes and

for all values of p.

2.4.2 Complete information entry game with correlated payoff shocks

We now examine the finite-sample performance of our procedures for CS constructions in a
complete information entry game example described in Table 9. In each cell, the first entry is
the payoff to player 1, and the second entry is the payoff to player 2. So, if player 2 plays 0,
then her payoff is normalized to be zero and if player 1 plays 1, then her payoffs is 81 4+ €1. We
assume that (€1, €2), observed by the players, are jointly normally distributed with variance 1 and
correlation p, an important parameter of interest. It is also assumed that A; and Ao are both
negative and that players play a pure strategy Nash equilibrium. When —8; <¢; < —f; — A,
j = 1,2, the game has two equilibria: for given values of the epsilons in this region, the model
predicts (1,0) and (0,1). Let Dg,q, denote a binary random variable taking the value 1 if and
only if player 1 takes action a; and player 2 takes action ay. We observe a random sample
of {(Doo,i, D10,is Do1,i, D11,i)}i—;- So the data provides information of four choice probabilities
(P(0,0), P(1,0), P(0,1), P(1,1)), but there are six parameters that need to be estimated: § =
(81, B2, A1, Ay, p, s) where s € [0,1] is the equilibrium selection probability. The model parameter
is partially identified as we have 4 choice probabilities from which we need to learn about 6

parameters.

To proceed, we can link the choice probabilities (reduced-form parameters) to 6 as follows:

k11(0) :=P(e1 > —fB1 — A1; €2 > —f2 — Ag)
koo(0) :=P(e1 < —P1; 2 < —f2)
k10(0) :=s x P(—=f1 < €1 < —B1 —A1; P2 < ea < —fF2 — Ay)
+ Pler > —pi5e2 < —f2) + Pler > =1 — A1;— B2 < ea < —fa — Ag).

Denote the true choice probabilities (P(0,0), P(1,0), P(0,1), P(1,1)) (the true reduced-form

parameter values) as (Koo, K10, K01, %11). Lhen the equalities above naturally suggest a GMM

19



Figure 1: MCMC chain for 6 and @,,(6) for n = 1000 with a flat prior on ©.

2000 4000 6000 8000
Draw

10000

p=020 p=080 p=095 p=099 p=1CH

n = 100
0.0024 0.3546 0.7926 0.8782 0.9072
0.0232 0.6144 0.8846 0.9406 0.9428
0.2488 0.9000 0.9744 0.9862 0.9892

n = 250
0.0010 0.1340 0.6960 0.8690 0.8978
0.0064 0.3920 0.8306 0.9298 0.9488
0.0798 0.8044 0.9568 0.9842 0.9914

n = 500
0.0000 0.0474 0.5868 0.8484 0.8916
0.0020 0.1846 0.7660 0.9186 0.9470
0.0202 0.6290 0.9336 0.9832 0.9892

a = 0.90
a=0.95
a=0.99
a=10.90
a=0.95
a=10.99
a = 0.90
a=0.95
a=0.99
a=10.90
a=0.95
a=0.99

n = 1000
0.0000 0.0144 0.4162 0.8276 0.9006
0.0002 0.0626 0.6376 0.9086 0.9490
0.0016 0.3178 0.8972 0.9808 0.9908

Table 5: MC coverage probabilities of M pere for My (of p) (with a flat prior
on ©). MPe ¢ becomes CH’s percentile CS under point identification (i.e. when

p=1).
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p=020 p=080 p=095 p=099 p=1.00
n = 100

a=090| 08674 09170 09160  0.9166  0.9098

a=095| 09344 009522  0.9554  0.9568  0.9558

a=099 | 09846 09906  0.9908  0.9910  0.9904

n = 250

a=090| 08778 09006  0.9094  0.9118  0.9078

a=095| 09458 09506  0.9548  0.9536  0.9532

a=099 | 09870 09902  0.9922  0.9894  0.9916

n = 500

a=090| 0.8878  0.9024  0.9054  0.9042  0.8994

a=095| 09440 009510  0.9526  0.9530  0.9510

a=099 | 09912 009878  0.9918  0.9918  0.9906

n = 1000

a=090| 0.8902 009064  0.9110  0.9078  0.9060

a=095| 09438  0.9594  0.9532  0.9570  0.9526

a=099 | 09882 09902  0.9914 09910  0.9912

Table 6: MC coverage probabilities of M\a for M; (Procedure 2) using a
likelihood for L,, and a flat prior on ©.

p=020 p=080 p=0095 p=099 p=1.00
n = 100

a=090| 09180 009118  0.8988  0.8966  0.9156

a=095| 09534 09448  0.9586  0.9582  0.9488

a=099 | 09804 09910  0.9910  0.9908  0.9884

n = 250

a=090| 09144 08946  0.8972  0.8964  0.8914

a=095| 09442 09538  0.9552  0.9520  0.9516

a=099 | 09922 09908  0.9910  0.9912  0.9912

n = 500

a=090| 0.9080 09120 0.8984  0.8998  0.9060

a=095| 09506 0.9510  0.9554  0.9508  0.9472

a=099 | 09936 09926  0.9912  0.9896  0.9882

n = 1000

a=090| 0.8918  0.8992  0.8890  0.9044  0.9076

a=095| 09540 09494  0.9466  0.9484  0.9488

a=099 | 09910  0.9928  0.9916  0.9896  0.9906

Table 7: MC coverage probabilities of J/W\(’,f for M; (Procedure 3) using a
likelihood for L,,.
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Coverage

p=020 p=080 p=095 p=099 p=1.00

n = 100

a=090| 09536 009118  0.8988  0.8966  0.9156

a=095| 0978 09448  0.9586  0.9582  0.9488

a=099 | 09984 009910  0.9910  0.9908  0.9884
n = 250

a=090| 09156 0.8946  0.8972  0.8964  0.8914

a=095| 09656 09538  0.9552  0.9520  0.9516

a=099 | 09960 09908  0.9910  0.9882  0.9912
n = 500

a=090| 09300 09120 0.8984  0.8992  0.9060

a=095| 09666 09510  0.9554  0.9508  0.9472

a=099 | 09976 09926  0.9912  0.9896  0.9882
n = 1000

=090 | 09088 08992  0.9050  0.8908  0.8936

a=095| 09628 009494  0.9544  0.9484  0.9488

a=099 | 09954 009928 09916  0.9896  0.9906

Table 8: MC coverage probabilities of J\//.Tgf for My (Procedure 3) using a
CU-GMM for L,,.

050
Nominal Coverage

1.00
— 0.99
— 0.95
— 0.80
0.20

Figure 2: Comparison of asymptotic coverage of 1\735 of My for different p

values.
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Player 2

00 0 0 B2 + €2

1| B1+e 0 B1+ A1+ B2+ Ag + €

Player 1

Table 9: Payoff matrix for the binary entry game

approach via the following moments:
k11(0) — k11 =0,  koo(0) — koo =0, K10(0) — K10 =0 .

In the simulations we use a likelihood approach, where the likelihood of the i-th observation
(Doo,i» D10,i> D11,i, Do1,i) = (doo, d1o, d11,1 — doo — d1o — dp1) is:

p(doo, d1o, d1156) = [Ko0(0)]° [k10(8)] 110 [11(6)] 7 [1 — Koo () — K10(0) — 1 ()]~ o0~ Ho—h
The parameter space used in the simulations is:
© = {(B1,82, A1, 89,p,5) €ER®: =1 < B1, 85 <2, -2 < A, A <0,0< p,s < 1}

We simulate the data using 81 = 82 = 0.2, Ay = Ay = —0.5, p = 0.5 and s = 0.5. The identified
set for A; is approximately M; = [—1.42,0]. Here, it is not as easy to solve for the identified set

O7 for # as it needs to be done numerically. We use a flat prior on O.

Figure 8 in Appendix A plots the chain for the structural parameters and the chain for the
criterion. The chain for p bounces between essentially 0 to 1 which indicates that p is not
identified at all. On the other hand, the data do provide information about (51, 32) as here we
see a tighter path. Although the chain for the structural parameters does not converge, Figure
8 and Figure 9 in Appendix A show that the criterion chain and the chain evaluated at the

reduced-form probabilities are all stable.

The procedures for computing the CSs for O and for M7 follow the descriptions given above. In
Table 10, we provide the coverage results for the full vector 6 and the subvector A;. Coverage of
@a for O is extremely good, even with the small sample size n = 100. Coverages of ]/\4\,1 and M\gf
for My are slightly conservative for small sample size n but are close to the nominal value for
n = 500 or larger.'® The projection CS MP for M (of A1) is valid but extremely conservative.
The coverage of percentile MCMC CS M2 for Aq is less than 1% for each sample size (and

hence not valid).

Here we compute ©; and A(@b) numerically because p is nonzero, so the slight under-coverage of ]T/I\a for
n = 1000 is likely attributable to numerical error.
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MC coverage probabilities of ©, (Procedure 1)
n=100 n=250 n=>500 n=1000
a=0.90 | 0.9000 0.9000 0.9018 0.9006
a=0.95 0.9476 0.9476 0.9514 0.9506
a=0.99 | 0.9872 0.9886 0.9902 0.9880

MC coverage probabilities of M, (Procedure 2)
n=100 n=250 mn=500 n=1000
a=0.90| 0.9683 0.9381 0.9178 0.8865
a=0.95| 0.9887 0.9731 0.9584 0.9413
a=0.99 | 0.9993 0.9954 0.9904 0.9859

MC coverage probabilities of MY (Procedure 3)
n=100 n=250 n=500 n=1000
a=0.90 | 0.9404 0.9326 0.9286 0.9110
a=0.95 0.9704 0.9658 0.9618 0.9464
a=0.99 0.9936 0.9928 0.9924 0.9872

MC coverage probabilities of ME™ (conservative)
n=100 n=250 mn=>500 mn=1000
a=0.90| 0.9944 0.9920 0.9894 0.9886
a=0.95 0.9972 0.9964 0.9948 0.9968
a=0.99 1.0000 0.9994 0.9990 0.9986

MC coverage probabilities of ME™ (undercover)
n=100 n=250 n=500 n=1000
a=0.90 0.0004 0.0000 0.0000 0.0000
a=0.95| 0.0016 0.0000 0.0002 0.0000
a=0.99 0.0058 0.0008 0.0006 0.0000

Table 10: MC coverage probabilities for the complete information game. All
CSs are computed with a likelihood for L,, and a flat prior on ©. CSs M,, MX

and M\g’""j are for My of Ay, and J/\/.I'\g”C is percentile CS for A;.
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3 Large sample properties

This section provides regularity conditions under which ©, (Procedure 1), M, (Procedure 2)
and Z\/Z&< (Procedure 3) are asymptotically valid confidence sets for ©; and M. The main new
theoretical contributions are the derivations of the large-sample (quasi)-posterior distributions
of the QLR statistic for ©; and of the profile QLR statistic for M; under loss of identifiability.

3.1 Coverage properties of (:)a for O;

We first state some high-level regularity conditions. A discussion of these assumptions follows.

Assumption 3.1. (Consistency, posterior contraction)
(i) Ln(0) = SUpgeo,., Ln(0) + op(n™1), with (Oosn)nen a sequence of local neighborhoods of ©;
(i) I1,(©%,,,| Xp) = op(1), where %, = O\ Osp.

We presume the existence of a fixed neighborhood @ﬁv of ©; (with O, C @5_\1 for all n sufficiently
large) upon which there exists a local reduced-form reparameterization 6 — ~(6) from ©% into
I' € R? for a possibly unknown dimension d* € [1,00), with y(f) = 0 if and only if § € ©.
Here ~ is merely a proof device and is only required to exist for 6 in a fixed neighborhood of O;.

Denote |v|? := v'y.

Assumption 3.2. (Local quadratic approximation)
(i) There exist sequences of random variables £, and R? -valued random vectors V,, (both are

measurable functions of data X,,) such that:

sup
0€Oosn

1L0(6) = (b = GIVIOI + WO )| = 0r(1) (14)

with supgeg, ., [[7(0)]| = 0 and V,, ~ N(0,X) as n — oo,
(i) The sets Kogn = {v/ny(0) : 0 € Opsn} cover'” a closed conver cone T CRY as n — oc.

Let Il denote the image measure of the prior II under the map 6 — ~(0) on @ﬁv , namely
r(A) = ({0 € OF : 4(0) € A}). Let B; C RY denote a ball of radius § centered at the origin.

Assumption 3.3. (Prior)
(i) Jo en(0) dI1(0) < oo almost surely;
(ii) IIp has a continuous, strictly positive density mr on Bs NI for some 6 > 0.

"We say that a sequence of (possibly sample-dependent) sets A, C RY covers a set A C RY if (i)
SUPy.jp < s | I0faca, lla — b||? — infaea |la — b||*| = op(1) for each M, and (ii) there is a sequence of closed balls
By, of radius k, — oo centered at the origin with each C,, := A, N By, convex, C,, C C, for each n’ > n, and
A =U,>1C, (almost surely).
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Let £7%" denote the o quantile of @,,(#) under the posterior distribution II,,, and &0 be given

in Remark 1.

Assumption 3.4. (MC convergence)

me = &b’ + op(1).

Discussion of Assumptions: Assumption 3.1(i) is a standard condition on any approximate
extremum estimator, and Assumption 3.1(ii) is a standard posterior contraction condition. The
choice of O, is deliberately general and will depend on the particular model under consider-
ation. See Section 4 for verification of Assumption 3.1. Assumption 3.2(i) is a standard local
quadratic expansion condition imposed on the local reduced form parameter around v = 0. It
is readily verified for likelihood and GMM models (see Section 4). For these models with i.i.d.
data the vector V,, is typically of the form: V,, = n=1/23"" v(X;) with E[v(X;)] = 0 and
Var[v(X;)] = X. Assumption 3.2(ii) is trivially satisfied whenever each K, contains a ball of
radius k, centered at the origin. This condition allows for the reduced-form true parameter value
v = 0 to be on the boundary of T' (see, e.g., Andrews (1999) for similar condition imposed in
identified models when a parameter is on the boundary). Assumption 3.3(i) requires the quasi-
posterior to be proper. Assumption 3.3(ii) is a standard prior mass and smoothness condition
used to establish Bernstein-von Mises theorems for identified parametric models (see, e.g., Sec-
tion 10.2 of van der Vaart (2000)) but applied to IIr. Under a flat prior on © and a continuous
local mapping - : @?/ — I', this assumption is easily satisfied (see its verification in examples of
Section 4). Assumption 3.4 requires that the distribution of the MC chain {Q,(8'),..., Q.(65)}
well approximates the posterior distribution of @, (6), which is satisfied by many MC samplers.

Let T be the orthogonal projection onto the tangent space T' (at v = 0). Assumptions 3.1(i)
and 3.2 imply that the QLR statistic for O satisfies

sup Qu(6) = [ TVy|* + op(1)

€O
(see Lemma F.1). And hence under the generalized information equality 3 = I+, which corre-
sponds to an optimally weighted criterion such as a correctly-specified likelihood, an optimally-
weighted or continuously-updated GMM or various (generalized) empirical-likelihood criterion,

the asymptotic distribution of supycg, @n(#) becomes Fr, which is defined as
Fr(z) :=Pz(|TZ|” < 2) (15)

where Py denotes the distribution of a N(0, I;+) random vector Z. This recovers the known
asymptotic distribution result for optimally weighted QLR statistic under point identification.
Note that when T = R%", Fr reduces to FX?;*’ the cdf of XZ* (a chi-square random variable
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with d* degree of freedom). If T" is polyhedral then Fr is the distribution of a chi-bar-squared
random variable (i.e. a mixture of chi squares with different degrees of freedom; the mixing

weights themselves depending on the shape of T').

Theorem 3.1. Let Assumptions 3.1, 3.2, 3.3, and 3.4 hold with > = I4. Then for any a such
that Fr(-) is continuous at its a quantile, we have:

(i) iminf,_0o P(©; C O4) > a;

(i) If T =R then: lim, oo P(©] C @a) = q.

A key step in the proof of Theorem 3.1 is the following new Bernstein-von Mises type result
(Lemma 3.1) for the posterior distribution of the QLR. Let Pz x, be the distribution of a random
vector Z that is N (0, I;+) (conditional on the data). Recall that V,, is a measurable function of
the data. Let T — V,, denote the cone T translated to have vertex at —V,,. Let T+ denote the

orthogonal projection onto the polar cone of 7.8

Lemma 3.1. Let Assumptions 3.1, 3.2 and 3.3 hold. Then:

sup )Hn({e L Qul(0) < 2}| X)) — Py, (HZH2 <zt ||Tivn||2\z eT - Vn) —op(1).  (16)

And hence we have:
(i) If T C RT then: 11, ({0 : Qn(0) < 2} X;) < Fr(z) for all z > 0.
(ii) IF T = RY then: sup, ‘nn({e L Qu(0) < 2}|X,,) - in*(z)‘ — op(1).

Note that Lemma 3.1 does not require the generalized information equality ¥ = Iz« to hold.
Therefore, regardless whether a partially-identified model is correctly specified or not, the pos-
terior distribution of the QLR statistic asymptotically (first-order) stochastically dominates Fr
when T is a closed convex cone and is asymptotically X?l* when T = R?". This lemma extends
the known Bernstein-von Mises theorems for possibly misspecified likelihood models with point-
identified root-n asymptotically normally estimable parameters (see, e.g., Kleijn and van der
Vaart (2012) and the references therein) to allow for other models with failure of ¥ = I+, with

partially-identified parameters and/or parameters on a boundary.

Together with Assumption 3.4, Lemma 3.1 implies that our MCMC CS O, (Procedure 1) is
always a well-defined Bayesian credible set for O regardless whether > = I+ holds or not. But,
Theorem 3.1 requires ¥ = I4 so that our MCMC CS @a will have a correct frequentist coverage

8The orthogonal projection Tv of any vector v € R?" onto a closed convex cone T C R?" is the unique solution
to infrer ||t — v]|?. The polar cone of T is T° = {s € R : st < 0 for all ¢ € T'} which is also closed and convex.
Moreau’s decomposition theorem gives v = Tv + T+v with [Jv]|> = || To|> + | T 0|2 If T = RY then Tv = v,
T° = {0} and T v = 0 for any v € R?". See Chapter A.3.2 of Hiriart-Urruty and Lemaréchal (2001).
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probability (for ©7).1° This is because the asymptotic distribution of supyeg , Qn(0) is Fr only
under ¥ = I«. It follows that, with an optimally weighted criterion, @a will be asymptotically
exact (for ©7) when T' = R? | and asymptotically valid but could be conservative when 7T is a

cone, where the conservativeness of @a will depend on the shape of T'.

Remark 3. Theorem 3.1 is still applicable to misspecified, separable partially identified likelihood
models. For such models we can rewrite the density as p(-;0) = q(-;7(0)) where 7 is an identifiable
reduced-form parameter (see Section 4.1.1 below). Under misspecification the identified set is
©r ={6:7(0) = 3*} where 3* is the unique value of 5 that minimizes Pylog(po(-)/q(-;7)) (the
Kullback-Leibler divergence from the true DGP pg). Following the insight of Muller (2013), we

could base our inference on the sandwich log-likelihood function:

where 4 approrimately maximizes % Yo logq(Xs;9) and f]g 1s the sandwich covariance matrix

estimator for 4.

3.1.1 Models with singularities

In this subsection we consider (possibly) partially identified models with singularities.?’ In iden-
tifiable parametric models {Py : § € ©}, the standard notion of differentiability in quadratic
mean requires that the mass of the part of Py that is singular with respect to the true distribu-
tion Py = Py, vanishes faster than || — 6p||?> as @ — 6y (Le Cam and Yang, 1990, section 6.2). If
this condition fails then the log likelihood will not be locally quadratic at 8y. By analogy with
the identifiable case, we say a non-identifiable model has a singularity if it does not admit a
local quadratic approximation (in the reduced-form reparameterization) like that in Assumption
3.2(i). One such an example is the missing data model under identification (see Subsection 4.1.1
below).

To allow for partially identified models with singularities, we first generalize the notion of the
local reduced-form reparameterization to be of the form 6 +— (y(6), v, (0)) from OF into T x T'|
where I' € R?" and 'y € RE™OL) with (y(0),~.(#)) = 0 if and only if # € ©;. The following

regularity conditions generalize Assumptions 3.2 and 3.3 to allow for singularity.

Assumption 3.2! (Local quadratic approximation with singularity)

9This is consistent with the fact that the percentile MCMC CS also needs ¥ = Iy~ in order to have a correct
frequentist coverage for a point-identified scalar parameter (see, e.g., Chernozhukov and Hong (2003)), Robert
and Casella (2004) and others.

20Such models are also referred to as non-regular models or models with non-regular parameters.
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(i) There exist sequences of random variables £, and R? -valued random vectors V,, (both mea-
surable in X, ), and a sequence of measurable functions f, | : '\ — Ry with f, 1 (0) =0, such
that:

sup
06@0571

1L (0) = (£ = VIO + VOV~ fosCu8) )| =ox) (17

with supgeg, . |[(7(0),vL(0))|| = 0, Vi ~ N(0,%) as n — oo,

(i) {(7(0),7L(0)) : 0 € Opsn} = {7(0) : 0 € Opsn} X {7L(0) : 0 € Opsn };
(i1i) The sets Kosn = {\/n7(0) : 0 € Opsn} cover a closed convex cone T C R,

Let IIp« denote the image of the measure IT under the map OF > 6 — (y(0),7.(9)). Let

B ¢ R¥+dm(y1) denote a ball of radius r centered at the origin.

Assumption 3.3 (Prior with singularity)
(i) Jo e™ln(0) ATI(0) < 0o almost surely
(ii) Hp= has a continuous, strictly positive density mr= on By N (I' x ') for some § > 0.

Discussion of Assumptions: Assumption 3.2°(i)(iii) is generalization of Assumption 3.2 to
the singular case. Assumption 3.2°(i)(ii) implies that the peak of the likelihood does not con-
centrate on sets of the form {6 : f,, | (v1(0)) > € > 0}. Recently, Bochkina and Green (2014)
established a Bernstein-von Mises result for identifiable parametric likelihood models with singu-
larities. They assume that the likelihood is locally quadratic in some parameters and locally linear
in others (similar to Assumption 3.2°(i)), and also assume the local parameter space satisfies con-
ditions similar to our Assumption 3.2°(ii)(iii). Finally, Assumption 3.3’ generalizes Assumption

3.3 to the singular case. We impose no further restrictions on the set {v,(0): 0 € ©N}.
Theorem 3.2. Let Assumptions 3.1, 3.2°, 3.3’ and 3.4 hold with ¥ = I4«. Then for any a such
that Fr(-) is continuous at its a quantile, we have:

liminf P(©; C 6,) > a.

n—o0

For non-singular models Theorem 3.1 establishes that (:)a is asymptotically valid for O, with
asymptotically exact coverage when the tangent set T is linear and can be conservative when T’
is a closed convex cone. For singular models Theorem 3.2 shows that O, is still asymptotically
valid for ©7 but can be conservative even when T is linear.?’ When applied to the missing
data example, Theorems 3.1 and 3.2 imply that (:)a for Oy is asymptotically exact under partial

identification but conservative under point identification; see Section 4.1.1 below for details.

21Tt might be possible to establish asymptotically exact coverage of O, for ©; in singular models where the
singular part f, 1 (71 (6)) in Assumption 3.2’ possesses some extra structures.
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3.2 Coverage properties of ]\/Za for M;

In this section we present conditions under which the CS ]\/Za has correct coverage for the set
M;j. Recall that u : © — M C R* is a known continuous mapping with 1 < k < dim(6),
M={m=pu@):0e€0} utim)={0c0:ul) =m} and Ad) = {0 € ©: L(#) = L(0)}.
Then ©; = A(6) for any § € O; and My = {u(f) : 0 € O;} = u(A(0)) for any 6 € ©;.

Define the profile quasi-likelihood for the set u(A(0)) C M as:

PL,(A(6)) = inf L,(0).
(A(9)) me;?A(a))éesggm) (9)

Since we aim at covering the identified set M; in a possibly partially identified model, this
definition of the profile quasi-likelihood is for a set, and is different from the usual definition (8)
of the profile quasi-likelihood for a point m € M. Note that PL,(A(#)) is defined in the same
way as that of the profile quasi-likelihood for the set My (see (9)):

PL,(A()) = PL,(©7) = inf sup L,(f) forallec 0.

MEMT ey (m)

The profile QLR for the set pu(A(0)) C M is defined analogously:

PQn(A(0)) = 2n[Ly(0) = PLo(A(0))] = sup  inf Qn(f).

meu(A(9)) 0ep=1(m)
where Q,,(0) = 2n[Ly,(0) — Ly,(0)] is as defined in (6).

Recall that ©,s, C OF for all n sufficiently large. For § € O, the set A(#) can be equivalently
expressed as the set {6 € OF : () = ~v(0)}. Also M = {u(0) : v(6) =0} .

Assumption 3.5. (Profile QL)
There exists a measurable function f :RY — R, such that:

sup
96@05”

1 1
WPLL(AO) = (b + JIValP = 37 (V= Vi (0) ) ] —op(1)
with V,, and v from Assumption 3.2 or 3.2°.

post
n

We also replace Assumption 3.4 by a version appropriate for the profiled case. Let &b ¥ denote

the a quantile of the profile QLR PQ,,(A(f)) under the posterior distribution II,,, and &,'a* be

given in Remark 2.

Assumption 3.6. (MC convergence)
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it =t + op(1).

Discussion of Assumptions: Assumption 3.5 imposes some structure on the profile QL
statistic for M over the local neighborhood 0. It effectively deals with models for which the
profile QLR for Mj is of the form:

PQn(A®B)) = f(V,) — TV, |? + 0p(1) for each 6 € ©; (18)

where f: R? — R is a measurable function satisfying f(v) > || T1v||? for v € R?". The precise
functional form of f depends on the local reparameterization v as well as the mapping . When
M is a singleton then equation (18) is typically satisfied with f(v) = infier, |[v — t]|?> where
T, =Rh ¢ T =RY (ie, di < d*) and the QLR statistic is XZ*—d{ asymptotically. For a
non-singleton set My, f in equation (18) could be of the form:

= inf |lo—¢||% ..., inf [v—¢t*) +inf o —¢|?
$0) = fo (fof o=t jnf o= ) + jnf Jo 1

where fy : RY — Ry and T,...,Ty are closed cones in R?, and the profile QLR statistic
could be asymptotically mixtures of x? random variables with different degrees of freedom (i.e.
chi-bar-squared random variables) as well as maxima and minima of mixtures of x? random
variables. See Section 4 for verification of Assumption 3.5 (or equation (18)) in missing data and
moment inequality examples. Note that the existence of such a f is merely a proof device, and
one does not need to know its precise expression in the implementation of our MC CS ]\/Za for
M. Finally, Assumption 3.6 requires that the distribution of the profile QLR statistic computed
from the MC chain well approximates the posterior distribution of the profile QLR statistic.

The next theorem is an important consequence of Lemma F.5 (a new BvM type result in Ap-
pendix F) for the posterior distribution of the profile QLR for Mj.

Theorem 3.3. Let Assumptions 3.1, 8.2, 3.3, 3.5, and 3.6 or 8.1, 3.2°, 8.3°, 3.5, and 3.6 hold
with ¥ = Iz« and T = RY", and let the distribution of f(Z) (where Z ~ N(0,I4+)) be continuous
at its o quantile. Then: lim, o P(M; C ]/\J\Q) = q.

Theorem 3.3 shows that, as long as the tangent set T is linear, our CSs ]\/4\a for M; can have
asymptotically exact coverage even when the model is singular. For example, in the missing data
example, Theorem 3.3 implies that ]\/4\a for My is asymptotically exact irrespective of whether

the model is point-identified or not; see Subsection 4.1.1 below for details.
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3.3 Coverage properties of ]\7&( for M;

This section presents one sufficient condition for validity of the CS MY for M 1 (Procedure 3).

Assumption 3.7. (Profile QLR, x* bound)

PQn(A(0)) ~ f(Z2) = infier, | Z —t||? Vinfier, | Z —t||? for all 0 € ©;, where Z ~ N(0, Iz+) for
some d* > 1 and Ty and Ty are closed half-spaces in RY with supporting hyperplanes that pass
through the origin.

Note that Assumption 3.7 places additional structure on the function f in Assumption 3.5 or in

equation (18).

Theorem 3.4. Let Assumption 3.7 hold and let the distribution of f(Z) be continuous at its o
quantile. Then: liminf,,_,, P(M; C ]\7&‘) > a.

The exact distribution of f(Z) depends on the geometry of T} and T>. We show in the proof
of Theorem 3.4 that the worst-case coverage (i.e., the case in which asymptotic coverage of ]\7&‘
will be most conservative) will occur when the polar cones of T and T are orthogonal, in which
case f(Z) has the mixture distribution W* := 8o+ 2x3 + 1(x} - x}) where &) is a point mass at
zero and X7 - x? is the distribution of the product of two independent x? random variables. The
quantiles of the distribution of f(Z) are continuous in « for all a > %. For all configurations
of T and T, the distribution of f(Z) (first-order) stochastically dominates Fyy~ and is (first-
order) stochastically dominated by F2 (i.e., Fyy- (w) > Fpz)(w) > F\» (w)). Notice that this
is different from the usual chi-bar-squared case encountered when testing whether a parameter

belongs to the identified set on the basis of finitely many moment inequalities (Rosen, 2008).

To get an idea of the degree of conservativeness of ]\7&‘ , consider the class of models satisfying
conditions for Theorem 3.4. Figure 3 plots the asymptotic coverage of ]/\4\(1 and ]/\4\35 against
nominal coverage for models in this class where MY is most conservative (i.e., the worst-case
coverage). For each model in this class, the asymptotic coverage of M\a and ]/\4\25 is between the
nominal coverage and the worst-case coverage. As can be seen, the coverage of J/\/[\a is exact at all
levels « € (0, 1) for which the distribution of the profile QLR is continuous at its « quantile, as
predicted by Lemma 2.2. On the other hand, ]\7&‘ is asymptotically conservative, but the level
of conservativeness decreases as « increases towards one. Indeed, for levels of « in excess of 0.85

the level of conservativeness is negligible.

The following proposition presents a set of sufficient conditions for Assumption 3.7.

Proposition 3.1. Let the following hold:

(i) infment; SUPgey—1(m) Ln(0) = Miny,c (1 my SUPgey—1 (m) Ln () + op(n=1);
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QLR

Coverage

Nominal Coverage

Figure 3: Comparison of asymptotic coverage of ]\/4\a (Profile QLR — solid
kinked line) and of MX (x? — dashed curved line) with their nominal coverage
for models where MY is valid for M; but most conservative.

(i1) for each m € {m,m} there exists a sequence of sets (I'p, osn)nen With Iy, osn €T for each n

and a closed convex cone Ty, C R* with positive volume, such that:

sup ni(6) = sup (bt G = GV~ Vl?) + ()
0cp—1(m) YELm, 0sn

and infyer,, ., [Vny = Val? = infrer, [[t = Vol + op(1);

(iii) Assumptions 3.1(i), 3.2 or 3.2” hold with ¥ = Ig+;

(iv) T =RY and both T, and Ty are halfspaces in R .

Then: Assumption 3.7 holds.

Suppose that M; = [m,m] with —oo < m <M < oo (which is the case whenever ©; is connected
and bounded). If supge,,—1(;m) Ln(0) is strictly concave in m then condition (i) of Proposition 3.1

holds. The remaining conditions are then easy to verify.

Since empirical papers typically report a confidence set for scalar parameters, Theorem 3.4 will
be very useful in applied work. One could generalize ]/\4\25 to allow for quantiles of X?l with higher
degrees of freedom d € (1,dim(#)), but it might be difficult to provide sufficient condition to
establish result like Theorem 3.4.
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4 Sufficient conditions and Examples

This section provides sufficient conditions for Assumption 3.2 in general partially identified like-
lihood and GMM models with i.i.d. data. We also verify key regularity conditions (Assumptions
3.1(ii), 3.2 (or 3.2), 3.3, 3.5) in examples. In what follows we use standard empirical process
notation (van der Vaart and Wellner, 1996), namely Pyg denotes the expectation of g(X;) under
the true probability distribution Py, Pr,g = n~1 Y | g(X;) denotes expectation of g(X;) under
the empirical distribution, and G, g = /n(P,, — Py)g denotes the empirical process.

4.1 Partially identified likelihood models

Consider a parametric likelihood model P = {p(-;0) : # € ©} where each p(-;0) is a probability
density with respect to a common o-finite dominating measure A. Let pg € P be the true
DGP, Dkr(p(-)||g(+;0)) be the Kullback-Leibler divergence, and h(p,q)? = [(y/p — v/2)? dA

denote the squared Hellinger distance between two densities p and g. Then the identified set is
O©r ={0 €O : Drr(po(:)llp(-:0)) = 0} = {0 € © : h(po(-), p(-;0)) = 0}.

4.1.1 Over-parameterized likelihood models

For a large class of partially identified parametric likelihood models P = {p(+;0) : 0 € ©}, there
exists a measurable function 7 : © — I' € RY" for some possibly unknown d* € [1,+00), such
that p(-;0) = q(-;5(F)) for each # € © and some densities {q(-;5(A)) : 7 € T'}. In this case we say
that the model P is over-parameterized and admits a (global) reduced-form reparameterization.
The reparameterization is assumed to be identifiable, i.e. Dgr(q(:;%0)|lq(-;%)) > 0 for any
¥ # 9. Without loss of generality, we may translate the parameter space T so that the true
density po(-) = q(+;70) with 49 = 0. The identified set is ©; = {# € © : 5(6) = 0}.

In the following we let £5(x) := log q(z;7), {5 = 87 and (5 = 8d~ 1. And let Iy := Py(4- 0-)

50 Yo "o

denote the variance of the true score.

Proposition 4.1. Suppose that {q(;7) : 7 € F} satisfies the following regularity conditions:
(a) X1,...,X, are i.i.d. drawn from po(-) = q(;0) € {q(;7) : ¥ € I‘}, where T is a compact
subset of R%";

(b) there exists an open neighborhood U C r of 4 = 0 upon which £5(x) is strictly positive and
twice continuously differentiable for each x, with supsc( HZ&( z)|| < U(x) for some £ : 2 — R
with Py(€) < oo; and Iy is finite positive definite.

Then: there exists a sequence (rp)nen With T, — 00 and r,//n = o(1) as n — oo such that
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Assumption 3.2 holds for the average log-likelihood (1) over ©ysp, := {60 € O : ||[7(0)|| < rn/v/n}
with v(0) = I/%5(0), V,, =I5 *Gp(fs,) ~ N(0,Iz+), and T = R?".

If, in addition:

(c) mr is continuous and uniformly bounded away from zero and infinity on I' = { = ]I(l)/Q’y :
yeT};

(4) there exists a > 0 such that Pylog(po(-)/a(+ ) < I3, Polloa(a(s7)/m( )P S 1512,
and h(q(-;91),q(:;52)) =< 171 — F2/|* all hold on U.

Then: Assumption 3.1(ii) also holds.

Proposition 4.1 shows that Assumption 3.2 holds under conventional smoothness and identifica-
tion conditions on the reduced-form likelihood. The condition of twice continuous differentiability
of the log-likelihood can be weakened by substituting Hellinger differentiability conditions. Suf-
ficient conditions can also be tailored to Markov processes, including DSGE models with latent
Markov state variables, and general likelihood-based time series models (see, e.g., Hallin, van den
Akker, and Werker (2015)).

Example 1: missing data model in Subsection 2.4.1

We revisit the missing data example in Subsection 2.4.1, where the parameter space for 6 =
(1, B, p) is O given in (12). The identified set for € is O given in (13), and the identified set for
po = E[Y;] is My = [k11, K11 + Koo)-

Inference under partial identification: Consider the case in which the model is partially
identified (i.e. 0 < koo < 1). The likelihood of the i-th observation (D;, Y;D;) = (d,yd) is

pd, yd; 0) = [r11(0)]"[1 — K11(0) — Koo (0)]* [0 (0)]' % = q(d, yd; 7(9))
where the reduced-form reparameterization is:
5(0) = k11(0) — K11
ko0(0) — Koo
with f = {’y(@) 10 e @} = {(ku — K11, koo — Ku()()) : (kn,koo) € [0, 1]2,0 < k1 <1- koo}.

Conditions (a)-(b) of Proposition 4.1 hold. Hence Assumption 3.2 is satisfied with y(0) = ]Ié/27y(9)

where:

1 + 1 1

Iy = K11 1—r11—K00 1—r11—K00
1 1oy 1
1—k11—K00 K00 1—kK11—Ko00
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and

1 o 1ypf B% - Gimwdi

_ E - K11 1—k11—K00
Vn = Vn Io 1-d; _ _di—yid; ~ N(0, I2)

=1 K00 1—kK11—kKo00

and the tangent cone is T = R2. A flat prior on © in (12) induces a flat prior on I', which verifies
Condition (c) of Proposition 4.1 and Assumption 3.3. Therefore, Theorem 3.1 implies that our
MC CSs for ©5 will have asymptotically exact coverage.

Now consider CSs for M; = [k11, k11 + koo). Note that u=t(m) = {m} x {(B,p) € [0,1]?> : 0 <
m — B(1 — p) < p}. By concavity in m, the profile log-likelihood for M7 is:

PL,(A(9)) = min sup P,log(p(;0)) forall§cO;.

me{r11,K11+K00} Ge =1 (m)

Rewriting the maximization problem in terms of the reduced-form probabilities:

. Slllp P, log(p(-;0)) = O<iup< P, (ydlog k11 + (d — yd)log(1 — k11 — koo) + (1 — d) log k()o) )
oenm) m<Fr1-Hhoo<1
(19)

at m = k11 and m = K11 + Kgo. The local parameter spaces for problem (19) at m = k11 and

m = K11 + koo are sketched in Figure 4. Let v = (v1,72) = (k11 — K11, koo — koo) and let:

2
T = U {\/ﬁﬂ(l)/ yi =k <m <0, —ko <71 +72 < 1= ki1 — koo, ||V]]* < 7}21/71}
n>1

1/2
T = U {\/ﬁﬂo/ v —k11 <1 < koo, 0< 1 +92 < 1— k11 — koo, |1Y] < ri/n}
n>1

where r,, is from Proposition 4.1. It follows that for all 8 € ©;:

1 1
PL,(A(0)) =nP, VL2 == (i L — 1|2 : T
WPLA(A®) = Py logpo + 31V = 5 (inf 10 =12 ) v (jnf 1V ) + 02()

_ : 112 : 4112
PQAAO) = (iuf 17~ 1) v (juf 17— 117) + ().
Thus both equation (18) and Assumption 3.7 hold with f : R? — R, given by
(s 2 . 2
£(0) = (it llo — %) v (inf llo —112), (20)

where Ty and T3 are halfspaces in R2. Theorem 3.4 implies that the CS MY is asymptotically

valid (but conservative) for M.
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Figure 4: Local parameter spaces for the profile LR statistic for My. Left
panel: the lightly shaded region is for problem (19) at m = k;; and the darker
shaded region is for problem (19) at m = k11 + koo. Right panel: corresponding
problems for the profile LR (21) at x11(6) and (k11(0), koo(8))’.

To verify Assumption 3.5, take n sufficiently large that () € int(T") for all € ©4p,:

sup P, logp(-,0). (21)

PL,(A(0)) = min
me{k11(0),x11(0)+ro0(0)} éelu,—l (m)

By analogy with display (19), to calculate PL,,(A(#)) we need to solve:

. Sl,llp P, log(p(-;0)) = O<iup< P, (ydlog k11 + (d — yd)log(1 — k11 — koo) + (1 — d) log k()o)
ven=iim) m<kr1 koo <1

at m = k11(0) and m = k11(0) + Koo(0).

This problem is geometrically the same as the problem for the profile QLR up to a translation
of the local parameter space from (k11, ko)’ to (k11(6), koo(#))’. The local parameter spaces are
approximated by the translated cones T7(0) = T1 + /nvy(0) and T5(6) = Tz + /ny(6). It follows
that: uniformly in 6 € O,

nPLL(AW)) = nBylogpn + 5 [[Vall> = 37 (Vo — ViTr(6)) + ox(1)

where f is given in (20), and hence Assumption 3.5 holds. Therefore, Theorem 3.3 implies that
our MC CS J/W\a for M7 will have asymptotically exact coverage.

Inference under identification: Now consider the case in which the model is identified (i.e.
true koo = 0). In this case each D; = 1 so the likelihood of the i-th observation (D;, Y;D;) = (1,y)
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p(1,y;0) = [k11(0)]Y[1 — k11(0) — Koo(0)]" Y = q(1,;7(0))

We again take © as in (12) and use a flat prior. Lemma F.6 in Appendix F shows that II,, con-
centrates on the local neighborhood ©,g, given by O,s, = {0 : |k11(0) — k11| < rn/v/1, Koo (0) <

rn/n} for any positive sequence (rp,)nen with 7, — 0o, 7,/v/n = o(1).

Here the reduced-form parameter 4(0) is 4(0) = k11(0) — k11. Uniformly over 0,4, we obtain:

2k11(1 — K11) k11(1 — K11)

nLn(8) = P, log o — 2L ( IZ e )—nmoowwoﬂm(l)

which verifies Assumption 3.2°(1) with v(0) = (k11(1 — k11))"25(0), T = R, f, 1 (7.(0)) =
ny1(#) where v, (0) = roo(0) = 0, and

Vi = (r11(1 = 511)"2G(y) ~ N(0,1) .

The remaining parts of Assumption 3.2’ are easily shown to be satisfied. Therefore, Theorem

3.2 implies that our MC CS (:)a for ©1 will be asymptotically valid but conservative.

For subvector inference on M; = {uo}, the profile LR statistic for M; = {uo} is asymptotically
x3, and equation (18) holds with f : R — Ry given by f(v) = v? and T = R. To verify

Assumption 3.5, for each 0 € 0,4, we need to solve

) Sillp P, log(p(+;0)) = O<iup< P, (y log k11 + (1 — y) log(1 — k11 — k‘oo))
feu—Hm) m<kr1+hon<1

at m = k11(0) and m = k11(0) + Koo(f). The maximum is achieved when kgp is as small as
possible, which occurs along the segment kg9 = m — k1. Substituting in and maximizing with

respect to kqiq:

Csup Pulog(p(;6)) =Py (ylogm + (1 —y)log(l —m)).
fep=t(m)

Therefore, we obtain the following expansion uniformly for § € ©gy:

1
nPL,(A(F)) = nP, logpy + 5(Vn)2

(Vo= V)V 5 (Ve VA6) + r00(6))) + 0p(1)
= B logpo + 3 (Va)? — 2 (Vo — vinr(6))” +on(1)
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where the last equality holds because supycg, . koo(f) < rn/n = o(n~1/2). This verifies that
Assumption 3.5 holds with f(v) = v2. Thus Theorem 3.3 implies that our MC CS M, for M;

will have asymptotically exact coverage, even though @a for ©; will be conservative in this case.

Example 2: complete information entry game

Consider the bivariate discrete game with payoffs described in Table 9. Let Dy, 4, denote a binary
random variable taking the value 1 if and only if player 1 takes action a; and player 2 takes action
az. We observe a random sample {(Doo;, Do1,i, D10, D11,i) 1. The model is parameterized
by 0 = (B1, P2, A1, A9, p,s)’, where p is the parameter associated with the joint probability
distribution (Q,) of (e1,€2), and s € [0,1] is the selection probability of choosing the (a1, a2) =
(0,1) equilibrium when there are multiple equilibria. The reduced-form probabilities of observing
Do, Do1, D11 and Dqg are koo(0), ko1(0), k11(0), and k19(0) = 1 — kpo(0) — ko1(0) — K11(0),
given by:

koo(0) = Qperi < —P1, €2 < —P2)

ko1(0) = Qp(=F1 < €13 < —P1 — A, e < —P2 — Ag) + Qpler; < —f1, €25 > —32)
+5Qp(=f1 < €1 < —P1— A1, —f2 < ez < —Pa — Ag)

k11(0) = Qpler; > —f1 — A1, €25 > —fa — Ao).

Let koo, ko1, and k11 denote the true values of the reduced-form choice probabilities. This
model falls into the class of models dealt with in Proposition 4.1 with 5(8) = x(6) — ko where
k(0) = (koo(0), ko1(0),k11(0))" and kg = (koo, ko1, k11)"- The likelihood at the i-th observation

is:

p(doo, dot, di1;0) = [Koo(6)]7° [k01(6)] [r11(0)] (1 — Koo(6) — ko1(0) — k11 (h))!~ oo~ dor—dnn
= q(doo, do1, d11;7(9)) .

Conditions (a)-(b) and (d) of Proposition 4.1 hold with I' = {§(f) : # € ©} under very mild

conditions on the parameterization 6 — (). Hence Assumption 3.2 is satisfied with v(6) =

]I(l)/Qﬁ(H) where:
1

K11

Iy = 0
0

1

+ 1343
1 — Koo — Ko1 — K11

0
1
KO1

0

I o o
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where 1343 denotes a 3 x 3 matrix of ones,

doo,i 1—doo,i—do1,:—d11,i

n K00 1—kKoo—kKo1—FK11
V., — 1 § :H—l/Q do1,i  1—doo,i—do1,i—d11,i WN(O I)
" NOE: 0 K01 1—Koo—Ko1—K11 143
i=1 di1,;  1=doo,i—do1,i—d11,i
K11 1—koo—K01—FK11

and T = R3. Condition (c) of Proposition 4.1 and Assumption 3.3 can be verified under mild
conditions on the map 6 — k(f) and the prior II. For instance, consider the parameterization
0 = (B1, B2, A1, A9, p, s) where the joint distribution of (€1, €2) is a bivariate Normal with means

zero, standard deviations one and positive correlation p € [0, 1]. The parameter space is
© = {(B1, B2, A1, A2,p,8) ERO: B< B1, Ba < B,A<S AL A <A 0< p,s <1},

where —oo < 8 < B < 0o and —0o < A < A < 0. The image measure IIr of a flat prior on
© is positive and continuous on a neighborhood of the origin, which verifies Condition (c) of
Proposition 4.1 and Assumption 3.3. Therefore, Theorem 3.1 implies that our MC CSs for Oy

will have asymptotically exact coverage.

4.1.2 General non-identifiable likelihood models

It is possible to define a local reduced-form reparameterization for non-identifiable likelihood
models, even when P = {p(;0) : § € ©} does not admit an explicit (global) reduced-form
reparameterization. Let D C L?(Fy) denote the set of all limit points of:

D, := { p/po—1

:p €P,0 < h(p, <e
o) P (P, po) }

as € — 0. The set D is the set of generalized Hellinger scores,?? which consists of functions of
X; with mean zero and unit variance. The cone A = {rd : 7 > 0,d € D} is the tangent cone of
the model P at py. We say that P is differentiable in quadratic mean (DQM) if each p € P is
absolutely continuous with respect to py and for each p € P there are elements g(p) € A and
remainders R(p) € L?()\) such that:

VP —+/Po = g(p)y/Po + h(p, po) R(p)

with sup{||R(p)[|2(n) : h(p,po) < €} — 0 as e — 0. If the linear hull Span(A) of A has finite
dimension d* > 1, then we can write each g € A as g = c(g)"y) where ¢(g) € R? and the

221t is possible to define sets of generalized scores via other measures of distance between densities. See Liu and
Shao (2003) and Azais, Gassiat, and Mercadier (2009). Our results can easily be adapted to these other cases.
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elements of ¢ = (¢1,...,14) form an orthonormal basis for Span(A) in L?(F). Let A denote
the orthogonal projection onto A and let v(6) be given by A(2(1/p(;0)/po(:) — 1)) = ~v(0)'4).?
Finally, let D. = D, U D.

Proposition 4.2. Suppose that P satisfies the following reqularity conditions:

(a) {logp: p € P} is Py-Glivenko Cantelli;

(b) P is DQM, and A is convex and Span(A) has finite dimension d* > 1.

(c) there exists € > 0 such that D, is Donsker and has envelope D € L?(Py).

Then: there exists a sequence (rp)neny with r, — 0o and r, = O(logn) as n — oo, such that
Assumption 3.2(i) holds for the average log-likelihood (1) over © sy, := {6 : h(Py, Py) < rn//n}
with Vi, = G (¥) and (0) defined by A(2(\/p(;0)/po(-) — 1)) = 7(0)'¢.

Proposition 4.2 is a set of sufficient conditions in the i.i.d. setting. See Lemma F.7 in Appendix

F for a more general result.

4.2 GMM models

Consider the GMM model {p(X;,6) : 6 € ©} with p: 2 x © — RI™0P) Let ¢(h) = E[p(X;,0)]
and the identified set be O; = {6 € © : g(d) = 0}. In models with a moderate or large number
of moment conditions, the set {g(f) : § € ©} may not contain a neighborhood of the origin.
However, the map 6 — g(6) is typically smooth, in which case {g(6) : # € ©} can be locally
approximated at the origin by a closed convex cone A C R4™(9) at the origin. For instance,

if {g(6) : 0 € O} is a differentiable manifold this is trivially true with A a linear subspace of
Rdim(g)

Let A : RYm(@) 5 A denote the orthogonal projection onto A. Let U e Rdim(@)xdim(g) pe 5
unitary matrix (i.e. U’ = U~') such that for each v € RI™() the first dim(A) = d* (say)
elements of Uwv are in the linear hull Span(A) and the remaining dim(g) — d* are orthogonal to
Span(A). Let [(UQU’)~1]11 be the d* x d* upper left block of (UQU’)~!, [UAg(#)]; be the first
d* elements of UAg(#), and [UQ G, (p(-,0))]1 be the upper d* subvector of UQ ™G, (p(-;0)).
If {g(0) : & € O} contains a neighborhood of the origin then we just take A = RI™) ywith
d* = dim(g), U = Igim(g), and Ag(0) = g(0).

In the following let ©5 = {0 € © : ||g(0)|| < e} and R. = {p(-,0) : 0 € ©,]|g(0)| < e}.

Proposition 4.3. Suppose that data {X;}}' | is i.i.d. and the identified set O = {0 € O :
Elp(X;,0)] = 0} is not empty. Let the following hold:

2If A C L*(P) is a closed convex cone, the projection Af of any f € L?(Py) is defined as the unique element
of A such that || f — Af|p2¢p,) = infiea ||f — tl|lL2(p,) (see Hiriart-Urruty and Lemaréchal (2001)).
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(a) suppeo: 19(6) — Ag(B)]] = o(e) as = = 0;

(b) E[p(X;,0)p(X;,0)] = Q for each 6 € O1 and Q is positive definite;

(c) there exists eg > 0 such that R, is Donsker;

(4) sp(o 5.0 oy ELID(Xi,8) — p(X53 )] = o(1) as € —0;

(e) supgeor | EL(p(X:, 8)p(X:, 0))] — 2 = of1) as = — 0.

Then: there exists a sequence (rp)nen with T, — oo and 7, = o(n'/*) as n — oo such that
Assumption 3.2(i) holds for the continuously-updated GMM criterion (2) over ©ysy, = {0 € © :
lg(0)|| < rn//m}, where 7 (8) = [(UQU") P UAGO)]1, Vi = —[(UQU") 2 [UQ 7 Gulp(-, 0))]1
for any fived 0 € ©1, and T equals to the image of A under the map v — [(UQU")~11[Uv];.
If{g(0) : 0 € ©} contains a neighborhood of the origin then v(0) = Q~1/2¢(), V,, = —Q~12G,,(p(-, 6))
for any fized 0 € O, and T = RIm(9),

Proposition 4.4. Let all the conditions of Proposition 4.3 hold, except that its condition (e) is
replaced by: (e) ||W — Q7Y = op(1).
Then: the conclusions of Proposition 4.3 hold for the optimally-weighted GMM criterion (3).

Andrews and Mikusheva (2016) consider weak identification-robust inference when the null hy-
pothesis is described by a regular C? manifold in the parameter space. Let {g(f) : € ©} be a
C? manifold in RY™() that is regular at the origin.?* Then Condition (a) of Propositions 4.3
and 4.4 hold with A equal to the tangent space of {g() : 6 € ©} at the origin, which is a linear
subspace of RI™(9) (Federer, 1996, p. 234). It is straightforward to verify that K,g, is convex
and contains a ball By, where we may choose k,, — 0o as n — 0o, hence Assumption 3.2(ii) also
hold with 7' = RmA),

4.2.1 Moment inequalities

Consider the moment inequality model {5(X;,3) : 8 € B} with p : 2 x B — RI™(®) where
the parameter space is B C RY™P) The identified set is By = {8 € B : E[p(X;,5)] < 0}
(the inequality is understood to hold element-wise). We may reformulate the moment inequality
model as a GMM-type moment equality model by augmenting the parameter vector with a
vector of slackness parameters A € A C Riim(p ). Thus we re-parameterize the model by 6 =

(B,\) € © = B x A and write the inequality model as a GMM equality model

E[p(Xi,0)]=0 for 0 € O, p(X;,0) =p(Xi,0) + A, (22)

24That is, there exists a neighborhood N of the origin in R¥™9) a C? homeomorphism ¢ : N — R and
a linear subspace ® of RY™() of dimension dim(®) such that o(N N {g(#) : 0 € O}) = & Nim(p) where im(y) is
the image of . Such manifolds are also called dim(®)-dimensional submanifolds of class 2 of RU™(9); see Federer
(1996), Chapers 3.1.19-20.
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where the identified set for 6 is Oy = {# € © : E[p(X;,0)] = 0} and By is the projection of O
onto B. We may then apply Propositions 4.3 or 4.4 to the reparameterized GMM model (22).

Example 3. As a simple illustration, consider the model in which Xi,..., X, are i.i.d. with
unknown mean g € [0,1] = B and unit variance. Suppose that 5 € B is identified by the
moment inequality E[ — X;] < 0. The identified set for 5 is By = [0, ], which is the argmax of

the population criterion function

L(8) = —5((8 — ) VO

(see Figure 5(a)). The sample analogue criterion —3((8 — X,,) V 0)? is typically used in the
moment inequality literature, but does not satisfy our Assumption 3.2. However, we can rewrite
the inequality model in terms of the moment equality model: E[f4+A—X;] = 0 where A € [0,1—/]
is a slackness parameter. The parameter space for = (3,)) is © = {(3,\) € B> : 3+ X < 1}.
The identified set for 0 is ©r = {(8,A) € © : §+ X = u} and the identified set for the subvector
B is By (see Figure 5(b)). The GMM objective function for E[g + A — X;] =0 is:

La(B,A) = =56+ A= Xa)?.

Suppose that g € (0,1). Then wpal we can choose (3, ) € © such that nL,(3,\) = 0+ op(1).
Then:

sup |Qn(B,2) = (Vi — V(B + X = p))?| = op(1)

(B,\) €O

where V,, = /n(X,, — p) ~» N(0,1). The profile QLR for By is supgep, infrep Qn(8, ) where:

(Vn_\/ﬁ(ﬁ_:u))z if Vn/f_(ﬁ_ﬂ)<0
jnf Qn(B,A) =10 f 0<Vy/yn—(B-p)<1
(Vo =vn(B+1—p)? if Vo/y/n—(B—p)>1.

The maximum over By is attained at § = p, hence PQ,(A(9)) = f(V,,) 4+ op(1) for all 6 € O
where f(v) = v?1{v < 0}. Therefore, the profile QLR for By is asymptotically a mixture between

point mass at zero and a x? random variable.

For the posterior distribution of the profile QLR, first observe that this maps into our framework
with the local reduced-form parameter v(6) = ((8 + A) — p). A flat prior on © induces a prior
I whose density nr(y) = 2(v + ) is positive and continuous at the origin (see Figure 5(c)).
The set I' = {y(0) : 6 € ©} contains a ball of positive radius at the origin when p € (0,1) hence
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Figure 5: Panel (a): identified set By for 8 with population (moment inequal-

ity) criterion L(8) = —%((8—p)V0)?. Panel (b): identified set O for 6 = (53, \)

with moment equality model E[8 + A — X] = 0, and identified set B for 3.
Panel (c¢): induced prior 7t for y(f) = (8 + A — ) from a flat prior on ©.

T =R (otherwise T'= Ry or R_ when p is at the boundary of B). Moreover:
AB") ={(B,)) €0 : B+ Ar=p"+ A"}
and so p(A(#%)) = [0, B + \P]. Similar arguments then yield:
PQn(AB)) = f(V,, — vny(0)) + op(1) uniformly in 6 € O;

with f(v) = v?1{v < 0}. So all the regularity conditions of Theorem 3.3 hold, and hence our
MC CS ]\/Za has asymptotically exact coverage for Bj.

In Appendix C we show that, under a drifting sequence of DGPs towards the boundary By = {0},
our MC CS ]\/ia has asymptotically correct but possibly conservative coverage for By while the
nonparametric bootstrap based CS for B; undercovers. This illustrates that our MC CSs are

not equivalent to bootstrap CSs.

5 Applications

This section implements our procedures in two empirical illustrations. The first estimates a model
of trade flows initially examined in Helpman, Melitz, and Rubinstein (2008) (HMR henceforth).
This application uses a version of the empirical model in HMR, with more than 40 parameters

to be estimated. The second empirical example estimates a simple stylized version of a bivariate
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binary entry game with data from the US airline industry with 17 parameters to be estimated via
a likelihood. Both of these applications illustrate our robust approach to inference: the model is
nonlinear and it might be hard to determine whether it point identifies the parameters; and more
importantly, examining the robustness of the estimates to various adhoc modelling assumptions

can be done in a theoretically valid and computationally feasible way.

5.1 An Empirical Model of Trade Flows

In an influential paper, Helpman et al. (2008) examine the extensive margin of trade using a
structural model estimated with current trade data. The following is a brief description of their
empirical framework. Let M;; denote the value of country ’s imports from country j. This is
only observed if country j exports to country ¢. If a random draw for productivity from country
j to i is sufficiently high then j will export to . To model this, Helpman et al. (2008) introduce
a latent variable z7; which measures trade volume between ¢ and j. Here z7; takes the value zero
if j does not export to ¢ and strictly positive otherwise. We adapt slightly their empirical model

to obtain a selection model of the form:

Bo+Aj+xi — I/ldij + 52;} +ug; if 2 >0

log M;; =
&M { not observed if zj+ <0

Z;j = 58 + )\;f + Xf — I/*/dij + 7]:]-

in which A;, x;, )\;'7 and x; are exporting and importing continent fixed effects, d;; is a vector
of observable trade frictions between ¢ and j, and u;; and 7;; are error terms described below.
Notice that the model is different from the usual Heckman selection model due to the presence
of z7; in the outcome equation. Exclusion restrictions can be imposed by setting one or several

of the elements of v equal to zero.

There are three differences between our empirical model and that of Helpman et al. (2008).
First, we let z;; enter the outcome equation linearly instead of nonlinearly®. Second, we use
continent fixed effect instead of country fixed effects. This reduces the number of parameters
from over 400 to around 40. Third, we allow for heteroskedasticity in the selection equation,
which is known to be a problem in trade data. Also, this is one way to illustrate the robustness
approach we advocate which relaxes parametric assumptions on part of the model that is suspect

(homoskedasticity) without worrying about loss of point identification.

To allow for heteroskedasticity, we suppose that the distribution of (uij,nfj) conditional on

25 Their nonlinear specification is known to be problematic (see, e.g., Santos Silva and Tenreyro (2015)).
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observables is Normal with mean zero and covariance:

U?n Pomo-(Xij) )

=) = ( pome(Xeg)  72(Xe5)

where:

0.(X;;) = exp(log(distance;;) + w1 log(distance;;)?) .

For estimation we estimate the model from data on 24,649 country pairs in the selection equation
and 11,156 country pairs in the outcome equation using the same data from 1986 as in Helpman
et al. (2008). We also impose the exclusion restriction that the coefficient in v corresponding to
religion is equal to zero, else there is an exact linear relationship between the coefficients in the
outcome and selection equation. This leaves a total of 43 parameters to be estimated. We only
report estimates for the trade friction coefficients v in the outcome equation as these are the
most important. We estimate the model first by maximum likelihood under homoskedasticity
and report conventional ML estimates for v together with 95% confidence sets based on inverting
t-statistics. We then re-estimate the model under heteroskedasticity and report conventional ML
estimates together with confidence sets based on inverting t-statistics, the Chernozhukov and
Hong (2003) procedure, and our procedures 2 and 3. We use a random walk Metropolis Hastings

sampler with chain length of 10000, burnin of 10000 and acceptance rate tuned to be one third.

The results are presented in Table 11. Overall, the results for the heteroskedastic specification
show that the confidence sets seem reasonably insensitive to the type of procedure used, which
suggests that partial identification may not be an issue even allowing for heteroskedasticity. We
also notice some difference in results relative to Helpman et al. (2008). For instance, we find that
sharing the same legal system does not significantly impact trade flows whereas they document
a strong positive effect. On the other hand, we find that sharing a common language and not
being an island has a positive effect on trade flows whereas they document no such effects. Un-
der heteroskedasticity, the magnitudes of coefficients of the trade friction variables are generally
smaller than under homoskedasticity but of the same sign. The exception is the legal variable,
whose coefficient is negative under homoskedasticity but positive under heteroskedasticity. How-
ever, this variable is insignificant for both specifications. A question that one can shed light on is
whether the estimates are also sensitive to the normality assumption on the errors. This question
can be examined within the context of our results by for example using a flexible form for the

joint distribution of the errors.

46



5.2 Bivariate Entry Game with US Airline Data

This section estimates a version of the entry game that we study in Subsection 2.4.2 above. We
use data from the second quarter of 2010’s Airline Origin and Destination Survey (DB1B) to

estimate a binary game where the payoff for firm ¢ from entering market m is
Bi + B Tim + Aiyz—i + € i =1,2

where the A;’s are assumed to be negative (as usually the case in entry models). The data
contain 7882 markets which are formally defined as trips between two airports irrespective of

6 and

stopping and we examine the entry behavior of two kinds of firms: LC (low cost) firms,?
OA (other airlines) which includes all the other firms. The unconditional choice probabilities are
(.16,.61,.07,.15) which are respectively the probabilities that OA and LC serve a market, that
OA and not LC serve a market, that LC and not OA serve a market, and finally whether no
airline serve the market. The regressors we have are market presence and market size. Market
presence is a market and airline specific variable and is defined as follows. From a given airport,
we compute the ratio of markets a given carrier (we take the maximum within the category
OA or the category LC) serves divided by the total number of markets served from that given
airport. The market presence variable (or MP) is the average of the ratios from the two endpoints
and it provides some proxy for an airline’s presence in a given airport (See Berry (1992) for more
on this variable). For our purposes here, this variable is important since it acts as an excluded
regressor: the market presence for OA only enters OA’s payoffs - so MP is both market and
airline specific. The second regressor we use is market size (or MS) which is defined as the
population at the endpoints - so this variable is market specific. We discretize both market size
and market presence into binary variables that take the value of one if the variable is higher
than its median (in the data) value and zero otherwise. So, the reduced form parameters (or the
k(.)’s in Subsection 2.4.2) here are conditional on a three dimensional vector. That is, the choice
probabilities are P(yoa,yrc|MS, M Poa, M Prc) which gives us a set of 4 choice probabilities
for every value of the conditioning variables (and there are 8 values for these?”). To use notation
similar to that in Subsection 2.4.2, we call firm OA as player 1 and firm LC as player 2. Denote
B1(zmoa) = 5?),4 + BoaTmoa and Sa(zpmrc) = B%C + B cxmrc. Then the likelihood of market
m observation depends on the following choice probabilities:

25The low cost carriers are: JetBLue, Frontier, Air Tran, Allegiant Air, Spirit, Sun Country, USA3000, Virgin
America, Midwest Air, and Southwest.

2"With binary values, the conditioning set takes the following eight values: (1,1,1), (1,1,0), (1,0,1), (1,0,0),
(07171)7 (07170)7 (07071)7 (07070)
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€1m > —B1(xmoa) — Aoa; €2m > —B2(tmrc) — ALc)

€1m < =B1(Tmoa); 2m < —B2(Tmrc))

K10(0; Tm) :=5(2m) X P(=P1(zmoa) < e1m < —f1(2moa) — Aoa; —f2(emrc) < €2m < —B2(TmLc) — ALc)
+ P(eim > —fB1(zmoa); €2m < —f2(zmrc))

+ P(eim > —f1(xmoa) — Aoa; —L2(xmrc) < €2m < —B2(Tmrc) — ALc).

Here, x,, = (M Sy, M Pooa, MPprc) and s(x,,) is a nuisance parameter which corresponds
to the various aggregate equilibrium selection probabilities. This function s(.) is defined on the
support of x,,, and so in the model this function takes 2% = 8 values each belonging to [0, 1].
These selection probabilities are usually considered nuisance parameters. We call this the full
model where no assumptions are made on equilibrium selection and use the likelihood function
to build the confidence regions through the LR statistic as described above. So, the full model
contains 4 parameters per profit function, the correlation across the €¢’s and the 8 parameters
in the aggregate equilibrium choice probabilities (the s’s) for a total of 17 parameters. We also
estimate another version of the model called the fized s, where we restrict the aggregate selection
probabilities to be the same across markets. Note that the above is one version of the econometric
model for a game and a more parsimonious version would allow for example the parameters to
change with regressor values, or allow for the regressors’ support to be richer (and not just
binary). Here, we analyze this case precisely to highlight the fact that our CSs provide coverage
guarantees regardless of whether the parameter vector is point identified. The empirical findings

are presented in the Table 12 below.

The columns labeled Proc 1 contain projections of the identified sets at the prespecified con-
fidence level. In this model with 17 parameters, we expect these projections to be especially
conservative. On the other hand, in the columns labeled x?, we provide one-dimensional confi-
dence intervals for single dimensional (subvector) identified sets that are shown to be slightly
conservative. The construction of these intervals follows Procedure 3 above where we profile
out the corresponding nuisance parameters for every case and compute the likelihood on a one-
dimensional grid. Generally, the x? intervals should be tighter than the projection intervals and
that is evident in Table 12.

Starting with the full model results, and considering first on the 95% x? results, we see that
the estimates are meaningful economically and are inline with recent estimates obtained in the
literature. For example, fixed costs (the intercepts) are positive and significant for the large
airlines (or OA) but are negative for the LC carriers. Typically the presence of higher fixed costs
can signal various barriers to entry that are usually there to prevent L(Cs from entering. So, the
higher these fixed costs the less likely it is for LCs to enter. On the other hand, higher fixed

costs of large airlines are associated with a bigger presence (such as a hub) and so more likely
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to enter. As expected, both market presence and market size are associated with a positive
probability of entry for both OA and LC regardless of market structure. Note also the very
high correlation in the errors obtained here which could indicate missing profitability variables
whereby firms enter a market regardless of competition in those markets that are particularly
profitable. One interesting observation is the estimates for sgo; and s191. These are the aggregate
selection probabilities and according to the results, they are not identified. This is likely to be
due to the rather small number of markets with small size, large presence for OA but small
presence for LC (in the case of sgg1) and also small number of markets with large market size
but small presence for LCs but large presence for OAs. The strength of our approach is its
adaptivity to lack of identification in a particular data set: for example, the identified set for
Spo1 is contained in [0, 1] with at least 95% probability which indicates that the model (and
data) has no information about this parameter while the identified set for s11; is contained in
[.97,1] with at least 95% probability! Also, in the fized s model, the results for both the Proc 1
and y? procedures are in agreement with the corresponding ones for the full model x? and the
results across both Proc 1 (90% and 95%) and x? (or Proc 3) for both full and fixed s models

are remarkably similar and tell a consistent story.

6 Conclusion

We propose new methods for constructing frequentist CSs for IdSs in possibly partially-identified
econometric models. Our CSs are simple to compute and have asymptotically correct frequentist
coverage uniformly over a class of DGPs, including partially- and point- identified parametric
likelihood and moment based models. We show that under a set of sufficient conditions, and
in some broad classes of models, our set coverage is asymptotically exact. We also show that
in models with singularities (such as the missing data example), our MCMC CSs for the IdS
O; of the whole parameter vector may be slightly conservative, but our MCMC CSs for M;
(functions of the IdS) could still be asymptotically exact. Monte Carlo experiments showcase
the good finite-sample coverage properties of our proposed CS constructions in standard difficult

situations. We also illustrate our proposed CSs in two relevant empirical examples.

There are numerous extensions we plan to address in the future. The first natural extension is
to allow for semiparametric likelihood or moment based models involving unknown and possibly
partially-identified nuisance functions. We think this paper’s MCMC approach could be extended
to the partially-identified sieve MLE based inference in Chen, Tamer, and Torgovitsky (2011).
A second extension is to allow for structural models with latent state variables. Finally, another

extension is to study the case with possibly misspecified likelihoods.
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A Additional Monte Carlo evidence

A.1 Missing data example

Figure 6 plots the marginal “curved” priors for 8 and p. Figure 7 plots the reduced-form pa-
rameters evaluated at the MCMC chain for the structural parameters presented in Figure 1.
Although the partially-identified structural parameters y and 5 bounce around their respective
identified sets, the reduced-form chains in Figure 7 are stable.

A.2 Complete information game

Figure 8 presents the MCMC chain for the structural parameters computed from one simulated
data set with n = 1000 using a likelihood objective function and a flat prior on ©. Figure 9
presents the reduced-form probabilities calculated from the chain in Figure 8.

A.3 Euler equations

We simulate data using the design in Hansen et al. (1996) (also used by Kocherlakota (1990)
and Stock and Wright (2000)).2® The simulation design has a representative agent with CRRA
preferences indexed by 0 (discount rate) and « (risk-aversion parameter) and a representative
dividend-paying asset. The design has log consumption growth c¢;4; and log dividend growth on
a representative asset d;11 evolving as a bivariate VAR(1), with:

di+1 0.004 0.117 0.414 dy
= + t et
Cit1 0.021 0.017 0.161 Ce
where the e;41 are i.i.d normal with mean zero and covariance matrix:

0.01400 0.00177
0.00177 0.00120 |

Previous studies use the Tauchen and Hussey (1991) method to simulate the data based on a
discretized system. Unlike the previous studies, we simulate the VAR directly and use Burnside
(1998)’s formula for the price dividend ratio to calculate the return. Therefore we do not incur
any numerical approximation error due to discretization.

The only return used in the Euler equation is the gross stock return R;;;, with a constant,
lagged consumption growth, and lagged returns used as instruments. Thus the GMM model is:

B[ (0GR —1) @ 2] =0

28We are grateful to Lars Peter Hansen for suggesting this simulation exercise.
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Figure 6: Marginal curved priors for 5 and p for the missing data example.
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Figure T: MCMC chain for the reduced-form probabilities
(£11(0), £10(0), K00(0))" calculated from the chain in Figure 1. It is clear
the chain for the reduced-form probabilities has converged even though the
chain for the structural parameters has not.
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Figure 8: MCMC chain for all structural parameters (top 6 panels) and QLR
(bottom panel) with n = 1000 using a likelihood for L,, and a flat prior on ©.
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Figure 9: MCMC chain for the reduced-form probabilities calculated from the
chain in Figure 8. It is clear that the chain for the reduced-form probabilities
has converged, even though the chain for the structural parameters from which
they are calculated has not.
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with Gyy1 = exp(ci4+1) and 2z = (1, Gy, Ry)'. We use a continuously-updated GMM objective
function. We again use samples of size n = 100, 250, 500, and 1000 with (4, ) sampled from the
quasi-posterior using a random walk Metropolis Hastings sampler with acceptance rate tuned
to be approximately one third. We take a flat prior and vary (,~) in the DGP and the support
of the prior.

The model is (weakly) point identified. However, Figure 10 shows that the criterion contains
very little information about the true parameters even with n = 500. The chain for v bounces
around the region [10,40] and the chain for 6 bounces around [0.8,1.05]. The chain is drawn
from the quasi-posterior with a flat prior on [0,6, 1.1] x [0,40]. This suggests that conventional
percentile-based confidence intervals for 6 and v following Chernozhukov and Hong (2003) may
be highly sensitive to the prior. Figure 11 shows a scatter plot of the (d,+) chain which illustrates
further the sensitivity of the draws to the prior.

Tables 13 and 14 present coverage properties of our Procedure 1 for the full set (:)a (CCOT ¢
in the tables) together with our Procedure 2 for the identified set for § and v (CCOT § and
CCOT #~ in the tables). Here our Procedure 3 coincides with confidence sets based on inverting
the “constrained-minimized” QLR statistic suggested in Hansen et al. (1996) (HHY ¢ and HHY
~ in the tables). We also present the coverage properties of confidence sets formed from the
upper and lower 100(1 — «) /2 quantiles of the MCMC chains for v and § (i.e. the Chernozhukov
and Hong (2003) procedure; CH in the tables) and conventional confidence intervals based on
inverting t-statistics (Asy in the tables).

Overall the results are somewhat sensitive to the support for the parameters, even for the full
identified set. Results that construct the confidence sets using the quantiles of the actual chain
of parameters (CH in the Tables) do not perform well, but whether it over /under covers seems to
depend on the support of the prior. For instance, CH is conservative in Table 13 but undercovers
badly for v even with n = 500 in Table 14. Confidence sets based on the profiled QLR statistic
from the MCMC chain appear to perform better, but can over or under cover by a few percentage
points in samples of n = 100 and n = 250.
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Figure 10: Plots of the MCMC chain for the structural parameter ¢

[0.6,1.1] x [0, 40)].
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Figure 11: Scatter plot of the chain depicted in 10.
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Figure 12: Plots of the moments calculated from the chain in Figure 10.

CCOT § | CCOT§ CCOT~ | HOY S HHYy | CHS CH~y
n =100
a=090 | 08796 | 09478  0.9554 | 0.9344 0.8584 | 0.9900 0.9886
a=095| 09388 | 009858  0.9870 | 0.9728 0.8954 | 0.9974 0.9950
a=099 | 09860 | 09996  0.9982 | 0.9940 0.9364 | 1.0000 0.9998
n = 250
a=090 | 08828 | 009492  0.9542 | 0.9184 0.8716 | 0.9860 0.9874
a=095| 09360 | 09844 09846 | 0.9596 0.9076 | 0.9958 0.9940
=099 | 0986 | 09990  0.9976 | 0.9908 0.9330 | 0.9996 0.9990
n = 500
a=090 | 08848 | 00928 09230 | 0.9038 0.8850 | 0.9764 0.9708
a=095| 09404 | 09756  0.9720 | 0.9548 0.9312 | 0.9900 0.9894
a=099 | 09888 | 0.9974  0.9972 | 0.9856  0.9594 | 0.9986 0.9988
n = 1000
a=090 | 08840 | 08842  0.8774 | 0.9056 0.8984 | 0.9514 0.9518
a=095| 09440 | 09540  0.9548 | 0.9532 0.9516 | 0.9812 0.9796
a=099 | 09866 | 09954  0.9938 | 0.9898 0.9852 | 0.9968 0.9972

Table 13: MC coverage probabilities for § = 0.97 € [0.8,1], v = 1.3 € [0, 10].
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CCOT § [ CCOT§ CCOT 4 [HHY S HHY~ | CHS§ CH~
n =100
a=090 | 08212 | 09098  0.7830 | 0.8940 0.8764 | 0.9658 0.3434
a=0095| 08820 | 09564  0.8218 | 0.9394 0.9288 | 0.9886 0.4954
a=099 | 09614 | 09934  0.8780 | 0.9846 0.9732 | 0.9984 0.8098
n = 250
a=090 | 08774 | 09538  0.8560 | 0.8758 0.8914 | 0.9768 0.4068
a=095| 09244 | 09784  0.8908 | 0.9260 0.9468 | 0.9920 0.5402
a=0.99 | 09756 | 09982  0.9392 | 0.9780 0.9856 | 0.9990 0.7552
n = 500
a=090 | 09116 | 09600  0.9060 | 0.8668 0.8952 | 0.9704 0.5504
a=095| 09494 | 09866 09412 | 0.9136 0.9504 | 0.9892 0.6130
a=0.99 | 09880 | 0.9978  0.9758 | 0.9640 0.9890 | 0.9986 0.7070
n = 1000
a=090 | 09046 | 09134  0.8952 | 0.8838 0.8988 | 0.9198 0.8864
a=095| 09582 | 09614 09556 | 0.9216 0.9528 | 0.9586 0.9284
a=099 | 09882 | 09930  0.9922 | 0.9594 0.9914 | 0.9884 0.9600

Table 14: MC coverage probabilities for § = 0.97 € [0.6,1.1], v = 1.3 € [0,40].

A.4 Gaussian mixtures

Consider the bivariate normal mixture where each X; is iid with density f given by:

f(xi) =no(xi — p) + (1 —n)d(z:)

where n € [0,1] is the mixing weight and p € [—M, M] is the location parameter and ¢ is the
standard normal pdf. We restrict u to have compact support because of Hartigan (1985). If
@ =0 or n = 0 then the model is partially identified and the identified set for 6 = (u,n)" is
[—M, M] x {0} U {0} x [0,1]. However, if u # 0 and 1 > 0 then the model is point identified.

We are interested in doing inference on the identified set M; for p and Hjy for n. For each

simulation, we simulate a chain #',... 85 using Gibbs sampling.?? We calculate the profile
QLR ratio for p, which is:

Ln(0) — SUPyc(0,1] Ln(pb,n) if both p® # 0 and 7° > 0
Ln(0) — minge— a1y Supyepo) Ln(p,m)  else

and the profile QLR ratio for »n, which is:

Ln(0) — SUp e[, v Ln (1, n°) if both p® # 0 and ° > 0
Ly (0) — minye(o.1) Supye—ar,ar) Ln(1,m)  else.

We take the 100a percentile of the QLRs and call them &4 and &;. Confidence sets for M and

29Unlike the previous examples, here we use hierarchical Gibbs sampling instead of a random walk Metropolis-
Hastings algorithm as it allows us to draw exactly from the posterior.
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Hi (using Procedure 2) are:

]/\Zoz = {/L S [*M, M] Ln(é) — Ssup Ln(u7n) < géj}
n€l0,1]

i, = {17 €[0,1]: Ln(A) —  sup  Ln(p,m) < 62}-
NE[_MvM]

Unlike the missing data and game models, here the set of parameters § under which the model is
partially identified is a set of measure zero in the full parameter space. So naive MCMC sampling
won’t going to give us the correct critical values when the model is partially identified unless we
choose a prior that puts positive probability on the partially identified region.

Therefore, we use a truncated normal prior for pu:

! 5055 0y e [0, M}

W(M) = M—a

(I)( b ) - (I)(_Mb_a) b\/%

with hyperparameters (a,b). Conjugate beta priors for 1 are most commonly used. However,
they do not assign positive probability to 7 = 0. Instead we take the following empirical Bayes

approach. Let:
m(n) = qdo + (1 — @) fB(a,3)(M)

where ¢ € [0,1], o is point mass at the origin, and B(«, ) is the Beta distribution pdf. We’ll
treat the hyperparameters «, 8, a, b as fixed but estimate the mixing proportion g from the data.
The posterior distribution for § = (u,n) is

P On(mlale)
Jo SN B O () (n]q)dudn

(s ) [ Xn; q) =

The denominator is proportional to the marginal distribution for X,, given ¢. For the “empirical
Bayes” bit we choose ¢ to maximize this expression. Therefore, we choose:

A_{ 1t T, o(Xa) > [N, S T (00(Xs — 1) + (1= 10)d(X) f s () (1) dndp

0 else.

We then plug ¢ back in to the prior for 7. The posterior distribution we use for the MCMC

chain is:
el Or(wr(nlg)
I [ el Om(u)m(nl§)dudn

(1) do ifg=1
™ q) =
g fB(oz,ﬁ) lf q = 0.

When ¢ = 1 we have n = 0 for every draw, and when ¢ = 0 we can use the hierarchical Gibbs
method to draw p and 7.

TL((pt, 1)1 Xn; §) =

where () is as above and

For the simulations we take M = 3 with po = 1. The prior for p is a N(0,1) truncated to
[-M, M]. We take o = 1.5 and § = 3 in the prior for n. We vary 79, taking ny = 0.5,0.2,0.1

63



(point identified) and 1y = 0 (partially identified; see Figure 13). We use 5,000 replications with
chain length 10,000 and a burnin of 1,000. For confidence sets for ©; we use Procedure 1 with
the prior 7(n) = fp(a,3)(n) With a = 1.5 and 8 = 3 and 7 () is a N(0, 1) truncated to [—M, M].
We again use a hierarchical Gibbs sampler with chain length 10,000 and burnin of 1,000.

The first two Tables 15 and 16 present coverage probabilities of M, and ﬁa using Procedure 2.
Our procedure is valid but conservative in the partially identified case (here the identified set for
the subvectors p and 7 is the full parameter space which is why the procedure is conservative).
However the method under-covers for moderate sample sizes when the mixing weight is small
but nonzero. Tables 17 and 18 present results using our Procedure 3. This works well as expected
under point identification (since the QLR is exactly x? in this case). Under partial identification
this method performs poorly for M;. The final Table 19 presents coverage probabilities of @a
using Procedure 1 which shows that its coverage is good in both the point and partially-identified
cases, though again it can under-cover slightly in small to moderate sample sizes when the mixing
weight is close to zero.
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7 =050 170=020 no=0.10 1 =0.00
n = 100
a=0.90 | 0.9368 0.9760 0.9872 0.9712
a=0.95| 0.9782 0.9980 0.9980 0.9712
a=0.99 | 0.9968 0.9996 0.9994 0.9712
avg § 0.0052 0.5634 0.8604 0.9712
n = 250
a=090 | 0.8884 0.8646 0.9322 0.9838
a=095| 09514 0.9522 0.9794 0.9838
a=0.99 | 0.9938 0.9978 0.9998 0.9838
avg § 0.0000 0.2278 0.7706 0.9838
n = 500
=090 | 0.8826 0.8434 0.8846 0.9886
a=095| 0.9396 0.9090 0.9346 0.9886
a =099 | 0.9880 0.9892 0.9944 0.9886
avg § 0.0000 0.0324 0.6062 0.9886
n = 1000
a =090 | 0.8900 0.8844 0.8546 0.9888
a=095| 0.9390 0.9208 0.8906 0.9888
a=0.99 | 0.9882 0.9776 0.9798 0.9888
avg § 0.0000 0.0002 0.3150 0.9888
n = 2500
=090 | 0.8932 0.9010 0.8970 0.9942
a=095| 0.9454 0.9456 0.9236 0.9942
a=099 | 0.9902 0.9842 0.9654 0.9942
avg 4 0.0000 0.0000 0.0166 0.9942

Table 15: MC coverage probabilities for M, (Procedure 2).
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7o =0.50 19 =0.20 1n9=0.10 ny=0.00
n =100
a=0.90 0.9470 0.9252 0.8964 0.9742
a=0.95 0.9820 0.9718 0.9438 0.9752
a=0.99 0.9986 0.9970 0.9902 0.9768
avg q 0.0052 0.5634 0.8604 0.9712
n = 250
a=0.90 0.9008 0.8886 0.8744 0.9864
a=0.95 0.9594 0.9520 0.9288 0.9872
a=0.99 0.9956 0.9926 0.9898 0.9882
avg g 0.0000 0.2278 0.7706 0.9838
n = 500
a=0.90 0.8826 0.8798 0.8508 0.9900
a=0.95 0.9432 0.9356 0.9118 0.9902
a=0.99 0.9918 0.9890 0.9764 0.9908
avg § 0.0000 0.0324 0.6062 0.9886
n = 1000
a=0.90 0.8892 0.8900 0.8582 0.9922
a=0.95 0.9440 0.9314 0.9076 0.9922
a=0.99 0.9886 0.9842 0.9722 0.9928
avg q 0.0000 0.0002 0.3150 0.9888
n = 2500
a=0.90 0.8938 0.8956 0.9022 0.9954
a=0.95 0.9460 0.9460 0.9342 0.9956
a=0.99 0.9870 0.9866 0.9730 0.9962
avg § 0.0000 0.0000 0.0166 0.9942

Table 16: MC coverage probabilities for i, (Procedure 2).
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Figure 13: PDFs for the normal mixture MC design for different values of 7.

=050 1=020 7n9=010 1 =0.00
n = 100
a=090 | 0.8978 0.9190 0.9372 0.8208
a=095| 0.9516 0.9684 0.9718 0.9020
a=099 | 0.9938 0.9958 0.9954 0.9796
n = 250
a =090 | 0.8996 0.8960 0.9180 0.8248
a=095| 0.9514 0.9486 0.9602 0.9042
a =099 | 0.9882 0.9926 0.9944 0.9752
n = 500
a=090 | 0.8998 0.8916 0.9030 0.8240
a=095| 0.9474 0.9434 0.9500 0.9042
a=099 | 0.9898 0.9874 0.9904 0.9756
n = 1000
a=090 | 0.9028 0.9026 0.8984 0.8214
a=095| 0.9514 0.9538 0.9502 0.8986
a =099 | 0.9902 0.9912 0.9930 0.9788
n = 2500
a =090 | 0.8998 0.8966 0.8968 0.8098
a=095| 0.9520 0.9489 0.9442 0.8916
a=099 | 0.9912 0.9902 0.9882 0.9720

Table 17: MC coverage probabilities for M\gf (Procedure 3).
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=050 7o=020 1o =010 17 =0.00
n = 100
a=0.90 | 0.9024 0.9182 0.9426 0.8920
a=0095| 0.9528 0.9622 0.9738 0.9434
a=099 | 0.9916 0.9946 0.9950 0.9890
n = 250
a=0.90 | 0.8974 0.8970 0.9216 0.8948
a=0095| 0.9432 0.9466 0.9600 0.9444
a=0.99 | 0.9908 0.9894 0.9928 0.9880
n = 500
a =090 | 0.9026 0.8948 0.9080 0.8954
a=0095| 0.9472 0.9454 0.9550 0.9476
a=099 | 0.9886 0.9886 0.9914 0.9898
n = 1000
a=0.90 | 0.8960 0.9006 0.8964 0.8972
a=0095| 0.9442 0.9524 0.9476 0.9522
a=099 | 0.9878 0.9884 0.9892 0.9914
n = 2500
a=0.90 | 0.9052 0.9038 0.9036 0.8954
a=095| 0.9504 0.9490 0.9502 0.9480
a=099 | 0.9906 0.9892 0.9900 0.9922

Table 18: MC coverage probabilities for HX (Procedure 3).

70 =050 19 =0.20 n9=0.10 ny=0.00
n =100
a=0.90 0.9170 0.8696 0.8654 0.9294
a=0.95 0.9610 0.9250 0.9342 0.9724
a=0.99 0.9926 0.9824 0.9880 0.9960
n = 250
a=0.90 0.8962 0.8932 0.8682 0.9192
a=0.95 0.9498 0.9468 0.9358 0.9654
a=0.99 0.9918 0.9876 0.9872 0.9938
n = 500
a=0.90 0.8922 0.8842 0.8706 0.9034
a=0.95 0.9464 0.9464 0.9310 0.9536
a=0.99 0.9898 0.9902 0.9846 0.9926
n = 1000
a=0.90 0.8980 0.8964 0.8832 0.9134
a=0.95 0.9456 0.9478 0.9376 0.9594
a=0.99 0.9872 0.9888 0.9882 0.9932
n = 2500
a=0.90 0.8986 0.8960 0.9036 0.9026
a=0.95 0.9522 0.9466 0.9468 0.9520
a=0.99 0.9918 0.9886 0.9896 0.9916

Table 19: MC coverage probabilities for O, (Procedure 1).
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B Uniformity

Let P denote the class of distributions over which we want the confidence sets to be uniformly
valid. Let L(0;P) denote the population objective function. We again assume that L(-;P) and
L,, are upper semicontinuous and that supycg L(0;P) < oo holds for each P € P. The identified
set is O7(P) = {6 € © : L(0;P) = supyce L(¥;P)} and the identified set for a function p of
Or(P) is Mp(P) = {u(@) : 0 € ©7(P)}. We now show that, under slight strengthening of our

regularity conditions, ©, and M, are uniformly valid, i.e.:

. . . C PN >
lﬂgfﬁél% P(O;(P) CO4) > « (23)
lgr_l)loréfﬁggﬂ”(Mj(P) C M, >« (24)

both hold.

The following results are modest extensions of Lemmas 2.1 and 2.2. Let (v, )nen be a sequence of
random variables. We say that v, = op(1) uniformly for P € P if lim,,_,o suppcp P(|vn| > €) =0
for each € > 0. We say that v, < op(1) uniformly for P € P if lim,,_, suppep P(vy, > €) = 0 for
each € > 0

Lemma B.1. Let (i) supgee,p) @n(0) % Wp where Wp is a random variable whose probability
distribution is continuous at its o quantile (denoted by wqp) for each P € P, and:

P( sup  Qn(0) §wa,IP’_77n> —al=0

0cO;(P)

lim sup
n—oo PcP

for any sequence (Ny)nen with ny, = o(1); and (ii) (wn.a)nen be a sequence of random variables
such that wy, o > we,p + op(1) uniformly for P € P.

Then: (23) holds for O = {6 € ©:Qn(0) <wpat. Moreover, if wy o = wap + op(l) uniformly
for P € P then (23) holds with equality.

Lemma B.2. Let (i) sup,,car, () itfoc—1(m) @n(0) % Wp where Wp is a random variable whose
probability distribution is continuous at its a quantile (denoted by wqp) for each P € P and:

lim sup =0

n—od PcP

P sup inf Qn(0) <wap—1mn) —«
(mEMI(]p) oep—1(m) ( ) )

for any sequence (nNp)nen with n, = o(1); and (it) (Wn,o)nen be a sequence of random variables
such that wy, o > we,p + op(1) uniformly for P € P.

Then: (24) holds for My = {p(0) : 6 € ©,Qn(0) < wpo}. Moreover, if wp o = wap + op(1)
uniformly for P € P then (24) holds with equality.

The following regularity conditions ensure that @a and ]/\1\& are uniformly valid over P. Let

(©osn(P))nen denote a sequence of local neighborhoods of ©7(IP) such that O, (P) € Z(0) and
O7(P) C Opsn(P) for each n and for each P € P. In what follows we omit the dependence of
Oosn(P) on P to simplify notation.
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Assumption B.1. (Consistency, posterior contraction)
(i) Ln(0) = supgee,., Ln(0) + op(n™') uniformly for P € P.
(i) I1,(©%,,,| X)) = op(1) uniformly for P € P.

We restate our conditions on local quadratic approximation of the criterion allowing for singu-
larity. Recall that a local reduced-form reparameterization is defined on a neighborhood @ﬁv of
©;. We require that O, (P) C O (P) for all P € P, for all n sufficiently large. For nonsin-
gular P € P the reparameterization is of the form  — ~(6;P) from ©Y(P) into I'(P) where
~v(0) = 0 if and only if 8 € ©;(P). For singular P € P the reparameterization is of the form
0 — (7(0;P),vL(6;P)) from OF (P) into T'(P) x T'; (P) where (y(8;P),vL(6;P)) = 0 if and only

if & € ©;(P). We require the dimension of v(+;IP) to be between 1 and d for each P € P, with
d < oo independent of P.

To simply notation, in what follows we omit dependence of d*, @%V sy v, I Ty, by, Vi,

¥, and f,, | on P. We present results for the case in which each T' = R?": extension to the case
where some T are cones are straightforward.

Assumption B.2. (Local quadratic approzimation

(i) There exist sequences of random variables £,,, R -valued random vectors V,, and, for singular
P € P, a sequence of non-negative measurable functions f, | : I'y — R with f,, 1 (0) =0 (we take
vL =0 and f, 1 =0 for nonsingular P € P), such that suppcp supgeg,., ||(7(0),7L(0))|| — 0
and

sup
96@0571

0L0(0) = (b = HIVEAOI + (VO T~ fosuO))| =0x(1) (29

uniformly for P € P, with V, 5 N(0,%) as n — oo for each P € P;

(i) for each singular P € P: {(7(0),7.(0)) : 0 € Opsn} = {7(0) : 0 € Opsn} x{7v1(0) : 0 € Opsn};
(111) Kosn := {/ny(0) : 0 € Opsn} 2 By, for each P € P and infpep k;, — 00 as n — o0o;

(iv) suppep sup, [P(|E712V, > < 2) — Fy2 (2)] = o(1).

Notice that k,, in Part (iii) may depend on P. Part (iv) can be verified via Berry-Esseen type
results provided higher moments of £~/2V,, are bounded uniformly in P (see, e.g., Gotze (1991)).

Let IIp+ denote the image measure of II on I under the map @?/ > 60 — ~(0) if P is nonsingular
and OF 3 0 — ((0),v.(0)) if P is singular. Also let B} denote a ball of radius § centered at
the origin in R%" if P is nonsingular and in R4 +dim(1) if P ig singular. In what follows we omit
dependence of I+, B, and 7+ on P.

Assumption B.3. (Prior)

(i) [, e"En0) dTI(0) < oo P-almost surely for each P € P;

(it) Each Ilp« has a density mr= on B N(I'xT' ) (or Bi NI if P is nonsingular) for some 6 > 0
which are uniformly (in P) positive and continuous at the origin.

As before, we let £7%" denote the o quantile of @, () under the posterior distribution IL,.

Assumption B.4. (MC convergence)
e = eb%r 4 op(1) uniformly for P € P.

The following result is uniform (in P € P) extension of Theorems 3.1 and 3.2.
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Theorem B.1. Let Assumptions B.1, B.2, B.3, and B./J hold with ¥(P) = I« for each P € P.
(i) If there is at least a singular P € P, then: (23) holds.
(i) If no P € P is singular, then: (23) holds with equality.

To establish (24) we require a uniform version of Assumptions 3.5 and 3.6. Let Pz denote the
distribution of a N (0, I4) random vector. In what follows, we omit dependence of f on P to
simplify notation. Let &, p denote the o quantile of f(Z).

Assumption B.5. (Profile QL)
(i) For each P € P there exists a measurable function f: RY — R such that:

sup
0€Oosn

nPL(A(6)) — (e LIVl = 21 (V= V(0 >))]:0P<1>

uniformly for P € P, with V,, £,, and y from Assumption B.2;

(ii) There exist z,Z € R with z < infpep {op < suppep &a,p < Z such that the functions [z,Z] 3
z = Pz(f(Z) < z) are uniformly equicontinuous and invertible with uniformly equicontinuous
muerse;

(ii1) suppcp Sup.c(s = [P(F(E71/2V,,) < 2) — B4(f(2) < 2)| = o(1).

Let 2% denote the o quantile of PQ,(A(#)) under the posterior distribution IL,.

Assumption B.6. (MC convergence)
moP — ¢hOSP 4 o(1) uniformly for P € P.

The following result is uniform (in P € P) extension of Theorem 3.3.

Theorem B.2. Let Assumptions B.1, B.2, B.3, B.5, and B.6 hold with ¥(IP) = Iz for each
P € P. Then: (24) holds with equality.

C Example 3: parameters drifting to boundary and point-identification

We return to Example 3 considered in Section 4.2.1 and examine the coverage properties of ]\/4\CY
for the identified set By = [0, 4] along certain drifting sequences of distributions. As will be seen,
our MC CSs (based on the posterior distribution of the profile QLR) remain valid in certain
situations while bootstrap-based CSs (based on the bootstrap distribution of the profile QLR)
can undercover.

Recall that Xi,...,X,, are i.i.d. with unknown mean p € [0,1] and unit variance. Here we
consider coverage of the CS for Br = [0, | as the mean p € [0,1] drifts to the lower bound
u = 0 of the parameter space. Suppose that g € B is identified by the moment inequality
E[8 — X;] < 0. The identified set for § is By = [0, u], which is the argmax of the population
criterion L(B) = —1((8 — p) v 0)2.

We write this as a moment equality model E[5 + X — X il
parameter. The parameter space for § = (5,\) is O =

= 0 where \ € [O 1 — p] is a slackness
{( A) € [0,1]2 : B+ X < 1}. The
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identified set for 6 is ©; = {(8,\) € © : B+ A = u} and the identified set for the subvector f is
Br = [0, p]. The CU-GMM objective function is:

La(B.0) = —5 (B4 A~ X7,

Drifting to point identification. We take u = ¢/y/n with ¢ > 0. Then:

1
nLn(B,\) = —5(\/5(3 +A)—c—V,)?
where V,, = \/n(X,, — u) ~ N(0,1). It is straightforward to show that:

InLn(B,\) = —(c+ Vo) We+V, <0} +op(1).

Similarly:

—(c+V,—vnB)? c+V,—/n3<0
sup  2nLn(B,A) = | 0 0<c+V,—nf <yn—np
Aelo1=7] —(c+Vo— V) ¢4V, >n

hence:

inf sup 2nLn(B,A) = —(c+ Vo — Va(B" + A")* e+ V, — V(8" + A) < 0} + op(1)
BEn(A(0®)) Ae[0,1)

and:
PQu(A(Y) = (e4V—/R(B*4N)) 24V — (B 4+X) < 03—(c+ V)2 I{e4V,, < 0}+0p(1)
In particular, we have:

sup PQ.(A6)) = (V)2 1{V,, <0} — (c+ V,.)*1{c + V,, <0} + op(1) .

Suppose we choose a prior on (3, A) that induces a flat prior on v = S+ . Also let f : R — R be
given by f(k) = k21{x < 0} and let 2z} = 2z + (c + V,,)?1{c + V,, < 0}. Ignoring asymptotically
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negligible terms, we have:

1, ({60 : PQu(A(0)) < 2}1X0) = I, ({01 flc+ Vi — vy (6)) < 2} X,)

fol H{fle+Vy,—y/ny) < z;}e’%(%vn*\/ﬁv)zd,y
01 e_%(c+vn_ﬁ7)2

dy

o (k) < 2 }e 2" dx
SN e 2 dr

S0 f(r) < 2pYe 3 dn

Jet e~ 2" dr )

Since f(k) < 2} holds if and only if K > —/27, we have:

PZ|Xn(_\/% S A S C+Vn)

I, ({6 : PQu(A(0)) < 2}Xy) = Pyx.(Z <c+ V)

—+ O[p(l) .

We choose zp0 = 2 — (c + V,)?1{c + V,, < 0} > 0 so that the right-hand side is equal to
a (notice that in some cases we will choose z,, = 0 with the right-hand side > «). Ignoring
asymptotically negligible terms, this gives:

/7 =0A (1= a)B(c+ V)

hence:
fno = (0727 (1 - ) (et Va))) (e V) e+ V, < 0} + o0p(1).

Therefore, the asymptotic coverage of the CS ]\/4\05 for By is:

lim P(B; C M,) =P, <(Z)211{Z <0} < (0 AOTH(1— )®(c + Z))>2>

n—o0

where Z ~ N(0,1). One can verify numerically that lim,_,., P(B; C ]\//Ta) > o for all @ € (0,1)
and ¢ > 0 (see Figure 14 below).

Comparison with the nonparametric bootstrap. Let X} denote the bootstrap sample
of size n. The bootstrap criterion function is

20L;(8,3) = —(ValB +3) = (Vi) = Va(K; - X,))?
= —(WA(B+ ) — n = V)
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where ¢, = \/nX, = c+V, and V} = /n(X} — X,,) ~ N(0,1). By similar arguments, we have:
an:L(B*a 5\*) = _(Cn + V;)%l{cn + V; S 0} + OIP’(l)

inf  sup 2nL;(B,\) = —(V;)21{V; < 0} A —(cn + V},)* Wen + V;, < 0} + 0p(1)
BE[0,(XnV0)] Ag(0,1]

so the bootstrap profile QLR statistic for By is:

((V;)m{v;; <0} — (e + V52 {cp + VE < 0}) VO +op(1).

Figure 14 presents the asymptotic coverage of our MCMC CS ]\//Ta for By and a CS based on
bootstrapping the QLR statistic for By for the case in which pu = ¢//n with ¢ = 2.0. It is clear
that our MCMC CS remains valid whereas the bootstrap CS undercovers. Similar results are
obtained with other values of ¢ > 0. This example clearly shows that the posterior distribution
of the profile QLR statistic and the bootstrap distribution of the profile QLR statistic can
indeed behave differently. Thus, our MCMC CSs do not necessarily run into coverage problems
in certain situations in which bootstrap-based CSs undercover.

g Bayes

© —— NP Boot

050 1.00
Nominal Coverage

Figure 14: Comparison of the asymptotic coverage probabilities of our MCMC
CS for By (Bayes) and a CS based on bootstrapping the profile QLR statistic
for By (NP Boot).
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D Local power

In this appendix we study the behavior of the CSs 0, and ]\701 under n~/2-local (contiguous)
alternatives. We maintain the same setup as in Section 3.

Assumption D.1. There ezist sequences of distributions (P, q)nen for fized a € R that satisfy:
(i) Ln(0) = supyee,,, Ln(0) + op, ,(n71);

(ZZ) Hn((_)gsn‘xn) = OPn,a(]‘);

(i4i) There exist sequences of random variables £, and R? -valued random vectors V, (both of
which are measurable functions of data X,,) such that:

sup
Geeosn

1L (6) = (b = G IVOI + WO, )| = or,. () (26)

with supgeg, . ||7(0)|| = 0 and V, iy N(a,Iz) asn — oo;

(iv) The sets Kosn = {\/ny(0) : 0 € Opsn} cover RY;

(v) Joe™tr®) dII(9) < 0o P, q-almost surely;

(vi) I has a continuous, strictly positive density mr on Bs NI for some 6 > 0;

(vii) &N = &% + o, (1).

Assumption D.1 is essentially a restatement of Assumptions 3.1 to 3.4 with a modified quadratic
expansion. Notice that with a = 0 we obtain P, , = P and Assumption D.1 corresponds to
Assumptions 3.1 to 3.4 with optimal weighting ¥ = I4-.

In the following result, let x2.(a’a) denote the noncentral chi-square distribution with d* degrees
of freedom and noncentrality parameter a’a and let FXfl* (a'a) denote its cdf. Also let XZ*, ., denote

the a quantile of the (standard) x2. distribution Fe, .
Theorem D.1. Let Assumption D.1(i)(iii)(iv) hold. Then:

Pn,a
sup Qn(0) " x5 (d'a);
0cOr

if further Assumption D.1(ii)(v)(vi) hold, then:
sup [T, ({6 Qu(6) < 2} X,) = Fya (2)] = op,, (1);
and if further Assumption D.1(vii) holds, then:

lim Ppa(O7 C Oa) = Fyz () (13 0) < @

n—o0

whenever a # 0.

We now present a similar result for ]/\4\(1. In order to do so, we extend slightly the conditions in
Assumption D.1.
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Assumption D.1. Let the following also hold under the local alternatives:
(viii) There exists a measurable f : RY — R, such that:

WPLA(AO) = (b + IVl = 5 (Vo= Vi 0) )| = (1.

sup
0€Bosn

(vii') Ena” = Eia ™’ + op, . (1).

Assumption D.1(viii) and (vii’) are essentially Assumptions 3.5 and 3.6.

Let Z ~ N(0, I4+) and Pz denote the distribution of Z. Let the distribution of f(Z) be continuous
at its a-quantile, which we denote by z,.

Theorem D.2. Let Assumption D.1(i)(iii)(iv)(viii) hold. Then:

sup PQu(A(0)) 5 £(Z +a) ;
0eO;

if further Assumption D.1(ii)(v)(vi) hold, then:

sup ‘Hn({ﬁ : PQn(A(0)) < 2z} ‘ X,) — Pzx, (f(Z) < z)‘ = op, (1)

2€8, €

and if further Assumption D.1(vii') holds, then:

lm Py o(M; C M) =Py(f(Z +a) < 2a) -

n—oo

We can thus deduce from Anderson’s lemma (van der Vaart, 2000, Lemma 8.5) that the coverage

limy, 00 Pr o (M1 C Z\/Za) < « whenever f is subconvex. In particular, this includes the case in
which M7y is a singleton.

E Parameter-dependent support

In this appendix we briefly describe how our procedure may be applied to models with parameter
dependent support under loss of identifiability. Parameter-dependent support is a feature of
certain auction models (e.g., Hirano and Porter (2003), Chernozhukov and Hong (2004)) and
some structural models in labor economics (e.g., Flinn and Heckman (1982)). For simplicity we
just deal with inference on the full vector, though the following results could be extended to
subvector inference in this context.

We again presume the existence of a local reduced-form parameter « such that v(¢) = 0 if and

only if € ©;. In what follows we assume without loss of generality that L, (6) = SUPgeo,., Ln(0)
since 0 is not required in order to compute the confidence set. We replace Assumption 3.2 (local
quadratic approximation) with the following assumption, which permits the support of the data
to depend on certain components of the local reduced-form parameter ~.
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Assumption E.2. (i) There exist functions - : @}V — T CR* and h: T — Ry, a sequence of
R -valued random vectors 4y, and a positive sequence (an)nen with an, — 0 such that:

%Qn(e) - h(’)’(@) B &n) —0
Rl GO | W

with supgee,, [1(0)] — 0 and inf{h(3) : |1]| = 1} > 0;
(ii) there exist r1,...,rg« > 0 such that th(y) = h(t™ y1,t"2va, ...t y4+) for each t > 0;

(iii) the sets Kosn = {(bn" (71(0) — An1)s- - bn @ (Yar (0) — Ansar)) : 0 € Opsn} cover RE for
any positive sequence (by)nen with b, — 0 and ay /b, — 1.

This assumption is similar to Assumptions 2-3 in Fan et al. (2000) but has been modified to allow
for non-identifiable parameters 6. Let F1r denote a Gamma distribution with shape parameter
r* = Zf;l r; and scale parameter 2. The following lemma shows that the posterior distribution
of the QLR converges to FT.

Lemma E.1. Let Assumptions 3.1, E.2, and 3.8 hold. Then:

Slzlp n ({0 : Qn(0) < 2}Xn) — Fr(z)| = 0p(1).

By modifying appropriately the arguments in Fan et al. (2000) one can show that, under Assump-
tion E.2, supycg, Qn(0) ~» Fr. The following theorem states that one still obtains asymptotically

correct frequentist coverage of @a for the IdS ©;.

Theorem E.1. Let Assumptions 3.1, E.2, 3.8, and 3.4 hold and supycg, Qn(0) ~ Fr. Then:

lim P(©; C B,) = a.

n—0o0

We finish this section with a simple example. Consider a model in which Xy,..., X, are i.i.d.
U0, (01 V 62)] where (61,02) € © = R2. Let the true distribution of the data be U[0,7]. The
identified set is O = {# € © : 0; V O = ~}.

Then we use the reduced-form parameter vy(6) = (61 V 62) — 5. Let 4, = maxi<j<n X; — 7. Here
we take Opsn = {0 : (1+€n)3n > 7(0) > 4} where &, — 0 slower than n™! (e.g. £, = (logn)/n).
It is straightforward to show that:

,3'/
sup @, (0 :2nlog(A ~>WFF
€O ©) n +

where FT denotes the Gamma distribution with shape parameter r* = 1 and scale parameter 2.

Furthermore, taking a, = n~! and h(v(0) — %) = 7' (7(0) — 4») we may deduce that:

W@ | =W

sup
0€®OS’I’L

Notice that r* = 1 and that the sets K5, = {n(7(0) =) : 0 € Opsn} = {n(v—n) : (14+e,)y >
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v > An} cover RT. A smooth prior on © will induce a smooth prior on v(6), and the result follows
from Theorem E.1.
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F Proofs and Additional Results

F.1 Proofs and Additional Lemmas for Sections 2 and 3

Proof of Lemma 2.1. By (ii), there is a positive sequence (n,)nen with 7, = o(1) such that
Wp,a = Wo — Ny holds wpal. Therefore:

P(O; C6.) = P(supgeo, Qn(f) < wna)
> P(SUPOGGI Qn(0) < wa —np) +0(1)

and the result follows by part (i). If w,, = ws + op(1) then we may replace the preceding
inequality by an equality. ]

Proof of Lemma 2.2. Follows by similar arguments to the proof of Lemma 2.1. ]

In this appendix we often use the following expression (27) that is equivalent to equation (14)
of Assumption 3.2(i):

sup
0€Ossn

1 1
Lo (6) =t = GV + IV (0) Vol | = (). (27)
Lemma F.1. Let Assumptions 3.1(i) and 3.2 hold. Then:

sup
66@081@

Qu0) = (= jnf 1t = V.l + IV ) =Vl )| = o2(1). (28)

And hence

sup Qn(0) = [ TV,||* + op(1) .
0cO;

Proof of Lemma F.1. Applying successively Assumption 3.2(i) or expression (27), then using
Assumptions 3.1(i) and 3.2(ii), we obtain:

nLn(0) = sup nL,(0) + op(1)
0€Oosn

_ 1 2 : 1 2
=t 5 IVall? = Jnf SIVEY(O) = Va2 + 0 (1)

osn

_ 1 2 . 1 2
=t 5 Val? = inf Sllt = Vol + 0p(1). (29)
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Then using Assumption 3.2(i) or expression (27), we have:

PPN VRTINS P a1 = L) -
@u(8) =2 (-4 IV = juf 5l = Vol +00(1)) =2 (o + 5V = SIVAIE) = Vol + (1)

= [IVAy(8) = Vall? = nf [t = Vol + 02(1)

where the op(1) term holds uniformly over O,s,. This proves expression (28).

Next, since v(0) = 0 for § € ©r, we have:

sup Qn(0) = [[Vu|* — inf [t — V,|* + op(1)
0cOr te’T
HVHHQ - HVH - TVnH2 + O]P(l)

= |ITVa|* + op(1)
where the second equality is by definition of the projection onto the closed convex cone T', and

the third equality is by Moreau’s decomposition Theorem (Hiriart-Urruty and Lemaréchal, 2001,
Theorem 3.2.5, p.51). |

Proof of Theorem 3.1. We verify the conditions of Lemma 2.1. We may assume without loss
of generality that L, () = supyee, ., Ln(6)+op(n~') because ©, does not depend on the precise
0 used (cf. Remark 1). By Lemma F.1 we have:

sup Qn(0) = [ TV,[* + 0p(1) ~ | TZ|?
€07

with Z ~ N(0, I4+) when ¥ = I+, where the final result is by the continuous mapping theorem.
In the following let 2, denote the a quantile of the distribution of | TZ]|?.

For part (i), Lemma 3.1(i) shows that the posterior distribution of the QLR asymptotically (first-

order) stochastically dominates the distribution of || TZ||? which implies that 5% O > 20+ op(1).
Therefore:

o = za + (E0% — za) + (6116 — €6%1) = 20 + (&6 — €050 + 0p(1) = 2o + 0p(1)
where the final equality is by Assumption 3.4.

For part (ii), when T'= R?%" and X = I+, we have:

sup Qn(0) = ||V, |? + op(1) ~ X%, and hence z, = Xg*’a

0cOr
Further:
mee = X + (€00 = X o) + (e — €0%81) = X o + 02 (1)
by Lemma 3.1(ii) and Assumption 3.4. [
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Proof of Lemma 3.1. We first prove equation (16). Since | Pr(A) — Pr(A N B)| < Pr(B¢), we
have:

Slzlp ‘Hn({e 1 Qn(0) < 2} Xn) — ({6 : Qn(8) < 2} N @osn|Xn)’ < Hn (055, [Xn) = op(1) (30)

by Assumption 3.1(ii). Moreover by Assumptions 3.1(ii) and 3.3(i),

enlnl %m 0
‘f y o —1= H"(@gsn‘xn) =op(1)

f enL 9)
and hence:

Jio-gu@<zy €@ an(o)
Jo,,, e @dII(0)

I, ({0 : Qn(6) < 2} N Opsn | Xn) — = op(1). (31)

sup
z

In view of (30) and (31), it suffices to characterize the large-sample behavior of:

f{G:Qn(0)<z}n®OSn "L"(e)_en—%lanH?dH(g)
I e (O

R, (z) = (32)

Lemma F.1 and expression (27) imply that there exists a positive sequence (1, )nen independent
of z with 7, = o(1) such that the inequalities:

5 |- <_ inf [t = Vi |l* + [[Vn(0) - Vn||2> <1
0€Bosn teT
! 2 1 Mn
sup |nL,(0) — £y — QHVnH + iH\/ﬁ,y(g) _ e
9€®osn

both hold wpal. Therefore, wpal we have:

-1 0)—V,|?
i JO Ol bt 10, ¢ PO II)

f@osne—%H\/ﬁ”/(Q)—anlde(g)

— L I/my(0)=V, |2
< Ry(2) <e™ S0 Val2 <= inticr vl mino0, 2O ALI(D)

Jo_ e~ HIVMO-Valqr1(p)

uniformly in z. Let I'pg = {7(0) : 0 € Opspn}. A change of variables yields:

~ Y=V
o S P it Va2 T diTr ()
Jo e sIVmrValPdrp(y)

1 v,
< Rp(z) <e ol —val2<srintier ||t Vn||2+nn}ﬂl“ome ~2lvVrr=VallPdIIp ()
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uniformly in z.

Recall By from Assumption 3.3(ii). The inclusion I',s, C Bs N T holds for all n sufficiently large
by Assumption 3.2(ii). Taking n sufficiently large and using Assumption 3.3(ii), we may deduce
that there exists a positive sequence (7, )nen With 7, = o(1) such that:

sup,er,.,, (V)
inf.er,., mr(7)

-1 Sﬁn

for each n. Substituting into (33) yields:

1 2
‘ N A
S =Vl <tinf e [tV |2 —na}(Toun® dy

1= 7j,)e
(L= h)e fo e SIV=ValPgy

e_%l‘\/ﬁ’y_vn”2dfy

e P < int e VP4 T

< R.(2) < 1+ enn {’Y”\/ﬁW
< Balz) < (141) —3IVm—Val?q
I‘OS"’L6 /y

where integration “dvy” should be interpreted as integration with respect to Lebesgue measure
on R%".

Let Kosn = {1y :7 € Tosn} and A, (2) = {k € RY : ||g|> < z + infyer ||t — V,u||?}. Using the
change of variables \/ny — V,, — k, we can rewrite the preceding inequalities as:

1 2
—zllxll
fAn(z‘an)m(Kosn*V'ﬂ)e 2 dKI

1
e_illﬁllzd/i

1 2
=3l
fAn(ann)m(Kosnfvn)e 2 dKl

1
e_illﬁllzd/i

(1= 7p)e™ < Rn(2) < (1410 )e™

f(Kosn_Vn) f(Kosn_Vn)

Let vg«(A) = (2m)~¢/? N e~ 2I%1” s denote the Gaussian measure of a set A € B(RY). To
complete the proof, it is enough to show that:

Vg (An<z + 77n) N (Kosn - Vn)) Vg« (An(z + nn) N (Kosn - Vn))
_ = 1 4
Slip Vgx (Kosn - Vn) Vax (T - Vn) OP( ) (3 )
Var (An(z £10) N (Kosn — Vi) va=(An(2) N (T = Vy))
) _ = 1).
" v (T —Vy) v (T = Vy) or(l) (35)
Consider (34). Simple algebra yields:
su var (A (2 £ 1) N (Kosn — Vi) b (An(z E10) N (Kosn — Vi)
zp Vg (Kosn - Vn) Vax (T - Vn)
< Vg ((T'\ Kosn) — Vi)
- Vg (T - Vn>
< Vs ((T'\ Kosn) N B, — V) Vd*(Blin — Vi) (36)
- Vg (T - Vn) Vg (T - Vn)

Since V,, is tight and the cone T has positive volume, for any € > 0 there exists L. > 0 such
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that limsup,, ,.o P(vg«(T'—V,) < L¢) < € whence
1/I/d* (T — Vn) = Op(l) . (37)

By tightness of V,, and the fact that k,, — 0o as n — 0o we may deduce vgx (Bgn —V,) =op(1).
Therefore, the second term on the right-hand side of (36) is op(1). The first term on the right-
hand side of (36) may also be shown to be op(1) by tightness of V,, and Assumption 3.2(ii).

Now consider (35). Simple algebra yields:

sup Vi (An(z £ 1) N (Kosn — Vi) _ Vi (An(z £ 0n) N (T = Vi)
2 var (T — V) var (T — V)

— sup Vas (An(z £10n) N ((T'\ Kosn) — Vi)

z Vg (T - Vn)

< Y ((T'\ Kosn) — V)

B va- (T — V)

which is op(1) by the preceding argument. Finally:
sup [vg+ (An(2) N (T = Vi) = vg= (An(z — 1) N (T = V3))|
< sup (vas (An(2)) = vas (An(z = 7))

=sup (Fg, (2) = Fg, (= = 1a) = o(1) (38)

where F 2 is the cdf of the x? distribution (which is uniformly continuous on R). The -+, case
handled sumlarly Result (35) follows by combining (37) and (38).

Part (i) follows by combining (16) and the following inequality (39) due to Gao (2016):

sup (]PZ(HZH2 <zt ||Tivu2\z eT - v) —PL(|TZ|? < z)) <0 (39)
z

holds for every v € R, where P, denotes the distribution of a N (0, I4+) random vector.

Part (ii) follows from (16) by observing that if T = R% then T—V,, = RY and | TV,| =0. =

In this appendix we often use the following expression (40) that is equivalent to equation (17)
of Assumption 3.2°(i):

sup |nLn(6) — b = SVl + SIVI() = Vol + o (1 (@) = 0p(1).  (40)
0€Bosn
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Lemma F.2. Let Assumptions 3.1(i) and 3.2 hold. Then:

sup
96@08”

Qu) = (=l = Vol + [V 0) = Vol + 261000 ) | =0el). 1)

And hence

sup Qn(0) = [ TV,||* + op(1) .
0cO;

Proof of Lemma F.2. Using successively Assumptions 3.1(i) and 3.2°(i) or (40), (ii) and (iii),
we obtain:

nLa(@) = sup (6ot GIVall = VA0 = Vol = Fus(12(6) +2(1)

eeeosn

— sup (en+;||vn||2—irr\/ﬁﬂe)—vn\\?)—eeigf Fot (11.(0)) + 0(1)

e osn osn

1 2 . 1 2
= - — inf = ||t — 1 4
£+ SIVall? = inf 21t = Vall? + 0p(1) (42)

where the last equality is due to the fact that f,, | (-) > 0 with f,, 1 (0) =0, v, () = 0 for all
0 c @[, _ _
0< inf fp1(71(0)) < fa,1(y2(0)) =0 forany 6 € Oy .

€Oosn

Then by Assumption 3.2°(i) or (40), and definition of @,,, we obtain:

_ 1 2 : 1 2
Qu(6) =2 (-4 VP = juf 5l = VP + 02(1)

=2 (6ot IVl = VA0 = Vol = Fus (116) + 021

= —inf [t = Vall® + [Vr(0) = Val* + 2£, 1 (70(0)) + 0p(1)

where the op(1) term holds uniformly over O,s,. This proves expression (41).

Next, since y(§) = 0 and v, (#) =0 for § € Oy, and f, 1 (0) = 0, we have:

sup Qn(0) = ||[Va||? —inf ||t — V,||* + 2 sup fn,1(71(0)) + op(1)
0eO; teT 0eO;

HVHH2 - ||Vn - TVnH2 + OJP’(l)
= || TV,|* + op(1)

where the second equality is by definition of the projection onto the closed convex cone T', and
the third inequality is by Moreau’s decomposition Theorem (Hiriart-Urruty and Lemaréchal,
2001, Theorem 3.2.5, p.51). |

The key step in the proof of Theorem 3.2 is to establish the following lemma, which states that
the posterior distribution of the QLR asymptotically (first-order) stochastically dominates the
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asymptotic distribution of the QLR, namely Fr defined in (15).
Lemma F.3. Let Assumptions 3.1, 3.2’ and 3.3 hold. Then:

sup (I ({6 : Qu(6) < 23| Xn) = Fr(2)) < op(1).

Proof of Lemma F.3. We first show that:

sup <Hn({9 L Qn(0) < 2} X,)) — Py, (HZH2 <o+ HTLVnH?\Z eT - Vn)) <op(1) (43)

holds. By identical arguments to the proof of Lemma 3.1, it is enough to characterize the large-
sample behavior of R, (z) defined in (32). By Lemma F.2 and expression (40), there exists a
positive sequence (7, )nen independent of z with 7, = o(1) such that:

sup |0n(0) - (— inf |t — Vol + [v/Ay(8) — Vi + 2fn,¢m<e>>) \ <
0€Opsn teT
1 1
sup |nLy(0) = = Vol + SV (0) ~ Vil + mmw»\ <
e osn

both hold wpal. Also note that for any z, we have
{e € Oom : — 0 1t = Vall2 + V71 (0) = Val? + 2 1 (71.(0)) + 7 < }
c {9 € Opn + —nf [t = Vall2 + [[VA(6) = Vil + 10 < }

because fy, | (-) > 0. Therefore, wpal we have:

e 3 IV O)=Vall®~fu, L (12(0) qT1 ()

Bou(z) < o SOV -Vl i l=Vull41,)0O0sn
= f@05n6*$||\/5“/(9)*%IILfn,L('u(@))dH(g)

uniformly in z.

Define I'osp, = {7(0) : 6 € Open} and T'y psp = {71(0) : 6 € Opgy}. By similar arguments to the
proof of Lemma 3.1, we use Assumption 3.3’(ii) and a change of variables to obtain:

Rn(2) < e™(1+41n) (44)

— Ay =V 2= fn 1 (1)
S mr=alP<etinticr [t=ValP+n)Cosm) T 1 oo € 2 ! (7,71

X
6_%||\/E’Y_Vn”2_fn,L(’7L)d(fy’ ny_)

frosn ><FL,OSTL

which holds uniformly in z (wpal) for some 7, = o(1). Then by Tonelli’s theorem and Assump-
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tion 3.2’(ii) we obtain:

A
J U=Vl <etinfier [E=ValP+7) Tosn® 2 dy

_1 _ 2
Jr e AV

R (2) < €™ (1 + 1) (45)

uniformly in z. The inequality (43) then follows by similar arguments to the proof of Lemma
3.1. The result follows by combining inequality (43) with Gao (2016)’s inequality in (39). [

Proof of Theorem 3.2. We verify the conditions of Lemma 2.1. Again, we assume wlog that
L,(0) = supgeo,., Ln(0) + op(n™'). By Lemma F.2, when ¥ = I, we have:

sup Qn(0) = [ TV,||* + op(1) ~ [|TZ]? (46)
6cOr

where Z ~ N (0, I4+). Lemma F.3 shows that the posterior distribution of the QLR asymptoti-
cally (first-order) stochastically dominates the Fp distribution. The result follows by the same
arguments as the proof of Theorem 3.1(i). [

Lemma F.4. Let Assumptions 3.1(i) and 3.2 or 3.2 and 3.5 hold. Then:

S0P [PQA(A®) ~ f (Vi = V() + inf ||V — ¢]*| = 0p(1) .

Proof of Lemma F.J. By display (29) in the proof of Lemma F.1 or display (42) in the proof
of Lemma F.2 and Assumption 3.5, we obtain:

PQn(A(9)) = 2nLy(0) — 2nPL, (A(6))

= (20 + 10l = il = V) = (260 + 1Vl = £ (¥, = V2(0)) ) + 02()
where the op(1) term holds uniformly over ©,s,. The result is immediate. [ ]

For any open set S C Ry and any small € > 0, let S7¢ denote the e-contraction of S and let
Soe={s— || T V,|?:s€ S~}

Lemma F.5. Let Assumptions 3.1, 3.2, 8.8, and 3.5 or 3.1, 3.2°, 3.3’, and 3.5 hold, and let
z = Py(f(Z) < z) be uniformly continuous on S C Ry (where Z ~ N(0,14+)). Then for any
€ > 0 such that S™¢ is not empty:

sup ‘Hn({ﬂ . PQa(A(0)) < 2} | X,) — Pyx, (f(Z) <o ||TiVn||2\Z eV, — T)‘ — op(1).

z€8, ¢

%0The e-contraction of S is defined as S™° = {z € R : inf, ¢ (r\s) |2 — 2’| > €}. For instance, if S = (0, c0) then
S7¢ = [e,00) and S, ¢ = [e — || T V,||?, 00).
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If, in addition, T = R?", then:

sup, L, ({6 : PQn(A()) < 2} | Xy) —Pyx, (f(2) < 2)| = op(1).

Proof of Lemma F.5. We prove the result under Assumptions 3.1, 3.2’, 3.3’, and 3.5. The
proof under Assumptions 3.1, 3.2, 3.3, and 3.5 follows similarly. By the same arguments as the
proof of Lemma 3.1, it suffices to characterize the large-sample behavior of:

—¢,—1 2
- J10:P@ua)zsinn, "2 dlI(6)

Ry (z) :
Jo et @ tmalt I ango)

(47)

By Lemma F.4 and expression (40), there exists a positive sequence (7, )nen independent of z
with 7, = o(1) such that the inequalities:

Ry |PQu(A(D)) — T (Vi — vy (0))| < 1

1 1
sup_[124(6) = 0 = 51Vl = (=3 IVO) =Vl = fus(26))| < %
66905774

both hold wpal, where h,,(V,, —/nv(0)) = f(V, —v/nv(0)) —infier |V, — t||>. Therefore, wpal
we have:
— Vv (0) -V l?~ £, 0
6_77n f{GZhn(Vn_\/ﬁ'yw))fz_"]n}meosne QHI,Y( ) H ! ’L(’YL( ))dH(e)
f@mef%||ﬁw(0>—vn||2—fn,Lm<0)>dH(9)

LA (O =V~ f,,
T e s 1 ()

Jo e~ 2 IVMO)=ValP=fu, L (L (0) 411 (f)

< Rp(z2) <e™

uniformly in z. By similar arguments to the proof of Lemma F.3, we may use the change of
variables 6 — (7(0),v.(0)), continuity of mp« (Assumption 3.3’(ii)), and Tonelli’s theorem to
rewrite the above system of inequalities as:

e_%H\/ﬁ’y_anlzdﬁy

e—nn f{’Y:hn (Vn _\/ﬁ'y) SZ—%}ﬁFosn

(1—1n)

' f eVl gy
_1 —V,12

St i) <o) € 2V dy

< Rp(z) < (141 )e™
" " Jr e~ 3IVm—ValPqy

which holds uniformly in z (wpal) for some 7, = o(1). Let K,sp, = {v/ny : v € Tosn} and
Hy(2) = {k € RT : hy(k) < 2} = {k € RY : f(k) < z + infier ||t — V,u||?}. A second change of
variables V,, — \/ny — k yields:

1 2
—zllxll
fH7L(Z+777L)m(Vn_Kosn) ez dlﬁ

oSl g

1 2
—zllxll
fH’n(Z_nn)m(Vn_Kosn) € d/i

—Likl2
f(vanosn)e 21 f(VrKosn)

< Ru(z) < (1 +17,)e™

(1 —=mp)e ™
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which holds uniformly in z (wpal).
To complete the proof, it remains to show that:

Vd- (H”(z + nn) n (Vn - Kosn) Vg« (Hn(z) N (Vn — T) B
Zi‘;g Var (Vi — Kosn)) - v (Vo = T)) = op(1). (48)

By similar arguments to the proof of Lemma 3.1, it is enough to show that:

Sup |var(Hn(z £10) O (Vi = T)) = va=(Hn(2) 0 (Vi = T))| = 0p(1)

Notice that:

sup |vas (Hn(z —nn) N (Vi = T)) — va=(Hp(2) N (Vy, = T)

2€8, ¢
< sup |vge(Hn(z = nn)) — va- (Hn(2))]
2€8, €
= sup va-({r: f(k) < 2= mn}) —va-({r: f(r) < 2})| = o(1)
zesS™¢
by uniform continuity of z — vg«({x : f(k) < z}) on S. The +n case is handled similarly. [

Proof of Theorem 3.3. We verify the conditions of Lemma 2.2. Again, we assume wlog that
Ln(0) = supgee,,, Ln(0)+op(n~1). It follows from Lemma F.4 (taking v(f) = 0 for any 6 € ©;)
that when 7' = R%" and ¥ = I;- that:

PQn(A0)) = f (V) +op(l)~ f(Z) foralldecO;.
where Z ~ N (0, I4+). Let &, denote the a quantile of f(Z). Then:

M = o+ (ES — £o) + (M — €893 = £, + op(1)

by Lemma F.5 and Assumption 3.6. ]

Proof of Theorem 3.4. It is enough to verify the conditions of Lemma 2.2. Let T} and T%
denote the complement of T} and 75 in R and let P denote the distribution of Z ~ N (0, Ig+).
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Now suppose that 77 N 75 is not empty. For any w > 0:

P(f(Z) < w) = P (f(
+Pz(f(Z) <w <)
+P2(f(Z) < w|Z e TENTR)PL(Z € TS NTy)
+P2(f(Z2) <wl|Z e i NT5)Pz(Z € TN T)
=p(Pz(f(Z) <w|Z € T N'T) + P5(f(2) < w|Z € Tf NT5))
(1= 2)PA(f(2) S wlZ e TENT) (19)

Z) w’ZETlﬂTQ)Pz(ZGTlﬂTQ>

by symmetry of Gaussian measure, where p = P»(Z € T} NT,). We omit the term conditional
on Tf N T§ whenever TY N Ty = (.

If Z € Ty NT, then f(Z) =0 and hence
Py(f(Z) <wlZeTiNT) =1. (50)

If Z € T¢NT, then we have infer, ||Z —t||? = 0 and hence, by Moreau’s decomposition theorem
(Hiriart-Urruty and Lemaréchal, 2001, Theorem 3.2.5, p.51), we obtain:

f(Z) = it ||Z —t]* = ||T1 Z||?
teTy

where T denotes the projection onto the polar cone T¢ of Ty. Here T¢ C T¥ is a ray extending
from the origin that is orthogonal to the supporting hyperplane for 7. Since the orthogonal
projection of the standard normal random vector Z onto a line passing through the origin is
distributed as x? and the length ||Z|| and direction Z/||Z| of Z are independently distributed,
we may deduce:

B2(f(Z) < w|Z € Tf N Ty) = B£(| T 2| < w|Z € T{ N Ty) = Fa(w). (51)

By similar arguments, if Z € T¢ NTS we have f(Z) = [T+ Z|?> V | T3 Z||>. Each | T;Z|? is
distributed as x? (conditionally upon Z € T¢ N T¥). Therefore:

Pz(|T1Z|* v ITy Z|* < w|Z € T N T5)

is minimized when T¢ and T¥ are orthogonal, in which case | T{ Z||? and || Ty Z||? are indepen-
dent x? random variables (conditional upon Z € T¢ NT¥). It follows that:

Pz(f(Z) <w|Z € Tf NT5) > F\a2(w)?. (52)
Now, substituting (50), (51), and (52) into (49) yields:
P(f(Z) <w) > p(1+ Fa(w)?) + (1 - 2p)Fy2(w).

and hence:



Let wq, be the a quantile of W = f(Z) in Lemma 2.2. It follows that X%,a > Wq- |

Proof of Proposition 3.1. It follows from part (iii) and display (29) or display (42) that:

2nLn(0) = 2 + [[Va|[* = inf Vi — ]2 + 0p(1) .
Moreover, applying parts (i) and (ii), we obtain:

inf  sup 2nL,(#) = min sup  2nLy(0) + op(1)
meMy 0cu—1(m) me{m,m} 0cp—1(m)

= min <2£n+ [V||* = inf ||Vnt||2) +op(1).
7} teTm

me{m,m

Therefore:

. . 2 : 2 : 2
su]& 1n1f(m)Q (9) <t1n£1 1A% t| \/tlnan | > m |V |+ op(1)

The result follows by part (iv) and ¥ = I4-. [

F.2 Proofs and Additional Lemmas for Section 4

Proof of Proposition 4.1. Wlog we can take 59 = 0. By condition (b), for any ¥ € U we
have:

nLa(3) = nLn(30) + (VIR (VAPALz,) + 5 (ViEA) (Bl ) (V)

where 4* is in the segment between 4 and 7y for each element of }P’nﬂ;*. We may deduce from
Lemma 2.4 of Newey and McFadden (1994) that sups, s <p1/4 [[(Prls+) — Po(£y,) || = op(1) holds
under conditions (a) and (b). Since this term is op(1), we can choose a positive sequence (ry)nen
with 7, — 0o, 1, = o(n'/*) such that r2 SupPs. 51 <nt/4 [|(Pnls) — Po(45,)|| = op(1) holds. Take
Opsn = {0 € O : ||7(0)|| < ry/+/n}. Assumption 3.2(i) then holds with () = H%f’y(@). Assump-

tion 3.2(ii) is also trivially satisfied with T = R%" because 79 = 0 € int(I') by Condition (b).
Assumption 3.1(ii) follows under conditions (c) and (d) by Theorem 5.1 of Ghosal, Ghosh, and
van der Vaart (2000). [

Lemma F.6. Consider the missing data model with © as in (12) and a flat prior on ©. Then

Assumption 3.1(ii) is satisfied with ©psy, := {0 : |k11(0) — k11| < kn/v/1y koo(0) < kn/n} for any
positive sequence (kp)nen with ky, — 00, ky/v/n = o(1).

Proof of Lemma F.6. Let S,, =Y ;" | Y;. The flat prior under the map 6 — (k11(0), koo(6))’
induces a flat prior on {(a,b) € [0,1] : 0 < a < 1 — b}. Take n sufficiently large that [k1; —
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kn/v/n, k11 + kn/+/n] C[0,1] and k,/n < 1 — k11. Then:

Hn( (C)sn|X )
B foml kn/v/n fl a (1 —a— b)n_S” dbda N fn11+k /ff (1 —a— b)?’L—Sn dbda
I n(1—a—0b)""""dbda S 74 (@)Sn (1 — a — byn=5n dbda
K11+kn n—
fn1111+kn//\/[ f n/” 1 - b) o dbda
= L+Lh+1Is.
fo 1—a—b)" Sndbda

Integrating first with respect to b yields:

K n n— 1 n — n—on
f 11—k /f( ) "(1 - a) S”+1da+ fn11+kn/f( )S (1-a) Snt1 4g
fo n(1—a)»Sntlda fo n(1—a)» St da
= PU\Sn(\U — K11 > kn/V/n)

I +1 =

where U|S,, ~ Beta(S,, + 1,n — S, + 2). By properties of the Beta distribution:

BUIS) = g
_ (Snt1)(n—5.+2)
VarUlSal = =035+ 1)

By the triangle inequality, the fact that E[U]|S,,] = &11 +Op(n~/2), and Chebyshev’s inequality:

L+ 1 <Py, (\U —E[U]S,]] > k:n/(Q\/ﬁ)> n n{uE[UySn] — k11| > kn/(2\/ﬁ)}

= Puys, (U = EIUISL| > kn/(2V/)) + 02(1)
_An(Sp+1)(n— Sy +2)
k2 (n+3)2%(n+4)

4 (G4 )= S+ 3)

< n
TR (1+23)20+ 3

+ O[p(l)

+ O]p(l)

which is op(1) (because k,, — o).

Similarly, for I3 we have:

f:llllj:n"/\\//ﬁ(a)sn(l —a — (k‘n/n))n*SnJrl da
fo n(1 —a)"Sntlda
< fol—(kn/n)( ) (]_ —a— ( n/n))n—Sn_H da

fO Sn 1 _ a)n Sntldgq
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1—a—kn/n

Using the change of variables a — c¢(a) := T—Fn

in the numerator yields:

wra Jo (L= c)Sn(c)=Sntlde

Jo (@)5n(1 = a)r=52+1da

I3 < (1= (kn/n)) = (1= (kn/n))" "

and so Is — 0 as n — oo (because k,, — 00). |

F.2.1 Additional results for the quadratic expansion of the log-likelihood in general

non-identifiable models

For the following lemma, we let (r,,),en be a positive sequence with r,, — oo and r, = 0(n1/2),

and let Posp, = {p € P : h(p,po) < rn/v/n} and Opgp, = {0 € © : h(pp,po) < mo/+/n}. For
each p € P with h(p,pg) > 0 we also define S, = \/p/po — 1 and s, = Sp/h(p,po). Recall the
definitions of D,, the tagent cone A and the projection A from Section 4.1.2. Finally, we say P
is 7,-DQM (with respect to pg) if each p is absolutely continuous with respect to py and for each
p € P there are elements g(p) € A and remainders R(p) € L*()\) such that:

VP —+/Po = g(p)v/Po + h(p, po) R(p)

with sup{r,||R(p)||2(n) : A(p;p0) < rn/yv/n} — 0 asn — oo.

Lemma F.7. Let the following conditions hold.

(i) P is rp-DQM

(ii) There exists € > 0 such that {512, : 8p € D:} is Po-Glivenko Cantelli

(iii) D, has a measurable envelope D : 2 — R with max;<;<, D(X;) = op(v/n/r})
(iv) SUPpeP,en Gn(Sp — ASp)| = OIP’(n_l/Z)

(v) supyep,,, |(Pn — Po)S5| = op(n™").

Then:

sup
0€Oosn

nL,(0) — (n]P’n log po + nP, (2AS,,) — ;nPO((2A5p9)2)) ’ =op(1).

When the linear hull Span(A) has finite dimension d* > 1 we may restate this result as:

sup
0€Oosn

0L (6) = (P logp + (VO Vi = IV O )| = or(1).

where Vi, = Gp (), ¥ = (Y1,...,0g), ¥1,...,0g is an orthonormal basis for the linear hull
Span(A), and v(0) is defined by A(2Sp,) = v(60)'4).

Proof of Lemma F.7. We first show that:

sup |nPy, log(p/po) — 2nPy(Sp — Po(Sp)) + n(PnSy + h*(p,po))| = op(1) (53)
pE osn

holds. To do so, we adapt arguments used in Theorem 1 of Azais et al. (2009), Theorem 3.1
in Gassiat (2002), and Theorem 2.1 in Liu and Shao (2003). Take n sufficiently large that
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rn/v/n < € (whence P, C De). For each p € Pogy, \ {po} we have:
nlP, log(p/po) = 2nP,S, — nPnSIE + 2h(p,p0)2nPns§r(h(p,pg)sp) (54)
where 7(u) = (log(1 4+ u) — u — u?)/u? and lim, 0 |r(u)/(3u) — 1| = 0. Condition (iii) implies:

sup max h(p,po)|sp| < max D(X;) = op(r;,?)

PEPgsn 1<i<n \/ﬁ 1<i<n
and hence: )
sup max [r(h(p, po)sy)| = op(ra)
Therefore:

sup \2h(p,pg)QnPnsir(h(p,po)spﬂ < 2r x op(r;%) x sup P, S
PEPosn PEPosn

< 27“721 X 0]}»(7’;2) x (14 o0p(1)) = op(1)

where the second inequality is by Condition (ii). Expression (53) follows by adding and sub-
tracting 2nPy(S,) = —nh?(p,po) to the right-hand side of (54).

To complete the proof, it remains to show:

sup P, (S, — Po(S,) — ASp)| = op(n™1) (55)
sup P, (S2) + h*(p, po) — 2Po((ASp)?)| = op(n™1). (56)

peposn

Each element of A has mean zero, hence P(AS,) = 0 for each p € P, we can deduce:

sup |Pn(S, — Po(Sp) — ASy)| =n"2 x sup |Gn(S, — AS,)|
PEPosn PEPosn

from which (55) follows by Condition (iv).

As Py(S3) = h*(p,po), in order to prove (56) it suffices to prove:

Sup |(Pn — Po)(Sp)] = op(n") (56a)
sup |Po(Sy) — Po((ASp)?)] = op(n™"). (56b)

PEPosn

Result (56a) holds by condition (v). It remains to prove (56b). Under Condition (i), for each
p € P there is a g(p) € A and remainder R*(p) such that:

Sp = g(p) + h(p, po) R*(p)
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with sup{r,||R*(P)|| z2(py) : (P, P0) < 7n/v/n} — 0 as n — oo. It follows by definition of A that:

1Sp = ASpllr2(py) < I1Sp — 9(0)lL2(py) = AP Po) IR* (D)l 22(Ry) (57)

for each p € P. By Moreau’s decomposition theorem (Hiriart-Urruty and Lemaréchal, 2001,
Theorem 3.2.5, p.51) and inequality (57) we may deduce:

sup [Po(Sy) — Po((ASp)*)| = sup [IS, = ASpll72(py < sup h(p,po)?|R*(0)|172(py) -

PEPosn PEPosn PEPosn
Result (56b) then follows from definition of P,s, and Condition (i). This proves the first result.

The second result is immediate by defining V;, = G, (¢), ¥ = (¢1,...,%g), P1,...,1g+ is an
orthonormal basis for the linear hull Span(A), and v(0) by A(2S,,) = v(6)'4, then noting that

Po((A(25p,))%) = 7(0) Po(sb")7(0) = Ilv(0)II*. u

Proof of Proposition 4.2. To verify Assumption 3.2(i) it suffices to verify the conditions of
Lemma F.7. By DQM (condition (b)) we have sup{||R(p)|lz2(n) : h(p,po) < n~4} = 0 as

1/4

n — oo. Therefore, we may choose a slowly diverging sequence (an)neny With a, < n'/* such

that
sup{an||R(D) |l z2(n) : (P po) < an/v/n} =0 asn — oo

and hence
sup{ru[|R(D)l20x) : (D, p0) < 1n/V/n} — 0 asn — oo

for any positive sequence (7, )nen with 7, < a,. This verifies Condition (i) of Lemma F.7.

Condition (c) implies D, is Donsker and so {512) : 8p € D} is Glivenko-Cantelli (van der Vaart and
Wellner, 1996, Lemma 2.10.14), which verifies Condition (ii) of Lemma F.7. Choose a positive
sequence (by,)nen With b, — oo such that b2 sup, p._ |(Pr, — Po)sz| = op(1) and so:

s |(Ba—P)SH < sup r2|(Bu— Po)sEl/n = op(n”)
p:h(p,po)<rn/v/n p:h(p,po)<rn/v/n

for any sequence (ry,)nen with r,, < by,. This verifies Condition (v) of Lemma F.7. Moreover, it fol-
lows from the envelope condition (in Condition (c)) that max;<;<, D(X;) = op(n'/?). Therefore,
we can choose a positive sequence (¢, )pen With ¢, — 0o such that ¢} max;<;<, D(X;) = Op(nl/Q)
or equivalently max;<ij<, D(X;) = 0]}»(77,1/2/7’2) for any diverging sequence (7, )nen with r, < c,.
This verifies Condition (iii) of Lemma F.7.

D, is Donsker by Condition (c). Dea := {Asp : s, € D} C{f € A: | fllp2(p,) < 1} is Donsker
because the linear hull Span(A) is finite dimensional. Therefore, AD, := {s, — As, : s, € D:}
is also Donsker and hence G,, ~ W in £*°(AD.) where W is the isonormal Gaussian process.
In view of the Skorohod-Dudley-Wichura theorem (van der Vaart and Wellner, 1996, Theorem
1.10.3) we represent G,, ~» W in {*(AD.) by G,, —, W in a suitable probability space.
Therefore:
sup |Gu(d)| = sup [W(d)| +nn
deAD. deAD,
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where 7, = op(1). Again, we may choose a positive sequence (dp)nen With d,, — oo sufficiently
slowly that d,,n, = op(1) and hence r,n, = O[P(l) for any positive sequence (7, )pen with 7, < d,,.
The singleton {0} is the only limit point of AD, as ¢ \, 0 because:

SuP{||dHL2(P0) S Aﬁe} = sup{||sp — ASp”L?(PO) :h(p,po) < €}
< sup{[|R(p)[|z2(») : h(p. po) < €}

—0 (ase—0)

by DQM (condition (b)). Define D(&’) = sup{||d||2(py) : d € AD.} and H (v fo N(AD,,u))?du
where N (AD.,u) is the covering number of AD, with respect to the 1ntr1n31c semimetric. Clearly
D(e) - 0ase — 0 and H(v) — 0 as v — 0. By Corollary 2.2.8 of van der Vaart and Wellner
(1996):
sup |W(d)| = Op(H(D(g))) =p 0 (ase —0).
deAD,

Taking e, = n~'/*, we can choose a positive sequence (e,)neny With e, — o0 as n — oo

sufficiently slowly that e, H(D(e,)) = o(1). For any sequence (r,)nen with 7, < (d,, V e, Vnl'/%)
we then have:

sup Gn(Sp — ASp) < sup Gn(sp — Asp)
p:h(p,po)<rn/v/n \Fp :h(p,po)<rn/v/n

1
< —xr, sup |G,(d)|=— xop(1).

\F deAD.,, vn

This verifies Condition (iv) of Lemma F.7. Take r, = (an A by A cp A dy A e, Alogn). ]

Proof of Proposition 4.3. We first show that there exists a positive sequence (ry,)pen With
r, — 0o such that:

sup
:llg(O)I<rn/vn

0L, (0) = (= HA/Tg(0) + 2,V A0 + Z0) )| = ox(1)  (68)

for some sequence of random vectors (Z, )nen with Z,, ~ N(0,Q).

In this proof we often abuse notation and use py to denote p(-,0). Take n large enough that
n~Y* < gg. Let £, = n'/%. Li.d. data and Conditions (c)(e) imply that

sup  [[Pn(pgpp) — Q2| = op(1)
0:1l9(0)<en

(van der Vaart and Wellner, 1996, Lemma 2.10.14). Therefore, we may choose a positive sequence
(an)nen With a, — 00, a, = o(n'/*) such that SUDPg. | g(6)[|<en a2 | By (pppy) — 2| = op(1) and hence:

sup  [|Pu(pgph) — QI = op(r,?) (59)
0:1l9(0) | <rn /v

holds for any sequence (ry,)nen with m, < a,.

95



For any ¢ € (0, g, under i.i.d. data and Condition (c) there exists a Gaussian process W defined
on R. with E[W(p)W (p)'] = E[(p — E[p])(p — E[p])'] for any p,p € R such that G, ~ W
in (>*(R.). Fix any 0* € O and set Z, = Gy (pp«) where Z, ~» N(0,9Q) by condition (b).
Representing weak convergence of G, to W as almost sure convergence in a suitable probability
(van der Vaart and Wellner, 1996, Theorem 1.10.3), we have:

sup |Gn(p) — Zn| = sup [W(p) — W(po+)| + nn
PER: pER:

where 7, = op(1). Choose a positive sequence (by,)nen with b, — oo slowly such that b,7n, =
op(1) and so r,n, = op(1) holds for any sequence (r,,)nen With 7, < b,. The intrinsic semimetric

di(p.7) = (Elllp— 5 — Elp— pll2)/? satisties:

sup dr(p, po-)? = sup (Ellpo — po-[12] — lg(0)]2) =0 (as & — 0)
60’ 609

by Condition (d). Let D(6) = SUPgeos d1(pg, po+) and let H(v) = [ (N(Re,u)) N)Y2du where

N (R, u) is the covering number of R. with respect to the mtrlnsu: semimetric. Clearly H(v) — 0
as v — 0. Using Corollary 2.2.8 of van der Vaart and Wellner (1996) we can deduce:

seué) (W (p) — W(pg+)| = Op(H(D(g))) =p 0 (ase —0).

Taking e, = n~/4, we can choose a positive sequence (Cn)nen with ¢, — oo asn — oo sufficiently
slowly that ¢, H(D(ey,)) = o(1). It follows that:

sup |[VnPupp — (Vng(0) + Zn)| = op(ry,"). (60)
0:l9(@)l|<rn/ V7

for any sequence (ry,)nen with r, < (b, Ve V n1/4).
Condition (a) implies supg.qg)|<a, /v [19(0) — Ag(0)|| = o(dn/+/n) for any sequence (d;,) with

dp — 00, dy = o(y/n). Choose d, — oo slowly so that: supg.4)<a, /v l19(0) — Ag(®)] =
0(1/+/n) . Then choose another positive sequence (e, )nen With e, — oo such that:

sup _enllg(6) — Ag(6)l| = o(1/v/n)
6:ll9(6) | <dn /v/n

and hence, by the fact that A(y/ng(0)) = /nAg(f) (Hiriart-Urruty and Lemaréchal, 2001, p.
51), we obtain:

sup [|Vng(0) — A(Vng(6))|| = o(r,") (61)
APOIENG

for any sequence (7y)nen With 7, — oo slowly such that r, < (d, Aep).

Taking 7, = (an A bp A ¢y Ady A ey An/*) and using (59), (60) and (61) yields:
1
nLn(0) = =5 (VnAg(0) + Zn + 0p(ry ) Q7" + 08 (r, ")) (VnAg(0) + Zn + 0p(r, "))
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where the op(r; ') and op(r,;?) terms hold uniformly over O, := {6 : [|g(0)| < 7./+/n}. This
proves (58).

Let U be a unitary matrix as described and recall that U~! = U’. The result follows from (58),
by expanding the quadratic and using:

(VRUA(9(6))) (UQU") ™ (VnU A(9(9)))
(Vr[UAg(O)L) [(UQU") 1 (vnlUAg(0)]1)
(vVny(0))' (vny(9))

where [(UQU")"1q; is the d* x d* upper-left block of (UQU’)~! and [UAg(6)]; is the upper d*
subvector of UAg(#), and:

(vVnAg(0)) Q" (v/nAg(0))

(VRAg(0)) Q' Z, = (VaUAg(0)) (UQ " Z,)
(Var(9)) [(ueu’) P luet Z,),
— (Vv (0))'V,,

where [UQ71Z,]; is the upper d* subvector of UQ™1Z,. ]

Proof of Proposition 4.4. Follows by similar arguments to the proof of Proposition 4.3, not-
ing that by condition (e) we may choose a positive sequence (a,,)nen with a, — oo slowly such

that aleW — Q7Y = op(1). Therefore HW — Q7Y = op(r;2) holds for any sequence (7 )nen
with 7, — oo such that 7, = O(ay,). [ ]

F.3 Proofs and Additional Lemmas for Appendix B

Proof of Lemma B.1. By (ii), there exists a positive sequence (7,)nen With 7, = o(1) such
that suppep P(wn,o < wa,p — 1n) = 0(1). Therefore:

i co,)>i CO > —
inf P(O1(P) € O4) = inf PUO1(P) € O} N {0 = wap —m})
= E}gﬁ P({Supeeel(p) Qn(0) < wn,a} N {wn,a > Wa,p — Mn})

= E})Iellf) IP)(‘{Sllpeeef(l}”) Qn(0) < wap — M} N{wna = Wap —M})-
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Since P(AN B) > 1 —P(A¢) — P(B¢), we have:

I[%glfj P({SUPGEGI(FP’) Qn(e) < wWap — nn} N {wn,a > Wa,p — nn})

> 1 —sup P(supgee, (p) @n(0) > wa,p — 1n) — sup P(wn,a < wap — nn)
PeP PeP

=1 — sup P(supgee, @) @n(f) > wap — ) — o(1)
PeP

—1—(1—a+o(1)—o).

where the second last line is by definition of 7,, and the final line is by part (i).

To prove the case with equality, it suffices to show that infpep P(O7(P) C O,) < a + o(1). Since
Wn,a = Wq,p+op(1l) uniformly for P € P, there exists a positive sequence (1, )nen wWith 7, = o(1)
such that suppep P(|wn,a — wa,p| > 1nn) = o(1). Therefore:

inf P(O1(E) € 8,) = inf B({01(B) € 8} 1 (w0 — wa el < ne}) + o)
= ﬁgé P<{SUP6’661(IP’) Qn(0) < wpat N {{wna — wap| < nn}) +o(1)
< Eyel%, P({SuPé)e@I(HD) Qn(0) < wap + Mt N {{wna — wapl <nn}) +o(1)

< inf P(suppee, () Qu(6) < wap + 1) +o(1)

=a+o(l)
where the final line is by part (i). [
Proof of Lemma B.2. Follows by similar arguments to the proof of Lemma B.1. [

In the following we often use the following expression (62) that is equivalent to equation (25) of
Assumption B.2(i):

sup_|nLa0) — = 51Vl + (GIVIO) < Vull 4 fosnO))| =ox) (02
0€B@osn

uniformly for P € P.
Lemma F.8. Let Assumptions B.1(i) and B.2 hold. Then:

sup |Qn(0) — (IVRY(0) = Vi || + 2fn, 1 (v1(8)))] = op(1) (63)

66@0577,

uniformly for P € P. If, in addition, Assumption B.5(i) holds, then:

sup | PQn(A(0)) — f (Vi — vny(0))| = op(1) (64)

0€Oosn

uniformly for P € P.
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Proof of Lemma F.8. To show (63), using Assumptions B.1(i), B.2(i) (or expression (62))

and (ii) and completing the square, we obtain:

nLo(@) = sup (b= SIVAOI + VIOV~ fos(2(6) ) + 02()

0€Oosn

= s (= S IVIOI + W ©)V, )+ oel)

96@087},

1, .. 1 )
=l + = |Va|2 = inf = - 1
ot IVl = Jnf S IV1(6) =Vl + 0 (1)

uniformly for P € P. But observe that for any € > 0:

sup P <9 it [y (6) — Vo > )

PeP €Bosn

<supP ({ inf |[vny(0) — V,||* > e} NA{||Va] < kn}> + sup P (|| Vy]| > kn)
PeP USC) PcP

osn

= sup P ([|Vo|| = kn) = o(1)
PeP

by Assumption B.2(iii)(iv). This proves (63). Result (64) follows by Assumption B.5(i).

Lemma F.9. Let Assumptions B.1, B.2 and B.3 hold. Then.:

sup (I, ({02 Qu(0) < 2} | Xa) = Pz (2) < 0p(1)
uniformly for P € P. If no P € P is singular, then:

sup ‘Hn({ﬁ 1 Qn(0) < 2} X,) — Fe, (z)’ =op(1).

uniformly for P € P

Proof of Lemma F.9. We only prove the case with singularity. The (simpler) case without

singularity follows similarly.

By identical arguments to the proof of Lemma F.3, it is enough to characterize the large-sample
behavior of R, (z) defined in equation (32) uniformly for P € P. By Lemma F.8 and expression
(62), there exist a positive sequence (7, )nen independent of z with 7, = o(1) and a sequence of

events (A, )nen C F with infpep P(Ay,) =1 — o(1) such that:

sup | Qn(8) — (Vv (0) = Val? + 2fn, 1 (v1(0)))| <

€Oosn

1 1 n
sup_|0Lu0) = £ = IVl + (SIVA0) - Vol + o 0))| < 2
0€Oosn
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both hold on A, for all P € P. Also note that for any z € R and any singular P € P, we have
{9 € Oosn : [|[V1y(0) — Vn”2 +2fn, 1 (vL(0)) +nn < Z} - {0 € Ousn : [[Vny(0) — Vn”2 + 1 < Z}
because f, | > 0. Therefore, on A,, we have:

-3 n —'n 2- n
Ro(2) <e™ T A s ()

fe e—%||\/ﬁ’y(9)—Vn||2_fn,L('7L(0))dH(0)

uniformly in z for all P € P.

Define T'psp, = {7(6) : 0 € Opsp} and IT' | o5, = {7.1(0) : 6 € Opgy, } (if P is singular). The condition
SUPpep SUPgeo,., ||(V(0),vL(9))|| — 0in Assumption B.2(i) implies that for all n sufficiently large
we have I'yg X I'| o5, C Bj for all P € P. By similar arguments to the proof of Lemma F.3, we
use Assumption B.3(ii), a change of variables and Tonelli’s theorem to obtain:

— 3 llvry=Vn|?
f({VII\\/ﬁ'y—VnH2§2+nn)ﬂ1“osne ’ mdy

_1 _ 2
frosne 2”\/5’7 V’"«H d’)/

R (2) < €™ (1 + 1) (66)

which holds uniformly in z for all P € P (on .A,, with n sufficiently large). A second change of
variables with /ny — V,, — & allows us to rewrite (66) as:

Vd*({7 : HHH2 <z+ 7771} N (Kosn - Vn))

Rn(2) <e™(141,) va Fom — V)

To complete the proof, it is enough to show that:

v ({5 1 [|6]12 < 2+ 1m0} N (Kosn — Vi)

P Var (Kosn — Vi) —vg ({8 ||K]* < 24+ 00} 0 (Kosn — Vi) | = op(1)
(67)
sup |va- ({2 6] < 2+ 00} N (Kosn — Vi) — vas ({5 = [|K]]> < 2})| = op(1) (68)

uniformly for P € P.

Simple algebra shows that the left-hand side of (67) is bounded by vg« (R \ Kys) — V,,) which,
in turn, is bounded by v4«(Bj, — V;) (cf. Assumption B.2(iii)). Now fix any € > 0 and notice
that Assumption B.2(iii)(iv) and the fact that d* < d for all P € P implies suppep P(||V,||* <
kn) = o(1). Therefore:

sup P(vg- (B, — Vi) > €)

PeP

< sup P({va-(By, = Vn) > e} O {[[Va|l < Fn/2}) + sup P(|V,]| > £ /2)
PP PP

< sup vy (By, j5) > €} +0(1) = o(1)
PeP
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by Assumption B.2(iii).

Now consider (68). Simple algebra yields:
sup [vas ({k |62 < 2+ 1} N (Kosn — Vi) — vas ({5 2 ||6]1° < 2 + na})]
< g (R \ Kosn) — Vi) = op(1)
uniformly for P € P by the preceding argument. Finally:
sup va-({k 2 |KI* < 2+ nn}) — va ({8 : [|8]* < 2})]

= sup (FXZ* (z+mm) — Fe, (z)) =o(1)
z
uniformly for P € P (the x? cdfs are uniformly equicontinuous on R). ]

Proof of Theorem B.1. We first prove part (i). To do so, we verify the conditions of Lemma

B.1. As in the proof of Theorem 3.1, we may assume without loss of generality that L, (0) =
Supgeo,., Ln(6)+op(n~!) uniformly for P € P. To verify condition (i) of Lemma B.1, by display
(63) in Lemma F.8 we have supgcg, ) Qn(f) = Va2 4+ op(1) uniformly for P € P, where

Va1 NS X2« for each P € P (since ¥ = I;+). Condition (i) then follows by Assumption B.2(iv)
and uniform equicontinuity of the y? distribution functions.

To verify condition (ii) of Lemma B.1, by Lemma F.9 there exists a sequence of positive constants

(Mn)nen with 7, = o(1) and a sequence of events (Ay)neny C F with infpep P(A,) = 1 — o(1)
such that:

sup (Hn({e 1 Qn(0) <z} ’ Xn) - in* (z)) <
holds on A, for all P € P. Substituting in z = £5%":

I ({0 Qu(0) < €81} | X)) — Fo (5) = o — Fa (€% < o

and hence:
2
Fro, (i a) — Fyz, (€% < o (69)

holds for all P € P on A,,. The X?l* cdfs with 1 < d* < d < oo are strictly monotone and their
inverses are all uniformly continuous on a fixed neighborhood of XZ*, o~ Hence by (69) there exists
a positive sequence (e, )nen With €, = o(1) such that:

post 2 _
En,oz 2 Xd*,a ~ En

holds for all P € P on A,,. Therefore, £5%" > X2« , +op(1) uniformly for P € P. Combining this
with Assumption B.4 we obtain &S > x7. , + op(1), as required.

We now prove part (ii) of the theorem, again by verifying the conditions of Lemma B.1. Condition
(i) is verified above. For condition (ii) of Lemma B.1, by Lemma F.9 if no P € P is singular,
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then we have:
sup ‘Hn({O 1 Qn(0) < 2} X,) — Fa (z)’ <y

holds on a sequence of events (Ap)nen C F with infpep P(A,) =1 — o(1) for some sequence of
positive constants (7, )neny With 7, = o(1), hence:

2 t
]}S”lelg |Fxf{* (Xd*,a) - in* (gg?; )‘ < U

holds on A,,. Arguing as above, we have that suppcp |§ﬁ?§t — Xz*, ol < e on Ay, for some positive
sequence (€, )nen With €, = o(1). [

Lemma F.10. Let Assumptions B.1, B.2, B.3, and B.5 hold. Then for any 0 < € < (Z — z)/2:

sup |1, ({60 : PQu(A(9)) < 2} | Xy) — P£(f(2) < 2)| = 0p(1).

z€[z+€,z2—¢€]

uniformly for P € P.

Proof of Lemma F.10. By the same arguments as the proof of Lemma F.5, it suffices to
characterize the large-sample behavior of R,,(z) defined in (47) uniformly for P € P. By Lemma
F.8 and expression (62), there exist a positive sequence (1, )nen independent of z with 7, = o(1)
and a sequence of events (Ay)neny C F with infpep P(A,,) =1 — o(1) such that:

5 |PQn(A0)) = (Vi — Vny(8))] < mn

1 1 .
sup_[n0(0) = = 512l + (GIVIO) =Vl + fos0)) | <
0€Oosn

both hold on A, for all P € P. So on A,, we obtain: Therefore, wpal we have:

e~ 3 IVAO)=VallP~fu, L (1L (0) 411 (f)

e_'r]n f{@:f(Vn7\/177(0))§2777n}m905n
f@me—%II\/ﬁw(e)—Vn||2—fn,Lm(e))dH(9)
f{95f(Vn—\/ﬁ’y(0))<z+77n}ﬂ®osn 67%”\/E’y(g)iv"l‘P*‘fn’L('yl (0))d]:[(9)

< <e™
< Rp(z) <e f@osne_%||\/Ew(0)—Vn||2—fn,L(7¢(9))dH(9)

uniformly in z for all P € P. By similar arguments to the proof of Lemma F.9, we may use the
change of variables 6 — (v(0),7v1(0)), smoothness of 7p«, and Tonelli’s theorem to rewrite the
above system of inequalities as:

e~ 2 IV =Vall gy

(1 _ ﬁn)e—nn f{'y:f(an\/ﬁ'y)ngn,;}ﬁFosn
frome—illx/ﬁv—Vnszfy
e 3IVI=Vall® g

f{ F(Vn—v/m)< r
< Bo(2) < (14 7)ot S o
< Bnf2) < (14 7n)e frosne—%\\ﬁv—vnll2d7
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which holds uniformly in z for all P € P (on A, with n sufficiently large), for some positive
sequence (7, )neny With 7, = o(1). Let Kog = {v/n7y : 7 € Tosn}. A second change of variables
Vny =V, — k yields:

—Lykl2
—7n f{ﬁ F(R)<z=1n I (Vi —Kosn) € 3R Qi

(1 - ﬁn)
Jowu—Koum)© 2P dr
~ Ll
< Ro(2) < (14 7)o OIS Vo) € 2 08
= Iin = n — L2
[T

which holds uniformly in z for all P € P (on A,, with n sufficiently large).

To complete the proof, it remains to show that:

sup ’/d*({’% : f(ﬁ) S zE nn} N <Vn - Kosn)
z€[z+€,2—¢€] Vd*((Vn - Kosn))

—va-({r: f(r) < z})| = op(1)

uniformly for P € P. By the proof of Lemma F.9, it is enough to show that:

sup  sup lvas({k: f(k) <zxn,}) —ve({k: f(r) < 2})|=0(1).
PEP z€[z+¢,z—¢]

This follows directly from Assumption B.5(ii). [
Proof of Theorem B.2. We verify the conditions of Lemma B.2. As in the proof of Theorem

3.3, we may assume without loss of generality that L, (f) = SUPpeo,,, Ln (0) +op(n~1) uniformly
for P € P. To verify condition (i) of Lemma B.2, by display (64) in Lemma F.8 we have:

sup inf  Qn(0) = f(V,) + op(1)
pEM (P) 0™ (m)

uniformly for P € P, where V, % N(0, I4+) for each P € P (since ¥ = I4+). Part (i) follows by
Assumption B.5(ii)(iii).

To verify condition (ii) of Lemma B.2 with equality, take € > 0 such that € < infpep &ap — 2

and € < Z — suppep &q,p- By Lemma F.10 there exists a sequence of positive constants (1, )nen
with 7, = o(1) and a sequence of events (Ay)neny C F with infpep P(A,) =1 — o(1) such that:

sup |, ({0 : PQn(A(9)) < 2} | Xy) —=Pz(f(2) < 2)| <

z€[z+€,2—¢€]

holds on A, for all P € P. Substituting in z = £,%" (which is in [z + ¢,Z — €] for all P € P, for
all n sufficiently large by Assumption B.5(ii)), we can deduce that:

Pz(f(Z) < &ap) = Pz(f(Z2) < )| <

holds for all P € P on A,, for all n sufficiently large. Uniform equicontinuity of the inverse of
z = Pz(f(Z) < z) (Assumption B.5(ii)) implies that there exists a positive sequence (&y,)neN
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with e, = o(1) such that
|€ha’ — Eapl < en

holds for all P € P on A, for all n sufficiently large. Therefore, £h%' — &4 p = op(1) uniformly
for P € P. The result follows by Assumption B.6. ]

F.4 Proofs for Appendix D

Proof of Theorem D.1. We first derive the asymptotic distribution of supycg, @n(f) under
P, . By similar arguments to the proof of Theorem 3.1, we have:

Pn,a
sup Qn(0) = [|Vnl* +op, . (1) " xG-(da).
0cO;

Identical arguments to the proof of Lemma 3.1 yield:

sup [T, ({0 : Qn(0) < 2}[Xn) — Fy2 (2)] = op, (1)
z
Therefore, &', = X?l*,a + op,, . (1) and we obtain:

Pnq(©r C (:)a) = Pr(xfl* (d'a) < X?l*,a) +o0(1)
as required. =
Proof of Theorem D.2. Similar arguments to the proof of Theorem 3.3, uniformly for § € Oy

we have:

PQ(A(9)) = 2nLy(0) — 2nPL,(0) = f(V,) +op, . (1).

hence: b
sup PQn(A(0)) =" f(Z 4+ a)
0cOr

where Z ~ N(0, I4+). Identical arguments to the proof of Lemma F.5 yield:

21;[36 !Hn({Q : PQRr(A(9)) < z} | Xn) - Pyx,, (f(Z) < z)! = op(1)

for an open set ST containing z,. Therefore, £7'6" = 24 + op, , (1) and we obtain:

P o(M; C M) =Ps(f(Z+a) < z4) + o(1)

as required. ]
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F.5 Proofs for Appendix E

Proof of Lemma E.1. By equations (30) and (31) in the proof of Lemma 3.1, it suffices to
characterize the large-sample behavior of:

_1
_ J10:0,0)<300,..¢ 290 ar1(o)

R,(2):
T e

By Assumption E.2(i), there exists a positive sequence (7, )nen with 7, = o(1) such that: (1 —
M) h(7(0) = An) < G Qn(0) < (14 0n)h(7(0) — 4n) holds uniformly over O,s,,. Therefore:

_a/7_Ll n —An
J10:2021 (140 (4 (6)—4m) <5} @0n € (L) (/) =4m) 4T1(9)

Jo.e=on (1=m)h(2(0)-5n)dTT(6)

_ail —Mn _An
- J020 0 nh a0 -5 <230, € OO TIAING)

- f@m e—an (14n)h(v(0)=7n) AT1(6)

< Ry(2)

By similar arguments to the proof of Lemma 3.1, under Assumption 3.3 there exists a positive
sequence (7, )nen With 7, = o(1) such that for all n sufficiently large we have:

e*a'gl(l"’nn)h('y*:)/n)dfy

(1 - ﬁ )f{’yaa;l(1+nn)h(7_ﬁ/n)gz}mrosn
! frosne—aﬁl(l—nn)h(w—%)dfy
,aT—Ll —n A
f{W?aﬁl(1—nn)h(v—%)§z}mrome (=nm)h(r=n) dry
fl—\osne_a”jl(1+777L)h(7_'3/n)dfy

< Ru(2) < (1+ 1)

under the change of variables 6 — (), where T'os, = {7(0) : 0 € Opsn }.

Assumption E.2(ii) implies that:

an (L ma)h(y = n) = h(an™ (1 £ 7)™ (01 = Fu)e- 005" (LE£0) (G = ) )
Using a change of variables:

v ke(y) = (@, (X E£00)™ (11— An)s - a0 (L E00)" " (Yar — Anyar))

(with choice of sign as appropriate) and setting r* = ry + ... + 4+, we obtain:

e
(1 + 77”)7"* fe—h(n)dﬁj

(1 +10)" Soman(my<ny "dr
A1) e o Wdn

osn

(1 - ﬁn)

< Ry(z) < (14 1,)

uniformly in z, where K, = {k4+(7) : v € Tosn}-
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We can use a change of variables for k — t = 2h(x) to obtain:

/ e MW dk = 277 V(S) / e 2 Lt / e "W dk = 277 V() / e V2 g
{k:h(Kk)<z/2} 0 0

(71)
where V(S) denotes the volume of the set S = {k : h(k) = 1}.

For the remaining integrals over K. we first fix any w € Q so that K, (w) becomes a determin-

istic sequence of sets. Let Cy,(w) = K, (w) N By, . Assumption E.2(iii) gives RY" = U,,>1Cy(w)
for almost every w. Now clearly:

/ o—hR) Qe > /
>

osn

e "MFdg > /]l{m € Cp(w)}e "™dk — /e_h(”) dk
(w)
(by dominated convergence) for almost every w. Therefore:

/K X e P dk =, 277V(S) /0 e 2 Lt (72)

We may similarly deduce that:

sup
z

—, 0. (73)

/ e Mr gk — 2T*V(S)/ e 2t
{k:h(r)<22}NKfsp 0

The result follows by substituting (71), (72), and (73) into (70). [

Proof of Theorem E.1. We verify the conditions of Lemma 2.1.

Lemma E.1 shows that the posterior distribution of the QLR is asymptotically Fy = I'(r*,1/2),

and hence &5%' = z, + op(1), where z, denotes the a quantile of the Fr. By Assumption

Supgeo, @n(f) ~ Fr. Then:

me = o+ (€% = 2a) + (G5 — &18") = Za + 0p(1)

where the final equality is by Assumption 3.4. ]
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