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Abstract

In complicated/nonlinear parametric models, it is generally hard to determine whether the
model parameters are (globally) point identified. We provide computationally attractive pro-
cedures to construct confidence sets (CSs) for identified sets of parameters in econometric
models defined through a likelihood or a vector of moments. The CSs for the identified set
or for a function of the identified set (such as a subvector) are based on inverting an optimal
sample criterion (such as likelihood or continuously updated GMM), where the cutoff values
are computed via Monte Carlo simulations directly from a quasi posterior distribution of the
criterion. We establish new Bernstein-von Mises type theorems for the posterior distributions
of the quasi-likelihood ratio (QLR) and profile QLR statistics in partially identified models,
allowing for singularities. These results imply that the Monte Carlo criterion-based CSs have
correct frequentist coverage for the identified set as the sample size increases, and that they
coincide with Bayesian credible sets based on inverting a LR statistic for point-identified
likelihood models. We also show that our Monte Carlo optimal criterion-based CSs are uni-
formly valid over a class of data generating processes that include both partially- and point-
identified models. We demonstrate good finite sample coverage properties of our proposed
methods in four non-trivial simulation experiments: missing data, entry game with correlated
payoff shocks, Euler equation and finite mixture models. Finally, our proposed procedures
are applied in two empirical examples.
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1 Introduction

In complicated (nonlinear) structural models, it is typically difficult to verify that the model

parameters are (globally) point identified. This is especially important when one is interested

in conducting a sensitivity analysis to examine the impact of various assumptions on parameter

estimates where weaker assumptions may lead to loss of point identification. This motivation

naturally calls for computationally simple and theoretically attractive inference methods that

are valid whether or not the parameter of interest is identified. For example, if we are interested

in estimating parameters characterizing the profits of firms using entry data, an important ques-

tion is whether the estimates obtained from standard methods such as maximum likelihood are

sensitive to the functional forms and/or distributional assumptions used to obtain these esti-

mates. Relaxing some of these suspect assumptions (such as replacing the normality assumption

on the unobserved fixed costs distribution with a mixture of normals, say) calls into question

whether these profit parameters remain (globally) point identified. Our aim is to contribute to

this sensitivity literature in parametric models allowing for partial identification.

To that extent, we provide computationally attractive and asymptotically valid confidence set

(CS) constructions for the identified set (IdS) or functions of the IdS in models defined through

a likelihood or a vector of moments.1 In particular, we propose Monte Carlo (MC) criterion-

based CS for the IdS of the entire structural parameter and for functions of the structural

parameter (such as subvectors). The proposed procedures do not require the choice of extra

tuning (smoothing) parameters beyond the ability to simulate a draw from the quasi posterior of

an optimally weighted sample criterion. As a sensitivity check in an empirical study, a researcher

could report a conventional CS based on inverting a t or Wald statistic that is valid under point

identification only, and our new MC criterion-based CSs that are robust to failure of point

identification.

Following Chernozhukov, Hong, and Tamer (2007) (CHT) and the subsequent literature on the

construction of CSs for the IdS, our inference approach is also criterion function based and

includes likelihood and generalized method of moment (GMM) models.2 That is, contour sets of

the sample criterion function are used as CSs for the IdS. However, unlike CHT and Romano and

Shaikh (2010) who use subsampling to estimate critical values, we instead use the quantile of the

simulated sample criterion chain from a (quasi) posterior to build a CS that has (frequentist)

prescribed coverage probability. This posterior combines an optimally weighted sample criterion

1Following the literature, the identified set (IdS) ΘI is the argmax of the population criterion in the parameter
space Θ. A model is point identified if the IdS is a singleton {θ0}, and partially identified if the IdS is strictly
larger than a singleton but strictly smaller than the whole parameter space.

2Unconditional moment inequality based models are a special case of moment (equality) based models in
that one can add a nuisance parameter to transform a (unconditional) moment inequality into an equality. See
Subsection 4.2.1 for details.
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function (or a transformation of it) with a given prior (over the parameter space Θ). We draw

a MC sample (chain) {θ1, ..., θB} from the posterior, compute the quantile of the optimally

weighted sample criterion evaluated at these draws at a pre-specified level, and then define our

CS for the IdS ΘI as the contour set at the pre-specified level. The computational complexity

of our proposed method for covering the IdS ΘI of the entire structural parameter is just as

hard as the problem of taking draws from a (quasi) posterior. The latter problem is a well

researched and understood area in the literature on Monte Carlo (MC) methods in Bayesian

posterior computations (see, e.g., Liu (2004), Robert and Casella (2004) and the references

therein). There are many different MC samplers one could use for fast simulation from a (quasi)

posterior,3 and no optimization is involved for our CS for the IdS ΘI . For functions of the

IdS (such as a subvector), an added computation step is needed at the simulation draws to

obtain level sets that lead to the exact asymptotic coverage of this function of the IdS.4 We

demonstrate the computational feasibility and the good finite sample coverage properties of our

proposed methods in four non-trivial simulation experiments: missing data, entry game with

correlated shocks, Euler equation and finite mixture models.

Theoretically, the validity of our MC CS construction requires the analysis of the large-sample

behavior of the quasi posterior distribution of the likelihood ratio (LR) or optimal GMM crite-

rion under lack of point identification. We establish new Bernstein-von Mises type theorems for

quasi-likelihood-ratio (QLR) and profile QLR statistics in partially identified models allowing

for singularities. Under regularity conditions, these theorems state that, even for partially iden-

tified models, the posterior distributions of the (not-necessarily optimally weighted) QLR and

the profile QLR statistics coincide with those of the optimally weighted QLR and the profile

QLR statistics as sample size increases to infinity. More precisely, the main text presents some

regularity conditions under which the limiting distributions of the posterior QLR and of the

maximized (over the IdS ΘI) sample QLR statistics coincide with a chi-square distribution with

an unknown degree of freedom, while Appendix E presents more general regularity conditions

under which these limiting distributions coincide with a gamma distribution with an unknown

shape parameter and scale parameter of 2. These results allow us to consistently estimate quan-

tiles of the optimally weighted criterion by the quantiles of the MC criterion chains (from the

posterior), which are sufficient to construct CSs for the IdS. In addition, we show in Appendix

B that our MC CSs are uniformly valid over DGPs that include both partially- and point-

identified models. We also present results on local power in Appendix D.

Our MC CSs are equivalent to Bayesian credible sets based on inverting a LR statistic in point-

3While many MC samplers could be used, in this paper we often use the terms “Markov Chain Monte Carlo”
(MCMC) and “chains” for pedagogical convenience.

4We also provide a computationally extremely simple but slightly conservative CS for the identified set of a
scalar subvector of a class of partially identified models, which is an optimally weighted profile QLR contour set
with its cutoff being the quantile of a chi-square distribution with one degree of freedom.

3



identified likelihood models, which, with flat priors, are also the Bayesian highest posterior

density (HPD) credible regions. More generally, for point-identified likelihood or moment-based

models our MC CSs asymptotically coincide with frequentist CSs based on inverting an optimally

weighted QLR (or a profile QLR) statistic, even when the true structural parameter may not

be root-n consistently, asymptotically normally estimable.5 Note that our MC CSs are different

from those of Chernozhukov and Hong (2003) (CH). For point-identified root-n asymptotically

normally estimable parameters in likelihood and optimally weighted GMM problems, CH takes

the upper and lower 100(1 − α)/2 percentiles of the Markov Chain Monte Carlo (MCMC)

parameter chain {θ1
j , . . . , θ

B
j } to construct a CS for a scalar parameter θj for j = 1, ...,dim(θ).

For such problems, CH’s MCMC CS asymptotically coincides with a frequentist CS based on

inverting a t statistic. Therefore, our CS and CH’s CS are asymptotically first-order equivalent

for point-identified scalar parameters that are root-n asymptotically normally estimable, but

they differ otherwise. In particular, our methods (which take quantiles of the criterion chain)

remain valid for partially-identified models whereas percentile MCMC CSs (which takes quantiles

of the parameter chain) undercover. Intuitively this is because the parameter chain fails to

stabilize under partial identification while the criterion chain still converges.6 Indeed, simulation

studies demonstrate that our MC CSs have good finite sample coverage properties uniformly

over partially-identified or point-identified models.

Several papers have recently proposed Bayesian (or pseudo Bayesian) methods for constructing

CSs for IdS ΘI that have correct frequentist coverage properties. See the 2009 NBER working

paper version of Moon and Schorfheide (2012), Kitagawa (2012), Kline and Tamer (2015), Liao

and Simoni (2015) and the references therein.7,8 Theoretically, all these papers consider separable

models and use various renderings of a similar intuition. First, there exists a finite-dimensional

reduced-form parameter, say φ, that is (globally) point-identified and root-n consistently and

asymptotically normal estimable from the data, and is linked to the structural parameter of

interest θ via a known (finite-dimensional) global mapping. Second, a prior is placed on the

reduced-form parameter φ, and third, a classical Bernstein-von Mises theorem stating the asymp-

totic normality of the posterior distribution for φ is assumed to hold. Finally, the known global

5In this case an optimally weighted QLR may not be asymptotically chi-square distributed but could still be
asymptotically gamma distributed. See Fan, Hung, and Wong (2000) for results on LR statistic in point-identified
likelihood models and our Appendix E for an extension to an optimally weighted QLR statistic.

6Alternatively, the model structural parameter θ could be point- or partially- identified while the maximal
population criterion is always point-identified.

7Norets and Tang (2014) propose a method similar to that in the working paper version of Moon and
Schorfheide (2012) for constructing CSs for ΘI in the context of a dynamic binary choice model but do not
study formally the frequentist properties of their procedure.

8Also, Kitagawa (2012) establishes “bounds” on the posterior for the structural due to a collection of priors. The
prior is specified only over the “sufficient parameter.” Intuitively, the “sufficient parameter” is a point-identified
re-parametrization of the likelihood. He then establishes that this “robust Bayes” approach could deliver a credible
set that has correct frequentist coverage under some cases.
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mapping between the reduced-form and the structural parameters is inverted, which, by step 3,

guarantees correct coverage for the IdS ΘI in large samples. Broadly, all these papers focus on

a class of separable models with known specific structures that map some (globally) identified

regular reduced-form parameters to the structural parameters.

Our MC approach to set inference does not require any kind of separability, nor does it require

the existence of root-n consistently asymptotically normally estimable reduced-form parameter

φ of a known finite dimension. Rather, we show that for general (separable or non-separable)

partially identified likelihood or GMM models, a local reduced-form reparameterization exists

under regularity conditions. We then use this reparametrization to show that the posterior

distribution of the optimally weighted QLR statistic has a frequentist interpretation when the

sample size is large, which enables the use of MC samplers to estimate consistently the relevant

quantile of this statistic. Importantly, our local reparametrization is a proof device only, and

so a practitioner does not need to know this reparametrization or its dimension explicitly for

the actual construction of our proposed MC CSs for ΘI . Our more general Bernstein-von Mises

type theorem for the posterior of QLR in Appendix E even permits the support of the data to

depend on the local reduced-form reparametrization (and hence makes it unlikely to estimate

the local reduced-form parameter root-n consistently and asymptotically normal). In particular,

while most of the existing Bayesian works on set inference place a prior on the reduced-form

parameters,9 we place a prior on the structural parameter θ ∈ Θ only, and characterize the

large-sample behaviors of the posterior distributions of the QLR and the profile QLR statistics.

There are several published works on consistent CS constructions for IdSs from the frequentist

perspective. See, for example, CHT and Romano and Shaikh (2010) where subsampling based

methods are used for general partially identified models, Bugni (2010) and Armstrong (2014)

where bootstrap methods are used for moment inequality models, and Beresteanu and Molinari

(2008) where random set methods are used when IdS is strictly convex. Also, for inference on

functions of the IdS (such as subvectors), both subsampling based papers of CHT and Romano

and Shaikh (2010) deliver valid tests with a judicious choice of the subsample size for a profile

version of a criterion function. The subsampling based CS construction allows for general cri-

terion functions and general partially identified models, but is computationally demanding and

sensitive to choice of subsample size in realistic empirical structural models.10 Our proposed

methods are computationally attractive and typically have asymptotically correct coverage, but

9A few Bayesian approaches place a joint prior on both the reduced-form and the structural parameters.
10There is a large literature on frequentist approach for inference on the true parameter in an IdS (e.g., Imbens

and Manski (2004), Rosen (2008), Andrews and Guggenberger (2009), Stoye (2009), Andrews and Soares (2010),
Andrews and Barwick (2012), Canay (2010), Romano, Shaikh, and Wolf (2014), Bugni, Canay, and Shi (2016) and
Kaido, Molinari, and Stoye (2016) among many others), which generally requires working with discontinuous-in-
parameters asymptotic (repeated sampling) approximations to test statistics. These existing frequentist methods
based on a guess and verify approach are difficult to implement in realistic empirical models.
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require an optimally weighted criterion.

We study two important examples in detail. The first example considers a generic model of

missing data. This model is important since its analysis illustrates the conceptual difficulties

that arise in a simple and transparent setup. In particular, both numerically and theoretically,

we study the behaviors of our CSs when this model is close to point identified, when it is point

identified and when it is partially identified. The second model we study is a complete information

entry game with correlated payoff shocks. Both these models have been studied in the existing

literature as leading examples of partially-identified moment inequality models. We instead use

them as examples of likelihood and moment equality models. Simulations demonstrate that our

proposed CSs have good coverage in small samples. Appendix A contains simulation studies

of two additional examples: a weakly identified Euler equation model of Hansen, Heaton, and

Yaron (1996) and Stock and Wright (2000), and a mixture of normals example. Finally, our

construction is applied to two empirical examples. In the first model based on trade data, we

estimate more than 40 parameters using our MC methods, while in the the second example

based on airline entry data, we estimate confidence sets for 17 parameters. In both cases, the

our procedure show reasonable results.

The rest of the paper is organized as follows. Section 2 describes our new procedures, and

demonstrates their good finite sample performance using missing data and entry game examples.

Section 3 establishes new Bernstein-von Mises type theorems for QLR and profile QLR statistics

in partially-identified models without or with singularities. Section 4 provides some sufficient

conditions in several class of models. Section 5 presents an empirical trade application and

an airline entry game illustration. Section 6 briefly concludes. Appendix A contains additional

simulation evidence using Euler equation and finite mixture models. Appendix B shows that

our new CSs for the identified set and its functionals are uniformly valid (over DGPs), and

Appendix D presents results on local power. Appendix E establishes a more general Bernstein-

von Mises type theorem, showing that the limiting distribution of the posterior QLR in a partially

identified parametric model is a gamma distribution with scale parameter 2 but a unknown shape

parameter. There, results on models with parameter-dependent support for example are given.

Appendix F contains all the proofs and additional lemmas.

2 Description of the Procedures

Let Xn = (X1, . . . , Xn) denote a sample of i.i.d. or strictly stationary and ergodic data of size

n.11 Consider a population objective function L : Θ→ R where L can be a log likelihood func-

11Throughout we work on a probability space (Ω,F ,P). Each Xi takes values in a separable metric space X
equipped with its Borel σ-algebra B(X ). We equip Θ with its Borel σ-algebra B(Θ).
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tion for correctly specified likelihood models, an optimally-weighted GMM objective function,

a continuously-updated GMM objective function, or a sandwich quasi-likelihood function. The

function L is assumed to be an upper semicontinuous function of θ with supθ∈Θ L(θ) <∞.

The key problem is that the population objective L may not be maximized uniquely over Θ, but

rather its maximizers, the identified set, may be a nontrivial set of parameters. The identified

set (IdS) is defined as follows:

ΘI :=

{
θ ∈ Θ : L(θ) = sup

ϑ∈Θ
L(ϑ)

}
.

The set ΘI is our parameter of interest. We propose methods to construct confidence sets (CSs)

for ΘI that are computationally attractive and have (asymptotically) correct frequentist coverage

probabilities.

To describe our approach, let Ln denote an (upper semicontinuous) sample criterion function

that is a jointly measurable function of the data Xn and θ. This objective function Ln(·) can be

a natural sample analog of L. We give a few examples of objective functions that we consider.

Parametric likelihood: Given a parametric model: {Pθ : θ ∈ Θ}, with a corresponding den-

sity12 p(.; θ), the identified set can be defined as ΘI = {θ ∈ Θ : P0 = Pθ} where P0 is the true

data distribution. We take Ln to be the average log-likelihood function:

Ln(θ) =
1

n

n∑
i=1

log p(Xi; θ) . (1)

We cover likelihood based models with lack of (point) identification. We could also take Ln to

be the average sandwich log-likelihood function in misspecified models (see Remark 3).

GMM models: Consider a set of moment equalities E[ρ(Xi, θ)] = 0 such that the solution to

this vector of equalities may not be unique. Here, we define the set of interest as ΘI = {θ ∈
Θ : E[ρ(Xi, θ)] = 0}. The sample objective function Ln can be the continuously-updated GMM

objective function:

Ln(θ) = −1

2

(
1

n

n∑
i=1

ρ(Xi, θ)

)′(
1

n

n∑
i=1

ρ(Xi, θ)ρ(Xi, θ)
′

)−(
1

n

n∑
i=1

ρ(Xi, θ)

)
(2)

where A− denotes a generalized inverse of a matrix A,13 or an optimally-weighted GMM objective

12This density of Pθ is understood to be with respect to a common σ-finite dominating measure.
13We could also take the continuously-updated weighting matrix to be ( 1

n

∑n
i=1 ρ(Xi, θ)ρ(Xi, θ)

′ −
( 1
n

∑n
i=1 ρ(Xi, θ))(

1
n

∑n
i=1 ρ(Xi, θ))

′)− or, for time series data, a form that takes into account any autocorre-
lations in the residual functions ρ(Xi, θ). See, e.g., Hansen et al. (1996).
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function:

Ln(θ) = −1

2

(
1

n

n∑
i=1

ρ(Xi, θ)

)′
Ŵ

(
1

n

n∑
i=1

ρ(Xi, θ)

)
(3)

for suitable weighting matrix Ŵ . We could also take Ln to be a generalized empirical likelihood

objective function.

The question we pose is given Xn, how to construct computationally attractive CS that covers

the IdS ΘI or functions of the IdS with a prespecified probability (in repeated samples) as sample

size gets large.

We first describe our computational method (Procedure 1) for covering the IdS ΘI . We then

describe methods (including Procedure 2) for covering a function of ΘI , such as a subvector.

We also present an extremely simple method (Procedure 3) for covering the identified set for a

scalar subvector in certain situations.

Our main CS constructions (Procedures 1 and 2) are based on Monte Carlo (MC) simulation

methods using a well defined quasi posterior. Given Ln and a prior measure Π on (Θ,B(Θ))

(such as a flat prior), the quasi-posterior distribution Πn for θ given Xn is defined as

Πn(A |Xn) =

∫
A e

nLn(θ)dΠ(θ)∫
Θ e

nLn(θ)dΠ(θ)
for A ∈ B(Θ) . (4)

In the following we use MCMC chains for pedagogical convenience, although many MC samplers

could be used to draw a sample {θ1, . . . , θB} from the quasi-posterior Πn.

2.1 Confidence sets for the identified set

Given Xn, we seek to construct a 100α% CS Θ̂α for ΘI using Ln(θ) that has asymptotically

exact coverage, i.e.:

lim
n→∞

P(ΘI ⊆ Θ̂α) = α .

We propose an MCMC based method to obtain Θ̂α as follows.

[Procedure 1: Confidence sets for the identified set]

1. Draw an MCMC chain {θ1, . . . , θB} from the quasi-posterior distribution Πn in (4).

2. Calculate the (1− α) quantile of {Ln(θ1), . . . , Ln(θB)} and call it ζmcn,α.
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3. Our 100α% MCMC confidence set for ΘI is then:

Θ̂α = {θ ∈ Θ : Ln(θ) ≥ ζmcn,α} . (5)

Notice that no optimization of Ln itself is required in order to construct Θ̂α. Further, an exhaus-

tive grid search over the full parameter space Θ is not required as the MCMC draws {θ1, . . . , θB}
will concentrate around ΘI and thereby indicate the regions in Θ over which to search.

CHT considered inference on the set of minimizers of a nonnegative population criterion function

Q : Θ→ R+ using a sample analogue Qn of Q. Let ξn,α denote a consistent estimator of the α

quantile of supθ∈ΘI Qn(θ). The 100α% CS for ΘI at level α ∈ (0, 1) proposed is Θ̂CHT
α = {θ ∈

Θ : Qn(θ) ≤ ξn,α}. In the existing literature, subsampling or bootstrap based methods have

been used to compute ξn,α. The next remark provides an equivalent approach to Procedure 1

but that is constructed in terms of Qn, which is the quasi likelihood ratio statistic associated

with Ln. So, instead of computationally intensive subsampling and bootstrap, our procedure

replaces ξn,α with a cut off based on Monte Carlo simulations.

Remark 1. Let θ̂ ∈ Θ denote an approximate maximizer of Ln, i.e.:

Ln(θ̂) = sup
θ∈Θ

Ln(θ) + oP(n−1) .

and define the quasi-likelihood ratio (QLR) (at a point θ ∈ Θ) as:

Qn(θ) = 2n[Ln(θ̂)− Ln(θ)] . (6)

Let ξmcn,α denote the α quantile of {Qn(θ1), . . . , Qn(θB)}. The confidence set:

Θ̂′α = {θ ∈ Θ : Qn(θ) ≤ ξmcn,α}

is equivalent to Θ̂α defined in (5) because Ln(θ) ≥ ζmcn,α if and only if Qn(θ) ≤ ξmcn,α.

In Procedure 1 and Remark 1 above, the posterior like quantity involves the use of a prior

distribution Π over Θ. This prior is user defined and typically would be the uniform prior

but other choices are possible, and in our simulations, the various choices of this prior did

not seem to matter much when the parameter space Θ is compact. Here, the way to obtain

the draws {θ1, . . . , θB} will rely on a Monte Carlo sampler. We use existing sampling methods

to do this. Below we describe how these methods are tuned to our examples. For partially-

identified models, the parameter chain {θ1, . . . , θB} may not settle down but the criterion chain

{Qn(θ1), . . . , Qn(θB)} still converges. Our MCMC CSs are constructed based on the quantiles

of a criterion chain and are intuitively robust to lack of point identification.
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The next lemma presents high-level conditions under which any 100α% criterion-based CS for

ΘI is asymptotically valid. Similar statements appear in CHT and Romano and Shaikh (2010).

Let FW (c) := Pr(W ≤ c) denote the (probability) distribution function of a random variable

W and wα := inf{c ∈ R : FW (c) ≥ α} be the α quantile of W .

Lemma 2.1. Let (i) supθ∈ΘI Qn(θ)  W where W is a random variable whose distribution

function FW () is continuous at its α quantile (denoted by wα), and (ii) (wn,α)n∈N be a sequence

of random variables such that wn,α ≥ wα + oP(1). Define:

Θ̂α = {θ ∈ Θ : Qn(θ) ≤ wn,α} .

Then: lim infn→∞ P(ΘI ⊆ Θ̂α) ≥ α. Moreover, if condition (ii) is replaced by the condition

wn,α = wα + oP(1), then: limn→∞ P(ΘI ⊆ Θ̂α) = α.

Our MCMC CSs for ΘI are shown to be valid by verifying parts (i) and (ii) with wn,α = ξmcn,α.

To verify part (ii), we shall establish a new Bernstein-von Mises (BvM) result for the posterior

distribution of the QLR under loss of identifiability for likelihood and GMM models. Therefore,

although our Procedure 1 above appears Bayesian,14 we show that Θ̂α has correct frequentist

coverage.

2.2 Confidence sets for functions of the identified set

In many applications, it may be of interest to provide a CS for a subvector of interest. Suppose

that the object of interest is a function of θ, say µ(θ), for some continuous function µ : Θ→ Rk

for 1 ≤ k < dim(θ). This includes as a special case in which µ(θ) is a subvector of θ itself (i.e.,

θ = (µ, η) with µ being the subvector of interest and η the nuisance parameter). The identified

set for µ(θ) is:

MI = {µ(θ) : θ ∈ ΘI} .

We seek a CS M̂α for MI such that:

lim
n→∞

P(MI ⊆ M̂α) = α .

A well known method to construct a CS for MI is based on projection, which maps a CS Θ̂α

for ΘI into one that covers a function of ΘI . In particular, the following MCMC CS:

M̂proj
α = {µ(θ) : θ ∈ Θ̂α} (7)

14In correctly specified likelihood models with flat priors one may interpret Θ̂α as a highest posterior density
100α% Bayesian credible set (BCS) for ΘI . Therefore, Θ̂α will have the smallest volume of any BCS for ΘI .
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is a valid 100α% CS for MI whenever Θ̂α is a valid 100α% CS for ΘI . As is well known, M̂proj
α is

typically conservative, and could be very conservative when the dimension of µ is small relative

to the dimension of θ. Our simulations below indicate that M̂proj
α is very conservative even in

reasonably low-dimensional parametric models.

In the following we propose CSs M̂α for MI that could have asymptotically exact coverage based

on a profile criterion for MI . Let M = {µ(θ) : θ ∈ Θ} and µ−1 : M → Θ, i.e., µ−1(m) = {θ ∈
Θ : µ(θ) = m} for each m ∈M . The profile criterion for a point m ∈M is

sup
θ∈µ−1(m)

Ln(θ), (8)

and the profile criterion for the identified set MI is

inf
m∈MI

sup
θ∈µ−1(m)

Ln(θ). (9)

Let ∆(θb) = {θ ∈ Θ : L(θ) = L(θb)} be an equivalence set for θb, b = 1, ..., B. For example, in

correctly specified likelihood models we have ∆(θb) = {θ ∈ Θ : p(·; θ) = p(·; θb)} and in GMM

models we have ∆(θb) = {θ ∈ Θ : E[ρ(Xi, θ)] = E[ρ(Xi, θ
b)]}.

[Procedure 2: CSs for functions of the identified set]

1. Draw an MCMC chain {θ1, . . . , θB} from the quasi-posterior distribution Πn in (4).

2. Calculate the (1−α) quantile of
{

infm∈µ(∆(θb)) supθ∈µ−1(m) Ln(θ) : b = 1, . . . , B
}

and call

it ζmc,pn,α .

3. Our 100α% MCMC confidence set for MI is then:

M̂α =
{
m ∈M : sup

θ∈µ−1(m)

Ln(θ) ≥ ζmc,pn,α

}
. (10)

By forming M̂α in terms of the profile criterion we avoid having to do an exhaustive grid

search over Θ. An additional computational advantage is that the MCMC {µ(θ1), . . . , µ(θB)}
concentrate around MI , thereby indicating the region in M over which to search.

The following remark describes the numerical equivalence between the CS M̂α in (10) and a CS

for MI based on the profile QLR.
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Remark 2. Recall the definition of the QLR Qn in (6). Let ξmc,pn,α denote the α quantile of the

profile QLR chain: {
sup

m∈µ(∆(θb))

inf
θ∈µ−1(m)

Qn(θ) : b = 1, . . . , B
}
.

The confidence set:

M̂ ′α =
{
m ∈M : inf

θ∈µ−1(m)
Qn(θ) ≤ ξmc,pn,α

}
is equivalent to M̂α in (10) because supθ∈µ−1(m) Ln(θ) ≥ ζmc,pn,α if and only if infθ∈µ−1(m)Qn(θ) ≤
ξmc,pn,α .

Our Procedure 2 and Remark 2 above are different from taking quantiles of the MCMC param-

eter chain. Given the MCMC chain {θ1, . . . , θB} for θ, a popular percentile MCMC CS (denoted

as M̂perc
α ) for a scalar parameter µ is computed by taking the upper and lower 100(1 − α)/2

percentiles of the parameter chain {µ(θ1), . . . , µ(θB)}. For models with point-identified root-n

estimable parameters θ, this approach is known to be valid for likelihood models in standard

Bayesian literature and its validity for optimally weighted GMM models has been established

by Chernozhukov and Hong (2003). However, this approach is no longer valid and severely

undercovers in partially-identified models, as evidenced in the simulation results below.

The following result presents high-level conditions under which any 100α% criterion-based CS

for MI is asymptotically valid. A similar statement appears in Romano and Shaikh (2010).

Lemma 2.2. Let (i) supm∈MI
infθ∈µ−1(m)Qn(θ)  W where W is a random variable whose

distribution FW () is continuous at its α quantile (denoted by wα) and (ii) (wn,α)n∈N be a sequence

of random variables such that wn,α ≥ wα + oP(1). Define:

M̂α =
{
m ∈M : inf

θ∈µ−1(m)
Qn(θ) ≤ wn,α

}
.

Then: lim infn→∞ P(MI ⊆ M̂α) ≥ α. Moreover, if condition (ii) is replaced by the condition

wn,α = wα + oP(1), then: limn→∞ P(MI ⊆ M̂α) = α.

Our MCMC CSs for MI are shown to be valid by verifying parts (i) and (ii) with wn,α = ξmc,pn,α .

2.3 A simple but slightly conservative CS for scalar subvectors

For a class of partially identified models with one-dimensional subvectors MI = {µ(θ) ∈ R :

θ ∈ ΘI}, we now propose another CS M̂χ
α which is extremely simple to construct. This new CS

for MI is slightly conservative (whereas M̂α could be asymptotically exact), but it’s coverage is

much less conservative than that of the projection-based CS M̂proj
α .
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[Procedure 3: Simple conservative CSs for scalar subvectors]

1. Calculate a maximizer θ̂ for which Ln(θ̂) ≥ supθ∈Θ Ln(θ) + oP(n−1).

2. Our 100α% confidence set for MI is then:

M̂χ
α =

{
m ∈M ⊂ R : inf

θ∈µ−1(m)
Qn(θ) ≤ χ2

1,α

}
(11)

where Qn is the QLR in (6) and χ2
1,α denotes the α quantile of the χ2

1 distribution.

Procedure 3 above is justified when the limit distribution of the profile QLR for MI = {µ(θ) ∈
R : θ ∈ ΘI} is stochastically dominated by the χ2

1 distribution (i.e., FW (z) ≥ Fχ2
1
(z) for all z ≥ 0

in Lemma 2.2). This allows for computationally simple construction using repeated evaluations

on a scalar grid. Unlike M̂α, the CS M̂χ
α for MI is typically asymptotically conservative and is

only valid for scalar functions of ΘI (see Section 3.3). Nevertheless, the CS M̂χ
α is asymptotically

exact when MI happens to be a singleton belonging to the interior of M , and, for confidence

levels of α ≥ 0.85, its degree of conservativeness for the set MI is negligible (see Section 3.3). It is

extremely simple to implement and performs very favorably in simulations. As a sensitivity check

in empirical estimation of a complicated structural model, one could report the conventional CS

based on a t-statistic (that is valid under point identification only) as well as our CS M̂χ
α (that

remains valid under partial identification); see Section 5.

2.4 Simulation evidence

In this section we investigate the finite sample behavior of our proposed CSs in the leading

missing data and entry game examples. Further simulation evidences for weakly-identified Eu-

ler equation models and finite mixture models are presented in Appendix A. We use samples

of size n = 100, 250, 500, and 1000. For each sample, we calculate the posterior quantile of

the QLR statistic using 10000 draws from a random walk Metropolis-Hastings scheme with a

burnin of an additional 10000 draws. The random walk Metropolis-Hastings scheme is tuned so

that its acceptance rate is approximately one third.15 Note that for partially-identified models,

the parameter chain may not settle down but the criterion chain is stable. We replicate each

experiment 5000 times.

15There is a large literature on tuning Metropolis-Hastings algorithms (see, e.g., Besag, Green, Higdon, and
Mengersen (1995), Gelman, Roberts, and Gilks (1996) and Roberts, Gelman, and Gilks (1997)). Optimal accep-
tance ratios for Gaussian models are known to be between 0.23 and 0.44 depending on the dimension of the
parameter (Gelman et al., 1996). For concreteness we settle on 0.33, though similar results are achieved with
different acceptance rates. To implement the random walk Metropolis-Hastings algorithm we rescale each param-
eter to have full support R via a suitably centered and scaled vector logit transform ` : Θ → Rd. We draw each
proposal `b+1 := `(θb+1) from N(`b, cI) where c is chosen so that the acceptance rate is approximately one third.
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2.4.1 Missing data

We first consider the simplest but most insightful missing data example. Suppose we observe a

random sample {(Di, YiDi)}ni=1 where both the outcome variable Yi and the selection variable

Di take values in {0, 1}. The main parameter of interest is (usually) the true mean µ0 = E[Yi].

Without further assumptions, µ0 is not point identified when Pr(Di = 0) > 0 as we only observe

Yi when Di = 1. We assume that 0 < Pr(Yi = 1|Di = 1) < 1. The true probabilities of observing

(Di, YiDi) = (1, 1), (0, 0) and (1, 0) are κ11, κ00, and κ10 = 1− κ11 − κ00 respectively. We view

these as true reduced-form parameters that can be consistently estimated from the data. The

reduced-form parameters are functions of the structural parameter θ = (µ, β, ρ) where µ = E[Yi],

β = Pr(Yi = 1|Di = 0), and ρ = Pr(Di = 1). Using the model and the parametrization above, θ

is related to the reduced form parameters via the following equalities:

κ11(θ) = µ− β(1− ρ) κ10(θ) = ρ− µ+ β(1− ρ) κ00(θ) = 1− ρ .

and so the parameter space Θ for θ is defined as:

Θ = {(µ, β, ρ) ∈ R3 : 0 ≤ µ− β(1− ρ) ≤ ρ, 0 ≤ β ≤ 1, 0 ≤ ρ ≤ 1} . (12)

The likelihood of the i-th observation (Di, YiDi) = (d, yd) is

p(d, yd; θ) = [κ11(θ)]yd(1− κ11(θ)− κ00(θ))d−yd[κ00(θ)]1−d .

In some simulations we also use a continuously-updated GMM objective function based on the

moments:

E
[
1l
(
(Di, YiDi) = (1, 1)

)
− κ11(θ)

]
= 0

E
[
1l
(
Di = 0

)
− κ00(θ)

]
= 0 .

Defining the model via moment equalities, we obtain a quasi posterior based on an optimal

objective function.

The identified set for θ is:

ΘI = {(µ, β, ρ) ∈ Θ : µ− β(1− ρ) = κ11, ρ = 1− κ00}. (13)

Here, ρ is always identified but only an affine combination of µ and β are identified. This

combination results in the identified set for (µ, β) being a line segment. The identified set for
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the subvector µ = E[Y ] is

MI = [κ11, κ11 + κ00].

In the existing literature one typically uses the following moment inequality model for inference

on µ = E[Y ] ∈MI :

µ ≤ E[Y |D = 1]P (D = 1) + P (D = 0)

µ ≥ E[Y |D = 1]P (D = 1) .

Generally, all moment inequality models (with finitely many moment inequalities) can be written

as moment equality models by adding nuisance parameters with a known sign (see Subsection

4.2.1).

We use two kinds of priors on Θ:

1. A flat prior

2. A curved prior: take π(µ, β, ρ) = πB(β)πP (ρ)πM |B,P (µ|β, ρ) with πB(β) = Beta(3, 8),

πP (ρ) = Beta(8, 1), and πM |B,P (µ|β, ρ) = U [β(1− ρ), ρ+ β(1− ρ)] (see Figure 6).

We set µ0 = 0.5, β0 = 0.5, and vary ρ0, covering both point- (ρ0 = 1) and partially-identified

(ρ0 < 1) cases.

CSs for the identified set ΘI : Table 1 displays the MC coverage probabilities of Θ̂α (Procedure

1 with a likelihood criterion and a flat prior) for different values of ρ, different sample sizes and

different nominal coverage probabilities. The coverage probability should be equal to its nominal

value in large samples when ρ < 1 (see Theorem 3.1 below). It is perhaps surprising that the

nominal and coverage probabilities are this close even in samples as small as n = 100; the only

exception is the case ρ = 0.99 in which the CSs are slightly conservative when n = 100. When

ρ = 1 the CSs (based on the likelihood criterion) for ΘI are expected to be conservative (see

Theorem 3.2 below), which they are. The coverage probabilities are quite insensitive to the size

of small to moderate values of ρ. For instance, the coverage probabilities are very similar for

ρ = 0.20 (corresponding to 80% of data missing) and ρ = 0.95 (corresponding to 5% of data

missing). Table 2 presents results for the case a curved prior is used. Whether a flat or curved

prior is used makes virtually no difference, except for Θ̂α with ρ = 0.20 with smaller values of

n. In this case the MCMC CS over covers because the prior is of the order of 10−4 at ρ = 0.20.

The posterior distribution assigns very low weight to values of ρ less than one half. The MCMC

chain for ρ concentrates relatively far away from ρ = 0.20, and, as a consequence, the posterior

distribution of the likelihood ratio is larger than it should be. In sum, the performance under

both priors is similar and adequate.

Results for CSs Θ̂α using Procedure 1 with a continuously-updated GMM criterion and a flat
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ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.8904 0.8850 0.8856 0.9378 0.9864
α = 0.95 0.9458 0.9422 0.9452 0.9702 0.9916
α = 0.99 0.9890 0.9868 0.9884 0.9938 0.9982

n = 250
α = 0.90 0.8962 0.8954 0.8980 0.9136 0.9880
α = 0.95 0.9454 0.9436 0.9466 0.9578 0.9954
α = 0.99 0.9888 0.9890 0.9876 0.9936 0.9986

n = 500
α = 0.90 0.8890 0.8974 0.9024 0.8952 0.9860
α = 0.95 0.9494 0.9478 0.9494 0.9534 0.9946
α = 0.99 0.9910 0.9900 0.9884 0.9900 0.9994

n = 1000
α = 0.90 0.9018 0.9038 0.8968 0.8994 0.9878
α = 0.95 0.9462 0.9520 0.9528 0.9532 0.9956
α = 0.99 0.9892 0.9916 0.9908 0.9894 0.9994

Table 1: MC coverage probabilities of Θ̂α (Procedure 1) using a likelihood for
Ln and a flat prior on Θ.

ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.9750 0.8900 0.8722 0.9316 0.9850
α = 0.95 0.9906 0.9460 0.9400 0.9642 0.9912
α = 0.99 0.9992 0.9870 0.9850 0.9912 0.9984

n = 250
α = 0.90 0.9526 0.8958 0.8932 0.9072 0.9874
α = 0.95 0.9794 0.9456 0.9438 0.9560 0.9954
α = 0.99 0.9978 0.9896 0.9864 0.9924 0.9986

n = 500
α = 0.90 0.9306 0.8956 0.8996 0.8926 0.9848
α = 0.95 0.9710 0.9484 0.9498 0.9518 0.9944
α = 0.99 0.9966 0.9900 0.9880 0.9906 0.9994

n = 1000
α = 0.90 0.9222 0.9046 0.8960 0.8988 0.9880
α = 0.95 0.9582 0.9536 0.9500 0.9518 0.9958
α = 0.99 0.9942 0.9918 0.9902 0.9888 0.9992

Table 2: MC coverage probabilities of Θ̂α (Procedure 1) using a likelihood for
Ln and a curved prior on Θ.
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prior are presented in Table 3. As can be seen, the results look similar to those based on the

likelihood. Even at sample size 100, the coverage is adequate even ρ = 1. Theoretical coverage

results for the GMM case are provided in Section 4.2 below.

CSs for the identified set of subvectors MI : We now consider various CSs for the identified

set MI for µ. We first compute the MCMC projection CS M̂proj
α , as defined in (7), for MI . The

coverage results are reported in Table 4. As we can see from the table, for the case when α = .90,

the lowest coverage probabilities is above .96. Even when n = 1000 and for all values of ρ we

tried, the coverage is larger than 96%. So the projection CS M̂proj
α is valid but too conservative.

One may be tempted to use the parameter (θ) chain itself to construct confidence regions.

Figure 1 plots the MCMC chain for a sample with ρ = .8. The chain is stable for ρ that

is point identified, but the chains for µ and β bounce around their respective identified sets

MI = [κ11, κ11 + κ00] and [0, 1]. One might be tempted to report the simple percentile MCMC

CS M̂perc
α for MI (of µ) by taking the upper and lower 100(1−α)/2 percentiles of the parameter

chain {µ(θ1), . . . , µ(θB)}. Table 5 reports the MC coverage probabilities of this simple percentile

MCMC CS for µ. It has correct coverage when µ is point identified (i.e. when ρ = 1). However,

it dramatically undercovers as soon as µ is not point identified, even when only a small amount

of data is missing. For instance, with a relatively large sample size n = 1000, the coverage of

a 90% CS is less than 2% when 20% of data is missing (ρ = .80), around 42% when only 5%

of data is missing (ρ = .95), and less than 83% when only 1% of data is missing (ρ = .99).

This approach to constructing CSs for MI by taking quantiles of the parameter chain severely

undercovers in partially-identified models, and is not recommended.

In contrast, our MCMC CS procedures are based on the criterion chain and remains valid

under partial identification. Validity under loss of identifiability is preserved because our pro-

cedure effectively samples from the quasi-posterior distribution for an identifiable reduced form

parameter. The bottom panel of Figure 1 shows the MCMC chain for Qn(θ) is stable. Figure

7 (in Appendix A), which is computed from the draws for the structural parameter presented

in Figure 1, shows that the MCMC chain for the reduced-form probabilities is also stable. In

Table 6, we provide coverage results for M̂α using Procedure 2 with a likelihood criterion and a

flat prior. Theoretically, we show below (see Theorem 3.3) that the coverage probabilities of M̂α

(for MI) should be equal to their nominal values α when n is large irrespective of whether the

model is partially identified with ρ < 1 or point identified (with ρ = 1). Further, Theorem B.2

shows that our Procedure 2 remains valid uniformly over sets of DGPs that include both point-

and partially-identified cases. The results in Table 6 show that this is indeed the case, and that

the coverage probabilities are close to their nominal level even when n = 100. This is remarkable

as even in the case when ρ = .8, .95, or 1, the coverage is very close to the nominal level even

when n = 100. The exception is the case in which ρ = 0.20, which slightly under-covers in small
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ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.8504 0.8810 0.8242 0.9202 0.9032
α = 0.95 0.9048 0.9336 0.9062 0.9604 0.9396
α = 0.99 0.9498 0.9820 0.9556 0.9902 0.9870

n = 250
α = 0.90 0.8932 0.8934 0.8788 0.9116 0.8930
α = 0.95 0.9338 0.9404 0.9326 0.9570 0.9476
α = 0.99 0.9770 0.9874 0.9754 0.9920 0.9896

n = 500
α = 0.90 0.8846 0.8938 0.8978 0.8278 0.8914
α = 0.95 0.9416 0.9478 0.9420 0.9120 0.9470
α = 0.99 0.9848 0.9888 0.9842 0.9612 0.9884

n = 1000
α = 0.90 0.8970 0.9054 0.8958 0.8698 0.9000
α = 0.95 0.9474 0.9516 0.9446 0.9260 0.9494
α = 0.99 0.9866 0.9902 0.9882 0.9660 0.9908

Table 3: MC coverage probabilities of Θ̂α (Procedure 1) using a CU-GMM
for Ln and a flat prior on Θ.

ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.9686 0.9658 0.9692 0.9784 0.9864
α = 0.95 0.9864 0.9854 0.9856 0.9888 0.9916
α = 0.99 0.9978 0.9972 0.9968 0.9986 0.9982

n = 250
α = 0.90 0.9696 0.9676 0.9684 0.9706 0.9880
α = 0.95 0.9872 0.9846 0.9866 0.9854 0.9954
α = 0.99 0.9976 0.9970 0.9978 0.9986 0.9986

n = 500
α = 0.90 0.9686 0.9674 0.9688 0.9710 0.9860
α = 0.95 0.9904 0.9838 0.9864 0.9862 0.9946
α = 0.99 0.9988 0.9976 0.9966 0.9970 0.9994

n = 1000
α = 0.90 0.9672 0.9758 0.9706 0.9720 0.9878
α = 0.95 0.9854 0.9876 0.9876 0.9886 0.9956
α = 0.99 0.9978 0.9980 0.9976 0.9970 0.9994

Table 4: MC coverage probabilities of projection CS M̂proj
α for MI using a

likelihood for Ln and a flat prior on Θ.
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samples. Note however that the identified set in this case is the interval [0.1, 0.9], so the poor

performance is likely attributable to the fact that the identified set for µ covers close to the

whole parameter space for µ.

In section 4.1.1 below we show that in the missing data case the asymptotic distribution of the

profile QLR for MI is stochastically dominated by the χ2
1 distribution. Using Procedure 3 above

we construct M̂χ
α as in (11) and present the results in Table 7 for the likelihood and Table 8

for the continuously-updated GMM objective functions. As we can see from these tables, the

coverage results look remarkably close to their nominal values even for small sample sizes and

for all values of ρ.

2.4.2 Complete information entry game with correlated payoff shocks

We now examine the finite-sample performance of our procedures for CS constructions in a

complete information entry game example described in Table 9. In each cell, the first entry is

the payoff to player 1, and the second entry is the payoff to player 2. So, if player 2 plays 0,

then her payoff is normalized to be zero and if player 1 plays 1, then her payoffs is β1 + ε1. We

assume that (ε1, ε2), observed by the players, are jointly normally distributed with variance 1 and

correlation ρ, an important parameter of interest. It is also assumed that ∆1 and ∆2 are both

negative and that players play a pure strategy Nash equilibrium. When −βj ≤ εj ≤ −βj −∆j ,

j = 1, 2, the game has two equilibria: for given values of the epsilons in this region, the model

predicts (1, 0) and (0, 1). Let Da1a2 denote a binary random variable taking the value 1 if and

only if player 1 takes action a1 and player 2 takes action a2. We observe a random sample

of {(D00,i, D10,i, D01,i, D11,i)}ni=1. So the data provides information of four choice probabilities

(P (0, 0), P (1, 0), P (0, 1), P (1, 1)), but there are six parameters that need to be estimated: θ =

(β1, β2,∆1,∆1, ρ, s) where s ∈ [0, 1] is the equilibrium selection probability. The model parameter

is partially identified as we have 4 choice probabilities from which we need to learn about 6

parameters.

To proceed, we can link the choice probabilities (reduced-form parameters) to θ as follows:

κ11(θ) :=P (ε1 ≥ −β1 −∆1; ε2 ≥ −β2 −∆2)

κ00(θ) :=P (ε1 ≤ −β1; ε2 ≤ −β2)

κ10(θ) :=s× P (−β1 ≤ ε1 ≤ −β1 −∆1; −β2 ≤ ε2 ≤ −β2 −∆2)

+ P (ε1 ≥ −β1; ε2 ≤ −β2) + P (ε1 ≥ −β1 −∆1;−β2 ≤ ε2 ≤ −β2 −∆2) .

Denote the true choice probabilities (P (0, 0), P (1, 0), P (0, 1), P (1, 1)) (the true reduced-form

parameter values) as (κ00, κ10, κ01, κ11). Then the equalities above naturally suggest a GMM
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Figure 1: MCMC chain for θ and Qn(θ) for n = 1000 with a flat prior on Θ.

ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1 CH

n = 100
α = 0.90 0.0024 0.3546 0.7926 0.8782 0.9072
α = 0.95 0.0232 0.6144 0.8846 0.9406 0.9428
α = 0.99 0.2488 0.9000 0.9744 0.9862 0.9892

n = 250
α = 0.90 0.0010 0.1340 0.6960 0.8690 0.8978
α = 0.95 0.0064 0.3920 0.8306 0.9298 0.9488
α = 0.99 0.0798 0.8044 0.9568 0.9842 0.9914

n = 500
α = 0.90 0.0000 0.0474 0.5868 0.8484 0.8916
α = 0.95 0.0020 0.1846 0.7660 0.9186 0.9470
α = 0.99 0.0202 0.6290 0.9336 0.9832 0.9892

n = 1000
α = 0.90 0.0000 0.0144 0.4162 0.8276 0.9006
α = 0.95 0.0002 0.0626 0.6376 0.9086 0.9490
α = 0.99 0.0016 0.3178 0.8972 0.9808 0.9908

Table 5: MC coverage probabilities of M̂perc
α for MI (of µ) (with a flat prior

on Θ). M̂perc
α becomes CH’s percentile CS under point identification (i.e. when

ρ = 1).
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ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.8674 0.9170 0.9160 0.9166 0.9098
α = 0.95 0.9344 0.9522 0.9554 0.9568 0.9558
α = 0.99 0.9846 0.9906 0.9908 0.9910 0.9904

n = 250
α = 0.90 0.8778 0.9006 0.9094 0.9118 0.9078
α = 0.95 0.9458 0.9506 0.9548 0.9536 0.9532
α = 0.99 0.9870 0.9902 0.9922 0.9894 0.9916

n = 500
α = 0.90 0.8878 0.9024 0.9054 0.9042 0.8994
α = 0.95 0.9440 0.9510 0.9526 0.9530 0.9510
α = 0.99 0.9912 0.9878 0.9918 0.9918 0.9906

n = 1000
α = 0.90 0.8902 0.9064 0.9110 0.9078 0.9060
α = 0.95 0.9438 0.9594 0.9532 0.9570 0.9526
α = 0.99 0.9882 0.9902 0.9914 0.9910 0.9912

Table 6: MC coverage probabilities of M̂α for MI (Procedure 2) using a
likelihood for Ln and a flat prior on Θ.

ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.9180 0.9118 0.8988 0.8966 0.9156
α = 0.95 0.9534 0.9448 0.9586 0.9582 0.9488
α = 0.99 0.9894 0.9910 0.9910 0.9908 0.9884

n = 250
α = 0.90 0.9144 0.8946 0.8972 0.8964 0.8914
α = 0.95 0.9442 0.9538 0.9552 0.9520 0.9516
α = 0.99 0.9922 0.9908 0.9910 0.9912 0.9912

n = 500
α = 0.90 0.9080 0.9120 0.8984 0.8998 0.9060
α = 0.95 0.9506 0.9510 0.9554 0.9508 0.9472
α = 0.99 0.9936 0.9926 0.9912 0.9896 0.9882

n = 1000
α = 0.90 0.8918 0.8992 0.8890 0.9044 0.9076
α = 0.95 0.9540 0.9494 0.9466 0.9484 0.9488
α = 0.99 0.9910 0.9928 0.9916 0.9896 0.9906

Table 7: MC coverage probabilities of M̂χ
α for MI (Procedure 3) using a

likelihood for Ln.
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ρ = 0.20 ρ = 0.80 ρ = 0.95 ρ = 0.99 ρ = 1.00

n = 100
α = 0.90 0.9536 0.9118 0.8988 0.8966 0.9156
α = 0.95 0.9786 0.9448 0.9586 0.9582 0.9488
α = 0.99 0.9984 0.9910 0.9910 0.9908 0.9884

n = 250
α = 0.90 0.9156 0.8946 0.8972 0.8964 0.8914
α = 0.95 0.9656 0.9538 0.9552 0.9520 0.9516
α = 0.99 0.9960 0.9908 0.9910 0.9882 0.9912

n = 500
α = 0.90 0.9300 0.9120 0.8984 0.8992 0.9060
α = 0.95 0.9666 0.9510 0.9554 0.9508 0.9472
α = 0.99 0.9976 0.9926 0.9912 0.9896 0.9882

n = 1000
α = 0.90 0.9088 0.8992 0.9050 0.8908 0.8936
α = 0.95 0.9628 0.9494 0.9544 0.9484 0.9488
α = 0.99 0.9954 0.9928 0.9916 0.9896 0.9906

Table 8: MC coverage probabilities of M̂χ
α for MI (Procedure 3) using a

CU-GMM for Ln.
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Figure 2: Comparison of asymptotic coverage of M̂χ
α of MI for different ρ

values.
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Player 2
0 1

P
la

ye
r

1 0 0 0 0 β2 + ε2

1 β1 + ε1 0 β1 + ∆1 + ε1 β2 + ∆2 + ε2

Table 9: Payoff matrix for the binary entry game

approach via the following moments:

κ11(θ)− κ11 = 0, κ00(θ)− κ00 = 0, κ10(θ)− κ10 = 0 .

In the simulations we use a likelihood approach, where the likelihood of the i-th observation

(D00,i, D10,i, D11,i, D01,i) = (d00, d10, d11, 1− d00 − d10 − d11) is:

p(d00, d10, d11; θ) = [κ00(θ)]d00 [κ10(θ)]d10 [κ11(θ)]d11 [1− κ00(θ)− κ10(θ)− κ11(θ)]1−d00−d10−d11 .

The parameter space used in the simulations is:

Θ = {(β1, β2,∆1,∆2, ρ, s) ∈ R6 : −1 ≤ β1, β2 ≤ 2,−2 ≤ ∆1,∆2 ≤ 0, 0 ≤ ρ, s ≤ 1} .

We simulate the data using β1 = β2 = 0.2, ∆1 = ∆2 = −0.5, ρ = 0.5 and s = 0.5. The identified

set for ∆1 is approximately MI = [−1.42, 0]. Here, it is not as easy to solve for the identified set

ΘI for θ as it needs to be done numerically. We use a flat prior on Θ.

Figure 8 in Appendix A plots the chain for the structural parameters and the chain for the

criterion. The chain for ρ bounces between essentially 0 to 1 which indicates that ρ is not

identified at all. On the other hand, the data do provide information about (β1, β2) as here we

see a tighter path. Although the chain for the structural parameters does not converge, Figure

8 and Figure 9 in Appendix A show that the criterion chain and the chain evaluated at the

reduced-form probabilities are all stable.

The procedures for computing the CSs for ΘI and for MI follow the descriptions given above. In

Table 10, we provide the coverage results for the full vector θ and the subvector ∆1. Coverage of

Θ̂α for ΘI is extremely good, even with the small sample size n = 100. Coverages of M̂α and M̂χ
α

for MI are slightly conservative for small sample size n but are close to the nominal value for

n = 500 or larger.16 The projection CS M̂proj
α for MI (of ∆1) is valid but extremely conservative.

The coverage of percentile MCMC CS M̂perc
α for ∆1 is less than 1% for each sample size (and

hence not valid).

16Here we compute ΘI and ∆(θb) numerically because ρ is nonzero, so the slight under-coverage of M̂α for
n = 1000 is likely attributable to numerical error.
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MC coverage probabilities of Θ̂α (Procedure 1)
n = 100 n = 250 n = 500 n = 1000

α = 0.90 0.9000 0.9000 0.9018 0.9006
α = 0.95 0.9476 0.9476 0.9514 0.9506
α = 0.99 0.9872 0.9886 0.9902 0.9880

MC coverage probabilities of M̂α (Procedure 2)
n = 100 n = 250 n = 500 n = 1000

α = 0.90 0.9683 0.9381 0.9178 0.8865
α = 0.95 0.9887 0.9731 0.9584 0.9413
α = 0.99 0.9993 0.9954 0.9904 0.9859

MC coverage probabilities of M̂χ
α (Procedure 3)

n = 100 n = 250 n = 500 n = 1000

α = 0.90 0.9404 0.9326 0.9286 0.9110
α = 0.95 0.9704 0.9658 0.9618 0.9464
α = 0.99 0.9936 0.9928 0.9924 0.9872

MC coverage probabilities of M̂proj
α (conservative)

n = 100 n = 250 n = 500 n = 1000

α = 0.90 0.9944 0.9920 0.9894 0.9886
α = 0.95 0.9972 0.9964 0.9948 0.9968
α = 0.99 1.0000 0.9994 0.9990 0.9986

MC coverage probabilities of M̂perc
α (undercover)

n = 100 n = 250 n = 500 n = 1000

α = 0.90 0.0004 0.0000 0.0000 0.0000
α = 0.95 0.0016 0.0000 0.0002 0.0000
α = 0.99 0.0058 0.0008 0.0006 0.0000

Table 10: MC coverage probabilities for the complete information game. All
CSs are computed with a likelihood for Ln and a flat prior on Θ. CSs M̂α, M̂χ

α

and M̂proj
α are for MI of ∆1, and M̂perc

α is percentile CS for ∆1.
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3 Large sample properties

This section provides regularity conditions under which Θ̂α (Procedure 1), M̂α (Procedure 2)

and M̂χ
α (Procedure 3) are asymptotically valid confidence sets for ΘI and MI . The main new

theoretical contributions are the derivations of the large-sample (quasi)-posterior distributions

of the QLR statistic for ΘI and of the profile QLR statistic for MI under loss of identifiability.

3.1 Coverage properties of Θ̂α for ΘI

We first state some high-level regularity conditions. A discussion of these assumptions follows.

Assumption 3.1. (Consistency, posterior contraction)

(i) Ln(θ̂) = supθ∈Θosn Ln(θ) + oP(n−1), with (Θosn)n∈N a sequence of local neighborhoods of ΘI ;

(ii) Πn(Θc
osn|Xn) = oP(1), where Θc

osn = Θ\Θosn.

We presume the existence of a fixed neighborhood ΘN
I of ΘI (with Θosn ⊂ ΘN

I for all n sufficiently

large) upon which there exists a local reduced-form reparameterization θ 7→ γ(θ) from ΘN
I into

Γ ⊆ Rd∗ for a possibly unknown dimension d∗ ∈ [1,∞), with γ(θ) = 0 if and only if θ ∈ ΘI .

Here γ is merely a proof device and is only required to exist for θ in a fixed neighborhood of ΘI .

Denote ‖γ‖2 := γ′γ.

Assumption 3.2. (Local quadratic approximation)

(i) There exist sequences of random variables `n and Rd∗-valued random vectors Vn (both are

measurable functions of data Xn) such that:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn

)∣∣∣∣ = oP(1) (14)

with supθ∈Θosn ‖γ(θ)‖ → 0 and Vn  N(0,Σ) as n→∞;

(ii) The sets Kosn = {
√
nγ(θ) : θ ∈ Θosn} cover17 a closed convex cone T ⊆ Rd∗ as n→∞.

Let ΠΓ denote the image measure of the prior Π under the map θ 7→ γ(θ) on ΘN
I , namely

ΠΓ(A) = Π({θ ∈ ΘN
I : γ(θ) ∈ A}). Let Bδ ⊂ Rd∗ denote a ball of radius δ centered at the origin.

Assumption 3.3. (Prior)

(i)
∫

Θ e
nLn(θ) dΠ(θ) <∞ almost surely;

(ii) ΠΓ has a continuous, strictly positive density πΓ on Bδ ∩ Γ for some δ > 0.

17We say that a sequence of (possibly sample-dependent) sets An ⊆ Rd
∗

covers a set A ⊆ Rd
∗

if (i)
supb:‖b‖≤M | infa∈An ‖a − b‖2 − infa∈A ‖a − b‖2| = oP(1) for each M , and (ii) there is a sequence of closed balls
Bkn of radius kn → ∞ centered at the origin with each Cn := An ∩ Bkn convex, Cn ⊆ Cn′ for each n′ ≥ n, and
A = ∪n≥1Cn (almost surely).
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Let ξpostn,α denote the α quantile of Qn(θ) under the posterior distribution Πn, and ξmcn,α be given

in Remark 1.

Assumption 3.4. (MC convergence)

ξmcn,α = ξpostn,α + oP(1).

Discussion of Assumptions: Assumption 3.1(i) is a standard condition on any approximate

extremum estimator, and Assumption 3.1(ii) is a standard posterior contraction condition. The

choice of Θosn is deliberately general and will depend on the particular model under consider-

ation. See Section 4 for verification of Assumption 3.1. Assumption 3.2(i) is a standard local

quadratic expansion condition imposed on the local reduced form parameter around γ = 0. It

is readily verified for likelihood and GMM models (see Section 4). For these models with i.i.d.

data the vector Vn is typically of the form: Vn = n−1/2
∑n

i=1 v(Xi) with E[v(Xi)] = 0 and

Var[v(Xi)] = Σ. Assumption 3.2(ii) is trivially satisfied whenever each Kosn contains a ball of

radius kn centered at the origin. This condition allows for the reduced-form true parameter value

γ = 0 to be on the boundary of Γ (see, e.g., Andrews (1999) for similar condition imposed in

identified models when a parameter is on the boundary). Assumption 3.3(i) requires the quasi-

posterior to be proper. Assumption 3.3(ii) is a standard prior mass and smoothness condition

used to establish Bernstein-von Mises theorems for identified parametric models (see, e.g., Sec-

tion 10.2 of van der Vaart (2000)) but applied to ΠΓ. Under a flat prior on Θ and a continuous

local mapping γ : ΘN
I 7→ Γ, this assumption is easily satisfied (see its verification in examples of

Section 4). Assumption 3.4 requires that the distribution of the MC chain {Qn(θ1), . . . , Qn(θB)}
well approximates the posterior distribution of Qn(θ), which is satisfied by many MC samplers.

Let T be the orthogonal projection onto the tangent space T (at γ = 0). Assumptions 3.1(i)

and 3.2 imply that the QLR statistic for ΘI satisfies

sup
θ∈ΘI

Qn(θ) = ‖TVn‖2 + oP(1)

(see Lemma F.1). And hence under the generalized information equality Σ = Id∗ , which corre-

sponds to an optimally weighted criterion such as a correctly-specified likelihood, an optimally-

weighted or continuously-updated GMM or various (generalized) empirical-likelihood criterion,

the asymptotic distribution of supθ∈ΘI Qn(θ) becomes FT , which is defined as

FT (z) := PZ(‖TZ‖2 ≤ z) (15)

where PZ denotes the distribution of a N(0, Id∗) random vector Z. This recovers the known

asymptotic distribution result for optimally weighted QLR statistic under point identification.

Note that when T = Rd∗ , FT reduces to Fχ2
d∗

, the cdf of χ2
d∗ (a chi-square random variable
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with d∗ degree of freedom). If T is polyhedral then FT is the distribution of a chi-bar-squared

random variable (i.e. a mixture of chi squares with different degrees of freedom; the mixing

weights themselves depending on the shape of T ).

Theorem 3.1. Let Assumptions 3.1, 3.2, 3.3, and 3.4 hold with Σ = Id∗. Then for any α such

that FT (·) is continuous at its α quantile, we have:

(i) lim infn→∞ P(ΘI ⊆ Θ̂α) ≥ α;

(ii) If T = Rd∗ then: limn→∞ P(ΘI ⊆ Θ̂α) = α.

A key step in the proof of Theorem 3.1 is the following new Bernstein-von Mises type result

(Lemma 3.1) for the posterior distribution of the QLR. Let PZ|Xn
be the distribution of a random

vector Z that is N(0, Id∗) (conditional on the data). Recall that Vn is a measurable function of

the data. Let T − Vn denote the cone T translated to have vertex at −Vn. Let T⊥ denote the

orthogonal projection onto the polar cone of T .18

Lemma 3.1. Let Assumptions 3.1, 3.2 and 3.3 hold. Then:

sup
z

∣∣∣Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− PZ|Xn

(
‖Z‖2 ≤ z + ‖T⊥Vn‖2

∣∣∣Z ∈ T − Vn
)∣∣∣ = oP(1) . (16)

And hence we have:

(i) If T ( Rd∗ then: Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
≤ FT (z) for all z ≥ 0.

(ii) If T = Rd∗ then: supz

∣∣∣Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− Fχ2

d∗
(z)
∣∣∣ = oP(1).

Note that Lemma 3.1 does not require the generalized information equality Σ = Id∗ to hold.

Therefore, regardless whether a partially-identified model is correctly specified or not, the pos-

terior distribution of the QLR statistic asymptotically (first-order) stochastically dominates FT

when T is a closed convex cone and is asymptotically χ2
d∗ when T = Rd∗ . This lemma extends

the known Bernstein-von Mises theorems for possibly misspecified likelihood models with point-

identified root-n asymptotically normally estimable parameters (see, e.g., Kleijn and van der

Vaart (2012) and the references therein) to allow for other models with failure of Σ = Id∗ , with

partially-identified parameters and/or parameters on a boundary.

Together with Assumption 3.4, Lemma 3.1 implies that our MCMC CS Θ̂α (Procedure 1) is

always a well-defined Bayesian credible set for ΘI regardless whether Σ = Id∗ holds or not. But,

Theorem 3.1 requires Σ = Id∗ so that our MCMC CS Θ̂α will have a correct frequentist coverage

18The orthogonal projection Tv of any vector v ∈ Rd
∗

onto a closed convex cone T ⊆ Rd
∗

is the unique solution
to inft∈T ‖t− v‖2. The polar cone of T is T o = {s ∈ Rd

∗
: s′t ≤ 0 for all t ∈ T} which is also closed and convex.

Moreau’s decomposition theorem gives v = Tv + T⊥v with ‖v‖2 = ‖Tv‖2 + ‖T⊥v‖2. If T = Rd
∗

then Tv = v,
T o = {0} and T⊥v = 0 for any v ∈ Rd

∗
. See Chapter A.3.2 of Hiriart-Urruty and Lemaréchal (2001).
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probability (for ΘI).
19 This is because the asymptotic distribution of supθ∈ΘI Qn(θ) is FT only

under Σ = Id∗ . It follows that, with an optimally weighted criterion, Θ̂α will be asymptotically

exact (for ΘI) when T = Rd∗ , and asymptotically valid but could be conservative when T is a

cone, where the conservativeness of Θ̂α will depend on the shape of T .

Remark 3. Theorem 3.1 is still applicable to misspecified, separable partially identified likelihood

models. For such models we can rewrite the density as p(·; θ) = q(·; γ̃(θ)) where γ̃ is an identifiable

reduced-form parameter (see Section 4.1.1 below). Under misspecification the identified set is

ΘI = {θ : γ̃(θ) = γ̃∗} where γ̃∗ is the unique value of γ̃ that minimizes P0 log(p0(·)/q(·; γ̃)) (the

Kullback-Leibler divergence from the true DGP p0). Following the insight of Müller (2013), we

could base our inference on the sandwich log-likelihood function:

Ln(θ) = − 1

2n

n∑
i=1

(γ̃(θ)− γ̂)′(Σ̂S)−1(γ̃(θ)− γ̂)

where γ̂ approximately maximizes 1
n

∑n
i=1 log q(Xi; γ̃) and Σ̂S is the sandwich covariance matrix

estimator for γ̂.

3.1.1 Models with singularities

In this subsection we consider (possibly) partially identified models with singularities.20 In iden-

tifiable parametric models {Pθ : θ ∈ Θ}, the standard notion of differentiability in quadratic

mean requires that the mass of the part of Pθ that is singular with respect to the true distribu-

tion P0 = Pθ0 vanishes faster than ‖θ− θ0‖2 as θ → θ0 (Le Cam and Yang, 1990, section 6.2). If

this condition fails then the log likelihood will not be locally quadratic at θ0. By analogy with

the identifiable case, we say a non-identifiable model has a singularity if it does not admit a

local quadratic approximation (in the reduced-form reparameterization) like that in Assumption

3.2(i). One such an example is the missing data model under identification (see Subsection 4.1.1

below).

To allow for partially identified models with singularities, we first generalize the notion of the

local reduced-form reparameterization to be of the form θ 7→ (γ(θ), γ⊥(θ)) from ΘN
I into Γ×Γ⊥

where Γ ⊆ Rd∗ and Γ⊥ ⊆ Rdim(γ⊥) with (γ(θ), γ⊥(θ)) = 0 if and only if θ ∈ ΘI . The following

regularity conditions generalize Assumptions 3.2 and 3.3 to allow for singularity.

Assumption 3.2.′ (Local quadratic approximation with singularity)

19This is consistent with the fact that the percentile MCMC CS also needs Σ = Id∗ in order to have a correct
frequentist coverage for a point-identified scalar parameter (see, e.g., Chernozhukov and Hong (2003)), Robert
and Casella (2004) and others.

20Such models are also referred to as non-regular models or models with non-regular parameters.
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(i) There exist sequences of random variables `n and Rd∗-valued random vectors Vn (both mea-

surable in Xn), and a sequence of measurable functions fn,⊥ : Γ⊥ → R+ with fn,⊥(0) = 0, such

that:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn − fn,⊥(γ⊥(θ))

)∣∣∣∣ = oP(1) (17)

with supθ∈Θosn ‖(γ(θ), γ⊥(θ))‖ → 0, Vn  N(0,Σ) as n→∞;

(ii) {(γ(θ), γ⊥(θ)) : θ ∈ Θosn} = {γ(θ) : θ ∈ Θosn} × {γ⊥(θ) : θ ∈ Θosn};
(iii) The sets Kosn = {

√
nγ(θ) : θ ∈ Θosn} cover a closed convex cone T ⊆ Rd∗.

Let ΠΓ∗ denote the image of the measure Π under the map ΘN
I 3 θ 7→ (γ(θ), γ⊥(θ)). Let

B∗r ⊂ Rd∗+dim(γ⊥) denote a ball of radius r centered at the origin.

Assumption 3.3.′ (Prior with singularity)

(i)
∫

Θ e
nLn(θ) dΠ(θ) <∞ almost surely

(ii) ΠΓ∗ has a continuous, strictly positive density πΓ∗ on B∗δ ∩ (Γ× Γ⊥) for some δ > 0.

Discussion of Assumptions: Assumption 3.2’(i)(iii) is generalization of Assumption 3.2 to

the singular case. Assumption 3.2’(i)(ii) implies that the peak of the likelihood does not con-

centrate on sets of the form {θ : fn,⊥(γ⊥(θ)) > ε > 0}. Recently, Bochkina and Green (2014)

established a Bernstein-von Mises result for identifiable parametric likelihood models with singu-

larities. They assume that the likelihood is locally quadratic in some parameters and locally linear

in others (similar to Assumption 3.2’(i)), and also assume the local parameter space satisfies con-

ditions similar to our Assumption 3.2’(ii)(iii). Finally, Assumption 3.3’ generalizes Assumption

3.3 to the singular case. We impose no further restrictions on the set {γ⊥(θ) : θ ∈ ΘN
I }.

Theorem 3.2. Let Assumptions 3.1, 3.2’, 3.3’, and 3.4 hold with Σ = Id∗. Then for any α such

that FT (·) is continuous at its α quantile, we have:

lim inf
n→∞

P(ΘI ⊆ Θ̂α) ≥ α .

For non-singular models Theorem 3.1 establishes that Θ̂α is asymptotically valid for ΘI , with

asymptotically exact coverage when the tangent set T is linear and can be conservative when T

is a closed convex cone. For singular models Theorem 3.2 shows that Θ̂α is still asymptotically

valid for ΘI but can be conservative even when T is linear.21 When applied to the missing

data example, Theorems 3.1 and 3.2 imply that Θ̂α for ΘI is asymptotically exact under partial

identification but conservative under point identification; see Section 4.1.1 below for details.

21It might be possible to establish asymptotically exact coverage of Θ̂α for ΘI in singular models where the
singular part fn,⊥(γ⊥(θ)) in Assumption 3.2’ possesses some extra structures.
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3.2 Coverage properties of M̂α for MI

In this section we present conditions under which the CS M̂α has correct coverage for the set

MI . Recall that µ : Θ → M ⊂ Rk is a known continuous mapping with 1 ≤ k < dim(θ),

M = {m = µ(θ) : θ ∈ Θ}, µ−1(m) = {θ ∈ Θ : µ(θ) = m}, and ∆(θ) = {θ̄ ∈ Θ : L(θ̄) = L(θ)}.
Then ΘI = ∆(θ) for any θ ∈ ΘI and MI = {µ(θ) : θ ∈ ΘI} = µ(∆(θ)) for any θ ∈ ΘI .

Define the profile quasi-likelihood for the set µ(∆(θ)) ⊂M as:

PLn(∆(θ)) = inf
m∈µ(∆(θ))

sup
θ̄∈µ−1(m)

Ln(θ̄) .

Since we aim at covering the identified set MI in a possibly partially identified model, this

definition of the profile quasi-likelihood is for a set, and is different from the usual definition (8)

of the profile quasi-likelihood for a point m ∈ M . Note that PLn(∆(θ)) is defined in the same

way as that of the profile quasi-likelihood for the set MI (see (9)):

PLn(∆(θ)) = PLn(ΘI) = inf
m∈MI

sup
θ̄∈µ−1(m)

Ln(θ̄) for all θ ∈ ΘI .

The profile QLR for the set µ(∆(θ)) ⊂M is defined analogously:

PQn(∆(θ)) = 2n[Ln(θ̂)− PLn(∆(θ))] = sup
m∈µ(∆(θ))

inf
θ̄∈µ−1(m)

Qn(θ̄) .

where Qn(θ̄) = 2n[Ln(θ̂)− Ln(θ̄)] is as defined in (6).

Recall that Θosn ⊂ ΘN
I for all n sufficiently large. For θ ∈ ΘN

I , the set ∆(θ) can be equivalently

expressed as the set {θ̄ ∈ ΘN
I : γ(θ̄) = γ(θ)}. Also MI = {µ(θ) : γ(θ) = 0} .

Assumption 3.5. (Profile QL)

There exists a measurable function f : Rd∗ → R+ such that:

sup
θ∈Θosn

∣∣∣∣nPLn(∆(θ))−
(
`n +

1

2
‖Vn‖2 −

1

2
f
(
Vn −

√
nγ(θ)

))∣∣∣∣ = oP(1)

with Vn and γ from Assumption 3.2 or 3.2’.

We also replace Assumption 3.4 by a version appropriate for the profiled case. Let ξpost,pn,α denote

the α quantile of the profile QLR PQn(∆(θ)) under the posterior distribution Πn, and ξmc,pn,α be

given in Remark 2.

Assumption 3.6. (MC convergence)
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ξmc,pn,α = ξpost,pn,α + oP(1).

Discussion of Assumptions: Assumption 3.5 imposes some structure on the profile QL

statistic for MI over the local neighborhood Θosn. It effectively deals with models for which the

profile QLR for MI is of the form:

PQn(∆(θ)) = f(Vn)− ‖T⊥Vn‖2 + oP(1) for each θ ∈ ΘI (18)

where f : Rd∗ → R+ is a measurable function satisfying f(v) ≥ ‖T⊥v‖2 for v ∈ Rd∗ . The precise

functional form of f depends on the local reparameterization γ as well as the mapping µ. When

MI is a singleton then equation (18) is typically satisfied with f(v) = inft∈T1 ‖v − t‖2 where

T1 = Rd∗1 ⊂ T = Rd∗ (i.e., d∗1 < d∗) and the QLR statistic is χ2
d∗−d∗1

asymptotically. For a

non-singleton set MI , f in equation (18) could be of the form:

f(v) = f0

(
inf
t∈T1

‖v − t‖2, . . . , inf
t∈TJ
‖v − t‖2

)
+ inf
t∈T
‖v − t‖2

where f0 : RJ → R+ and T1, . . . , TJ are closed cones in Rd∗ , and the profile QLR statistic

could be asymptotically mixtures of χ2 random variables with different degrees of freedom (i.e.

chi-bar-squared random variables) as well as maxima and minima of mixtures of χ2 random

variables. See Section 4 for verification of Assumption 3.5 (or equation (18)) in missing data and

moment inequality examples. Note that the existence of such a f is merely a proof device, and

one does not need to know its precise expression in the implementation of our MC CS M̂α for

MI . Finally, Assumption 3.6 requires that the distribution of the profile QLR statistic computed

from the MC chain well approximates the posterior distribution of the profile QLR statistic.

The next theorem is an important consequence of Lemma F.5 (a new BvM type result in Ap-

pendix F) for the posterior distribution of the profile QLR for MI .

Theorem 3.3. Let Assumptions 3.1, 3.2, 3.3, 3.5, and 3.6 or 3.1, 3.2’, 3.3’, 3.5, and 3.6 hold

with Σ = Id∗ and T = Rd∗, and let the distribution of f(Z) (where Z ∼ N(0, Id∗)) be continuous

at its α quantile. Then: limn→∞ P(MI ⊆ M̂α) = α.

Theorem 3.3 shows that, as long as the tangent set T is linear, our CSs M̂α for MI can have

asymptotically exact coverage even when the model is singular. For example, in the missing data

example, Theorem 3.3 implies that M̂α for MI is asymptotically exact irrespective of whether

the model is point-identified or not; see Subsection 4.1.1 below for details.
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3.3 Coverage properties of M̂χ
α for MI

This section presents one sufficient condition for validity of the CS M̂χ
α for MI (Procedure 3).

Assumption 3.7. (Profile QLR, χ2 bound)

PQn(∆(θ)) f(Z) = inft∈T1 ‖Z− t‖2∨ inft∈T2 ‖Z− t‖2 for all θ ∈ ΘI , where Z ∼ N(0, Id∗) for

some d∗ ≥ 1 and T1 and T2 are closed half-spaces in Rd∗ with supporting hyperplanes that pass

through the origin.

Note that Assumption 3.7 places additional structure on the function f in Assumption 3.5 or in

equation (18).

Theorem 3.4. Let Assumption 3.7 hold and let the distribution of f(Z) be continuous at its α

quantile. Then: lim infn→∞ P(MI ⊆ M̂χ
α ) ≥ α.

The exact distribution of f(Z) depends on the geometry of T1 and T2. We show in the proof

of Theorem 3.4 that the worst-case coverage (i.e., the case in which asymptotic coverage of M̂χ
α

will be most conservative) will occur when the polar cones of T1 and T2 are orthogonal, in which

case f(Z) has the mixture distribution W ∗ := 1
4δ0 + 1

2χ
2
1 + 1

4(χ2
1 ·χ2

1) where δ0 is a point mass at

zero and χ2
1 ·χ2

1 is the distribution of the product of two independent χ2
1 random variables. The

quantiles of the distribution of f(Z) are continuous in α for all α > 1
4 . For all configurations

of T1 and T2, the distribution of f(Z) (first-order) stochastically dominates FW ∗ and is (first-

order) stochastically dominated by Fχ2
1

(i.e., FW ∗(w) ≥ Ff(Z)(w) ≥ Fχ2
1
(w)). Notice that this

is different from the usual chi-bar-squared case encountered when testing whether a parameter

belongs to the identified set on the basis of finitely many moment inequalities (Rosen, 2008).

To get an idea of the degree of conservativeness of M̂χ
α , consider the class of models satisfying

conditions for Theorem 3.4. Figure 3 plots the asymptotic coverage of M̂α and M̂χ
α against

nominal coverage for models in this class where M̂χ
α is most conservative (i.e., the worst-case

coverage). For each model in this class, the asymptotic coverage of M̂α and M̂χ
α is between the

nominal coverage and the worst-case coverage. As can be seen, the coverage of M̂α is exact at all

levels α ∈ (0, 1) for which the distribution of the profile QLR is continuous at its α quantile, as

predicted by Lemma 2.2. On the other hand, M̂χ
α is asymptotically conservative, but the level

of conservativeness decreases as α increases towards one. Indeed, for levels of α in excess of 0.85

the level of conservativeness is negligible.

The following proposition presents a set of sufficient conditions for Assumption 3.7.

Proposition 3.1. Let the following hold:

(i) infm∈MI
supθ∈µ−1(m) Ln(θ) = minm∈{m,m} supθ∈µ−1(m) Ln(θ) + oP(n−1);
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Figure 3: Comparison of asymptotic coverage of M̂α (Profile QLR – solid

kinked line) and of M̂χ
α (χ2 – dashed curved line) with their nominal coverage

for models where M̂χ
α is valid for MI but most conservative.

(ii) for each m ∈ {m,m} there exists a sequence of sets (Γm,osn)n∈N with Γm,osn ⊆ Γ for each n

and a closed convex cone Tm ⊆ Rd∗ with positive volume, such that:

sup
θ∈µ−1(m)

nLn(θ) = sup
γ∈Γm,osn

(
`n +

1

2
‖Vn‖2 −

1

2
‖
√
nγ − Vn‖2

)
+ oP(1)

and infγ∈Γm,osn ‖
√
nγ − Vn‖2 = inft∈Tm ‖t− Vn‖2 + oP(1);

(iii) Assumptions 3.1(i), 3.2 or 3.2’ hold with Σ = Id∗;

(iv) T = Rd∗ and both Tm and Tm are halfspaces in Rd∗.
Then: Assumption 3.7 holds.

Suppose that MI = [m,m] with −∞ < m ≤ m <∞ (which is the case whenever ΘI is connected

and bounded). If supθ∈µ−1(m) Ln(θ) is strictly concave in m then condition (i) of Proposition 3.1

holds. The remaining conditions are then easy to verify.

Since empirical papers typically report a confidence set for scalar parameters, Theorem 3.4 will

be very useful in applied work. One could generalize M̂χ
α to allow for quantiles of χ2

d with higher

degrees of freedom d ∈ (1, dim(θ)), but it might be difficult to provide sufficient condition to

establish result like Theorem 3.4.
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4 Sufficient conditions and Examples

This section provides sufficient conditions for Assumption 3.2 in general partially identified like-

lihood and GMM models with i.i.d. data. We also verify key regularity conditions (Assumptions

3.1(ii), 3.2 (or 3.2’), 3.3, 3.5) in examples. In what follows we use standard empirical process

notation (van der Vaart and Wellner, 1996), namely P0g denotes the expectation of g(Xi) under

the true probability distribution P0, Png = n−1
∑n

i=1 g(Xi) denotes expectation of g(Xi) under

the empirical distribution, and Gng =
√
n(Pn − P0)g denotes the empirical process.

4.1 Partially identified likelihood models

Consider a parametric likelihood model P = {p(·; θ) : θ ∈ Θ} where each p(·; θ) is a probability

density with respect to a common σ-finite dominating measure λ. Let p0 ∈ P be the true

DGP, DKL(p(·)||q(·; θ)) be the Kullback-Leibler divergence, and h(p, q)2 =
∫

(
√
p − √q)2 dλ

denote the squared Hellinger distance between two densities p and q. Then the identified set is

ΘI = {θ ∈ Θ : DKL(p0(·)||p(·; θ)) = 0} = {θ ∈ Θ : h(p0(·), p(·; θ)) = 0}.

4.1.1 Over-parameterized likelihood models

For a large class of partially identified parametric likelihood models P = {p(·; θ) : θ ∈ Θ}, there

exists a measurable function γ̃ : Θ → Γ̃ ⊂ Rd∗ for some possibly unknown d∗ ∈ [1,+∞), such

that p(·; θ) = q(·; γ̃(θ)) for each θ ∈ Θ and some densities {q(·; γ̃(θ)) : γ̃ ∈ Γ̃}. In this case we say

that the model P is over-parameterized and admits a (global) reduced-form reparameterization.

The reparameterization is assumed to be identifiable, i.e. DKL(q(·; γ̃0)||q(·; γ̃)) > 0 for any

γ̃ 6= γ̃0. Without loss of generality, we may translate the parameter space Γ̃ so that the true

density p0(·) ≡ q(·; γ̃0) with γ̃0 = 0. The identified set is ΘI = {θ ∈ Θ : γ̃(θ) = 0}.

In the following we let `γ̃(x) := log q(x; γ̃), ˙̀
γ̃ =

∂`γ̃
∂γ̃ and ῭̃

γ =
∂2`γ̃
∂γ̃∂γ̃′ . And let I0 := P0( ˙̀

γ̃0
˙̀′
γ̃0

)

denote the variance of the true score.

Proposition 4.1. Suppose that {q(·; γ̃) : γ̃ ∈ Γ̃} satisfies the following regularity conditions:

(a) X1, . . . , Xn are i.i.d. drawn from p0(·) = q(·; 0) ∈ {q(·; γ̃) : γ̃ ∈ Γ̃}, where Γ̃ is a compact

subset of Rd∗;
(b) there exists an open neighborhood U ⊂ Γ̃ of γ̃0 = 0 upon which `γ̃(x) is strictly positive and

twice continuously differentiable for each x, with supγ̃∈U ‖ ῭̃γ(x)‖ ≤ ¯̀(x) for some ¯̀ : X → R
with P0(¯̀) <∞; and I0 is finite positive definite.

Then: there exists a sequence (rn)n∈N with rn → ∞ and rn/
√
n = o(1) as n → ∞ such that
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Assumption 3.2 holds for the average log-likelihood (1) over Θosn := {θ ∈ Θ : ‖γ(θ)‖ ≤ rn/
√
n}

with γ(θ) = I1/20 γ̃(θ), Vn = I−1/2
0 Gn( ˙̀

γ̃0) N(0, Id∗), and T = Rd∗.
If, in addition:

(c) πΓ is continuous and uniformly bounded away from zero and infinity on Γ = {γ = I1/20 γ̃ :

γ̃ ∈ Γ̃};
(d) there exists α > 0 such that P0 log(p0(·)/q(·; γ̃)) . ‖γ̃‖2α, P0[log(q(·; γ̃)/p0(·))]2 . ‖γ̃‖2α,

and h(q(·; γ̃1), q(·; γ̃2)) � ‖γ̃1 − γ̃2‖α all hold on U .

Then: Assumption 3.1(ii) also holds.

Proposition 4.1 shows that Assumption 3.2 holds under conventional smoothness and identifica-

tion conditions on the reduced-form likelihood. The condition of twice continuous differentiability

of the log-likelihood can be weakened by substituting Hellinger differentiability conditions. Suf-

ficient conditions can also be tailored to Markov processes, including DSGE models with latent

Markov state variables, and general likelihood-based time series models (see, e.g., Hallin, van den

Akker, and Werker (2015)).

Example 1: missing data model in Subsection 2.4.1

We revisit the missing data example in Subsection 2.4.1, where the parameter space for θ =

(µ, β, ρ) is Θ given in (12). The identified set for θ is ΘI given in (13), and the identified set for

µ0 := E[Yi] is MI = [κ11, κ11 + κ00].

Inference under partial identification: Consider the case in which the model is partially

identified (i.e. 0 < κ00 < 1). The likelihood of the i-th observation (Di, YiDi) = (d, yd) is

p(d, yd; θ) = [κ11(θ)]yd[1− κ11(θ)− κ00(θ)]d−yd[κ00(θ)]1−d = q(d, yd; γ̃(θ))

where the reduced-form reparameterization is:

γ̃(θ) =

(
κ11(θ)− κ11

κ00(θ)− κ00

)

with Γ̃ = {γ̃(θ) : θ ∈ Θ} = {(k11 − κ11, k00 − κ00) : (k11, k00) ∈ [0, 1]2, 0 ≤ k11 ≤ 1 − k00}.
Conditions (a)-(b) of Proposition 4.1 hold. Hence Assumption 3.2 is satisfied with γ(θ) = I1/20 γ̃(θ)

where:

I0 =

[
1
κ11

+ 1
1−κ11−κ00

1
1−κ11−κ00

1
1−κ11−κ00

1
κ00

+ 1
1−κ11−κ00

]
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and

Vn =
1√
n

n∑
i=1

I−1/2
0

(
yidi
κ11
− di−yidi

1−κ11−κ00
1−di
κ00
− di−yidi

1−κ11−κ00

)
 N(0, I2)

and the tangent cone is T = R2. A flat prior on Θ in (12) induces a flat prior on Γ, which verifies

Condition (c) of Proposition 4.1 and Assumption 3.3. Therefore, Theorem 3.1 implies that our

MC CSs for ΘI will have asymptotically exact coverage.

Now consider CSs for MI = [κ11, κ11 + κ00]. Note that µ−1(m) = {m} × {(β, ρ) ∈ [0, 1]2 : 0 ≤
m− β(1− ρ) ≤ ρ}. By concavity in m, the profile log-likelihood for MI is:

PLn(∆(θ)) = min
m∈{κ11,κ11+κ00}

sup
θ̄∈µ−1(m)

Pn log(p(·; θ̄)) for all θ ∈ ΘI .

Rewriting the maximization problem in terms of the reduced-form probabilities:

sup
θ̄∈µ−1(m)

Pn log(p(·; θ̄)) = sup
0≤k11≤m

m≤k11+k00≤1

Pn
(
yd log k11 + (d− yd) log(1− k11 − k00) + (1− d) log k00

)
.

(19)

at m = κ11 and m = κ11 + κ00. The local parameter spaces for problem (19) at m = κ11 and

m = κ11 + κ00 are sketched in Figure 4. Let γ = (γ1, γ2) = (k11 − κ11, k00 − κ00) and let:

T1 =
⋃
n≥1

{√
nI1/20 γ : −κ11 ≤ γ1 ≤ 0, −κ00 ≤ γ1 + γ2 ≤ 1− κ11 − κ00, ‖γ‖2 ≤ r2

n/n
}

T2 =
⋃
n≥1

{√
nI1/20 γ : −κ11 ≤ γ1 ≤ κ00, 0 ≤ γ1 + γ2 ≤ 1− κ11 − κ00, ‖γ‖2 ≤ r2

n/n
}

where rn is from Proposition 4.1. It follows that for all θ ∈ ΘI :

nPLn(∆(θ)) = nPn log p0 +
1

2
‖Vn‖2 −

1

2

(
inf
t∈T1

‖Vn − t‖2
)
∨
(

inf
t∈T2

‖Vn − t‖2
)

+ oP(1)

PQn(∆(θ)) =

(
inf
t∈T1

‖Vn − t‖2
)
∨
(

inf
t∈T2

‖Vn − t‖2
)

+ oP(1) .

Thus both equation (18) and Assumption 3.7 hold with f : R2 → R+ given by

f(v) = ( inf
t∈T1

‖v − t‖2) ∨ ( inf
t∈T2

‖v − t‖2), (20)

where T1 and T2 are halfspaces in R2. Theorem 3.4 implies that the CS M̂χ
α is asymptotically

valid (but conservative) for MI .
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Figure 4: Local parameter spaces for the profile LR statistic for MI . Left
panel: the lightly shaded region is for problem (19) at m = κ11 and the darker
shaded region is for problem (19) at m = κ11 +κ00. Right panel: corresponding
problems for the profile LR (21) at κ11(θ) and (κ11(θ), κ00(θ))′.

To verify Assumption 3.5, take n sufficiently large that γ(θ) ∈ int(Γ) for all θ ∈ Θosn:

PLn(∆(θ)) = min
m∈{κ11(θ),κ11(θ)+κ00(θ)}

sup
θ̄∈µ−1(m)

Pn log p(·, θ̄) . (21)

By analogy with display (19), to calculate PLn(∆(θ)) we need to solve:

sup
θ̄∈µ−1(m)

Pn log(p(·; θ̄)) = sup
0≤k11≤m

m≤k11+k00≤1

Pn
(
yd log k11 + (d− yd) log(1− k11 − k00) + (1− d) log k00

)

at m = κ11(θ) and m = κ11(θ) + κ00(θ).

This problem is geometrically the same as the problem for the profile QLR up to a translation

of the local parameter space from (κ11, κ00)′ to (κ11(θ), κ00(θ))′. The local parameter spaces are

approximated by the translated cones T1(θ) = T1 +
√
nγ(θ) and T2(θ) = T2 +

√
nγ(θ). It follows

that: uniformly in θ ∈ Θosn,

nPLn(∆(θ)) = nPn log p0 +
1

2
‖Vn‖2 −

1

2
f
(
Vn −

√
nγ(θ)

)
+ oP(1)

where f is given in (20), and hence Assumption 3.5 holds. Therefore, Theorem 3.3 implies that

our MC CS M̂α for MI will have asymptotically exact coverage.

Inference under identification: Now consider the case in which the model is identified (i.e.

true κ00 = 0). In this case each Di = 1 so the likelihood of the i-th observation (Di, YiDi) = (1, y)
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is

p(1, y; θ) = [κ11(θ)]y[1− κ11(θ)− κ00(θ)]1−y = q(1, y; γ̃(θ))

We again take Θ as in (12) and use a flat prior. Lemma F.6 in Appendix F shows that Πn con-

centrates on the local neighborhood Θosn given by Θosn = {θ : |κ11(θ)− κ11| ≤ rn/
√
n, κ00(θ) ≤

rn/n} for any positive sequence (rn)n∈N with rn →∞, rn/
√
n = o(1).

Here the reduced-form parameter γ̃(θ) is γ̃(θ) = κ11(θ)− κ11. Uniformly over Θosn we obtain:

nLn(θ) = nPn log p0 −
1

2

(
√
nγ̃(θ))2

κ11(1− κ11)
+ (
√
nγ̃(θ))

(
1√
n

n∑
i=1

yi − κ11

κ11(1− κ11)

)
− nκ00(θ) + oP(1)

which verifies Assumption 3.2’(i) with γ(θ) = (κ11(1 − κ11))−1/2γ̃(θ), T = R, fn,⊥(γ⊥(θ)) =

nγ⊥(θ) where γ⊥(θ) = κ00(θ) ≥ 0, and

Vn = (κ11(1− κ11))−1/2Gn(y) N(0, 1) .

The remaining parts of Assumption 3.2’ are easily shown to be satisfied. Therefore, Theorem

3.2 implies that our MC CS Θ̂α for ΘI will be asymptotically valid but conservative.

For subvector inference on MI = {µ0}, the profile LR statistic for MI = {µ0} is asymptotically

χ2
1, and equation (18) holds with f : R → R+ given by f(v) = v2 and T = R. To verify

Assumption 3.5, for each θ ∈ Θosn we need to solve

sup
θ̄∈µ−1(m)

Pn log(p(·; θ̄)) = sup
0≤k11≤m

m≤k11+k00≤1

Pn
(
y log k11 + (1− y) log(1− k11 − k00)

)

at m = κ11(θ) and m = κ11(θ) + κ00(θ). The maximum is achieved when k00 is as small as

possible, which occurs along the segment k00 = m − k11. Substituting in and maximizing with

respect to k11:

sup
θ̄∈µ−1(m)

Pn log(p(·; θ̄)) = Pn
(
y logm+ (1− y) log(1−m)

)
.

Therefore, we obtain the following expansion uniformly for θ ∈ Θosn:

nPLn(∆(θ)) = nPn log p0 +
1

2
(Vn)2

− 1

2

(
Vn −

√
nγ(θ)

)2
∨ 1

2

(
Vn −

√
n(γ(θ) + κ00(θ))

)2
+ oP(1)

= nPn log p0 +
1

2
(Vn)2 − 1

2

(
Vn −

√
nγ(θ)

)2
+ oP(1)
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where the last equality holds because supθ∈Θosn κ00(θ) ≤ rn/n = o(n−1/2). This verifies that

Assumption 3.5 holds with f(v) = v2. Thus Theorem 3.3 implies that our MC CS M̂α for MI

will have asymptotically exact coverage, even though Θ̂α for ΘI will be conservative in this case.

Example 2: complete information entry game

Consider the bivariate discrete game with payoffs described in Table 9. Let Da1a2 denote a binary

random variable taking the value 1 if and only if player 1 takes action a1 and player 2 takes action

a2. We observe a random sample {(D00,i, D01,i, D10,i, D11,i)}ni=1. The model is parameterized

by θ = (β1, β2,∆1,∆2, ρ, s)
′, where ρ is the parameter associated with the joint probability

distribution (Qρ) of (ε1, ε2), and s ∈ [0, 1] is the selection probability of choosing the (a1, a2) =

(0, 1) equilibrium when there are multiple equilibria. The reduced-form probabilities of observing

D00, D01, D11 and D10 are κ00(θ), κ01(θ), κ11(θ), and κ10(θ) = 1 − κ00(θ) − κ01(θ) − κ11(θ),

given by:

κ00(θ) = Qρ(ε1i ≤ −β1, ε2i ≤ −β2)

κ01(θ) = Qρ(−β1 ≤ ε1i ≤ −β1 −∆1, ε2i ≤ −β2 −∆2) +Qρ(ε1i ≤ −β1, ε2i ≥ −β2)

+ sQρ(−β1 ≤ ε1i ≤ −β1 −∆1,−β2 ≤ ε2i ≤ −β2 −∆2)

κ11(θ) = Qρ(ε1i ≥ −β1 −∆1, ε2i ≥ −β2 −∆2) .

Let κ00, κ01, and κ11 denote the true values of the reduced-form choice probabilities. This

model falls into the class of models dealt with in Proposition 4.1 with γ̃(θ) = κ(θ) − κ0 where

κ(θ) = (κ00(θ), κ01(θ), κ11(θ))′ and κ0 = (κ00, κ01, κ11)′. The likelihood at the i-th observation

is:

p(d00, d01, d11; θ) = [κ00(θ)]d00 [κ01(θ)]d01 [κ11(θ)]d11(1− κ00(θ)− κ01(θ)− κ11(θ))1−d00−d01−d11

= q(d00, d01, d11; γ̃(θ)) .

Conditions (a)-(b) and (d) of Proposition 4.1 hold with Γ̃ = {γ̃(θ) : θ ∈ Θ} under very mild

conditions on the parameterization θ 7→ γ̃(θ). Hence Assumption 3.2 is satisfied with γ(θ) =

I1/20 γ̃(θ) where:

I0 =


1
κ11

0 0

0 1
κ01

0

0 0 1
κ11

+
1

1− κ00 − κ01 − κ11
13×3
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where 13×3 denotes a 3× 3 matrix of ones,

Vn =
1√
n

n∑
i=1

I−1/2
0


d00,i

κ00
− 1−d00,i−d01,i−d11,i

1−κ00−κ01−κ11

d01,i

κ01
− 1−d00,i−d01,i−d11,i

1−κ00−κ01−κ11

d11,i

κ11
− 1−d00,i−d01,i−d11,i

1−κ00−κ01−κ11

 N(0, I3)

and T = R3. Condition (c) of Proposition 4.1 and Assumption 3.3 can be verified under mild

conditions on the map θ 7→ κ(θ) and the prior Π. For instance, consider the parameterization

θ = (β1, β2,∆1,∆2, ρ, s) where the joint distribution of (ε1, ε2) is a bivariate Normal with means

zero, standard deviations one and positive correlation ρ ∈ [0, 1]. The parameter space is

Θ = {(β1, β2,∆1,∆2, ρ, s) ∈ R6 : β ≤ β1, β2 ≤ β,∆ ≤ ∆1,∆2 ≤ ∆, 0 ≤ ρ, s ≤ 1} .

where −∞ < β < β < ∞ and −∞ < ∆ < ∆ < 0. The image measure ΠΓ of a flat prior on

Θ is positive and continuous on a neighborhood of the origin, which verifies Condition (c) of

Proposition 4.1 and Assumption 3.3. Therefore, Theorem 3.1 implies that our MC CSs for ΘI

will have asymptotically exact coverage.

4.1.2 General non-identifiable likelihood models

It is possible to define a local reduced-form reparameterization for non-identifiable likelihood

models, even when P = {p(·; θ) : θ ∈ Θ} does not admit an explicit (global) reduced-form

reparameterization. Let D ⊂ L2(P0) denote the set of all limit points of:

Dε :=

{√
p/p0 − 1

h(p, p0)
: p ∈ P, 0 < h(p, p0) ≤ ε

}

as ε → 0. The set D is the set of generalized Hellinger scores,22 which consists of functions of

Xi with mean zero and unit variance. The cone Λ = {τd : τ ≥ 0, d ∈ D} is the tangent cone of

the model P at p0. We say that P is differentiable in quadratic mean (DQM) if each p ∈ P is

absolutely continuous with respect to p0 and for each p ∈ P there are elements g(p) ∈ Λ and

remainders R(p) ∈ L2(λ) such that:

√
p −√p0 = g(p)

√
p0 + h(p, p0)R(p)

with sup{‖R(p)‖L2(λ) : h(p, p0) ≤ ε} → 0 as ε → 0. If the linear hull Span(Λ) of Λ has finite

dimension d∗ ≥ 1, then we can write each g ∈ Λ as g = c(g)′ψ where c(g) ∈ Rd∗ and the

22It is possible to define sets of generalized scores via other measures of distance between densities. See Liu and
Shao (2003) and Azäıs, Gassiat, and Mercadier (2009). Our results can easily be adapted to these other cases.
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elements of ψ = (ψ1, . . . , ψd∗) form an orthonormal basis for Span(Λ) in L2(P0). Let Λ denote

the orthogonal projection onto Λ and let γ(θ) be given by Λ(2(
√
p(·; θ)/p0(·)− 1)) = γ(θ)′ψ.23

Finally, let Dε = Dε ∪ D.

Proposition 4.2. Suppose that P satisfies the following regularity conditions:

(a) {log p : p ∈ P} is P0-Glivenko Cantelli;

(b) P is DQM, and Λ is convex and Span(Λ) has finite dimension d∗ ≥ 1.

(c) there exists ε > 0 such that Dε is Donsker and has envelope D ∈ L2(P0).

Then: there exists a sequence (rn)n∈N with rn → ∞ and rn = O(log n) as n → ∞, such that

Assumption 3.2(i) holds for the average log-likelihood (1) over Θosn := {θ : h(Pθ, P0) ≤ rn/
√
n}

with Vn = Gn(ψ) and γ(θ) defined by Λ(2(
√
p(·; θ)/p0(·)− 1)) = γ(θ)′ψ.

Proposition 4.2 is a set of sufficient conditions in the i.i.d. setting. See Lemma F.7 in Appendix

F for a more general result.

4.2 GMM models

Consider the GMM model {ρ(Xi, θ) : θ ∈ Θ} with ρ : X ×Θ→ Rdim(ρ). Let g(θ) = E[ρ(Xi, θ)]

and the identified set be ΘI = {θ ∈ Θ : g(θ) = 0}. In models with a moderate or large number

of moment conditions, the set {g(θ) : θ ∈ Θ} may not contain a neighborhood of the origin.

However, the map θ 7→ g(θ) is typically smooth, in which case {g(θ) : θ ∈ Θ} can be locally

approximated at the origin by a closed convex cone Λ ⊂ Rdim(g) at the origin. For instance,

if {g(θ) : θ ∈ Θ} is a differentiable manifold this is trivially true with Λ a linear subspace of

Rdim(g).

Let Λ : Rdim(g) → Λ denote the orthogonal projection onto Λ. Let U ∈ Rdim(g)×dim(g) be a

unitary matrix (i.e. U ′ = U−1) such that for each v ∈ Rdim(g) the first dim(Λ) = d∗ (say)

elements of Uv are in the linear hull Span(Λ) and the remaining dim(g)− d∗ are orthogonal to

Span(Λ). Let [(UΩU ′)−1]11 be the d∗ × d∗ upper left block of (UΩU ′)−1, [UΛg(θ)]1 be the first

d∗ elements of UΛg(θ), and [UΩ−1Gn(ρ(·, θ))]1 be the upper d∗ subvector of UΩ−1Gn(ρ(·; θ)).
If {g(θ) : θ ∈ Θ} contains a neighborhood of the origin then we just take Λ = Rdim(g) with

d∗ = dim(g), U = Idim(g), and Λg(θ) = g(θ).

In the following let Θε
I = {θ ∈ Θ : ‖g(θ)‖ ≤ ε} and Rε = {ρ(·, θ) : θ ∈ Θ, ‖g(θ)‖ ≤ ε}.

Proposition 4.3. Suppose that data {Xi}ni=1 is i.i.d. and the identified set ΘI = {θ ∈ Θ :

E[ρ(Xi, θ)] = 0} is not empty. Let the following hold:

23If Λ ⊆ L2(P0) is a closed convex cone, the projection Λf of any f ∈ L2(P0) is defined as the unique element
of Λ such that ‖f −Λf‖L2(P0) = inft∈Λ ‖f − t‖L2(P0) (see Hiriart-Urruty and Lemaréchal (2001)).
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(a) supθ∈ΘεI
‖g(θ)−Λg(θ)‖ = o(ε) as ε→ 0;

(b) E[ρ(Xi, θ)ρ(Xi, θ)
′] = Ω for each θ ∈ ΘI and Ω is positive definite;

(c) there exists ε0 > 0 such that Rε0 is Donsker;

(d) sup(θ,θ̄):∈ΘεI×ΘI
E[‖ρ(Xi, θ)− ρ(Xi; θ̄)‖2] = o(1) as ε→ 0;

(e) supθ∈ΘεI
‖E[(ρ(Xi, θ)ρ(Xi, θ)

′)]− Ω‖ = o(1) as ε→ 0.

Then: there exists a sequence (rn)n∈N with rn → ∞ and rn = o(n1/4) as n → ∞ such that

Assumption 3.2(i) holds for the continuously-updated GMM criterion (2) over Θosn = {θ ∈ Θ :

‖g(θ)‖ ≤ rn/
√
n}, where γ(θ) = [(UΩU ′)−1]

1/2
11 [UΛg(θ)]1, Vn = −[(UΩU ′)−1]

−1/2
11 [UΩ−1Gn(ρ(·, θ))]1

for any fixed θ ∈ ΘI , and T equals to the image of Λ under the map v 7→ [(UΩU ′)−1]11[Uv]1.

If {g(θ) : θ ∈ Θ} contains a neighborhood of the origin then γ(θ) = Ω−1/2g(θ), Vn = −Ω−1/2Gn(ρ(·, θ))
for any fixed θ ∈ ΘI , and T = Rdim(g).

Proposition 4.4. Let all the conditions of Proposition 4.3 hold, except that its condition (e) is

replaced by: (e) ‖Ŵ − Ω−1‖ = oP(1).

Then: the conclusions of Proposition 4.3 hold for the optimally-weighted GMM criterion (3).

Andrews and Mikusheva (2016) consider weak identification-robust inference when the null hy-

pothesis is described by a regular C2 manifold in the parameter space. Let {g(θ) : θ ∈ Θ} be a

C2 manifold in Rdim(g) that is regular at the origin.24 Then Condition (a) of Propositions 4.3

and 4.4 hold with Λ equal to the tangent space of {g(θ) : θ ∈ Θ} at the origin, which is a linear

subspace of Rdim(g) (Federer, 1996, p. 234). It is straightforward to verify that Kosn is convex

and contains a ball Bkn where we may choose kn →∞ as n→∞, hence Assumption 3.2(ii) also

hold with T = Rdim(Λ).

4.2.1 Moment inequalities

Consider the moment inequality model {ρ̃(Xi, β) : β ∈ B} with ρ̃ : X × B → Rdim(ρ) where

the parameter space is B ⊆ Rdim(β). The identified set is BI = {β ∈ B : E[ρ̃(Xi, β)] ≤ 0}
(the inequality is understood to hold element-wise). We may reformulate the moment inequality

model as a GMM-type moment equality model by augmenting the parameter vector with a

vector of slackness parameters λ ∈ Λ ⊆ Rdim(ρ)
+ . Thus we re-parameterize the model by θ =

(β, λ) ∈ Θ = B × Λ and write the inequality model as a GMM equality model

E[ρ(Xi, θ)] = 0 for θ ∈ ΘI , ρ(Xi, θ) = ρ̃(Xi, β) + λ , (22)

24That is, there exists a neighborhood N of the origin in Rdim(g), a C2 homeomorphism ϕ : N → Rdim(g), and
a linear subspace Φ of Rdim(g) of dimension dim(Φ) such that ϕ(N ∩ {g(θ) : θ ∈ Θ}) = Φ ∩ im(ϕ) where im(ϕ) is
the image of ϕ. Such manifolds are also called dim(Φ)-dimensional submanifolds of class 2 of Rdim(g); see Federer
(1996), Chapers 3.1.19-20.
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where the identified set for θ is ΘI = {θ ∈ Θ : E[ρ(Xi, θ)] = 0} and BI is the projection of ΘI

onto B. We may then apply Propositions 4.3 or 4.4 to the reparameterized GMM model (22).

Example 3. As a simple illustration, consider the model in which X1, . . . , Xn are i.i.d. with

unknown mean µ ∈ [0, 1] = B and unit variance. Suppose that β ∈ B is identified by the

moment inequality E[β −Xi] ≤ 0. The identified set for β is BI = [0, µ], which is the argmax of

the population criterion function

L(β) = −1

2
((β − µ) ∨ 0)2

(see Figure 5(a)). The sample analogue criterion −1
2((β − X̄n) ∨ 0)2 is typically used in the

moment inequality literature, but does not satisfy our Assumption 3.2. However, we can rewrite

the inequality model in terms of the moment equality model: E[β+λ−Xi] = 0 where λ ∈ [0, 1−β]

is a slackness parameter. The parameter space for θ = (β, λ) is Θ = {(β, λ) ∈ B2 : β + λ ≤ 1}.
The identified set for θ is ΘI = {(β, λ) ∈ Θ : β + λ = µ} and the identified set for the subvector

β is BI (see Figure 5(b)). The GMM objective function for E[β + λ−Xi] = 0 is:

Ln(β, λ) = −1

2
(β + λ− X̄n)2 .

Suppose that µ ∈ (0, 1). Then wpa1 we can choose (β̂, λ̂) ∈ Θ such that nLn(β̂, λ̂) = 0 + oP(1).

Then:

sup
(β,λ)∈Θ

|Qn(β, λ)− (Vn −
√
n(β + λ− µ))2| = oP(1)

where Vn =
√
n(X̄n − µ) N(0, 1). The profile QLR for BI is supβ∈BI infλ∈B Qn(β, λ) where:

inf
λ∈B

Qn(β, λ) =

 (Vn −
√
n(β − µ))2 if Vn/

√
n− (β − µ) < 0

0 if 0 ≤ Vn/
√
n− (β − µ) ≤ 1

(Vn −
√
n(β + 1− µ))2 if Vn/

√
n− (β − µ) > 1 .

The maximum over BI is attained at β = µ, hence PQn(∆(θ)) = f(Vn) + oP(1) for all θ ∈ ΘI

where f(v) = v21l{v < 0}. Therefore, the profile QLR for BI is asymptotically a mixture between

point mass at zero and a χ2
1 random variable.

For the posterior distribution of the profile QLR, first observe that this maps into our framework

with the local reduced-form parameter γ(θ) = ((β + λ) − µ). A flat prior on Θ induces a prior

ΠΓ whose density πΓ(γ) = 2(γ + µ) is positive and continuous at the origin (see Figure 5(c)).

The set Γ = {γ(θ) : θ ∈ Θ} contains a ball of positive radius at the origin when µ ∈ (0, 1) hence
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Figure 5: Panel (a): identified set BI for β with population (moment inequal-
ity) criterion L(β) = − 1

2 ((β−µ)∨0)2. Panel (b): identified set ΘI for θ = (β, λ)
with moment equality model E[β + λ − X] = 0, and identified set BI for β.
Panel (c): induced prior πΓ for γ(θ) = (β + λ− µ) from a flat prior on Θ.

T = R (otherwise T = R+ or R− when µ is at the boundary of B). Moreover:

∆(θb) = {(β, λ) ∈ Θ : β + λ = βb + λb}

and so µ(∆(θb)) = [0, βb + λb]. Similar arguments then yield:

PQn(∆(θ)) = f(Vn −
√
nγ(θ)) + oP(1) uniformly in θ ∈ ΘI

with f(v) = v21l{v < 0}. So all the regularity conditions of Theorem 3.3 hold, and hence our

MC CS M̂α has asymptotically exact coverage for BI .

In Appendix C we show that, under a drifting sequence of DGPs towards the boundary BI = {0},
our MC CS M̂α has asymptotically correct but possibly conservative coverage for BI while the

nonparametric bootstrap based CS for BI undercovers. This illustrates that our MC CSs are

not equivalent to bootstrap CSs.

5 Applications

This section implements our procedures in two empirical illustrations. The first estimates a model

of trade flows initially examined in Helpman, Melitz, and Rubinstein (2008) (HMR henceforth).

This application uses a version of the empirical model in HMR with more than 40 parameters

to be estimated. The second empirical example estimates a simple stylized version of a bivariate
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binary entry game with data from the US airline industry with 17 parameters to be estimated via

a likelihood. Both of these applications illustrate our robust approach to inference: the model is

nonlinear and it might be hard to determine whether it point identifies the parameters; and more

importantly, examining the robustness of the estimates to various adhoc modelling assumptions

can be done in a theoretically valid and computationally feasible way.

5.1 An Empirical Model of Trade Flows

In an influential paper, Helpman et al. (2008) examine the extensive margin of trade using a

structural model estimated with current trade data. The following is a brief description of their

empirical framework. Let Mij denote the value of country i’s imports from country j. This is

only observed if country j exports to country i. If a random draw for productivity from country

j to i is sufficiently high then j will export to i. To model this, Helpman et al. (2008) introduce

a latent variable z∗ij which measures trade volume between i and j. Here z∗ij takes the value zero

if j does not export to i and strictly positive otherwise. We adapt slightly their empirical model

to obtain a selection model of the form:

logMij =

{
β0 + λj + χi − ν ′dij + δz∗ij + uij if zij∗ > 0

not observed if zij∗ ≤ 0

z∗ij = β∗0 + λ∗j + χ∗i − ν∗′dij + η∗ij

in which λj , χi, λ
∗
j and χ∗i are exporting and importing continent fixed effects, dij is a vector

of observable trade frictions between i and j, and uij and η∗ij are error terms described below.

Notice that the model is different from the usual Heckman selection model due to the presence

of z∗ij in the outcome equation. Exclusion restrictions can be imposed by setting one or several

of the elements of ν equal to zero.

There are three differences between our empirical model and that of Helpman et al. (2008).

First, we let z∗ij enter the outcome equation linearly instead of nonlinearly25. Second, we use

continent fixed effect instead of country fixed effects. This reduces the number of parameters

from over 400 to around 40. Third, we allow for heteroskedasticity in the selection equation,

which is known to be a problem in trade data. Also, this is one way to illustrate the robustness

approach we advocate which relaxes parametric assumptions on part of the model that is suspect

(homoskedasticity) without worrying about loss of point identification.

To allow for heteroskedasticity, we suppose that the distribution of (uij , η
∗
ij) conditional on

25 Their nonlinear specification is known to be problematic (see, e.g., Santos Silva and Tenreyro (2015)).
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observables is Normal with mean zero and covariance:

Σ(Xij) =

(
σ2
m ρσmσz(Xij)

ρσmσz(Xij) σ2
z(Xij)

)

where:

σz(Xij) = exp(log(distanceij) +$1 log(distanceij)
2) .

For estimation we estimate the model from data on 24,649 country pairs in the selection equation

and 11,156 country pairs in the outcome equation using the same data from 1986 as in Helpman

et al. (2008). We also impose the exclusion restriction that the coefficient in ν corresponding to

religion is equal to zero, else there is an exact linear relationship between the coefficients in the

outcome and selection equation. This leaves a total of 43 parameters to be estimated. We only

report estimates for the trade friction coefficients ν in the outcome equation as these are the

most important. We estimate the model first by maximum likelihood under homoskedasticity

and report conventional ML estimates for ν together with 95% confidence sets based on inverting

t-statistics. We then re-estimate the model under heteroskedasticity and report conventional ML

estimates together with confidence sets based on inverting t-statistics, the Chernozhukov and

Hong (2003) procedure, and our procedures 2 and 3. We use a random walk Metropolis Hastings

sampler with chain length of 10000, burnin of 10000 and acceptance rate tuned to be one third.

The results are presented in Table 11. Overall, the results for the heteroskedastic specification

show that the confidence sets seem reasonably insensitive to the type of procedure used, which

suggests that partial identification may not be an issue even allowing for heteroskedasticity. We

also notice some difference in results relative to Helpman et al. (2008). For instance, we find that

sharing the same legal system does not significantly impact trade flows whereas they document

a strong positive effect. On the other hand, we find that sharing a common language and not

being an island has a positive effect on trade flows whereas they document no such effects. Un-

der heteroskedasticity, the magnitudes of coefficients of the trade friction variables are generally

smaller than under homoskedasticity but of the same sign. The exception is the legal variable,

whose coefficient is negative under homoskedasticity but positive under heteroskedasticity. How-

ever, this variable is insignificant for both specifications. A question that one can shed light on is

whether the estimates are also sensitive to the normality assumption on the errors. This question

can be examined within the context of our results by for example using a flexible form for the

joint distribution of the errors.
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5.2 Bivariate Entry Game with US Airline Data

This section estimates a version of the entry game that we study in Subsection 2.4.2 above. We

use data from the second quarter of 2010’s Airline Origin and Destination Survey (DB1B) to

estimate a binary game where the payoff for firm i from entering market m is

βi + βxi xim + ∆iy3−i + εim i = 1, 2

where the ∆i’s are assumed to be negative (as usually the case in entry models). The data

contain 7882 markets which are formally defined as trips between two airports irrespective of

stopping and we examine the entry behavior of two kinds of firms: LC (low cost) firms,26 and

OA (other airlines) which includes all the other firms. The unconditional choice probabilities are

(.16, .61, .07, .15) which are respectively the probabilities that OA and LC serve a market, that

OA and not LC serve a market, that LC and not OA serve a market, and finally whether no

airline serve the market. The regressors we have are market presence and market size. Market

presence is a market and airline specific variable and is defined as follows. From a given airport,

we compute the ratio of markets a given carrier (we take the maximum within the category

OA or the category LC) serves divided by the total number of markets served from that given

airport. The market presence variable (or MP) is the average of the ratios from the two endpoints

and it provides some proxy for an airline’s presence in a given airport (See Berry (1992) for more

on this variable). For our purposes here, this variable is important since it acts as an excluded

regressor: the market presence for OA only enters OA’s payoffs - so MP is both market and

airline specific. The second regressor we use is market size (or MS) which is defined as the

population at the endpoints - so this variable is market specific. We discretize both market size

and market presence into binary variables that take the value of one if the variable is higher

than its median (in the data) value and zero otherwise. So, the reduced form parameters (or the

κ(.)’s in Subsection 2.4.2) here are conditional on a three dimensional vector. That is, the choice

probabilities are P (yOA, yLC |MS, MPOA, MPLC) which gives us a set of 4 choice probabilities

for every value of the conditioning variables (and there are 8 values for these27). To use notation

similar to that in Subsection 2.4.2, we call firm OA as player 1 and firm LC as player 2. Denote

β1(xmOA) := β0
OA+β′OAxmOA and β2(xmLC) := β0

LC +β′LCxmLC . Then the likelihood of market

m observation depends on the following choice probabilities:

26The low cost carriers are: JetBLue, Frontier, Air Tran, Allegiant Air, Spirit, Sun Country, USA3000, Virgin
America, Midwest Air, and Southwest.

27With binary values, the conditioning set takes the following eight values: (1,1,1), (1,1,0), (1,0,1), (1,0,0),
(0,1,1), (0,1,0), (0,0,1), (0,0,0).
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κ11(θ;xm) :=P (ε1m ≥ −β1(xmOA)−∆OA; ε2m ≥ −β2(xmLC)−∆LC)

κ00(θ;xm) :=P (ε1m ≤ −β1(xmOA); ε2m ≤ −β2(xmLC))

κ10(θ;xm) :=s(xm)× P (−β1(xmOA) ≤ ε1m ≤ −β1(xmOA)−∆OA;−β2(xmLC) ≤ ε2m ≤ −β2(xmLC)−∆LC)

+ P (ε1m ≥ −β1(xmOA); ε2m ≤ −β2(xmLC))

+ P (ε1m ≥ −β1(xmOA)−∆OA;−β2(xmLC) ≤ ε2m ≤ −β2(xmLC)−∆LC) .

Here, xm = (MSm,MPmOA,MPmLC)′ and s(xm) is a nuisance parameter which corresponds

to the various aggregate equilibrium selection probabilities. This function s(.) is defined on the

support of xm and so in the model this function takes 23 = 8 values each belonging to [0, 1].

These selection probabilities are usually considered nuisance parameters. We call this the full

model where no assumptions are made on equilibrium selection and use the likelihood function

to build the confidence regions through the LR statistic as described above. So, the full model

contains 4 parameters per profit function, the correlation across the ε’s and the 8 parameters

in the aggregate equilibrium choice probabilities (the s’s) for a total of 17 parameters. We also

estimate another version of the model called the fixed s, where we restrict the aggregate selection

probabilities to be the same across markets. Note that the above is one version of the econometric

model for a game and a more parsimonious version would allow for example the parameters to

change with regressor values, or allow for the regressors’ support to be richer (and not just

binary). Here, we analyze this case precisely to highlight the fact that our CSs provide coverage

guarantees regardless of whether the parameter vector is point identified. The empirical findings

are presented in the Table 12 below.

The columns labeled Proc 1 contain projections of the identified sets at the prespecified con-

fidence level. In this model with 17 parameters, we expect these projections to be especially

conservative. On the other hand, in the columns labeled χ2, we provide one-dimensional confi-

dence intervals for single dimensional (subvector) identified sets that are shown to be slightly

conservative. The construction of these intervals follows Procedure 3 above where we profile

out the corresponding nuisance parameters for every case and compute the likelihood on a one-

dimensional grid. Generally, the χ2 intervals should be tighter than the projection intervals and

that is evident in Table 12.

Starting with the full model results, and considering first on the 95% χ2 results, we see that

the estimates are meaningful economically and are inline with recent estimates obtained in the

literature. For example, fixed costs (the intercepts) are positive and significant for the large

airlines (or OA) but are negative for the LC carriers. Typically the presence of higher fixed costs

can signal various barriers to entry that are usually there to prevent LCs from entering. So, the

higher these fixed costs the less likely it is for LCs to enter. On the other hand, higher fixed

costs of large airlines are associated with a bigger presence (such as a hub) and so more likely
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to enter. As expected, both market presence and market size are associated with a positive

probability of entry for both OA and LC regardless of market structure. Note also the very

high correlation in the errors obtained here which could indicate missing profitability variables

whereby firms enter a market regardless of competition in those markets that are particularly

profitable. One interesting observation is the estimates for s001 and s101. These are the aggregate

selection probabilities and according to the results, they are not identified. This is likely to be

due to the rather small number of markets with small size, large presence for OA but small

presence for LC (in the case of s001) and also small number of markets with large market size

but small presence for LCs but large presence for OAs. The strength of our approach is its

adaptivity to lack of identification in a particular data set: for example, the identified set for

s001 is contained in [0, 1] with at least 95% probability which indicates that the model (and

data) has no information about this parameter while the identified set for s111 is contained in

[.97, 1] with at least 95% probability! Also, in the fixed s model, the results for both the Proc 1

and χ2 procedures are in agreement with the corresponding ones for the full model χ2 and the

results across both Proc 1 (90% and 95%) and χ2 (or Proc 3) for both full and fixed s models

are remarkably similar and tell a consistent story.

6 Conclusion

We propose new methods for constructing frequentist CSs for IdSs in possibly partially-identified

econometric models. Our CSs are simple to compute and have asymptotically correct frequentist

coverage uniformly over a class of DGPs, including partially- and point- identified parametric

likelihood and moment based models. We show that under a set of sufficient conditions, and

in some broad classes of models, our set coverage is asymptotically exact. We also show that

in models with singularities (such as the missing data example), our MCMC CSs for the IdS

ΘI of the whole parameter vector may be slightly conservative, but our MCMC CSs for MI

(functions of the IdS) could still be asymptotically exact. Monte Carlo experiments showcase

the good finite-sample coverage properties of our proposed CS constructions in standard difficult

situations. We also illustrate our proposed CSs in two relevant empirical examples.

There are numerous extensions we plan to address in the future. The first natural extension is

to allow for semiparametric likelihood or moment based models involving unknown and possibly

partially-identified nuisance functions. We think this paper’s MCMC approach could be extended

to the partially-identified sieve MLE based inference in Chen, Tamer, and Torgovitsky (2011).

A second extension is to allow for structural models with latent state variables. Finally, another

extension is to study the case with possibly misspecified likelihoods.
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A Additional Monte Carlo evidence

A.1 Missing data example

Figure 6 plots the marginal “curved” priors for β and ρ. Figure 7 plots the reduced-form pa-
rameters evaluated at the MCMC chain for the structural parameters presented in Figure 1.
Although the partially-identified structural parameters µ and β bounce around their respective
identified sets, the reduced-form chains in Figure 7 are stable.

A.2 Complete information game

Figure 8 presents the MCMC chain for the structural parameters computed from one simulated
data set with n = 1000 using a likelihood objective function and a flat prior on Θ. Figure 9
presents the reduced-form probabilities calculated from the chain in Figure 8.

A.3 Euler equations

We simulate data using the design in Hansen et al. (1996) (also used by Kocherlakota (1990)
and Stock and Wright (2000)).28 The simulation design has a representative agent with CRRA
preferences indexed by δ (discount rate) and γ (risk-aversion parameter) and a representative
dividend-paying asset. The design has log consumption growth ct+1 and log dividend growth on
a representative asset dt+1 evolving as a bivariate VAR(1), with:(

dt+1

ct+1

)
=

(
0.004

0.021

)
+

(
0.117 0.414

0.017 0.161

)(
dt

cc

)
+ εt+1

where the εt+1 are i.i.d normal with mean zero and covariance matrix:(
0.01400 0.00177

0.00177 0.00120

)
.

Previous studies use the Tauchen and Hussey (1991) method to simulate the data based on a
discretized system. Unlike the previous studies, we simulate the VAR directly and use Burnside
(1998)’s formula for the price dividend ratio to calculate the return. Therefore we do not incur
any numerical approximation error due to discretization.

The only return used in the Euler equation is the gross stock return Rt+1, with a constant,
lagged consumption growth, and lagged returns used as instruments. Thus the GMM model is:

E
[(
δG−γt+1Rt+1 − 1

)
⊗ zt

]
= 0

28We are grateful to Lars Peter Hansen for suggesting this simulation exercise.
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Figure 6: Marginal curved priors for β and ρ for the missing data example.
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(κ11(θ), κ10(θ), κ00(θ))′ calculated from the chain in Figure 1. It is clear
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chain for the structural parameters has not.
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Figure 8: MCMC chain for all structural parameters (top 6 panels) and QLR
(bottom panel) with n = 1000 using a likelihood for Ln and a flat prior on Θ.
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Figure 9: MCMC chain for the reduced-form probabilities calculated from the
chain in Figure 8. It is clear that the chain for the reduced-form probabilities
has converged, even though the chain for the structural parameters from which
they are calculated has not.
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with Gt+1 = exp(ct+1) and zt = (1, Gt, Rt)
′. We use a continuously-updated GMM objective

function. We again use samples of size n = 100, 250, 500, and 1000 with (δ, γ) sampled from the
quasi-posterior using a random walk Metropolis Hastings sampler with acceptance rate tuned
to be approximately one third. We take a flat prior and vary (δ, γ) in the DGP and the support
of the prior.

The model is (weakly) point identified. However, Figure 10 shows that the criterion contains
very little information about the true parameters even with n = 500. The chain for γ bounces
around the region [10, 40] and the chain for δ bounces around [0.8, 1.05]. The chain is drawn
from the quasi-posterior with a flat prior on [0, 6, 1.1]× [0, 40]. This suggests that conventional
percentile-based confidence intervals for δ and γ following Chernozhukov and Hong (2003) may
be highly sensitive to the prior. Figure 11 shows a scatter plot of the (δ, γ) chain which illustrates
further the sensitivity of the draws to the prior.

Tables 13 and 14 present coverage properties of our Procedure 1 for the full set Θ̂α (CCOT θ
in the tables) together with our Procedure 2 for the identified set for δ and γ (CCOT δ and
CCOT γ in the tables). Here our Procedure 3 coincides with confidence sets based on inverting
the “constrained-minimized” QLR statistic suggested in Hansen et al. (1996) (HHY δ and HHY
γ in the tables). We also present the coverage properties of confidence sets formed from the
upper and lower 100(1−α)/2 quantiles of the MCMC chains for γ and δ (i.e. the Chernozhukov
and Hong (2003) procedure; CH in the tables) and conventional confidence intervals based on
inverting t-statistics (Asy in the tables).

Overall the results are somewhat sensitive to the support for the parameters, even for the full
identified set. Results that construct the confidence sets using the quantiles of the actual chain
of parameters (CH in the Tables) do not perform well, but whether it over/under covers seems to
depend on the support of the prior. For instance, CH is conservative in Table 13 but undercovers
badly for γ even with n = 500 in Table 14. Confidence sets based on the profiled QLR statistic
from the MCMC chain appear to perform better, but can over or under cover by a few percentage
points in samples of n = 100 and n = 250.
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Figure 10: Plots of the MCMC chain for the structural parameter θ = (δ, γ)
with n = 250, θ0 = (0.97, 10) and a flat prior on Θ = [0.6, 1.1]× [0, 40].
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Figure 11: Scatter plot of the chain depicted in 10.
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Figure 12: Plots of the moments calculated from the chain in Figure 10.

CCOT θ CCOT δ CCOT γ HHY δ HHY γ CH δ CH γ
n = 100

α = 0.90 0.8796 0.9478 0.9554 0.9344 0.8584 0.9900 0.9886
α = 0.95 0.9388 0.9858 0.9870 0.9728 0.8954 0.9974 0.9950
α = 0.99 0.9860 0.9996 0.9982 0.9940 0.9364 1.0000 0.9998

n = 250
α = 0.90 0.8828 0.9492 0.9542 0.9184 0.8716 0.9860 0.9874
α = 0.95 0.9360 0.9844 0.9846 0.9596 0.9076 0.9958 0.9940
α = 0.99 0.9836 0.9990 0.9976 0.9908 0.9330 0.9996 0.9990

n = 500
α = 0.90 0.8848 0.9286 0.9230 0.9038 0.8850 0.9764 0.9708
α = 0.95 0.9404 0.9756 0.9720 0.9548 0.9312 0.9900 0.9894
α = 0.99 0.9888 0.9974 0.9972 0.9856 0.9594 0.9986 0.9988

n = 1000
α = 0.90 0.8840 0.8842 0.8774 0.9056 0.8984 0.9514 0.9518
α = 0.95 0.9440 0.9540 0.9548 0.9532 0.9516 0.9812 0.9796
α = 0.99 0.9866 0.9954 0.9938 0.9898 0.9852 0.9968 0.9972

Table 13: MC coverage probabilities for δ = 0.97 ∈ [0.8, 1], γ = 1.3 ∈ [0, 10].
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CCOT θ CCOT δ CCOT γ HHY δ HHY γ CH δ CH γ
n = 100

α = 0.90 0.8212 0.9098 0.7830 0.8940 0.8764 0.9658 0.3434
α = 0.95 0.8820 0.9564 0.8218 0.9394 0.9288 0.9886 0.4954
α = 0.99 0.9614 0.9934 0.8780 0.9846 0.9732 0.9984 0.8098

n = 250
α = 0.90 0.8774 0.9538 0.8560 0.8758 0.8914 0.9768 0.4068
α = 0.95 0.9244 0.9784 0.8908 0.9260 0.9468 0.9920 0.5402
α = 0.99 0.9756 0.9982 0.9392 0.9780 0.9856 0.9990 0.7552

n = 500
α = 0.90 0.9116 0.9600 0.9060 0.8668 0.8952 0.9704 0.5504
α = 0.95 0.9494 0.9866 0.9412 0.9136 0.9504 0.9892 0.6130
α = 0.99 0.9880 0.9978 0.9758 0.9640 0.9890 0.9986 0.7070

n = 1000
α = 0.90 0.9046 0.9134 0.8952 0.8838 0.8988 0.9198 0.8864
α = 0.95 0.9582 0.9614 0.9556 0.9216 0.9528 0.9586 0.9284
α = 0.99 0.9882 0.9930 0.9922 0.9594 0.9914 0.9884 0.9600

Table 14: MC coverage probabilities for δ = 0.97 ∈ [0.6, 1.1], γ = 1.3 ∈ [0, 40].

A.4 Gaussian mixtures

Consider the bivariate normal mixture where each Xi is iid with density f given by:

f(xi) = ηφ(xi − µ) + (1− η)φ(xi)

where η ∈ [0, 1] is the mixing weight and µ ∈ [−M,M ] is the location parameter and φ is the
standard normal pdf. We restrict µ to have compact support because of Hartigan (1985). If
µ = 0 or η = 0 then the model is partially identified and the identified set for θ = (µ, η)′ is
[−M,M ]× {0} ∪ {0} × [0, 1]. However, if µ 6= 0 and η > 0 then the model is point identified.

We are interested in doing inference on the identified set MI for µ and HI for η. For each
simulation, we simulate a chain θ1, . . . , θB using Gibbs sampling.29 We calculate the profile
QLR ratio for µ, which is:{

Ln(θ̂)− supη∈[0,1] Ln(µb, η) if both µb 6= 0 and ηb > 0

Ln(θ̂)−minµ∈[−M,M ] supη∈[0,1] Ln(µ, η) else

and the profile QLR ratio for η, which is:{
Ln(θ̂)− supµ∈[−M,M ] Ln(µ, ηb) if both µb 6= 0 and ηb > 0

Ln(θ̂)−minη∈[0,1] supµ∈[−M,M ] Ln(µ, η) else .

We take the 100α percentile of the QLRs and call them ξµα and ξηα. Confidence sets for MI and

29Unlike the previous examples, here we use hierarchical Gibbs sampling instead of a random walk Metropolis-
Hastings algorithm as it allows us to draw exactly from the posterior.
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HI (using Procedure 2) are:

M̂α =
{
µ ∈ [−M,M ] : Ln(θ̂)− sup

η∈[0,1]
Ln(µ, η) ≤ ξµα

}
Ĥα =

{
η ∈ [0, 1] : Ln(θ̂)− sup

µ∈[−M,M ]
Ln(µ, η) ≤ ξηα

}
.

Unlike the missing data and game models, here the set of parameters θ under which the model is
partially identified is a set of measure zero in the full parameter space. So näıve MCMC sampling
won’t going to give us the correct critical values when the model is partially identified unless we
choose a prior that puts positive probability on the partially identified region.

Therefore, we use a truncated normal prior for µ:

π(µ) =
1

Φ(M−ab )− Φ(−M−ab )

1

b
√

2π
e−

1
2(µ−ab )

2

1l{µ ∈ [−M,M ]}

with hyperparameters (a, b). Conjugate beta priors for η are most commonly used. However,
they do not assign positive probability to η = 0. Instead we take the following empirical Bayes
approach. Let:

π(η) = qδ0 + (1− q)fB(α,β)(η)

where q ∈ [0, 1], δ0 is point mass at the origin, and B(α, β) is the Beta distribution pdf. We’ll
treat the hyperparameters α, β, a, b as fixed but estimate the mixing proportion q from the data.
The posterior distribution for θ = (µ, η) is:

Π((µ, η)|Xn; q) =
eLn(θ)π(µ)π(η|q)∫ 1

0

∫M
−M eLn(θ)π(µ)π(η|q)dµdη

.

The denominator is proportional to the marginal distribution for Xn given q. For the “empirical
Bayes” bit we choose q to maximize this expression. Therefore, we choose:

q̂ =

{
1 if

∏n
i=1 φ(Xi) ≥

∫M
−M

∫ 1
0

∏n
i=1(ηφ(Xi − µ) + (1− η)φ(Xi))fB(α,β)(η)π(µ)dηdµ

0 else .

We then plug q̂ back in to the prior for η. The posterior distribution we use for the MCMC
chain is:

Π((µ, η)|Xn; q̂) =
eLn(θ)π(µ)π(η|q̂)∫ ∫
eLn(θ)π(µ)π(η|q̂)dµdη

.

where π(µ) is as above and

π(η|q̂) =

{
δ0 if q = 1

fB(α,β) if q = 0 .

When q̂ = 1 we have η = 0 for every draw, and when q = 0 we can use the hierarchical Gibbs
method to draw µ and η.

For the simulations we take M = 3 with µ0 = 1. The prior for µ is a N(0, 1) truncated to
[−M,M ]. We take α = 1.5 and β = 3 in the prior for η. We vary η0, taking η0 = 0.5, 0.2, 0.1
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(point identified) and η0 = 0 (partially identified; see Figure 13). We use 5,000 replications with
chain length 10,000 and a burnin of 1,000. For confidence sets for ΘI we use Procedure 1 with
the prior π(η) = fB(α,β)(η) with α = 1.5 and β = 3 and π(µ) is a N(0, 1) truncated to [−M,M ].
We again use a hierarchical Gibbs sampler with chain length 10,000 and burnin of 1,000.

The first two Tables 15 and 16 present coverage probabilities of M̂α and Ĥα using Procedure 2.
Our procedure is valid but conservative in the partially identified case (here the identified set for
the subvectors µ and η is the full parameter space which is why the procedure is conservative).
However the method under-covers for moderate sample sizes when the mixing weight is small
but nonzero. Tables 17 and 18 present results using our Procedure 3. This works well as expected
under point identification (since the QLR is exactly χ2

1 in this case). Under partial identification

this method performs poorly for MI . The final Table 19 presents coverage probabilities of Θ̂α

using Procedure 1 which shows that its coverage is good in both the point and partially-identified
cases, though again it can under-cover slightly in small to moderate sample sizes when the mixing
weight is close to zero.
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η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00
n = 100

α = 0.90 0.9368 0.9760 0.9872 0.9712
α = 0.95 0.9782 0.9980 0.9980 0.9712
α = 0.99 0.9968 0.9996 0.9994 0.9712

avg q̂ 0.0052 0.5634 0.8604 0.9712
n = 250

α = 0.90 0.8884 0.8646 0.9322 0.9838
α = 0.95 0.9514 0.9522 0.9794 0.9838
α = 0.99 0.9938 0.9978 0.9998 0.9838

avg q̂ 0.0000 0.2278 0.7706 0.9838
n = 500

α = 0.90 0.8826 0.8434 0.8846 0.9886
α = 0.95 0.9396 0.9090 0.9346 0.9886
α = 0.99 0.9880 0.9892 0.9944 0.9886

avg q̂ 0.0000 0.0324 0.6062 0.9886
n = 1000

α = 0.90 0.8900 0.8844 0.8546 0.9888
α = 0.95 0.9390 0.9208 0.8906 0.9888
α = 0.99 0.9882 0.9776 0.9798 0.9888

avg q̂ 0.0000 0.0002 0.3150 0.9888
n = 2500

α = 0.90 0.8932 0.9010 0.8970 0.9942
α = 0.95 0.9454 0.9456 0.9236 0.9942
α = 0.99 0.9902 0.9842 0.9654 0.9942

avg q̂ 0.0000 0.0000 0.0166 0.9942

Table 15: MC coverage probabilities for M̂α (Procedure 2).
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η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00
n = 100

α = 0.90 0.9470 0.9252 0.8964 0.9742
α = 0.95 0.9820 0.9718 0.9438 0.9752
α = 0.99 0.9986 0.9970 0.9902 0.9768

avg q̂ 0.0052 0.5634 0.8604 0.9712
n = 250

α = 0.90 0.9008 0.8886 0.8744 0.9864
α = 0.95 0.9594 0.9520 0.9288 0.9872
α = 0.99 0.9956 0.9926 0.9898 0.9882

avg q̂ 0.0000 0.2278 0.7706 0.9838
n = 500

α = 0.90 0.8826 0.8798 0.8508 0.9900
α = 0.95 0.9432 0.9356 0.9118 0.9902
α = 0.99 0.9918 0.9890 0.9764 0.9908

avg q̂ 0.0000 0.0324 0.6062 0.9886
n = 1000

α = 0.90 0.8892 0.8900 0.8582 0.9922
α = 0.95 0.9440 0.9314 0.9076 0.9922
α = 0.99 0.9886 0.9842 0.9722 0.9928

avg q̂ 0.0000 0.0002 0.3150 0.9888
n = 2500

α = 0.90 0.8938 0.8956 0.9022 0.9954
α = 0.95 0.9460 0.9460 0.9342 0.9956
α = 0.99 0.9870 0.9866 0.9730 0.9962

avg q̂ 0.0000 0.0000 0.0166 0.9942

Table 16: MC coverage probabilities for Ĥα (Procedure 2).
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Figure 13: PDFs for the normal mixture MC design for different values of η0.

η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00
n = 100

α = 0.90 0.8978 0.9190 0.9372 0.8208
α = 0.95 0.9516 0.9684 0.9718 0.9020
α = 0.99 0.9938 0.9958 0.9954 0.9796

n = 250
α = 0.90 0.8996 0.8960 0.9180 0.8248
α = 0.95 0.9514 0.9486 0.9602 0.9042
α = 0.99 0.9882 0.9926 0.9944 0.9752

n = 500
α = 0.90 0.8998 0.8916 0.9030 0.8240
α = 0.95 0.9474 0.9434 0.9500 0.9042
α = 0.99 0.9898 0.9874 0.9904 0.9756

n = 1000
α = 0.90 0.9028 0.9026 0.8984 0.8214
α = 0.95 0.9514 0.9538 0.9502 0.8986
α = 0.99 0.9902 0.9912 0.9930 0.9788

n = 2500
α = 0.90 0.8998 0.8966 0.8968 0.8098
α = 0.95 0.9520 0.9489 0.9442 0.8916
α = 0.99 0.9912 0.9902 0.9882 0.9720

Table 17: MC coverage probabilities for M̂χ
α (Procedure 3).
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η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00
n = 100

α = 0.90 0.9024 0.9182 0.9426 0.8920
α = 0.95 0.9528 0.9622 0.9738 0.9434
α = 0.99 0.9916 0.9946 0.9950 0.9890

n = 250
α = 0.90 0.8974 0.8970 0.9216 0.8948
α = 0.95 0.9432 0.9466 0.9600 0.9444
α = 0.99 0.9908 0.9894 0.9928 0.9880

n = 500
α = 0.90 0.9026 0.8948 0.9080 0.8954
α = 0.95 0.9472 0.9454 0.9550 0.9476
α = 0.99 0.9886 0.9886 0.9914 0.9898

n = 1000
α = 0.90 0.8960 0.9006 0.8964 0.8972
α = 0.95 0.9442 0.9524 0.9476 0.9522
α = 0.99 0.9878 0.9884 0.9892 0.9914

n = 2500
α = 0.90 0.9052 0.9038 0.9036 0.8954
α = 0.95 0.9504 0.9490 0.9502 0.9480
α = 0.99 0.9906 0.9892 0.9900 0.9922

Table 18: MC coverage probabilities for Ĥχ
α (Procedure 3).

η0 = 0.50 η0 = 0.20 η0 = 0.10 η0 = 0.00
n = 100

α = 0.90 0.9170 0.8696 0.8654 0.9294
α = 0.95 0.9610 0.9250 0.9342 0.9724
α = 0.99 0.9926 0.9824 0.9880 0.9960

n = 250
α = 0.90 0.8962 0.8932 0.8682 0.9192
α = 0.95 0.9498 0.9468 0.9358 0.9654
α = 0.99 0.9918 0.9876 0.9872 0.9938

n = 500
α = 0.90 0.8922 0.8842 0.8706 0.9034
α = 0.95 0.9464 0.9464 0.9310 0.9536
α = 0.99 0.9898 0.9902 0.9846 0.9926

n = 1000
α = 0.90 0.8980 0.8964 0.8832 0.9134
α = 0.95 0.9456 0.9478 0.9376 0.9594
α = 0.99 0.9872 0.9888 0.9882 0.9932

n = 2500
α = 0.90 0.8986 0.8960 0.9036 0.9026
α = 0.95 0.9522 0.9466 0.9468 0.9520
α = 0.99 0.9918 0.9886 0.9896 0.9916

Table 19: MC coverage probabilities for Θ̂α (Procedure 1).
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B Uniformity

Let P denote the class of distributions over which we want the confidence sets to be uniformly
valid. Let L(θ;P) denote the population objective function. We again assume that L(·;P) and
Ln are upper semicontinuous and that supθ∈Θ L(θ;P) <∞ holds for each P ∈ P. The identified
set is ΘI(P) = {θ ∈ Θ : L(θ;P) = supϑ∈Θ L(ϑ;P)} and the identified set for a function µ of
ΘI(P) is MI(P) = {µ(θ) : θ ∈ ΘI(P)}. We now show that, under slight strengthening of our

regularity conditions, Θ̂α and M̂α are uniformly valid, i.e.:

lim inf
n→∞

inf
P∈P

P(ΘI(P) ⊆ Θ̂α) ≥ α (23)

lim inf
n→∞

inf
P∈P

P(MI(P) ⊆ M̂α) ≥ α (24)

both hold.

The following results are modest extensions of Lemmas 2.1 and 2.2. Let (υn)n∈N be a sequence of
random variables. We say that υn = oP(1) uniformly for P ∈ P if limn→∞ supP∈P P(|υn| > ε) = 0
for each ε > 0. We say that υn ≤ oP(1) uniformly for P ∈ P if limn→∞ supP∈P P(υn > ε) = 0 for
each ε > 0

Lemma B.1. Let (i) supθ∈ΘI(P)Qn(θ)
P
 WP where WP is a random variable whose probability

distribution is continuous at its α quantile (denoted by wα,P) for each P ∈ P, and:

lim
n→∞

sup
P∈P

∣∣∣∣∣P( sup
θ∈ΘI(P)

Qn(θ) ≤ wα,P − ηn
)
− α

∣∣∣∣∣ = 0

for any sequence (ηn)n∈N with ηn = o(1); and (ii) (wn,α)n∈N be a sequence of random variables
such that wn,α ≥ wα,P + oP(1) uniformly for P ∈ P.

Then: (23) holds for Θ̂α = {θ ∈ Θ : Qn(θ) ≤ wn,α}. Moreover, if wn,α = wα,P + oP(1) uniformly
for P ∈ P then (23) holds with equality.

Lemma B.2. Let (i) supm∈MI(P) infθ∈µ−1(m)Qn(θ)
P
 WP where WP is a random variable whose

probability distribution is continuous at its α quantile (denoted by wα,P) for each P ∈ P and:

lim
n→∞

sup
P∈P

∣∣∣∣∣P( sup
m∈MI(P)

inf
θ∈µ−1(m)

Qn(θ) ≤ wα,P − ηn
)
− α

∣∣∣∣∣ = 0

for any sequence (ηn)n∈N with ηn = o(1); and (ii) (wn,α)n∈N be a sequence of random variables
such that wn,α ≥ wα,P + oP(1) uniformly for P ∈ P.

Then: (24) holds for M̂α = {µ(θ) : θ ∈ Θ, Qn(θ) ≤ wn,α}. Moreover, if wn,α = wα,P + oP(1)
uniformly for P ∈ P then (24) holds with equality.

The following regularity conditions ensure that Θ̂α and M̂α are uniformly valid over P. Let
(Θosn(P))n∈N denote a sequence of local neighborhoods of ΘI(P) such that Θosn(P) ∈ B(Θ) and
ΘI(P) ⊆ Θosn(P) for each n and for each P ∈ P. In what follows we omit the dependence of
Θosn(P) on P to simplify notation.
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Assumption B.1. (Consistency, posterior contraction)

(i) Ln(θ̂) = supθ∈Θosn Ln(θ) + oP(n−1) uniformly for P ∈ P.
(ii) Πn(Θc

osn|Xn) = oP(1) uniformly for P ∈ P.

We restate our conditions on local quadratic approximation of the criterion allowing for singu-
larity. Recall that a local reduced-form reparameterization is defined on a neighborhood ΘN

I of
ΘI . We require that Θosn(P) ⊆ ΘN

I (P) for all P ∈ P, for all n sufficiently large. For nonsin-
gular P ∈ P the reparameterization is of the form θ 7→ γ(θ;P) from ΘN

I (P) into Γ(P) where
γ(θ) = 0 if and only if θ ∈ ΘI(P). For singular P ∈ P the reparameterization is of the form
θ 7→ (γ(θ;P), γ⊥(θ;P)) from ΘN

I (P) into Γ(P) × Γ⊥(P) where (γ(θ;P), γ⊥(θ;P)) = 0 if and only

if θ ∈ ΘI(P). We require the dimension of γ(·;P) to be between 1 and d for each P ∈ P, with
d <∞ independent of P.

To simply notation, in what follows we omit dependence of d∗, ΘN
I , T , γ, γ⊥, Γ, Γ⊥, `n, Vn,

Σ, and fn,⊥ on P. We present results for the case in which each T = Rd∗ ; extension to the case
where some T are cones are straightforward.

Assumption B.2. (Local quadratic approximation)
(i) There exist sequences of random variables `n, Rd∗-valued random vectors Vn and, for singular
P ∈ P, a sequence of non-negative measurable functions fn,⊥ : Γ⊥ → R with fn,⊥(0) = 0 (we take
γ⊥ ≡ 0 and fn,⊥ ≡ 0 for nonsingular P ∈ P), such that supP∈P supθ∈Θosn ‖(γ(θ), γ⊥(θ))‖ → 0
and

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn − fn,⊥(γ⊥(θ))

)∣∣∣∣ = oP(1) (25)

uniformly for P ∈ P, with Vn
P
 N(0,Σ) as n→∞ for each P ∈ P;

(ii) for each singular P ∈ P: {(γ(θ), γ⊥(θ)) : θ ∈ Θosn} = {γ(θ) : θ ∈ Θosn}×{γ⊥(θ) : θ ∈ Θosn};
(iii) Kosn := {

√
nγ(θ) : θ ∈ Θosn} ⊇ Bkn for each P ∈ P and infP∈P kn →∞ as n→∞;

(iv) supP∈P supz |P(‖Σ−1/2Vn‖2 ≤ z)− Fχ2
d∗

(z)| = o(1).

Notice that kn in Part (iii) may depend on P. Part (iv) can be verified via Berry-Esseen type

results provided higher moments of Σ−1/2Vn are bounded uniformly in P (see, e.g., Götze (1991)).

Let ΠΓ∗ denote the image measure of Π on Γ under the map ΘN
I 3 θ 7→ γ(θ) if P is nonsingular

and ΘN
I 3 θ 7→ (γ(θ), γ⊥(θ)) if P is singular. Also let B∗δ denote a ball of radius δ centered at

the origin in Rd∗ if P is nonsingular and in Rd∗+dim(γ⊥) if P is singular. In what follows we omit
dependence of ΠΓ∗ , B

∗
δ , and πΓ∗ on P.

Assumption B.3. (Prior)

(i)
∫
θ e

nLn(θ) dΠ(θ) <∞ P-almost surely for each P ∈ P;
(ii) Each ΠΓ∗ has a density πΓ∗ on B∗δ ∩ (Γ×Γ⊥) (or B∗δ ∩Γ if P is nonsingular) for some δ > 0
which are uniformly (in P) positive and continuous at the origin.

As before, we let ξpostn,α denote the α quantile of Qn(θ) under the posterior distribution Πn.

Assumption B.4. (MC convergence)

ξmcn,α = ξpostn,α + oP(1) uniformly for P ∈ P.

The following result is uniform (in P ∈ P) extension of Theorems 3.1 and 3.2.
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Theorem B.1. Let Assumptions B.1, B.2, B.3, and B.4 hold with Σ(P) = Id∗ for each P ∈ P.
(i) If there is at least a singular P ∈ P, then: (23) holds.
(ii) If no P ∈ P is singular, then: (23) holds with equality.

To establish (24) we require a uniform version of Assumptions 3.5 and 3.6. Let PZ denote the
distribution of a N(0, Id∗) random vector. In what follows, we omit dependence of f on P to
simplify notation. Let ξα,P denote the α quantile of f(Z).

Assumption B.5. (Profile QL)
(i) For each P ∈ P there exists a measurable function f : Rd∗ → R such that:

sup
θ∈Θosn

∣∣∣∣nPLn(∆(θ))−
(
`n +

1

2
‖Vn‖2 −

1

2
f
(
Vn −

√
nγ(θ)

))∣∣∣∣ = oP(1)

uniformly for P ∈ P, with Vn, `n, and γ from Assumption B.2;
(ii) There exist z, z ∈ R with z < infP∈P ξα,P ≤ supP∈P ξα,P < z such that the functions [z, z] 3
z 7→ PZ(f(Z) ≤ z) are uniformly equicontinuous and invertible with uniformly equicontinuous
inverse;
(iii) supP∈P supz∈[z,z] |P(f(Σ−1/2Vn) ≤ z)− PZ(f(Z) ≤ z)| = o(1).

Let ξpost,pn,α denote the α quantile of PQn(∆(θ)) under the posterior distribution Πn.

Assumption B.6. (MC convergence)

ξmc,pn,α = ξpost,pn,α + oP(1) uniformly for P ∈ P.

The following result is uniform (in P ∈ P) extension of Theorem 3.3.

Theorem B.2. Let Assumptions B.1, B.2, B.3, B.5, and B.6 hold with Σ(P) = Id∗ for each
P ∈ P. Then: (24) holds with equality.

C Example 3: parameters drifting to boundary and point-identification

We return to Example 3 considered in Section 4.2.1 and examine the coverage properties of M̂α

for the identified set BI = [0, µ] along certain drifting sequences of distributions. As will be seen,
our MC CSs (based on the posterior distribution of the profile QLR) remain valid in certain
situations while bootstrap-based CSs (based on the bootstrap distribution of the profile QLR)
can undercover.

Recall that X1, . . . , Xn are i.i.d. with unknown mean µ ∈ [0, 1] and unit variance. Here we
consider coverage of the CS for BI = [0, µ] as the mean µ ∈ [0, 1] drifts to the lower bound
µ = 0 of the parameter space. Suppose that β ∈ B is identified by the moment inequality
E[β − Xi] ≤ 0. The identified set for β is BI = [0, µ], which is the argmax of the population
criterion L(β) = −1

2((β − µ) ∨ 0)2.
We write this as a moment equality model E[β + λ−Xi] = 0 where λ ∈ [0, 1− β] is a slackness
parameter. The parameter space for θ = (β, λ) is Θ = {(β, λ) ∈ [0, 1]2 : β + λ ≤ 1}. The
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identified set for θ is ΘI = {(β, λ) ∈ Θ : β + λ = µ} and the identified set for the subvector β is
BI = [0, µ]. The CU-GMM objective function is:

Ln(β, λ) = −1

2
(β + λ− X̄n)2 .

Drifting to point identification. We take µ = c/
√
n with c > 0. Then:

nLn(β, λ) = −1

2
(
√
n(β + λ)− c− Vn)2

where Vn =
√
n(X̄n − µ) N(0, 1). It is straightforward to show that:

2nLn(β̂, λ̂) = −(c+ Vn)21l{c+ Vn ≤ 0}+ oP(1) .

Similarly:

sup
λ∈[0,1−β]

2nLn(β, λ) =

 −(c+ Vn −
√
nβ)2 c+ Vn −

√
nβ ≤ 0

0 0 ≤ c+ Vn −
√
nβ ≤

√
n−
√
nβ

−(c+ Vn −
√
n)2 c+ Vn ≥

√
n

hence:

inf
β∈µ(∆(θb))

sup
λ∈[0,1]

2nLn(β, λ) = −(c+ Vn −
√
n(βb + λb))21l{c+ Vn −

√
n(βb + λb) ≤ 0}+ oP(1)

and:

PQn(∆(θb)) = (c+Vn−
√
n(βb+λb))21l{c+Vn−

√
n(βb+λb) ≤ 0}−(c+Vn)21l{c+Vn ≤ 0}+oP(1) .

In particular, we have:

sup
θ∈ΘI

PQn(∆(θ)) = (Vn)21l{Vn ≤ 0} − (c+ Vn)21l{c+ Vn ≤ 0}+ oP(1) .

Suppose we choose a prior on (β, λ) that induces a flat prior on γ = β+λ. Also let f : R→ R be
given by f(κ) = κ21l{κ ≤ 0} and let z∗n = z + (c+ Vn)21l{c+ Vn ≤ 0}. Ignoring asymptotically
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negligible terms, we have:

Πn({θ : PQn(∆(θ)) ≤ z}|Xn) = Πn

({
θ : f(c+ Vn −

√
nγ(θ)) ≤ z∗n

}∣∣Xn

)
=

∫ 1
0 1l{f(c+ Vn −

√
nγ) ≤ z∗n}e−

1
2

(c+Vn−
√
nγ)2

dγ∫ 1
0 e
− 1

2
(c+Vn−

√
nγ)2

dγ

=

∫ c+Vn
c+Vn−

√
n 1l{f(κ) ≤ z∗n}e−

1
2
κ2
dκ∫ c+Vn

c+Vn−
√
n e
− 1

2
κ2
dκ

=

∫ c+Vn
−∞ 1l{f(κ) ≤ z∗n}e−

1
2
κ2
dκ∫ c+Vn

−∞ e−
1
2
κ2
dκ

+ oP(1) .

Since f(κ) ≤ z∗n holds if and only if κ ≥ −
√
z∗n, we have:

Πn({θ : PQn(∆(θ)) ≤ z}|Xn) =
PZ|Xn

(−
√
z∗n ≤ Z ≤ c+ Vn)

PZ|Xn
(Z ≤ c+ Vn)

+ oP(1) .

We choose zn,α = z∗n − (c + Vn)21l{c + Vn < 0} ≥ 0 so that the right-hand side is equal to
α (notice that in some cases we will choose zn,α = 0 with the right-hand side ≥ α). Ignoring
asymptotically negligible terms, this gives:

−
√
z∗n = 0 ∧ Φ−1

(
(1− α)Φ(c+ Vn)

)
hence:

zn,α =
(

0 ∧ Φ−1
(
(1− α)Φ(c+ Vn)

))2
− (c+ Vn)21l{c+ Vn < 0}+ oP(1) .

Therefore, the asymptotic coverage of the CS M̂α for BI is:

lim
n→∞

P(BI ⊆ M̂α) = PZ
(

(Z)21l{Z ≤ 0} ≤
(

0 ∧ Φ−1
(
(1− α)Φ(c+ Z)

))2
)

where Z ∼ N(0, 1). One can verify numerically that limn→∞ P(BI ⊆ M̂α) ≥ α for all α ∈ (0, 1)
and c ≥ 0 (see Figure 14 below).

Comparison with the nonparametric bootstrap. Let X∗n denote the bootstrap sample
of size n. The bootstrap criterion function is

2nL∗n(β, λ) = −(
√
n(β + λ)− (

√
nX̄n)−

√
n(X̄∗n − X̄n))2

= −(
√
n(β + λ)− cn − V∗n)2
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where cn =
√
nX̄n = c+Vn and V∗n =

√
n(X̄∗n− X̄n) N(0, 1). By similar arguments, we have:

2nL∗n(β̂∗, λ̂∗) = −(cn + V∗n)21l{cn + V∗n ≤ 0}+ oP(1)

inf
β∈[0,(X̄n∨0)]

sup
λ∈[0,1]

2nL∗n(β, λ) = −(V∗n)21l{V∗n ≤ 0} ∧ −(cn + V∗n)21l{cn + V∗n ≤ 0}+ oP(1)

so the bootstrap profile QLR statistic for BI is:(
(V∗n)21l{V∗n ≤ 0} − (cn + V∗n)21l{cn + V∗n ≤ 0}

)
∨ 0 + oP(1) .

Figure 14 presents the asymptotic coverage of our MCMC CS M̂α for BI and a CS based on
bootstrapping the QLR statistic for BI for the case in which µ = c/

√
n with c = 2.0. It is clear

that our MCMC CS remains valid whereas the bootstrap CS undercovers. Similar results are
obtained with other values of c ≥ 0. This example clearly shows that the posterior distribution
of the profile QLR statistic and the bootstrap distribution of the profile QLR statistic can
indeed behave differently. Thus, our MCMC CSs do not necessarily run into coverage problems
in certain situations in which bootstrap-based CSs undercover.
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Figure 14: Comparison of the asymptotic coverage probabilities of our MCMC
CS for BI (Bayes) and a CS based on bootstrapping the profile QLR statistic
for BI (NP Boot).
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D Local power

In this appendix we study the behavior of the CSs Θ̂α and M̂α under n−1/2-local (contiguous)
alternatives. We maintain the same setup as in Section 3.

Assumption D.1. There exist sequences of distributions (Pn,a)n∈N for fixed a ∈ Rd∗ that satisfy:

(i) Ln(θ̂) = supθ∈Θosn Ln(θ) + oPn,a(n−1);
(ii) Πn(Θc

osn|Xn) = oPn,a(1);

(iii) There exist sequences of random variables `n and Rd∗-valued random vectors Vn (both of
which are measurable functions of data Xn) such that:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn

)∣∣∣∣ = oPn,a(1) (26)

with supθ∈Θosn ‖γ(θ)‖ → 0 and Vn
Pn,a
 N(a, Id∗) as n→∞;

(iv) The sets Kosn = {
√
nγ(θ) : θ ∈ Θosn} cover Rd∗;

(v)
∫

Θ e
nLn(θ) dΠ(θ) <∞ Pn,a-almost surely;

(vi) ΠΓ has a continuous, strictly positive density πΓ on Bδ ∩ Γ for some δ > 0;

(vii) ξmcn,α = ξpostn,α + oPn,a(1).

Assumption D.1 is essentially a restatement of Assumptions 3.1 to 3.4 with a modified quadratic
expansion. Notice that with a = 0 we obtain Pn,a = P and Assumption D.1 corresponds to
Assumptions 3.1 to 3.4 with optimal weighting Σ = Id∗ .

In the following result, let χ2
d∗(a

′a) denote the noncentral chi-square distribution with d∗ degrees
of freedom and noncentrality parameter a′a and let Fχ2

d∗ (a′a) denote its cdf. Also let χ2
d∗,α denote

the α quantile of the (standard) χ2
d∗ distribution Fχ2

d∗
.

Theorem D.1. Let Assumption D.1(i)(iii)(iv) hold. Then:

sup
θ∈ΘI

Qn(θ)
Pn,a
 χ2

d∗(a
′a);

if further Assumption D.1(ii)(v)(vi) hold, then:

sup
z

∣∣∣Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− Fχ2

d∗
(z)
∣∣∣ = oPn,a(1);

and if further Assumption D.1(vii) holds, then:

lim
n→∞

Pn,a(ΘI ⊆ Θ̂α) = Fχ2
d∗ (a′a)(χ

2
d∗,α) < α

whenever a 6= 0.

We now present a similar result for M̂α. In order to do so, we extend slightly the conditions in
Assumption D.1.
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Assumption D.1. Let the following also hold under the local alternatives:
(viii) There exists a measurable f : Rd∗ → R+ such that:

sup
θ∈Θosn

∣∣∣∣nPLn(∆(θ))−
(
`n +

1

2
‖Vn‖2 −

1

2
f
(
Vn −

√
nγ(θ)

))∣∣∣∣ = oPn,a(1) .

(vii ′) ξmc,pn,α = ξpost,pn,α + oPn,a(1).

Assumption D.1(viii) and (vii′) are essentially Assumptions 3.5 and 3.6.

Let Z ∼ N(0, Id∗) and PZ denote the distribution of Z. Let the distribution of f(Z) be continuous
at its α-quantile, which we denote by zα.

Theorem D.2. Let Assumption D.1(i)(iii)(iv)(viii) hold. Then:

sup
θ∈ΘI

PQn(∆(θ))
Pn,a
 f(Z + a) ;

if further Assumption D.1(ii)(v)(vi) hold, then:

sup
z∈S−εn

∣∣Πn

(
{θ : PQn(∆(θ)) ≤ z}

∣∣Xn

)
− PZ|Xn

(
f(Z) ≤ z

)∣∣ = oPn,a(1)

and if further Assumption D.1(vii ′) holds, then:

lim
n→∞

Pn,a(MI ⊆ M̂α) = PZ(f(Z + a) ≤ zα) .

We can thus deduce from Anderson’s lemma (van der Vaart, 2000, Lemma 8.5) that the coverage

limn→∞ Pn,a(MI ⊆ M̂α) ≤ α whenever f is subconvex. In particular, this includes the case in
which MI is a singleton.

E Parameter-dependent support

In this appendix we briefly describe how our procedure may be applied to models with parameter
dependent support under loss of identifiability. Parameter-dependent support is a feature of
certain auction models (e.g., Hirano and Porter (2003), Chernozhukov and Hong (2004)) and
some structural models in labor economics (e.g., Flinn and Heckman (1982)). For simplicity we
just deal with inference on the full vector, though the following results could be extended to
subvector inference in this context.

We again presume the existence of a local reduced-form parameter γ such that γ(θ) = 0 if and

only if θ ∈ ΘI . In what follows we assume without loss of generality that Ln(θ̂) = supθ∈Θosn Ln(θ)

since θ̂ is not required in order to compute the confidence set. We replace Assumption 3.2 (local
quadratic approximation) with the following assumption, which permits the support of the data
to depend on certain components of the local reduced-form parameter γ.
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Assumption E.2. (i) There exist functions γ : ΘN
I → Γ ⊆ Rd∗ and h : Γ→ R+, a sequence of

Rd∗-valued random vectors γ̂n, and a positive sequence (an)n∈N with an → 0 such that:

sup
θ∈Θosn

∣∣∣∣ an2 Qn(θ)− h(γ(θ)− γ̂n)

h(γ(θ)− γ̂n)

∣∣∣∣ = oP(1)

with supθ∈Θosn ‖γ(θ)‖ → 0 and inf{h(γ) : ‖γ‖ = 1} > 0;
(ii) there exist r1, . . . , rd∗ > 0 such that th(γ) = h(tr1γ1, t

r2γ2, . . . , t
rd∗γd∗) for each t > 0;

(iii) the sets Kosn = {(b−r1n (γ1(θ) − γ̂n,1), . . . , b
−rd∗
n (γd∗(θ) − γ̂n,d∗))′ : θ ∈ Θosn} cover Rd∗+ for

any positive sequence (bn)n∈N with bn → 0 and an/bn → 1.

This assumption is similar to Assumptions 2-3 in Fan et al. (2000) but has been modified to allow
for non-identifiable parameters θ. Let FΓ denote a Gamma distribution with shape parameter

r∗ =
∑d∗

i=1 ri and scale parameter 2. The following lemma shows that the posterior distribution
of the QLR converges to FΓ.

Lemma E.1. Let Assumptions 3.1, E.2, and 3.3 hold. Then:

sup
z
|Πn({θ : Qn(θ) ≤ z}|Xn)− FΓ(z)| = op(1) .

By modifying appropriately the arguments in Fan et al. (2000) one can show that, under Assump-
tion E.2, supθ∈ΘI Qn(θ) FΓ. The following theorem states that one still obtains asymptotically

correct frequentist coverage of Θ̂α for the IdS ΘI .

Theorem E.1. Let Assumptions 3.1, E.2, 3.3, and 3.4 hold and supθ∈ΘI Qn(θ) FΓ. Then:

lim
n→∞

P(ΘI ⊆ Θ̂α) = α .

We finish this section with a simple example. Consider a model in which X1, . . . , Xn are i.i.d.
U [0, (θ1 ∨ θ2)] where (θ1, θ2) ∈ Θ = R2

+. Let the true distribution of the data be U [0, γ̃]. The
identified set is ΘI = {θ ∈ Θ : θ1 ∨ θ2 = γ̃}.

Then we use the reduced-form parameter γ(θ) = (θ1 ∨ θ2)− γ̃. Let γ̂n = max1≤i≤nXi − γ̃. Here
we take Θosn = {θ : (1+εn)γ̂n ≥ γ(θ) ≥ γ̂n} where εn → 0 slower than n−1 (e.g. εn = (log n)/n).
It is straightforward to show that:

sup
θ∈ΘI

Qn(θ) = 2n log

(
γ̃

γ̂n + γ̃

)
 FΓ

where FΓ denotes the Gamma distribution with shape parameter r∗ = 1 and scale parameter 2.
Furthermore, taking an = n−1 and h(γ(θ)− γ̂n) = γ̃−1(γ(θ)− γ̂n) we may deduce that:

sup
θ∈Θosn

∣∣∣∣∣ 1
2nQn(θ)− h(γ(θ)− γ̂n)

h(γ(θ)− γ̂n)

∣∣∣∣∣ = oP(1) .

Notice that r∗ = 1 and that the sets Kosn = {n(γ(θ)− γ̂n) : θ ∈ Θosn} = {n(γ− γ̂n) : (1+εn)γ̂ ≥
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γ ≥ γ̂n} cover R+. A smooth prior on Θ will induce a smooth prior on γ(θ), and the result follows
from Theorem E.1.
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F Proofs and Additional Results

F.1 Proofs and Additional Lemmas for Sections 2 and 3

Proof of Lemma 2.1. By (ii), there is a positive sequence (ηn)n∈N with ηn = o(1) such that
wn,α ≥ wα − ηn holds wpa1. Therefore:

P(ΘI ⊆ Θ̂α) = P(supθ∈ΘI Qn(θ) ≤ wn,α)

≥ P(supθ∈ΘI Qn(θ) ≤ wα − ηn) + o(1)

and the result follows by part (i). If wn,α = wα + oP(1) then we may replace the preceding
inequality by an equality. �

Proof of Lemma 2.2. Follows by similar arguments to the proof of Lemma 2.1. �

In this appendix we often use the following expression (27) that is equivalent to equation (14)
of Assumption 3.2(i):

sup
θ∈Θosn

∣∣∣∣nLn(θ)− `n −
1

2
‖Vn‖2 +

1

2
‖
√
nγ(θ)− Vn‖2

∣∣∣∣ = oP(1) . (27)

Lemma F.1. Let Assumptions 3.1(i) and 3.2 hold. Then:

sup
θ∈Θosn

∣∣∣∣Qn(θ)−
(
− inf
t∈T
‖t− Vn‖2 + ‖

√
nγ(θ)− Vn‖2

)∣∣∣∣ = oP(1) . (28)

And hence
sup
θ∈ΘI

Qn(θ) = ‖TVn‖2 + oP(1) .

Proof of Lemma F.1. Applying successively Assumption 3.2(i) or expression (27), then using
Assumptions 3.1(i) and 3.2(ii), we obtain:

nLn(θ̂) = sup
θ∈Θosn

nLn(θ) + oP(1)

= `n +
1

2
‖Vn‖2 − inf

θ∈Θosn

1

2
‖
√
nγ(θ)− Vn‖2 + oP(1)

= `n +
1

2
‖Vn‖2 − inf

t∈T

1

2
‖t− Vn‖2 + oP(1) . (29)
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Then using Assumption 3.2(i) or expression (27), we have:

Qn(θ) = 2

(
`n +

1

2
‖Vn‖2 − inf

t∈T

1

2
‖t− Vn‖2 + oP(1)

)
− 2

(
`n +

1

2
‖Vn‖2 −

1

2
‖
√
nγ(θ)− Vn‖2 + oP(1)

)
= ‖
√
nγ(θ)− Vn‖2 − inf

t∈T
‖t− Vn‖2 + oP(1)

where the oP(1) term holds uniformly over Θosn. This proves expression (28).

Next, since γ(θ) = 0 for θ ∈ ΘI , we have:

sup
θ∈ΘI

Qn(θ) = ‖Vn‖2 − inf
t∈T
‖t− Vn‖2 + oP(1)

= ‖Vn‖2 − ‖Vn −TVn‖2 + oP(1)

= ‖TVn‖2 + oP(1)

where the second equality is by definition of the projection onto the closed convex cone T , and
the third equality is by Moreau’s decomposition Theorem (Hiriart-Urruty and Lemaréchal, 2001,
Theorem 3.2.5, p.51). �

Proof of Theorem 3.1. We verify the conditions of Lemma 2.1. We may assume without loss

of generality that Ln(θ̂) = supθ∈Θosn Ln(θ)+oP(n−1) because Θ̂α does not depend on the precise

θ̂ used (cf. Remark 1). By Lemma F.1 we have:

sup
θ∈ΘI

Qn(θ) = ‖TVn‖2 + oP(1) ‖TZ‖2

with Z ∼ N(0, Id∗) when Σ = Id∗ , where the final result is by the continuous mapping theorem.
In the following let zα denote the α quantile of the distribution of ‖TZ‖2.

For part (i), Lemma 3.1(i) shows that the posterior distribution of the QLR asymptotically (first-

order) stochastically dominates the distribution of ‖TZ‖2 which implies that ξpostn,α ≥ zα+ oP(1).
Therefore:

ξmcn,α = zα + (ξpostn,α − zα) + (ξmcn,α − ξpostn,α ) ≥ zα + (ξmcn,α − ξpostn,α ) + oP(1) = zα + oP(1)

where the final equality is by Assumption 3.4.

For part (ii), when T = Rd∗ and Σ = Id∗ , we have:

sup
θ∈ΘI

Qn(θ) = ‖Vn‖2 + oP(1) χ2
d∗ , and hence zα = χ2

d∗,α .

Further:

ξmcn,α = χ2
d∗,α + (ξpostn,α − χ2

d∗,α) + (ξmcn,α − ξpostn,α ) = χ2
d∗,α + oP(1)

by Lemma 3.1(ii) and Assumption 3.4. �
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Proof of Lemma 3.1. We first prove equation (16). Since |Pr(A)−Pr(A ∩B)| ≤ Pr(Bc), we
have:

sup
z

∣∣Πn({θ : Qn(θ) ≤ z}|Xn)−Πn({θ : Qn(θ) ≤ z} ∩Θosn|Xn)
∣∣ ≤ Πn(Θc

osn|Xn) = oP(1) (30)

by Assumption 3.1(ii). Moreover by Assumptions 3.1(ii) and 3.3(i),∣∣∣∣∣
∫

Θosn
enLn(θ)dΠ(θ)∫

Θ e
nLn(θ)dΠ(θ)

− 1

∣∣∣∣∣ = Πn(Θc
osn|Xn) = oP(1)

and hence:

sup
z

∣∣∣∣∣Πn({θ : Qn(θ) ≤ z} ∩Θosn |Xn)−

∫
{θ:Qn(θ)≤z} e

nLn(θ)dΠ(θ)∫
Θosn

enLn(θ)dΠ(θ)

∣∣∣∣∣ = oP(1) . (31)

In view of (30) and (31), it suffices to characterize the large-sample behavior of:

Rn(z) :=

∫
{θ:Qn(θ)≤z}∩Θosn

enLn(θ)−`n− 1
2
‖Vn‖2dΠ(θ)∫

Θosn
enLn(θ)−`n− 1

2
‖Vn‖2dΠ(θ)

. (32)

Lemma F.1 and expression (27) imply that there exists a positive sequence (ηn)n∈N independent
of z with ηn = o(1) such that the inequalities:

sup
θ∈Θosn

∣∣∣∣Qn(θ)−
(
− inf
t∈T
‖t− Vn‖2 + ‖

√
nγ(θ)− Vn‖2

)∣∣∣∣ ≤ ηn
sup

θ∈Θosn

∣∣∣∣nLn(θ)− `n −
1

2
‖Vn‖2 +

1

2
‖
√
nγ(θ)− Vn‖2

∣∣∣∣ ≤ ηn
2

both hold wpa1. Therefore, wpa1 we have:

e−ηn

∫
{θ:‖
√
nγ(θ)−Vn‖2≤z+inft∈T ‖t−Vn‖2−ηn}∩Θosn

e−
1
2
‖
√
nγ(θ)−Vn‖2dΠ(θ)∫

Θosn
e−

1
2
‖
√
nγ(θ)−Vn‖2dΠ(θ)

≤ Rn(z) ≤ eηn
∫
{θ:‖
√
nγ(θ)−Vn‖2≤z+inft∈T ‖t−Vn‖2+ηn}∩Θosn

e−
1
2
‖
√
nγ(θ)−Vn‖2dΠ(θ)∫

Θosn
e−

1
2
‖
√
nγ(θ)−Vn‖2dΠ(θ)

uniformly in z. Let Γosn = {γ(θ) : θ ∈ Θosn}. A change of variables yields:

e−ηn

∫
{γ:‖
√
nγ−Vn‖2≤z+inft∈T ‖t−Vn‖2−ηn}∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dΠΓ(γ)∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dΠΓ(γ)

≤ Rn(z) ≤ eηn
∫
{γ:‖
√
nγ−Vn‖2≤z+inft∈T ‖t−Vn‖2+ηn}∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dΠΓ(γ)∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dΠΓ(γ)

(33)
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uniformly in z.

Recall Bδ from Assumption 3.3(ii). The inclusion Γosn ⊂ Bδ ∩Γ holds for all n sufficiently large
by Assumption 3.2(ii). Taking n sufficiently large and using Assumption 3.3(ii), we may deduce
that there exists a positive sequence (η̄n)n∈N with η̄n = o(1) such that:∣∣∣∣supγ∈Γosn πΓ(γ)

infγ∈Γosn πΓ(γ)
− 1

∣∣∣∣ ≤ η̄n
for each n. Substituting into (33) yields:

(1− η̄n)e−ηn

∫
{γ:‖
√
nγ−Vn‖2≤z+inft∈T ‖t−Vn‖2−ηn}∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dγ∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dγ

≤ Rn(z) ≤ (1 + η̄n)eηn

∫
{γ:‖
√
nγ−Vn‖2≤z+inft∈T ‖t−Vn‖2+ηn}∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dγ∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dγ

where integration “dγ” should be interpreted as integration with respect to Lebesgue measure
on Rd∗ .

Let Kosn = {
√
nγ : γ ∈ Γosn} and ∆n(z) = {κ ∈ Rd∗ : ‖κ‖2 ≤ z + inft∈T ‖t− Vn‖2}. Using the

change of variables
√
nγ − Vn 7→ κ, we can rewrite the preceding inequalities as:

(1− η̄n)e−ηn

∫
∆n(z−ηn)∩(Kosn−Vn)e

− 1
2
‖κ‖2dκ∫

(Kosn−Vn)e
− 1

2
‖κ‖2dκ

≤ Rn(z) ≤ (1 + η̄n)eηn

∫
∆n(z+ηn)∩(Kosn−Vn)e

− 1
2
‖κ‖2dκ∫

(Kosn−Vn)e
− 1

2
‖κ‖2dκ

.

Let νd∗(A) = (2π)−d
∗/2
∫
A e
− 1

2
‖κ‖2 dκ denote the Gaussian measure of a set A ∈ B(Rd∗). To

complete the proof, it is enough to show that:

sup
z

∣∣∣∣νd∗(∆n(z ± ηn) ∩ (Kosn − Vn))

νd∗(Kosn − Vn)
− νd∗(∆n(z ± ηn) ∩ (Kosn − Vn))

νd∗(T − Vn)

∣∣∣∣ = oP(1) (34)

sup
z

∣∣∣∣νd∗(∆n(z ± ηn) ∩ (Kosn − Vn))

νd∗(T − Vn)
− νd∗(∆n(z) ∩ (T − Vn))

νd∗(T − Vn)

∣∣∣∣ = oP(1) . (35)

Consider (34). Simple algebra yields:

sup
z

∣∣∣∣νd∗(∆n(z ± ηn) ∩ (Kosn − Vn))

νd∗(Kosn − Vn)
− νd∗(∆n(z ± ηn) ∩ (Kosn − Vn))

νd∗(T − Vn)

∣∣∣∣
≤ νd∗((T \Kosn)− Vn)

νd∗(T − Vn)

≤ νd∗((T \Kosn) ∩Bkn − Vn)

νd∗(T − Vn)
+
νd∗(B

c
kn
− Vn)

νd∗(T − Vn)
. (36)

Since Vn is tight and the cone T has positive volume, for any ε > 0 there exists Lε > 0 such
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that lim supn→∞ P(νd∗(T − Vn) < Lε) ≤ ε whence

1/νd∗(T − Vn) = OP(1) . (37)

By tightness of Vn and the fact that kn →∞ as n→∞ we may deduce νd∗(B
c
kn
−Vn) = oP(1).

Therefore, the second term on the right-hand side of (36) is oP(1). The first term on the right-
hand side of (36) may also be shown to be oP(1) by tightness of Vn and Assumption 3.2(ii).

Now consider (35). Simple algebra yields:

sup
z

∣∣∣∣νd∗(∆n(z ± ηn) ∩ (Kosn − Vn))

νd∗(T − Vn)
− νd∗(∆n(z ± ηn) ∩ (T − Vn))

νd∗(T − Vn)

∣∣∣∣
= sup

z

νd∗(∆n(z ± ηn) ∩ ((T \Kosn)− Vn))

νd∗(T − Vn)

≤ νd∗((T \Kosn)− Vn)

νd∗(T − Vn)

which is oP(1) by the preceding argument. Finally:

sup
z
|νd∗(∆n(z) ∩ (T − Vn))− νd∗(∆n(z − ηn) ∩ (T − Vn))|

≤ sup
z

(νd∗(∆n(z))− νd∗(∆n(z − ηn)))

= sup
z

(
Fχ2

d∗
(z)− Fχ2

d∗
(z − ηn)

)
= o(1) (38)

where Fχ2
d

is the cdf of the χ2
d distribution (which is uniformly continuous on R). The +ηn case

handled similarly. Result (35) follows by combining (37) and (38).

Part (i) follows by combining (16) and the following inequality (39) due to Gao (2016):

sup
z

(
PZ
(
‖Z‖2 ≤ z + ‖T⊥v‖2

∣∣∣Z ∈ T − v)− PZ(‖TZ‖2 ≤ z)
)
≤ 0 (39)

holds for every v ∈ Rd∗ , where PZ denotes the distribution of a N(0, Id∗) random vector.

Part (ii) follows from (16) by observing that if T = Rd∗ then T −Vn = Rd∗ and ‖T⊥Vn‖ = 0. �

In this appendix we often use the following expression (40) that is equivalent to equation (17)
of Assumption 3.2’(i):

sup
θ∈Θosn

∣∣∣∣nLn(θ)− `n −
1

2
‖Vn‖2 +

1

2
‖
√
nγ(θ)− Vn‖2 + fn,⊥(γ⊥(θ))

∣∣∣∣ = oP(1) . (40)
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Lemma F.2. Let Assumptions 3.1(i) and 3.2’ hold. Then:

sup
θ∈Θosn

∣∣∣∣Qn(θ)−
(
− inf
t∈T
‖t− Vn‖2 + ‖

√
nγ(θ)− Vn‖2 + 2fn,⊥(γ⊥(θ))

)∣∣∣∣ = oP(1) . (41)

And hence
sup
θ∈ΘI

Qn(θ) = ‖TVn‖2 + oP(1) .

Proof of Lemma F.2. Using successively Assumptions 3.1(i) and 3.2’(i) or (40), (ii) and (iii),
we obtain:

nLn(θ̂) = sup
θ∈Θosn

(
`n +

1

2
‖Vn‖2 −

1

2
‖
√
nγ(θ)− Vn‖2 − fn,⊥(γ⊥(θ))

)
+ oP(1)

= sup
θ∈Θosn

(
`n +

1

2
‖Vn‖2 −

1

2
‖
√
nγ(θ)− Vn‖2

)
− inf
θ∈Θosn

fn,⊥(γ⊥(θ)) + oP(1)

= `n +
1

2
‖Vn‖2 − inf

t∈T

1

2
‖t− Vn‖2 + oP(1) , (42)

where the last equality is due to the fact that fn,⊥(·) ≥ 0 with fn,⊥(0) = 0, γ⊥(θ) = 0 for all
θ ∈ ΘI ,

0 ≤ inf
θ∈Θosn

fn,⊥(γ⊥(θ)) ≤ fn,⊥(γ⊥(θ̄)) = 0 for any θ̄ ∈ ΘI .

Then by Assumption 3.2’(i) or (40), and definition of Qn, we obtain:

Qn(θ) = 2

(
`n +

1

2
‖Vn‖2 − inf

t∈T

1

2
‖t− Vn‖2 + oP(1)

)
− 2

(
`n +

1

2
‖Vn‖2 −

1

2
‖
√
nγ(θ)− Vn‖2 − fn,⊥(γ⊥(θ)) + oP(1)

)
= − inf

t∈T
‖t− Vn‖2 + ‖

√
nγ(θ)− Vn‖2 + 2fn,⊥(γ⊥(θ)) + oP(1)

where the oP(1) term holds uniformly over Θosn. This proves expression (41).

Next, since γ(θ) = 0 and γ⊥(θ) = 0 for θ ∈ ΘI , and fn,⊥(0) = 0, we have:

sup
θ∈ΘI

Qn(θ) = ‖Vn‖2 − inf
t∈T
‖t− Vn‖2 + 2 sup

θ∈ΘI

fn,⊥(γ⊥(θ)) + oP(1)

= ‖Vn‖2 − ‖Vn −TVn‖2 + oP(1)

= ‖TVn‖2 + oP(1)

where the second equality is by definition of the projection onto the closed convex cone T , and
the third inequality is by Moreau’s decomposition Theorem (Hiriart-Urruty and Lemaréchal,
2001, Theorem 3.2.5, p.51). �

The key step in the proof of Theorem 3.2 is to establish the following lemma, which states that
the posterior distribution of the QLR asymptotically (first-order) stochastically dominates the
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asymptotic distribution of the QLR, namely FT defined in (15).

Lemma F.3. Let Assumptions 3.1, 3.2’ and 3.3’ hold. Then:

sup
z

(
Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− FT (z)

)
≤ oP(1) .

Proof of Lemma F.3. We first show that:

sup
z

(
Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− PZ|Xn

(
‖Z‖2 ≤ z + ‖T⊥Vn‖2

∣∣∣Z ∈ T − Vn
))
≤ oP(1) (43)

holds. By identical arguments to the proof of Lemma 3.1, it is enough to characterize the large-
sample behavior of Rn(z) defined in (32). By Lemma F.2 and expression (40), there exists a
positive sequence (ηn)n∈N independent of z with ηn = o(1) such that:

sup
θ∈Θosn

∣∣∣∣Qn(θ)−
(
− inf
t∈T
‖t− Vn‖2 + ‖

√
nγ(θ)− Vn‖2 + 2fn,⊥(γ⊥(θ))

)∣∣∣∣ ≤ ηn
sup

θ∈Θosn

∣∣∣∣nLn(θ)− `n −
1

2
‖Vn‖2 +

1

2
‖
√
nγ(θ)− Vn‖2 + fn,⊥(γ⊥(θ))

∣∣∣∣ ≤ ηn
both hold wpa1. Also note that for any z, we have{

θ ∈ Θosn : − inf
t∈T
‖t− Vn‖2 + ‖

√
nγ(θ)− Vn‖2 + 2fn,⊥(γ⊥(θ)) + ηn ≤ z

}
⊆
{
θ ∈ Θosn : − inf

t∈T
‖t− Vn‖2 + ‖

√
nγ(θ)− Vn‖2 + ηn ≤ z

}
because fn,⊥(·) ≥ 0. Therefore, wpa1 we have:

Rn(z) ≤ eηn
∫
{θ:‖
√
nγ(θ)−Vn‖2≤z+inft∈T ‖t−Vn‖2+ηn}∩Θosn

e−
1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)∫

Θosn
e−

1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)

uniformly in z.

Define Γosn = {γ(θ) : θ ∈ Θosn} and Γ⊥,osn = {γ⊥(θ) : θ ∈ Θosn}. By similar arguments to the
proof of Lemma 3.1, we use Assumption 3.3’(ii) and a change of variables to obtain:

Rn(z) ≤ eηn(1 + η̄n) (44)

×

∫
(({γ:‖

√
nγ−Vn‖2≤z+inft∈T ‖t−Vn‖2+ηn)∩Γosn)×Γ⊥,osn

e−
1
2
‖
√
nγ−Vn‖2−fn,⊥(γ⊥)d(γ, γ⊥)∫

Γosn×Γ⊥,osn
e−

1
2
‖
√
nγ−Vn‖2−fn,⊥(γ⊥)d(γ, γ⊥)

which holds uniformly in z (wpa1) for some η̄n = o(1). Then by Tonelli’s theorem and Assump-

85



tion 3.2’(ii) we obtain:

Rn(z) ≤ eηn(1 + η̄n)

∫
({γ:‖

√
nγ−Vn‖2≤z+inft∈T ‖t−Vn‖2+ηn)∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dγ∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dγ

(45)

uniformly in z. The inequality (43) then follows by similar arguments to the proof of Lemma
3.1. The result follows by combining inequality (43) with Gao (2016)’s inequality in (39). �

Proof of Theorem 3.2. We verify the conditions of Lemma 2.1. Again, we assume wlog that
Ln(θ̂) = supθ∈Θosn Ln(θ) + oP(n−1). By Lemma F.2, when Σ = Id∗ , we have:

sup
θ∈ΘI

Qn(θ) = ‖TVn‖2 + oP(1) ‖TZ‖2 (46)

where Z ∼ N(0, Id∗). Lemma F.3 shows that the posterior distribution of the QLR asymptoti-
cally (first-order) stochastically dominates the FT distribution. The result follows by the same
arguments as the proof of Theorem 3.1(i). �

Lemma F.4. Let Assumptions 3.1(i) and 3.2 or 3.2’ and 3.5 hold. Then:

sup
θ∈Θosn

∣∣∣∣PQn(∆(θ))− f
(
Vn −

√
nγ(θ)

)
+ inf
t∈T
‖Vn − t‖2

∣∣∣∣ = oP(1) .

Proof of Lemma F.4. By display (29) in the proof of Lemma F.1 or display (42) in the proof
of Lemma F.2 and Assumption 3.5, we obtain:

PQn(∆(θ)) = 2nLn(θ̂)− 2nPLn(∆(θ))

=

(
2`n + ‖Vn‖2 − inf

t∈T
‖t− Vn‖2

)
−
(

2`n + ‖Vn‖2 − f
(
Vn −

√
nγ(θ)

))
+ oP(1)

where the oP(1) term holds uniformly over Θosn. The result is immediate. �

For any open set S ⊂ R+ and any small ε > 0, let S−ε denote the ε-contraction of S and let
S−εn = {s− ‖T⊥Vn‖2 : s ∈ S−ε}.30

Lemma F.5. Let Assumptions 3.1, 3.2, 3.3, and 3.5 or 3.1, 3.2’, 3.3’, and 3.5 hold, and let
z 7→ PZ(f(Z) ≤ z) be uniformly continuous on S ⊂ R+ (where Z ∼ N(0, Id∗)). Then for any
ε > 0 such that S−ε is not empty:

sup
z∈S−εn

∣∣∣Πn

(
{θ : PQn(∆(θ)) ≤ z}

∣∣Xn

)
− PZ|Xn

(
f(Z) ≤ z + ‖T⊥Vn‖2

∣∣∣Z ∈ Vn − T
)∣∣∣ = oP(1) .

30The ε-contraction of S is defined as S−ε = {z ∈ R : infz′∈(R\S) |z − z′| ≥ ε}. For instance, if S = (0,∞) then
S−ε = [ε,∞) and S−εn = [ε− ‖T⊥Vn‖2,∞).
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If, in addition, T = Rd∗, then:

sup
z∈S−ε

∣∣Πn

(
{θ : PQn(∆(θ)) ≤ z}

∣∣Xn

)
− PZ|Xn

(
f(Z) ≤ z

)∣∣ = oP(1) .

Proof of Lemma F.5. We prove the result under Assumptions 3.1, 3.2’, 3.3’, and 3.5. The
proof under Assumptions 3.1, 3.2, 3.3, and 3.5 follows similarly. By the same arguments as the
proof of Lemma 3.1, it suffices to characterize the large-sample behavior of:

Rn(z) :=

∫
{θ:PQn(∆(θ))≤z}∩Θosn

eLn(θ)−`n− 1
2
‖Vn‖2 dΠ(θ)∫

Θosn
eLn(θ)−`n− 1

2
‖Vn‖2 dΠ(θ)

. (47)

By Lemma F.4 and expression (40), there exists a positive sequence (ηn)n∈N independent of z
with ηn = o(1) such that the inequalities:

sup
θ∈Θosn

∣∣PQn(∆(θ))− hn(Vn −
√
nγ(θ))

∣∣ ≤ ηn
sup

θ∈Θosn

∣∣∣∣nLn(θ)− `n −
1

2
‖Vn‖2 −

(
−1

2
‖
√
nγ(θ)− Vn‖2 − fn,⊥(γ⊥(θ))

)∣∣∣∣ ≤ ηn
2

both hold wpa1, where hn(Vn−
√
nγ(θ)) = f(Vn−

√
nγ(θ))− inft∈T ‖Vn− t‖2. Therefore, wpa1

we have:

e−ηn

∫
{θ:hn(Vn−

√
nγ(θ))≤z−ηn}∩Θosn

e−
1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)∫

Θosn
e−

1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)

≤ Rn(z) ≤ eηn
∫
{θ:hn(Vn−

√
nγ(θ))≤z+ηn}∩Θosn

e−
1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)∫

Θosn
e−

1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)

uniformly in z. By similar arguments to the proof of Lemma F.3, we may use the change of
variables θ 7→ (γ(θ), γ⊥(θ)), continuity of πΓ∗ (Assumption 3.3’(ii)), and Tonelli’s theorem to
rewrite the above system of inequalities as:

(1− η̄n)e−ηn

∫
{γ:hn(Vn−

√
nγ)≤z−ηn}∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dγ∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dγ

≤ Rn(z) ≤ (1 + η̄n)eηn

∫
{γ:hn(Vn−

√
nγ)≤z+ηn}∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dγ∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dγ

which holds uniformly in z (wpa1) for some η̄n = o(1). Let Kosn = {
√
nγ : γ ∈ Γosn} and

Hn(z) = {κ ∈ Rd∗ : hn(κ) ≤ z} = {κ ∈ Rd∗ : f(κ) ≤ z + inft∈T ‖t− Vn‖2}. A second change of
variables Vn −

√
nγ 7→ κ yields:

(1− η̄n)e−ηn

∫
Hn(z−ηn)∩(Vn−Kosn) e

− 1
2
‖κ‖2dκ∫

(Vn−Kosn)e
− 1

2
‖κ‖2dκ

≤ Rn(z) ≤ (1 + η̄n)eηn

∫
Hn(z+ηn)∩(Vn−Kosn) e

− 1
2
‖κ‖2dκ∫

(Vn−Kosn)e
− 1

2
‖κ‖2dκ
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which holds uniformly in z (wpa1).

To complete the proof, it remains to show that:

sup
z∈S−εn

∣∣∣∣νd∗(Hn(z ± ηn) ∩ (Vn −Kosn)

νd∗((Vn −Kosn))
− νd∗(Hn(z) ∩ (Vn − T )

νd∗((Vn − T ))

∣∣∣∣ = oP(1) . (48)

By similar arguments to the proof of Lemma 3.1, it is enough to show that:

sup
z∈S−εn

|νd∗(Hn(z ± ηn) ∩ (Vn − T ))− νd∗(Hn(z) ∩ (Vn − T ))| = oP(1)

Notice that:

sup
z∈S−εn

|νd∗(Hn(z − ηn) ∩ (Vn − T ))− νd∗(Hn(z) ∩ (Vn − T )|

≤ sup
z∈S−εn

|νd∗(Hn(z − ηn))− νd∗(Hn(z))|

= sup
z∈S−ε

|νd∗({κ : f(κ) ≤ z − ηn})− νd∗({κ : f(κ) ≤ z})| = o(1)

by uniform continuity of z 7→ νd∗({κ : f(κ) ≤ z}) on S. The +η case is handled similarly. �

Proof of Theorem 3.3. We verify the conditions of Lemma 2.2. Again, we assume wlog that
Ln(θ̂) = supθ∈Θosn Ln(θ) +oP(n−1). It follows from Lemma F.4 (taking γ(θ) = 0 for any θ ∈ ΘI)

that when T = Rd∗ and Σ = Id∗ that:

PQn(∆(θ)) = f (Vn) + oP(1) f (Z) for all θ ∈ ΘI .

where Z ∼ N(0, Id∗). Let ξα denote the α quantile of f(Z). Then:

ξmcn,α = ξα + (ξpostn,α − ξα) + (ξmcn,α − ξpostn,α ) = ξα + oP(1)

by Lemma F.5 and Assumption 3.6. �

Proof of Theorem 3.4. It is enough to verify the conditions of Lemma 2.2. Let T c1 and T c2
denote the complement of T1 and T2 in Rd∗ and let PZ denote the distribution of Z ∼ N(0, Id∗).
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Now suppose that T c1 ∩ T c2 is not empty. For any w ≥ 0:

P(f(Z) ≤ w) = PZ(f(Z) ≤ w|Z ∈ T1 ∩ T2)PZ(Z ∈ T1 ∩ T2)

+ PZ(f(Z) ≤ w|Z ∈ T c1 ∩ T c2 )PZ(Z ∈ T c1 ∩ T c2 )

+ PZ(f(Z) ≤ w|Z ∈ T c1 ∩ T2)PZ(Z ∈ T c1 ∩ T2)

+ PZ(f(Z) ≤ w|Z ∈ T1 ∩ T c2 )PZ(Z ∈ T1 ∩ T c2 )

= p
(
PZ(f(Z) ≤ w|Z ∈ T1 ∩ T2) + PZ(f(Z) ≤ w|Z ∈ T c1 ∩ T c2 )

)
+ (1− 2p)PZ(f(Z) ≤ w|Z ∈ T c1 ∩ T2) (49)

by symmetry of Gaussian measure, where p = PZ(Z ∈ T1 ∩ T2). We omit the term conditional
on T c1 ∩ T c2 whenever T c1 ∩ T c2 = ∅.

If Z ∈ T1 ∩ T2 then f(Z) = 0 and hence

PZ(f(Z) ≤ w|Z ∈ T1 ∩ T2) = 1 . (50)

If Z ∈ T c1 ∩T2 then we have inft∈T2 ‖Z− t‖2 = 0 and hence, by Moreau’s decomposition theorem
(Hiriart-Urruty and Lemaréchal, 2001, Theorem 3.2.5, p.51), we obtain:

f(Z) = inf
t∈T1

‖Z − t‖2 = ‖T⊥1 Z‖2

where T⊥1 denotes the projection onto the polar cone T o1 of T1. Here T o1 ⊂ T c1 is a ray extending
from the origin that is orthogonal to the supporting hyperplane for T1. Since the orthogonal
projection of the standard normal random vector Z onto a line passing through the origin is
distributed as χ2

1 and the length ‖Z‖ and direction Z/‖Z‖ of Z are independently distributed,
we may deduce:

PZ(f(Z) ≤ w|Z ∈ T c1 ∩ T2) = PZ(‖T⊥1 Z‖2 ≤ w|Z ∈ T c1 ∩ T2) = Fχ2
1
(w) . (51)

By similar arguments, if Z ∈ T c1 ∩ T c2 we have f(Z) = ‖T⊥1 Z‖2 ∨ ‖T⊥2 Z‖2. Each ‖T⊥i Z‖2 is
distributed as χ2

1 (conditionally upon Z ∈ T c1 ∩ T c2 ). Therefore:

PZ(‖T⊥1 Z‖2 ∨ ‖T⊥2 Z‖2 ≤ w|Z ∈ T c1 ∩ T c2 )

is minimized when T o1 and T o2 are orthogonal, in which case ‖T⊥1 Z‖2 and ‖T⊥2 Z‖2 are indepen-
dent χ2

1 random variables (conditional upon Z ∈ T c1 ∩ T c2 ). It follows that:

PZ(f(Z) ≤ w|Z ∈ T c1 ∩ T c2 ) ≥ Fχ2
1
(w)2 . (52)

Now, substituting (50), (51), and (52) into (49) yields:

P(f(Z) ≤ w) ≥ p(1 + Fχ2
1
(w)2) + (1− 2p)Fχ2

1
(w) .

and hence:
P(f(Z) ≤ w)− Fχ2

1
(w) ≥ p(1− Fχ2

1
(w))2 ≥ 0 .

89



Let wα be the α quantile of W = f(Z) in Lemma 2.2. It follows that χ2
1,α ≥ wα. �

Proof of Proposition 3.1. It follows from part (iii) and display (29) or display (42) that:

2nLn(θ̂) = 2`n + ‖Vn‖2 − inf
t∈T
‖Vn − t‖2 + oP(1) .

Moreover, applying parts (i) and (ii), we obtain:

inf
m∈MI

sup
θ∈µ−1(m)

2nLn(θ) = min
m∈{m,m}

sup
θ∈µ−1(m)

2nLn(θ) + oP(1)

= min
m∈{m,m}

(
2`n + ‖Vn‖2 − inf

t∈Tm
‖Vn − t‖2

)
+ oP(1) .

Therefore:

sup
m∈MI

inf
θ∈µ−1(m)

Qn(θ) =

(
inf
t∈Tm

‖Vn − t‖2 ∨ inf
t∈Tm

‖Vn − t‖2
)
− inf
t∈T
‖Vn − t‖2 + oP(1) .

The result follows by part (iv) and Σ = Id∗ . �

F.2 Proofs and Additional Lemmas for Section 4

Proof of Proposition 4.1. Wlog we can take γ̃0 = 0. By condition (b), for any γ̃ ∈ U we
have:

nLn(γ̃) = nLn(γ̃0) + (
√
nγ̃)′(

√
nPn ˙̀

γ̃0) +
1

2
(
√
nγ̃)′(Pn ῭̃

γ∗)(
√
nγ̃)

where γ̃∗ is in the segment between γ̃ and γ̃0 for each element of Pn ῭̃
γ∗ . We may deduce from

Lemma 2.4 of Newey and McFadden (1994) that supγ̃:‖γ̃‖≤n1/4 ‖(Pn ῭̃
γ∗)−P0(῭

γ0)‖ = oP(1) holds

under conditions (a) and (b). Since this term is oP(1), we can choose a positive sequence (rn)n∈N
with rn → ∞, rn = o(n1/4) such that r2

n supγ̃:‖γ̃‖≤n1/4 ‖(Pn ῭̃
γ∗) − P0(῭̃

γ0)‖ = oP(1) holds. Take

Θosn = {θ ∈ Θ : ‖γ̃(θ)‖ ≤ rn/
√
n}. Assumption 3.2(i) then holds with γ(θ) = I1/2γ̃0

γ̃(θ). Assump-

tion 3.2(ii) is also trivially satisfied with T = Rd∗ because γ̃0 = 0 ∈ int(Γ̃) by Condition (b).
Assumption 3.1(ii) follows under conditions (c) and (d) by Theorem 5.1 of Ghosal, Ghosh, and
van der Vaart (2000). �

Lemma F.6. Consider the missing data model with Θ as in (12) and a flat prior on Θ. Then
Assumption 3.1(ii) is satisfied with Θosn := {θ : |κ11(θ)−κ11| ≤ kn/

√
n, κ00(θ) ≤ kn/n} for any

positive sequence (kn)n∈N with kn →∞, kn/
√
n = o(1).

Proof of Lemma F.6. Let Sn =
∑n

i=1 Yi. The flat prior under the map θ 7→ (κ11(θ), κ00(θ))′

induces a flat prior on {(a, b) ∈ [0, 1] : 0 ≤ a ≤ 1 − b}. Take n sufficiently large that [κ11 −
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kn/
√
n, κ11 + kn/

√
n] ⊆ [0, 1] and kn/n < 1− κ11. Then:

Πn(Θc
osn|Xn)

=

∫ κ11−kn/
√
n

0

∫ 1−a
0 (a)Sn(1− a− b)n−Sn dbda∫ 1

0

∫ 1−a
0 (a)Sn(1− a− b

)n−Sn dbda
+

∫ 1
κ11+kn/

√
n

∫ 1−a
0 (a)Sn(1− a− b)n−Sn dbda∫ 1

0

∫ 1−a
0 (a)Sn(1− a− b)n−Sn dbda

+

∫ κ11+kn/
√
n

κ11−kn/
√
n

∫ 1−a
kn/n

(a)Sn(1− a− b)n−Sn dbda∫ 1
0

∫ 1−a
0 (a)Sn(1− a− b)n−Sn dbda

=: I1 + I2 + I3 .

Integrating first with respect to b yields:

I1 + I2 =

∫ κ11−kn/
√
n

0 (a)Sn(1− a)n−Sn+1 da∫ 1
0 (a)Sn(1− a)n−Sn+1 da

+

∫ 1
κ11+kn/

√
n(a)Sn(1− a)n−Sn+1 da∫ 1

0 (a)Sn(1− a)n−Sn+1 da

= PU |Sn(|U − κ11| > kn/
√
n)

where U |Sn ∼ Beta(Sn + 1, n− Sn + 2). By properties of the Beta distribution:

E[U |Sn] =
Sn + 1

n+ 3

Var[U |Sn] =
(Sn + 1)(n− Sn + 2)

(n+ 3)2(n+ 4)
.

By the triangle inequality, the fact that E[U |Sn] = κ11 +OP(n−1/2), and Chebyshev’s inequality:

I1 + I2 ≤ PU |Sn
(
|U − E[U |Sn]| > kn/(2

√
n)
)

+ 1l
{
|E[U |Sn]− κ11| > kn/(2

√
n)
}

= PU |Sn
(
|U − E[U |Sn]| > kn/(2

√
n)
)

+ oP(1)

≤ 4n

k2
n

(Sn + 1)(n− Sn + 2)

(n+ 3)2(n+ 4)
+ oP(1)

≤ 4

k2
n

(Snn + 1
n)(1− Sn

n + 2
n)

(1 + 3
n)2(1 + 4

n)
+ oP(1)

which is oP(1) (because kn →∞).

Similarly, for I3 we have:

I3 =

∫ κ11+kn/
√
n

κ11−kn/
√
n

(a)Sn(1− a− (kn/n))n−Sn+1 da∫ 1
0 (a)Sn(1− a)n−Sn+1 da

≤
∫ 1−(kn/n)

0 (a)Sn(1− a− (kn/n))n−Sn+1 da∫ 1
0 (a)Sn(1− a)n−Sn+1 da

.
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Using the change of variables a 7→ c(a) := 1−a−kn/n
1−kn/n in the numerator yields:

I3 ≤ (1− (kn/n))n+2

∫ 1
0 (1− c)Sn(c)n−Sn+1 dc∫ 1
0 (a)Sn(1− a)n−Sn+1 da

= (1− (kn/n))n+2

and so I3 → 0 as n→∞ (because kn →∞). �

F.2.1 Additional results for the quadratic expansion of the log-likelihood in general

non-identifiable models

For the following lemma, we let (rn)n∈N be a positive sequence with rn →∞ and rn = o(n1/2),
and let Posn = {p ∈ P : h(p, p0) ≤ rn/

√
n} and Θosn = {θ ∈ Θ : h(pθ, p0) ≤ rn/

√
n}. For

each p ∈ P with h(p, p0) > 0 we also define Sp =
√
p/p0 − 1 and sp = Sp/h(p, p0). Recall the

definitions of Dε, the tagent cone Λ and the projection Λ from Section 4.1.2. Finally, we say P
is rn-DQM (with respect to p0) if each p is absolutely continuous with respect to p0 and for each
p ∈ P there are elements g(p) ∈ Λ and remainders R(p) ∈ L2(λ) such that:

√
p −√p0 = g(p)

√
p0 + h(p, p0)R(p)

with sup{rn‖R(p)‖L2(λ) : h(p, p0) ≤ rn/
√
n} → 0 as n→∞.

Lemma F.7. Let the following conditions hold.
(i) P is rn-DQM
(ii) There exists ε > 0 such that {s2

p : sp ∈ Dε} is P0-Glivenko Cantelli

(iii) Dε has a measurable envelope D : X → R with maxi≤i≤nD(Xi) = oP(
√
n/r3

n)

(iv) supp∈Posn |Gn(Sp −ΛSp)| = oP(n−1/2)

(v) supp∈Posn |(Pn − P0)S2
p | = oP(n−1).

Then:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
nPn log p0 + nPn(2ΛSpθ)−

1

2
nP0((2ΛSpθ)

2)

)∣∣∣∣ = oP(1) .

When the linear hull Span(Λ) has finite dimension d∗ ≥ 1 we may restate this result as:

sup
θ∈Θosn

∣∣∣∣nLn(θ)−
(
nPn log p0 + (

√
nγ(θ))′Vn −

1

2
‖
√
nγ(θ)‖2

)∣∣∣∣ = oP(1) .

where Vn = Gn(ψ), ψ = (ψ1, . . . , ψd∗)
′, ψ1, . . . , ψd∗ is an orthonormal basis for the linear hull

Span(Λ), and γ(θ) is defined by Λ(2Spθ) = γ(θ)′ψ.

Proof of Lemma F.7. We first show that:

sup
p∈Posn

∣∣nPn log(p/p0)− 2nPn(Sp − P0(Sp)) + n(PnS2
p + h2(p, p0))

∣∣ = oP(1) (53)

holds. To do so, we adapt arguments used in Theorem 1 of Azäıs et al. (2009), Theorem 3.1
in Gassiat (2002), and Theorem 2.1 in Liu and Shao (2003). Take n sufficiently large that
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rn/
√
n ≤ ε (whence Posn ⊆ Dε). For each p ∈ Posn \ {p0} we have:

nPn log(p/p0) = 2nPnSp − nPnS2
p + 2h(p, p0)2nPns2

pr(h(p, p0)sp) (54)

where r(u) = (log(1 + u)− u− 1
2u

2)/u2 and limu→0 |r(u)/(1
3u)− 1| = 0. Condition (iii) implies:

sup
p∈Posn

max
1≤i≤n

h(p, p0)|sp| ≤
rn√
n

max
1≤i≤n

D(Xi) = oP(r−2
n )

and hence:
sup

p∈Posn
max

1≤i≤n
|r(h(p, p0)sp)| = oP(r−2

n )

Therefore:

sup
p∈Posn

|2h(p, p0)2nPns2
pr(h(p, p0)sp)| ≤ 2r2

n × oP(r−2
n )× sup

p∈Posn
Pns2

p

≤ 2r2
n × oP(r−2

n )× (1 + oP(1)) = oP(1)

where the second inequality is by Condition (ii). Expression (53) follows by adding and sub-
tracting 2nP0(Sp) = −nh2(p, p0) to the right-hand side of (54).

To complete the proof, it remains to show:

sup
p∈Posn

|Pn(Sp − P0(Sp)−ΛSp)| = oP(n−1) (55)

sup
p∈Posn

∣∣Pn(S2
p) + h2(p, p0)− 2P0((ΛSp)

2)
∣∣ = oP(n−1) . (56)

Each element of Λ has mean zero, hence P0(ΛSp) = 0 for each p ∈ P, we can deduce:

sup
p∈Posn

|Pn(Sp − P0(Sp)−ΛSp)| = n−1/2 × sup
p∈Posn

|Gn(Sp −ΛSp)|

from which (55) follows by Condition (iv).

As P0(S2
p) = h2(p, p0), in order to prove (56) it suffices to prove:

sup
p∈Posn

|(Pn − P0)(S2
p)| = oP(n−1) (56a)

sup
p∈Posn

|P0(S2
p)− P0((ΛSp)

2)| = oP(n−1) . (56b)

Result (56a) holds by condition (v). It remains to prove (56b). Under Condition (i), for each
p ∈ P there is a g(p) ∈ Λ and remainder R∗(p) such that:

Sp = g(p) + h(p, p0)R∗(p)
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with sup{rn‖R∗(p)‖L2(P0) : h(p, p0) ≤ rn/
√
n} → 0 as n→∞. It follows by definition of Λ that:

‖Sp −ΛSp‖L2(P0) ≤ ‖Sp − g(p)‖L2(P0) = h(p, p0)‖R∗(p)‖L2(P0) (57)

for each p ∈ P. By Moreau’s decomposition theorem (Hiriart-Urruty and Lemaréchal, 2001,
Theorem 3.2.5, p.51) and inequality (57) we may deduce:

sup
p∈Posn

|P0(S2
p)− P0((ΛSp)

2)| = sup
p∈Posn

‖Sp −ΛSp‖2L2(P0) ≤ sup
p∈Posn

h(p, p0)2‖R∗(p)‖2L2(P0) .

Result (56b) then follows from definition of Posn and Condition (i). This proves the first result.

The second result is immediate by defining Vn = Gn(ψ), ψ = (ψ1, . . . , ψd∗)
′, ψ1, . . . , ψd∗ is an

orthonormal basis for the linear hull Span(Λ), and γ(θ) by Λ(2Spθ) = γ(θ)′ψ, then noting that
P0((Λ(2Spθ))

2) = γ(θ)′P0(ψψ′)γ(θ) = ‖γ(θ)‖2. �

Proof of Proposition 4.2. To verify Assumption 3.2(i) it suffices to verify the conditions of

Lemma F.7. By DQM (condition (b)) we have sup{‖R(p)‖L2(λ) : h(p, p0) ≤ n−1/4} → 0 as

n → ∞. Therefore, we may choose a slowly diverging sequence (an)n∈N with an ≤ n1/4 such
that

sup{an‖R(p)‖L2(λ) : h(p, p0) ≤ an/
√
n} → 0 as n→∞

and hence
sup{rn‖R(p)‖L2(λ) : h(p, p0) ≤ rn/

√
n} → 0 as n→∞

for any positive sequence (rn)n∈N with rn ≤ an. This verifies Condition (i) of Lemma F.7.

Condition (c) implies Dε is Donsker and so {s2
p : sp ∈ Dε} is Glivenko-Cantelli (van der Vaart and

Wellner, 1996, Lemma 2.10.14), which verifies Condition (ii) of Lemma F.7. Choose a positive
sequence (bn)n∈N with bn →∞ such that b2n supsp∈Dε |(Pn − P0)s2

p| = oP(1) and so:

sup
p:h(p,p0)≤rn/

√
n

|(Pn − P0)S2
p | ≤ sup

p:h(p,p0)≤rn/
√
n

r2
n|(Pn − P0)s2

p|/n = oP(n−1)

for any sequence (rn)n∈N with rn ≤ bn. This verifies Condition (v) of Lemma F.7. Moreover, it fol-

lows from the envelope condition (in Condition (c)) that max1≤i≤nD(Xi) = oP(n1/2). Therefore,

we can choose a positive sequence (cn)n∈N with cn →∞ such that c3
n max1≤i≤nD(Xi) = oP(n1/2)

or equivalently max1≤i≤nD(Xi) = oP(n1/2/r3
n) for any diverging sequence (rn)n∈N with rn ≤ cn.

This verifies Condition (iii) of Lemma F.7.

Dε is Donsker by Condition (c). Dε,Λ := {Λsp : sp ∈ Dε} ⊆ {f ∈ Λ : ‖f‖L2(P0) ≤ 1} is Donsker

because the linear hull Span(Λ) is finite dimensional. Therefore, ∆Dε := {sp − Λsp : sp ∈ Dε}
is also Donsker and hence Gn  W in `∞(∆Dε) where W is the isonormal Gaussian process.
In view of the Skorohod-Dudley-Wichura theorem (van der Vaart and Wellner, 1996, Theorem
1.10.3) we represent Gn  W in `∞(∆Dε) by Gn →a.s. W in a suitable probability space.
Therefore:

sup
d∈∆Dε

|Gn(d)| = sup
d∈∆Dε

|W (d)|+ ηn
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where ηn = oP(1). Again, we may choose a positive sequence (dn)n∈N with dn →∞ sufficiently
slowly that dnηn = oP(1) and hence rnηn = oP(1) for any positive sequence (rn)n∈N with rn ≤ dn.
The singleton {0} is the only limit point of ∆Dε as ε↘ 0 because:

sup{‖d‖L2(P0) : d ∈ ∆Dε} = sup{‖sp −Λsp‖L2(P0) : h(p, p0) ≤ ε}

≤ sup{‖R(p)‖L2(λ) : h(p, p0) ≤ ε}

→ 0 (as ε→ 0)

by DQM (condition (b)). DefineD(ε′) = sup{‖d‖L2(P0) : d ∈ ∆Dε′} andH(v) =
∫ v

0 (N(∆Dε, u))1/2du

where N(∆Dε, u) is the covering number of ∆Dε with respect to the intrinsic semimetric. Clearly
D(ε) → 0 as ε → 0 and H(v) → 0 as v → 0. By Corollary 2.2.8 of van der Vaart and Wellner
(1996):

sup
d∈∆Dε

|W (d)| = OP
(
H(D(ε))

)
→P 0 (as ε→ 0) .

Taking εn = n−1/4, we can choose a positive sequence (en)n∈N with en → ∞ as n → ∞
sufficiently slowly that enH(D(εn)) = o(1). For any sequence (rn)n∈N with rn ≤ (dn ∨ en ∨n1/4)
we then have:

sup
p:h(p,p0)≤rn/

√
n

Gn(Sp −ΛSp) ≤
rn√
n

sup
p:h(p,p0)≤rn/

√
n

Gn(sp −Λsp)

≤ 1√
n
× rn sup

d∈∆Dεn
|Gn(d)| = 1√

n
× oP(1) .

This verifies Condition (iv) of Lemma F.7. Take rn = (an ∧ bn ∧ cn ∧ dn ∧ en ∧ log n). �

Proof of Proposition 4.3. We first show that there exists a positive sequence (rn)n∈N with
rn →∞ such that:

sup
θ:‖g(θ)‖≤rn/

√
n

∣∣∣∣nLn(θ)−
(
−1

2
(Λ(
√
ng(θ)) + Zn)′Ω−1(Λ(

√
ng(θ)) + Zn)

)∣∣∣∣ = oP(1) (58)

for some sequence of random vectors (Zn)n∈N with Zn  N(0,Ω).

In this proof we often abuse notation and use ρθ to denote ρ(·, θ). Take n large enough that

n−1/4 ≤ ε0. Let εn = n1/4. I.i.d. data and Conditions (c)(e) imply that

sup
θ:‖g(θ)‖≤εn

‖Pn(ρθρ
′
θ)− Ω‖ = oP(1)

(van der Vaart and Wellner, 1996, Lemma 2.10.14). Therefore, we may choose a positive sequence

(an)n∈N with an →∞, an = o(n1/4) such that supθ:‖g(θ)‖≤εn a
2
n‖Pn(ρθρ

′
θ)−Ω‖ = oP(1) and hence:

sup
θ:‖g(θ)‖≤rn/

√
n

‖Pn(ρθρ
′
θ)− Ω‖ = oP(r−2

n ) (59)

holds for any sequence (rn)n∈N with rn ≤ an.
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For any ε ∈ (0, ε0], under i.i.d. data and Condition (c) there exists a Gaussian process W defined
on Rε with E[W (ρ)W (ρ̄)′] = E[(ρ − E[ρ])(ρ̄ − E[ρ̄])′] for any ρ, ρ̄ ∈ Rε such that Gn  W
in `∞(Rε). Fix any θ∗ ∈ ΘI and set Zn = Gn(ρθ∗) where Zn  N(0,Ω) by condition (b).
Representing weak convergence of Gn to W as almost sure convergence in a suitable probability
(van der Vaart and Wellner, 1996, Theorem 1.10.3), we have:

sup
ρ∈Rε

|Gn(ρ)− Zn| = sup
ρ∈Rε

|W (ρ)−W (ρθ∗)|+ ηn

where ηn = oP(1). Choose a positive sequence (bn)n∈N with bn → ∞ slowly such that bnηn =
oP(1) and so rnηn = oP(1) holds for any sequence (rn)n∈N with rn ≤ bn. The intrinsic semimetric

dI(ρ, ρ̄) := (E[‖ρ− ρ̄− E[ρ− ρ̄]‖2])1/2 satisfies:

sup
θ∈ΘδI

dI(ρθ, ρθ∗)
2 = sup

θ∈ΘδI

(
E[‖ρθ − ρθ∗‖2]− ‖g(θ)‖2

)
→ 0 (as δ → 0)

by Condition (d). Let D(δ) = supθ∈ΘδI
dI(ρθ, ρθ∗) and let H(v) =

∫ v
0 (N(Rε, u))1/2du where

N(Rε, u) is the covering number ofRε with respect to the intrinsic semimetric. Clearly H(v)→ 0
as v → 0. Using Corollary 2.2.8 of van der Vaart and Wellner (1996) we can deduce:

sup
ρ∈Rε

|W (ρ)−W (ρθ∗)| = OP
(
H(D(ε))

)
→P 0 (as ε→ 0) .

Taking εn = n−1/4, we can choose a positive sequence (cn)n∈N with cn →∞ as n→∞ sufficiently
slowly that cnH(D(εn)) = o(1). It follows that:

sup
θ:‖g(θ)‖≤rn/

√
n

|
√
nPnρθ − (

√
ng(θ) + Zn)| = oP(r−1

n ) . (60)

for any sequence (rn)n∈N with rn ≤ (bn ∨ cn ∨ n1/4).

Condition (a) implies supθ:‖g(θ)‖≤dn/
√
n ‖g(θ) −Λg(θ)‖ = o(dn/

√
n) for any sequence (dn) with

dn → ∞, dn = o(
√
n). Choose dn → ∞ slowly so that: supθ:‖g(θ)‖≤dn/

√
n ‖g(θ) − Λg(θ)‖ =

o(1/
√
n) . Then choose another positive sequence (en)n∈N with en →∞ such that:

sup
θ:‖g(θ)‖≤dn/

√
n

en‖g(θ)−Λg(θ)‖ = o(1/
√
n)

and hence, by the fact that Λ(
√
ng(θ)) =

√
nΛg(θ) (Hiriart-Urruty and Lemaréchal, 2001, p.

51), we obtain:

sup
θ:‖g(θ)‖≤rn/

√
n

‖
√
ng(θ)−Λ(

√
ng(θ))‖ = o(r−1

n ) (61)

for any sequence (rn)n∈N with rn →∞ slowly such that rn ≤ (dn ∧ en).

Taking rn = (an ∧ bn ∧ cn ∧ dn ∧ en ∧ n1/4) and using (59), (60) and (61) yields:

nLn(θ) = −1

2
(
√
nΛg(θ) + Zn + oP(r−1

n ))(Ω−1 + oP(r−2
n ))(

√
nΛg(θ) + Zn + oP(r−1

n ))
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where the oP(r−1
n ) and oP(r−2

n ) terms hold uniformly over Θosn := {θ : ‖g(θ)‖ ≤ rn/
√
n}. This

proves (58).

Let U be a unitary matrix as described and recall that U−1 = U ′. The result follows from (58),
by expanding the quadratic and using:

(
√
nΛg(θ))′Ω−1(

√
nΛg(θ)) = (

√
nUΛ(g(θ)))′(UΩU ′)−1(

√
nUΛ(g(θ)))

= (
√
n[UΛg(θ)]1)′[(UΩU ′)−1]11(

√
n[UΛg(θ)]1)

≡ (
√
nγ(θ))′(

√
nγ(θ))

where [(UΩU ′)−1]11 is the d∗ × d∗ upper-left block of (UΩU ′)−1 and [UΛg(θ)]1 is the upper d∗

subvector of UΛg(θ), and:

(
√
nΛg(θ))′Ω−1Zn = (

√
nUΛg(θ))′(UΩ−1Zn)

= (
√
nγ(θ))′[(UΩU ′)−1]

−1/2
11 [UΩ−1Zn]1

≡ −(
√
nγ(θ))′Vn

where [UΩ−1Zn]1 is the upper d∗ subvector of UΩ−1Zn. �

Proof of Proposition 4.4. Follows by similar arguments to the proof of Proposition 4.3, not-
ing that by condition (e) we may choose a positive sequence (an)n∈N with an →∞ slowly such

that a2
n‖Ŵ − Ω−1‖ = oP(1). Therefore ‖Ŵ − Ω−1‖ = oP(r−2

n ) holds for any sequence (rn)n∈N
with rn →∞ such that rn = O(an). �

F.3 Proofs and Additional Lemmas for Appendix B

Proof of Lemma B.1. By (ii), there exists a positive sequence (ηn)n∈N with ηn = o(1) such
that supP∈P P(wn,α < wα,P − ηn) = o(1). Therefore:

inf
P∈P

P(ΘI(P) ⊆ Θ̂α) ≥ inf
P∈P

P({ΘI(P) ⊆ Θ̂α} ∩ {wn,α ≥ wα,P − ηn})

= inf
P∈P

P({supθ∈ΘI(P)Qn(θ) ≤ wn,α} ∩ {wn,α ≥ wα,P − ηn})

≥ inf
P∈P

P({supθ∈ΘI(P)Qn(θ) ≤ wα,P − ηn} ∩ {wn,α ≥ wα,P − ηn}) .
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Since P(A ∩B) ≥ 1− P(Ac)− P(Bc), we have:

inf
P∈P

P({supθ∈ΘI(P)Qn(θ) ≤ wα,P − ηn} ∩ {wn,α ≥ wα,P − ηn})

≥ 1− sup
P∈P

P(supθ∈ΘI(P)Qn(θ) > wα,P − ηn)− sup
P∈P

P(wn,α < wα,P − ηn)

= 1− sup
P∈P

P(supθ∈ΘI(P)Qn(θ) > wα,P − ηn)− o(1)

= 1− (1− α+ o(1))− o(1) .

where the second last line is by definition of ηn and the final line is by part (i).

To prove the case with equality, it suffices to show that infP∈P P(ΘI(P) ⊆ Θ̂α) ≤ α+ o(1). Since
wn,α = wα,P+oP(1) uniformly for P ∈ P, there exists a positive sequence (ηn)n∈N with ηn = o(1)
such that supP∈P P(|wn,α − wα,P| > ηn) = o(1). Therefore:

inf
P∈P

P(ΘI(P) ⊆ Θ̂α) = inf
P∈P

P({ΘI(P) ⊆ Θ̂α} ∩ {|wn,α − wα,P| ≤ ηn}) + o(1)

= inf
P∈P

P({supθ∈ΘI(P)Qn(θ) ≤ wn,α} ∩ {|wn,α − wα,P| ≤ ηn}) + o(1)

≤ inf
P∈P

P({supθ∈ΘI(P)Qn(θ) ≤ wα,P + ηn} ∩ {|wn,α − wα,P| ≤ ηn}) + o(1)

≤ inf
P∈P

P(supθ∈ΘI(P)Qn(θ) ≤ wα,P + ηn) + o(1)

= α+ o(1)

where the final line is by part (i). �

Proof of Lemma B.2. Follows by similar arguments to the proof of Lemma B.1. �

In the following we often use the following expression (62) that is equivalent to equation (25) of
Assumption B.2(i):

sup
θ∈Θosn

∣∣∣∣nLn(θ)− `n −
1

2
‖Vn‖2 +

(
1

2
‖
√
nγ(θ)− Vn‖2 + fn,⊥(γ⊥(θ))

)∣∣∣∣ = oP(1) (62)

uniformly for P ∈ P.

Lemma F.8. Let Assumptions B.1(i) and B.2 hold. Then:

sup
θ∈Θosn

∣∣Qn(θ)−
(
‖
√
nγ(θ)− Vn‖2 + 2fn,⊥(γ⊥(θ))

)∣∣ = oP(1) (63)

uniformly for P ∈ P. If, in addition, Assumption B.5(i) holds, then:

sup
θ∈Θosn

∣∣PQn(∆(θ))− f
(
Vn −

√
nγ(θ)

)∣∣ = oP(1) (64)

uniformly for P ∈ P.
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Proof of Lemma F.8. To show (63), using Assumptions B.1(i), B.2(i) (or expression (62))
and (ii) and completing the square, we obtain:

nLn(θ̂) = sup
θ∈Θosn

(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn − fn,⊥(γ⊥(θ))

)
+ oP(1)

= sup
θ∈Θosn

(
`n −

1

2
‖
√
nγ(θ)‖2 + (

√
nγ(θ))′Vn

)
+ oP(1)

= `n +
1

2
‖Vn‖2 − inf

θ∈Θosn

1

2
‖
√
nγ(θ)− Vn‖2 + oP(1) (65)

uniformly for P ∈ P. But observe that for any ε > 0:

sup
P∈P

P
(

inf
θ∈Θosn

‖
√
nγ(θ)− Vn‖2 > ε

)
≤ sup

P∈P
P
({

inf
θ∈Θosn

‖
√
nγ(θ)− Vn‖2 > ε

}
∩ {‖Vn‖ < kn}

)
+ sup

P∈P
P (‖Vn‖ ≥ kn)

= sup
P∈P

P (‖Vn‖ ≥ kn) = o(1)

by Assumption B.2(iii)(iv). This proves (63). Result (64) follows by Assumption B.5(i). �

Lemma F.9. Let Assumptions B.1, B.2 and B.3 hold. Then:

sup
z

(
Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− Fχ2

d∗
(z)
)
≤ oP(1)

uniformly for P ∈ P. If no P ∈ P is singular, then:

sup
z

∣∣∣Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− Fχ2

d∗
(z)
∣∣∣ = oP(1) .

uniformly for P ∈ P

Proof of Lemma F.9. We only prove the case with singularity. The (simpler) case without
singularity follows similarly.

By identical arguments to the proof of Lemma F.3, it is enough to characterize the large-sample
behavior of Rn(z) defined in equation (32) uniformly for P ∈ P. By Lemma F.8 and expression
(62), there exist a positive sequence (ηn)n∈N independent of z with ηn = o(1) and a sequence of
events (An)n∈N ⊂ F with infP∈P P(An) = 1− o(1) such that:

sup
θ∈Θosn

∣∣Qn(θ)−
(
‖
√
nγ(θ)− Vn‖2 + 2fn,⊥(γ⊥(θ))

)∣∣ ≤ ηn
sup

θ∈Θosn

∣∣∣∣nLn(θ)− `n −
1

2
‖Vn‖2 +

(
1

2
‖
√
nγ(θ)− Vn‖2 + fn,⊥(γ⊥(θ))

)∣∣∣∣ ≤ ηn
2
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both hold on An for all P ∈ P. Also note that for any z ∈ R and any singular P ∈ P, we have{
θ ∈ Θosn : ‖

√
nγ(θ)− Vn‖2 + 2fn,⊥(γ⊥(θ)) + ηn ≤ z

}
⊆
{
θ ∈ Θosn : ‖

√
nγ(θ)− Vn‖2 + ηn ≤ z

}
because fn,⊥ ≥ 0. Therefore, on An we have:

Rn(z) ≤ eηn
∫
{θ:‖
√
nγ(θ)−Vn‖2≤z+ηn}∩Θosn

e−
1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)∫

Θosn
e−

1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)

uniformly in z for all P ∈ P.

Define Γosn = {γ(θ) : θ ∈ Θosn} and Γ⊥,osn = {γ⊥(θ) : θ ∈ Θosn} (if P is singular). The condition
supP∈P supθ∈Θosn ‖(γ(θ), γ⊥(θ))‖ → 0 in Assumption B.2(i) implies that for all n sufficiently large
we have Γosn × Γ⊥,osn ⊂ B∗δ for all P ∈ P. By similar arguments to the proof of Lemma F.3, we
use Assumption B.3(ii), a change of variables and Tonelli’s theorem to obtain:

Rn(z) ≤ eηn(1 + η̄n)

∫
({γ:‖

√
nγ−Vn‖2≤z+ηn)∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dγ∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dγ

(66)

which holds uniformly in z for all P ∈ P (on An with n sufficiently large). A second change of
variables with

√
nγ − Vn 7→ κ allows us to rewrite (66) as:

Rn(z) ≤ eηn(1 + η̄n)
νd∗({γ : ‖κ‖2 ≤ z + ηn} ∩ (Kosn − Vn))

νd∗(Kosn − Vn)
.

To complete the proof, it is enough to show that:

sup
z

∣∣∣∣νd∗({κ : ‖κ‖2 ≤ z + ηn} ∩ (Kosn − Vn))

νd∗(Kosn − Vn)
− νd∗({κ : ‖κ‖2 ≤ z + ηn} ∩ (Kosn − Vn))

∣∣∣∣ = oP(1)

(67)

sup
z

∣∣νd∗({κ : ‖κ‖2 ≤ z + ηn} ∩ (Kosn − Vn))− νd∗({κ : ‖κ‖2 ≤ z})
∣∣ = oP(1) (68)

uniformly for P ∈ P.

Simple algebra shows that the left-hand side of (67) is bounded by νd∗((Rd
∗ \Kosn)−Vn) which,

in turn, is bounded by νd∗(B
c
kn
− Vn) (cf. Assumption B.2(iii)). Now fix any ε > 0 and notice

that Assumption B.2(iii)(iv) and the fact that d∗ ≤ d̄ for all P ∈ P implies supP∈P P(‖Vn‖2 ≤
kn) = o(1). Therefore:

sup
P∈P

P(νd∗(B
c
kn − Vn) > ε)

≤ sup
P∈P

P({νd∗(Bc
kn − Vn) > ε} ∩ {‖Vn‖ ≤ kn/2}) + sup

P∈P
P(‖Vn‖ > kn/2)

≤ sup
P∈P

1l{νd∗(Bc
kn/2

) > ε}+ o(1) = o(1)
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by Assumption B.2(iii).

Now consider (68). Simple algebra yields:

sup
z

∣∣νd∗({κ : ‖κ‖2 ≤ z + ηn} ∩ (Kosn − Vn))− νd∗({κ : ‖κ‖2 ≤ z + ηn})
∣∣

≤ νd∗((Rd
∗ \Kosn)− Vn) = oP(1)

uniformly for P ∈ P by the preceding argument. Finally:

sup
z

∣∣νd∗({κ : ‖κ‖2 ≤ z + ηn})− νd∗({κ : ‖κ‖2 ≤ z})
∣∣

= sup
z

(
Fχ2

d∗
(z + ηn)− Fχ2

d∗
(z)
)

= o(1)

uniformly for P ∈ P (the χ2 cdfs are uniformly equicontinuous on R). �

Proof of Theorem B.1. We first prove part (i). To do so, we verify the conditions of Lemma

B.1. As in the proof of Theorem 3.1, we may assume without loss of generality that Ln(θ̂) =
supθ∈Θosn Ln(θ)+oP(n−1) uniformly for P ∈ P. To verify condition (i) of Lemma B.1, by display

(63) in Lemma F.8 we have supθ∈ΘI(P)Qn(θ) = ‖Vn‖2 + oP(1) uniformly for P ∈ P, where

‖Vn‖2
P
 χ2

d∗ for each P ∈ P (since Σ = Id∗). Condition (i) then follows by Assumption B.2(iv)
and uniform equicontinuity of the χ2 distribution functions.

To verify condition (ii) of Lemma B.1, by Lemma F.9 there exists a sequence of positive constants
(ηn)n∈N with ηn = o(1) and a sequence of events (An)n∈N ⊂ F with infP∈P P(An) = 1 − o(1)
such that:

sup
z

(
Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− Fχ2

d∗
(z)
)
≤ ηn

holds on An for all P ∈ P. Substituting in z = ξpostn,α :

Πn

(
{θ : Qn(θ) ≤ ξpostn,α }

∣∣Xn

)
− Fχ2

d∗
(ξpostn,α ) = α− Fχ2

d∗
(ξpostn,α ) ≤ ηn

and hence:
Fχ2

d∗
(χ2
d∗,α)− Fχ2

d∗
(ξpostn,α ) ≤ ηn (69)

holds for all P ∈ P on An. The χ2
d∗ cdfs with 1 ≤ d∗ ≤ d̄ < ∞ are strictly monotone and their

inverses are all uniformly continuous on a fixed neighborhood of χ2
d∗,α. Hence by (69) there exists

a positive sequence (εn)n∈N with εn = o(1) such that:

ξpostn,α ≥ χ2
d∗,α − εn

holds for all P ∈ P on An. Therefore, ξpostn,α ≥ χ2
d∗,α + oP(1) uniformly for P ∈ P. Combining this

with Assumption B.4 we obtain ξmcn,α ≥ χ2
d∗,α + oP(1), as required.

We now prove part (ii) of the theorem, again by verifying the conditions of Lemma B.1. Condition
(i) is verified above. For condition (ii) of Lemma B.1, by Lemma F.9 if no P ∈ P is singular,
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then we have:
sup
z

∣∣∣Πn

(
{θ : Qn(θ) ≤ z}

∣∣Xn

)
− Fχ2

d∗
(z)
∣∣∣ ≤ ηn

holds on a sequence of events (An)n∈N ⊂ F with infP∈P P(An) = 1− o(1) for some sequence of
positive constants (ηn)n∈N with ηn = o(1), hence:

sup
P∈P
|Fχ2

d∗
(χ2
d∗,α)− Fχ2

d∗
(ξpostn,α )| ≤ ηn

holds on An. Arguing as above, we have that supP∈P |ξ
post
n,α −χ2

d∗,α| ≤ εn on An, for some positive

sequence (εn)n∈N with εn = o(1). �

Lemma F.10. Let Assumptions B.1, B.2, B.3, and B.5 hold. Then for any 0 < ε < (z − z)/2:

sup
z∈[z+ε,z−ε]

∣∣Πn

(
{θ : PQn(∆(θ)) ≤ z}

∣∣Xn

)
− PZ(f(Z) ≤ z)

∣∣ = oP(1) .

uniformly for P ∈ P.

Proof of Lemma F.10. By the same arguments as the proof of Lemma F.5, it suffices to
characterize the large-sample behavior of Rn(z) defined in (47) uniformly for P ∈ P. By Lemma
F.8 and expression (62), there exist a positive sequence (ηn)n∈N independent of z with ηn = o(1)
and a sequence of events (An)n∈N ⊂ F with infP∈P P(An) = 1− o(1) such that:

sup
θ∈Θosn

∣∣PQn(∆(θ))− f(Vn −
√
nγ(θ))

∣∣ ≤ ηn
sup

θ∈Θosn

∣∣∣∣nLn(θ)− `n −
1

2
‖Vn‖2 +

(
1

2
‖
√
nγ(θ)− Vn‖2 + fn,⊥(γ⊥(θ))

)∣∣∣∣ ≤ ηn
2

both hold on An for all P ∈ P. So on An we obtain: Therefore, wpa1 we have:

e−ηn

∫
{θ:f(Vn−

√
nγ(θ))≤z−ηn}∩Θosn

e−
1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)∫

Θosn
e−

1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)

≤ Rn(z) ≤ eηn
∫
{θ:f(Vn−

√
nγ(θ))≤z+ηn}∩Θosn

e−
1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)∫

Θosn
e−

1
2
‖
√
nγ(θ)−Vn‖2−fn,⊥(γ⊥(θ))dΠ(θ)

uniformly in z for all P ∈ P. By similar arguments to the proof of Lemma F.9, we may use the
change of variables θ 7→ (γ(θ), γ⊥(θ)), smoothness of πΓ∗ , and Tonelli’s theorem to rewrite the
above system of inequalities as:

(1− η̄n)e−ηn

∫
{γ:f(Vn−

√
nγ)≤z−ηn}∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dγ∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dγ

≤ Rn(z) ≤ (1 + η̄n)eηn

∫
{γ:f(Vn−

√
nγ)≤z+ηn}∩Γosn

e−
1
2
‖
√
nγ−Vn‖2dγ∫

Γosn
e−

1
2
‖
√
nγ−Vn‖2dγ
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which holds uniformly in z for all P ∈ P (on An with n sufficiently large), for some positive
sequence (η̄n)n∈N with η̄n = o(1). Let Kosn = {

√
nγ : γ ∈ Γosn}. A second change of variables√

nγ − Vn 7→ κ yields:

(1− η̄n)e−ηn

∫
{κ:f(κ)≤z−ηn}∩(Vn−Kosn) e

− 1
2
‖κ‖2dκ∫

(Vn−Kosn)e
− 1

2
‖κ‖2dκ

≤ Rn(z) ≤ (1 + η̄n)eηn

∫
{κ:f(κ)≤z+ηn}∩(Vn−Kosn) e

− 1
2
‖κ‖2dκ∫

(Vn−Kosn)e
− 1

2
‖κ‖2dκ

which holds uniformly in z for all P ∈ P (on An with n sufficiently large).

To complete the proof, it remains to show that:

sup
z∈[z+ε,z−ε]

∣∣∣∣νd∗({κ : f(κ) ≤ z ± ηn} ∩ (Vn −Kosn)

νd∗((Vn −Kosn))
− νd∗({κ : f(κ) ≤ z})

∣∣∣∣ = oP(1)

uniformly for P ∈ P. By the proof of Lemma F.9, it is enough to show that:

sup
P∈P

sup
z∈[z+ε,z−ε]

|νd∗({κ : f(κ) ≤ z ± ηn})− νd∗({κ : f(κ) ≤ z})| = o(1) .

This follows directly from Assumption B.5(ii). �

Proof of Theorem B.2. We verify the conditions of Lemma B.2. As in the proof of Theorem
3.3, we may assume without loss of generality that Ln(θ̂) = supθ∈Θosn Ln(θ)+oP(n−1) uniformly
for P ∈ P. To verify condition (i) of Lemma B.2, by display (64) in Lemma F.8 we have:

sup
µ∈MI(P)

inf
θ∈µ−1(m)

Qn(θ) = f(Vn) + oP(1)

uniformly for P ∈ P, where Vn
P
 N(0, Id∗) for each P ∈ P (since Σ = Id∗). Part (i) follows by

Assumption B.5(ii)(iii).

To verify condition (ii) of Lemma B.2 with equality, take ε > 0 such that ε < infP∈P ξα,P − z
and ε < z − supP∈P ξα,P. By Lemma F.10 there exists a sequence of positive constants (ηn)n∈N
with ηn = o(1) and a sequence of events (An)n∈N ⊂ F with infP∈P P(An) = 1− o(1) such that:

sup
z∈[z+ε,z−ε]

∣∣Πn

(
{θ : PQn(∆(θ)) ≤ z}

∣∣Xn

)
− PZ(f(Z) ≤ z)

∣∣ ≤ ηn
holds on An for all P ∈ P. Substituting in z = ξpostn,α (which is in [z + ε, z − ε] for all P ∈ P, for
all n sufficiently large by Assumption B.5(ii)), we can deduce that:∣∣PZ(f(Z) ≤ ξα,P)− PZ(f(Z) ≤ ξpostn,α )

∣∣ ≤ ηn
holds for all P ∈ P on An, for all n sufficiently large. Uniform equicontinuity of the inverse of
z 7→ PZ(f(Z) ≤ z) (Assumption B.5(ii)) implies that there exists a positive sequence (εn)n∈N
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with εn = o(1) such that
|ξpostn,α − ξα,P| ≤ εn

holds for all P ∈ P on An, for all n sufficiently large. Therefore, ξpostn,α − ξα,P = oP(1) uniformly
for P ∈ P. The result follows by Assumption B.6. �

F.4 Proofs for Appendix D

Proof of Theorem D.1. We first derive the asymptotic distribution of supθ∈ΘI Qn(θ) under
Pn,a. By similar arguments to the proof of Theorem 3.1, we have:

sup
θ∈ΘI

Qn(θ) = ‖Vn‖2 + oPn,a(1)
Pn,a
 χ2

d∗(a
′a) .

Identical arguments to the proof of Lemma 3.1 yield:

sup
z
|Πn({θ : Qn(θ) ≤ z}|Xn)− Fχ2

d∗
(z)| = oPn,a(1) .

Therefore, ξmcn,α = χ2
d∗,α + oPn,a(1) and we obtain:

Pn,a(ΘI ⊆ Θ̂α) = Pr(χ2
d∗(a

′a) ≤ χ2
d∗,α) + o(1)

as required. �

Proof of Theorem D.2. Similar arguments to the proof of Theorem 3.3, uniformly for θ ∈ ΘI

we have:
PQn(∆(θ)) = 2nLn(θ̂)− 2nPLn(θ) = f(Vn) + oPn,a(1) .

hence:

sup
θ∈ΘI

PQn(∆(θ))
Pn,a
 f(Z + a)

where Z ∼ N(0, Id∗). Identical arguments to the proof of Lemma F.5 yield:

sup
z∈S−ε

∣∣Πn

(
{θ : PQn(∆(θ)) ≤ z}

∣∣Xn

)
− PZ|Xn

(
f(Z) ≤ z

)∣∣ = oP(1)

for an open set S−ε containing zα. Therefore, ξmc,pn,α = zα + oPn,a(1) and we obtain:

Pn,a(MI ⊆ M̂α) = PZ(f(Z + a) ≤ zα) + o(1)

as required. �
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F.5 Proofs for Appendix E

Proof of Lemma E.1. By equations (30) and (31) in the proof of Lemma 3.1, it suffices to
characterize the large-sample behavior of:

Rn(z) :=

∫
{θ:Qn(θ)≤z}∩Θosn

e−
1
2
Qn(θ)dΠ(θ)∫

Θosn
e−

1
2
Qn(θ)dΠ(θ)

.

By Assumption E.2(i), there exists a positive sequence (ηn)n∈N with ηn = o(1) such that: (1 −
ηn)h(γ(θ)− γ̂n) ≤ an

2 Qn(θ) ≤ (1 + ηn)h(γ(θ)− γ̂n) holds uniformly over Θosn. Therefore:

∫
{θ:2a−1

n (1+ηn)h(γ(θ)−γ̂n)≤z}∩Θosn
e−a

−1
n (1+ηn)h(γ(θ)−γ̂n)dΠ(θ)∫

Θosn
e−a

−1
n (1−ηn)h(γ(θ)−γ̂n)dΠ(θ)

≤ Rn(z) ≤

∫
{θ:2a−1

n (1−ηn)h(γ(θ)−γ̂n)≤z}∩Θosn
e−a

−1
n (1−ηn)h(γ(θ)−γ̂n)dΠ(θ)∫

Θosn
e−a

−1
n (1+ηn)h(γ(θ)−γ̂n)dΠ(θ)

.

By similar arguments to the proof of Lemma 3.1, under Assumption 3.3 there exists a positive
sequence (η̄n)n∈N with η̄n = o(1) such that for all n sufficiently large we have:

(1− η̄n)

∫
{γ:2a−1

n (1+ηn)h(γ−γ̂n)≤z}∩Γosn
e−a

−1
n (1+ηn)h(γ−γ̂n)dγ∫

Γosn
e−a

−1
n (1−ηn)h(γ−γ̂n)dγ

≤ Rn(z) ≤ (1 + η̄n)

∫
{γ:2a−1

n (1−ηn)h(γ−γ̂n)≤z}∩Γosn
e−a

−1
n (1−ηn)h(γ−γ̂n)dγ∫

Γosn
e−a

−1
n (1+ηn)h(γ−γ̂n)dγ

.

under the change of variables θ 7→ γ(θ), where Γosn = {γ(θ) : θ ∈ Θosn}.

Assumption E.2(ii) implies that:

a−1
n (1± ηn)h(γ − γ̂n) = h

(
a−r1n (1± ηn)r1(γ1 − γ̂n,1), . . . , a−rd∗n (1± ηn)rd∗ (γd∗ − γ̂n,d∗)

)
.

Using a change of variables:

γ 7→ κ±(γ) =
(
a−r1n (1± ηn)r1(γ1 − γ̂n,1), . . . , a−rd∗n (1± ηn)rd∗ (γd∗ − γ̂n,d∗)

)
(with choice of sign as appropriate) and setting r∗ = r1 + . . .+ rd∗ , we obtain:

(1− η̄n)
(1− ηn)r

∗

(1 + ηn)r∗

∫
{κ:2h(κ)≤z}∩K+

osn
e−h(κ)dκ∫

e−h(κ)dκ

≤ Rn(z) ≤ (1 + η̄n)
(1 + ηn)r

∗

(1− ηn)r∗

∫
{κ:2h(κ)≤z}e

−h(κ)dκ∫
K+
osn
e−h(κ)dκ

(70)

uniformly in z, where K+
osn = {κ+(γ) : γ ∈ Γosn}.
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We can use a change of variables for κ 7→ t = 2h(κ) to obtain:∫
{κ:h(κ)≤z/2}

e−h(κ)dκ = 2−r
∗
V(S)

∫ z

0
e−t/2tr

∗−1dt

∫
e−h(κ)dκ = 2−r

∗
V(S)

∫ ∞
0

e−t/2tr
∗−1dt

(71)

where V(S) denotes the volume of the set S = {κ : h(κ) = 1}.

For the remaining integrals over K+
osn we first fix any ω ∈ Ω so that K+

osn(ω) becomes a determin-

istic sequence of sets. Let Cn(ω) = K+
osn(ω) ∩Bkn . Assumption E.2(iii) gives Rd∗ = ∪n≥1Cn(ω)

for almost every ω. Now clearly:∫
e−h(κ)dκ ≥

∫
K+
osn(ω)

e−h(κ)dκ ≥
∫

1l{κ ∈ Cn(ω)}e−h(κ)dκ→
∫
e−h(κ) dκ

(by dominated convergence) for almost every ω. Therefore:∫
K+
osn

e−h(κ)dκ→p 2−r
∗
V(S)

∫ ∞
0

e−t/2tr
∗−1dt . (72)

We may similarly deduce that:

sup
z

∣∣∣∣∣
∫
{κ:h(κ)≤2z}∩K+

osn

e−h(κ)dκ− 2−r
∗
V(S)

∫ z

0
e−t/2tr

∗−1dt

∣∣∣∣∣→p 0 . (73)

The result follows by substituting (71), (72), and (73) into (70). �

Proof of Theorem E.1. We verify the conditions of Lemma 2.1.

Lemma E.1 shows that the posterior distribution of the QLR is asymptotically FΓ = Γ(r∗, 1/2),

and hence ξpostn,α = zα + oP(1), where zα denotes the α quantile of the FΓ. By Assumption
supθ∈ΘI Qn(θ) FΓ. Then:

ξmcn,α = zα + (ξpostn,α − zα) + (ξmcn,α − ξpostn,α ) = zα + oP(1)

where the final equality is by Assumption 3.4. �
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