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1. Introduction

The exact distribution of a test statistic is often unknown to the researcher. If the statistic
is asymptotically pivotal, the quantile based on the limiting distribution is commonly used
as a critical value. Simulation methods aim to find approximations to such a quantile,
including the Quenouille-Tukey jackknife, the bootstrap method of Efron [8], and the
subsampling approach of Politis and Romano [16]. These methods are valid for a variety
of models, as proved by Bickel and Freedman [4], Politis et al. [17], and Romano and
Shaikh [18].

For some testing problems, however, the distribution of a statistic can actually be
sensitive to the unknown probability distribution. This dependence can be related to the
curvature of the model, in the sense of Efron [6, 7], not vanishing asymptotically. This
curvature creates difficulty in drawing inference on parameters of interest. Usual tests
may not control size uniformly and confidence regions do not necessarily cover the true
parameter at the nominal level. As standard simulation methods may not circumvent the
sensitivity to unknown parameters, there is a need to develop methods that take this
dependence into consideration.

The goal of this paper is to directly tackle the core of the problem, adjusting for the
sensitivity of the test statistic to nuisance parameters. In practice, our method entails
replacing a critical value number by a critical value function (CVF) of the data. The CVF
is a linear combination of density ratios under the null distribution. The weight choice
in this combination is at the discretion of the researcher. We focus here on combinations
that yield tests which are approximately similar. These weights can be found by linear
programming (LP).

We illustrate the CVF procedure with a simple but important model in which the
regressor may be integrated. Jeganathan [11, 12] shows that the limit of experiments is
Locally Asymptotically Brownian Functional (LABF). The usual test statistics are no
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longer asymptotically pivotal and the theory of optimal tests based on Locally Asymp-
totically Mixed Normal (LAMN) experiments is no longer applicable. The bootstrap and
subsampling may not provide uniform control in size and confidence levels, as discussed
by Basawa et al. [2] and Politis and Romano [16], among others. The similar t-test based
on the CVF has null rejection probabilities close to the nominal level regardless of the
value of the autoregressive parameter. While this paper does not focus on obtaining opti-
mal procedures, the proposed similar t-test does have good power. It has correct size and
outperforms the two other tests that are known to be similar: the L2 test of Wright [21]
and the uniformly most powerful conditionally unbiased (UMPCU) test of Jansson and
Moreira [10].

This paper is organized as follows. Section 2 introduces the CVF approach and shows
how to find tests which are approximately similar in finite samples. Section 3 presents
the predictive regressor model and obtains approximations that are asymptotically valid
whether the disturbances are normal or not. Section 4 provides numerical simulations to
compare the similar t-test with existing procedures in terms of size and power. Section 5
concludes. Appendix A provides a bound based on a discrepancy error useful to imple-
ment the CVF. Appendix B contains the proofs to the theory underlying the CVF. The
supplement presents additional numerical results and remaining proofs.

2. Inference Based on the t-Statistic

Commonly used tests for H0 : β ≤ β0 against H1 : β > β0 reject the null hypothesis when
some statistic ψ is larger than a critical value κα (we omit here the dependence of the
statistic ψ on the data R for convenience). The test is said to have size α when the null
rejection probability is no larger than α for any value of the nuisance parameter γ:

sup
β≤β0,γ∈Γ

Pβ,γ (ψ > κα) = α. (2.1)

Finding the critical value κα that satisfies (2.1) is a difficult task as the null distribution of
the statistic ψ is unknown. In practice, the choice of κα is based on the limiting distribution
of ψ for a large sample size T . If ψ is asymptotically pivotal, the null rejection probability
at β0 is approximately α:

lim
T→∞

Pβ0,γ (ψ > κα) = α. (2.2)

The t-test rejects the null hypothesis when the t-statistic is larger than a critical value:

ψ (r) > κα.

Simulation methods aim to find approximations to the critical value κα. In most cases, the
limit of experiments is locally asymptotically mixed normal (LAMN) and the t-statistic
is asymptotically normal1. Hence, numerical methods are usually not too sensitive to the
true unknown nuisance parameter. This critical value number can be simulated using
sample draws. The bootstrap approach works if the asymptotic critical value does not
depend on γ within the correct neighborhood around the true parameter value. In some
problems, however, the curvature does not vanish asymptotically. For example, take the
case in which the regressors are persistent. Cavanagh et al. [5] show that several standard
methods fail to control size uniformly. This failure is due to the model curvature not
vanishing when the series is nearly integrated. In particular, the asymptotic quantile of
the t-statistic does depend on the nuisance parameters when the autoregressive coefficient
γ is near one.

1More precisely, if the family is locally asymptotically quadratic (LAQ) for all γ, then the more
restrictive LAMN condition must hold for almost all γ (in the Lebesgue sense); see Proposition 4 of Le
Cam and Yang [13, p. 77].
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2.1. The Critical Value Function

We propose a new method to find a test based on the t-statistic which controls size
uniformly. We focus on finding approximately similar tests where the null rejection prob-
ability is close to α. The approach developed here also holds if we instead want to find
tests with correct size (in a uniform sense) in which the null rejection probability is no
larger than α.

Our approach takes into consideration the dependence of the null rejection probability
on γ ∈ Γ by means of a critical value function. The proposed test rejects the null hypothesis
when

ψ (r) > κΓn,α(r), (2.3)

where κΓn,α is the critical value function so that the test is similar at Γn = {γ1, ..., γn},
a set containing n values of the nuisance parameter γ. We choose

κΓn,α(r) =

n∑
i=1

ki
fβ0,γi(r)

fν (r)
, (2.4)

where k = (k1, k2, ..., kn) is a vector of dimension n and fν (r) is a density function. By a
standard separation theorem (e.g., [15]), there exist scalars k1, k2, ..., kn so that

Pβ0,γi (ψ (R) > κΓn,α(R)) = α, (2.5)

for i = 1, ..., n. Under some regularity conditions, the scalars k1, k2, ..., kn are unique.

Lemma 1. Suppose that ψ (r) , fβ0,γ1
(r) , ..., fβ0,γn (r), and fν (r) are continuous func-

tions. Let K be the set of k = (k1, ..., kn) which satisfies

Pβ0,γl

(
ψ (R) >

n∑
i=1

ki
fβ0,γi(R)

fν (R)

)
= α, l = 1, ..., n.

Let k∗ = (k∗1 , ..., k
∗
n) be an element of K. Define the set

∂A∗ =

{
r;ψ (r) =

n∑
i=1

k∗i
fβ0,γi (r)

fν (r)

}

which is the boundary of the critical set

A∗ =

{
r;ψ(r) >

n∑
i=1

k∗i
fβ0,γi (r)

fν (r)

}
.

If {(fβ0,γ1
(r) , ..., fβ0,γn (r)); r ∈ ∂A∗} spans Rn, then K is singleton.

The critical value function κΓn,α(r) guarantees that the null rejection probability equals
α for γ ∈ Γn. With enough discretization, we can ensure that the null rejection probability
does not differ from α by more than a discrepancy error ε.
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Theorem 2. Assume that fβ0,γ (r) is continuous in γ a.e. in r. Consider an array γi,n
so that supγ∈Γ minγi,n∈Γn

∣∣γ − γi,n∣∣→ 0 as n→∞. Let φΓn,α (r) be the test which rejects
the null if

ψ (r) > κΓn,α(r),

where Γn =
{
γ1,n, ..., γn,n

}
. Then, for any ε > 0, there exists an n large enough so that∣∣Eβ0,γφΓn,α (r)− α

∣∣ ≤ ε,
for any value of γ ∈ Γ.

By Theorem 2, the size is controlled uniformly if the discretization is fine enough. In
practice, we can find the set Γn through an iterative algorithm. We can start by choosing
two endpoints in the boundary of an interval of interest for γ. The critical value function
ensures that the null rejection probability for those two points is exactly α, but not for the
other points in that interval. We can proceed by computing the null rejection probabilities
for these other points, either analytically or numerically. If at least one of them differs
from α by more than a discrepancy error, we include the point whose discrepancy is the
largest in the next iteration and start the algorithm all over again. This approach will be
discussed in our numerical example in Section 4, where we use Monte Carlo simulations
to estimate the null rejection probabilities.

2.2. The Baseline Density Function

By Le Cam’s Third Lemma, the critical value function collapses to a constant if the
statistic is asymptotically pivotal and fν (r) is a mixture of densities when β = β0. Hence,
we focus on

fν (r) =

∫
fβ0,γ (r) dν (γ) ,

where ν is a probability measure which weights different values of γ.
One example is a weight, ν∗, which assigns the same mass 1/n on a finite number of

points γ1 < γ2 < ... < γn:

ν∗ (dγ) =

{
1
n if γ = γi
0 otherwise

.

The test then rejects the null hypothesis when

ψ (r) >

∑n
i=1 kifβ0,γi(r)

n−1
∑n
j=1 fβ0,γj (r)

.

A second probability measure, ν†, assigns all mass on a point γ:

ν† (dγ) =

{
1 if γ = γ
0 otherwise

.

The test rejects the null when

ψ (r) >

n∑
i=1

ki
fβ0,γi(r)

fβ0,γ(r)
.
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The choice of γ for the baseline density fν† (r) can be motivated by those points for
which the limit of experiments is not LAMN. In our leading example in which the regres-
sor is persistent, it may be natural to set the autoregressive parameter γ equal to one.
In practice, however, we recommend using the density average fν∗ (r). By choosing the
baseline density as a simple average of the densities fβ0,γi(r), the CVF is bounded and
appears to have better numerical performance for other null rejection probabilities beyond
Γ = {γ1, ..., γn}.

2.3. Linear Programming

We can find the multipliers kl, l = 1, ..., n, using a linear programming approach. The
method is simple and requires a sample drawn from only one probability law. Let R(j),
j = 1, ..., J , be i.i.d. random variables with positive density fν∗ (r).

Consider the maximization problem

max
0≤φ(R(j))≤1

1

J

J∑
j=1

φ(R(j))
ψ(R(j)).fν(R(j))

fν∗(R(j))
(2.6)

s.t.
1

J

J∑
j=1

φ(R(j))
fβ0,γl(R

(j))

fν∗(R(j))
= α, l = 1, ..., n.

The solution to this problem is given by the test in (2.3) which approximately satisfies
the boundary constraints given in (2.5).

We can rewrite the maximization problem as a standard (primal) linear programming
problem:

max
mJ∈[0,1]J

d′mJ (2.7)

s.t. AmJ = α.1n,

where d =
(
ψ(R(1)).fν(R(1))

fν∗ (R(1))
, ..., ψ(R(J)).fν(R(J))

fν∗ (R(J))

)′
and mJ = (φ(R(1)), ..., φ(R(J)))′ are vec-

tors in RJ , the (l, j)-entry of the n × J matrix A is fβ0,γl(R
(j))/fν∗(R

(j)), and 1n is an
n-dimensional vector with all coordinates equal to one. The dual program

min
kJ∈Rn

1′nkJ (2.8)

s.t. A′kJ = d

yields an approximation to the vector k associated to the critical value function given in
(2.4).

The approximation kJ to the unknown vector k satisfying (2.5) may, of course, be a poor
one. This numerical difficulty can be circumvented if the LLN holds uniformly as J →∞
for the sample averages present in the maximization problem given by (2.6). Showing
uniform convergence is essentially equivalent to proving that the functions, appearing in
the objective function and the boundary constraints of (2.6), belong to the Glivenko-
Cantelli class, as defined in van der Vaart [20, p. 145]. A sufficient condition for uniform
convergence is that the set Γ is compact, the functions fβ0,γ(r)/fν∗(r) are continuous in
γ for every r, and ψ(r) is integrable.

3. Application: Persistent Regressors

Consider a simple model with persistent regressors. There is a stochastic equation

yt = µy + βxt−1 + εyt ,
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where the variable yt and the regressor xt are observed, and εyt is a disturbance variable,
t = 1, ..., T . This equation is part of a larger model where the regressor can be correlated
with the unknown disturbance. More specifically, we have

xt = γxt−1 + εxt ,

where x0 = 0 and the disturbance εxt is unobserved and possibly correlated with εyt . We

assume that εt = (εyt , ε
x
t )

iid∼ N (0,Σ) where

Σ =

[
σyy σxy
σxy σxx

]
is a positive definite matrix. The theoretical results carry out asymptotically whether Σ
is known or not. For simplicity, we assume for now that Σ is known.

Our goal is to assess the predictive power of the past value of xt on the current value
of yt. For example, a variable observed at time t − 1 can be used to forecast another in
period t. The null hypothesis is H0 : β ≤ 0 and the alternative is H1 : β > 0.

For example, consider the t-statistic

ψ =
β̂ − β0

σ
1/2
yy

[∑T
t=1

(
xµt−1

)2]−1/2
, (3.9)

where β̂ =
∑T
t=1 x

µ
t−1yt/

∑T
t=1

(
xµt−1

)2
(hereinafter, xµt−1 is the demeaned value of xt−1)

and β0 = 0. The nonstandard error variance uses the fact that Σ is known. The one-sided
t-test rejects the null hypothesis when the statistic given by (3.9) is larger than the 1−α
quantile of a standard normal distribution.

If |γ| < 1, the t-statistic is asymptotically normal and κα equals Φ−1 (1− α). If the
convergence in the null rejection probability is uniform and the sup (over γ) and lim (in
T ) operators in (2.1) and (2.2) can be interchanged, the test is asymptotically similar.
That is, the test ψ > κα has null rejection probability close to α for all values of the
nuisance parameter γ. The admissible values of the auto-regressive parameter γ play a
fundamental role in the uniform convergence. The discontinuity in the limiting distribution
of the t-statistic ψ at γ = 1 shows that the convergence is not uniform even if we know
that |γ| < 1. The test based on the t-statistic with κα = Φ−1 (1− α) has asymptotic size
substantially different from the size based on the pointwise limiting distribution of ψ. One
solution to the size problem is to obtain a larger critical value. The rejection region ψ > κα
would have asymptotically correct size but would not be similar (and would consequently
be biased). We instead apply the CVF approach to circumvent the size problems in the
presence of highly persistent regressors.

3.1. Finite-Sample Theory

We want to test H0 : β ≤ 0 against H1 : β > 0, where the nuisance parameters are
µy and γ. Standard invariance arguments can eliminate the parameter µy. Let y and x
be T -dimensional vectors where the t-th entries are yt and xt, respectively. Consider the
group of translation transformations on the data

g ◦ (y, x) = (y + g.1T , x) ,

where g is a scalar and 1T is the T−dimensional vector whose entries all equal one. This
yields a transformation on the parameter space

g ◦
(
β, γ, µy

)
=
(
β, γ, µy + g

)
.
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This group action preserves the parameter of interest β. Because the group translation
preserves the hypothesis testing problem, it is reasonable to focus on tests that are in-
variant to translation transformations on y. The test based on the t-statistic is invariant
to these transformations.

Any invariant test can be written as a function of the maximal invariant statistic. Let
q = (q1, q2) be an orthogonal T×T matrix where the first column is given by q1 = 1T /

√
T .

Algebraic manipulations show that q2q
′
2 = M1T , where M1T = IT −1T (1′T 1T )

−1
1′T is the

projection matrix to the space orthogonal to 1T . Let x−1 be the T -dimensional vector
whose t-th entry is xt−1, and define wµ = q′2w for a T -dimensional vector w. The maximal
invariant statistic is given by r = (yµ, x). Its density function is given by

fβ,γ (yµ, x) = (2πσxx)
−T2 exp

{
− 1

2σxx

T∑
t=1

(xt − xt−1γ)
2

}
(3.10)

× (2πσyy.x)
−T−1

2 exp

{
− 1

2σyy.x

T∑
t=1

(
yµt − x

µ
t

σxy
σxx
− xµt−1

[
β − γ σxy

σxx

])2
}
,

where σyy.x = σyy − σ2
xy/σxx is the variance of εyt not explained by εxt .

Lemma 1 of Jansson and Moreira [10] shows that this density belongs to the curved-
exponential family, which consists of two parameters, β and γ, and a four-dimensional
sufficient statistic:

Sβ =
1

σyy.x

T∑
t=1

xµt−1

(
yt −

σxy
σxx

xt

)
, Sγ =

1

σxx

T∑
t=1

xt−1xt −
σxy
σxx

Sβ ,

Sββ =
1

σyy.x

T∑
t=1

(
xµt−1

)2
, and Sγγ =

1

σxx

T∑
t=1

(xt−1)
2

+
σ2
xy

σ2
xx

Sββ .

As a result, classical exponential-family statistical theory is not applicable to this problem.
This has several consequences for testing H0 : β ≤ 0 against H1 : β > 0. First, there does
not exist a uniformly most powerful unbiased (UMPU) test for H0 : β ≤ 0 against H1 : β >
0. Jansson and Moreira [10] instead obtain an optimal test within the class of similar tests
conditional on the specific ancillary statistics Sββ and Sγγ . Second, the pair of sufficient
statistics under the null hypothesis, Sγ and Sγγ , is not complete. Hence, there exist
similar tests beyond those considered by Jansson and Moreira [10]. This less restrictive
requirement can lead to power gains because (i) Sββ and Sγγ are not independent of Sβ
and Sγ ; and (ii) the joint distribution of Sβ and Sγ does depend on the parameter β.

3.2. Asymptotic Theory

We now analyze the behavior of testing procedures as T →∞. The asymptotic power of
tests depends on the likelihood ratio around β0 = 0 and the true parameter γ.

The Hessian matrix of the log-likelihood captures the difficulty in making inference in
parametric models. Define the scaling function

gT (γ) =

(
1

σxx
E0,γ

T∑
t=1

(xt−1)
2

)−1/2

,

which is directly related to the Hessian matrix of the log-likelihood given in (3.10). For
example, Anderson [1] and Mikusheva [14] implicitly use the scaling function gT (γ) for the
one-equation autoregressive model with one lag, AR(1). This scaling function is chosen
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so that P0,γ and P
b·σ1/2

yy.xσ
−1/2
xx gT (γ),γ+c·gT (γ)

are mutually contiguous for any value of γ.

The local alternative is indexed by σ
1/2
yy.xσ

−1/2
xx to simplify algebraic calculations. Define

the stochastic process ΛT as the log-likelihood ratio

ΛT

(
b · σ1/2

yy.xσ
−1/2
xx gT (γ) , γ + c · gT (γ) ; 0, γ

)
= ln

f
b·σ1/2

yy.xσ
−1/2
xx gT (γ),γ+c·gT (γ)

(r)

f0,γ (r)
.

The subscript T indicates the dependency of the log-likelihood ratio on the sample.

Proposition 3. The scaling function equals

gT (γ) =

(
T−1∑
t=1

t−1∑
l=0

γ2l

)−1/2

.

The function gT (γ) is continuous in γ and simplifies to the usual rates for the stationary,
integrated, and explosive cases:
(a) if |γ| < 1, then gT (γ) ∼ (1− γ2

)1/2T−1/2;
(b) if γ = 1, then gT (γ) ∼ 21/2T−1; and,

(c) if γ > 1, then gT (γ) ∼ (1− γ−2

) · γ−(T−2)

.

The log-likelihood ratio can be written as

ΛT

(
b · σ1/2

yy.xσ
−1/2
xx gT (γ) , γ + c · gT (γ) ; 0, γ

)
= [b, c]RT (γ)− 1

2
[b, c]KT (γ) [b, c]

′
,

where RT is a random vector and KT is a symmetric random matrix. The first and second
components of RT are

Rβ,T (γ) = gT (γ)
1

σ
1/2
yy.xσ

1/2
xx

T∑
t=1

xµt−1

(
yt − β0xt−1 −

σxy
σxx

[xt − γxt−1]

)
and

Rγ,T (γ) = gT (γ)
1

σxx

T∑
t=1

xt−1 (xt − γxt−1)− ρ√
1− ρ2

Rβ,T (γ) ,

where ρ = σxy/(σ
1/2
xx σ

1/2
yy ) is the error correlation. The entries (1, 1), (1, 2), and (2, 2) of

KT (γ) are, respectively,

Kββ,T (γ) = gT (γ)
2 1

σxx

T∑
t=1

xµ
2

t−1,

Kβγ,T (γ) = −gT (γ)
2 ρ√

1− ρ2

1

σxx

T∑
t=1

xµ
2

t−1, and

Kγγ,T (γ) = gT (γ)
2

[
ρ2

1− ρ2

1

σxx

T∑
t=1

xµ
2

t−1 +
1

σxx

T∑
t=1

x
2

t−1

]
.

The asymptotic behavior of the log-likelihood ratio is divided into pointwise limits: |γ| < 1
(stationary), γ = 1 (integrated), and γ > 1 (explosive).
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Proposition 4. For any bounded scalars b and c, ΛγT (b, c) = Λγ (b, c) + oP0,γ (1), where
Λγ (b, c) is defined as follows:
(a) For |γ| < 1,

Λγ (b, c) = [b, c]RS − 1

2
[b, c]KS [b, c]

′
,

where RS ∼ N
(
0,KS

)
and KS is a matrix given by

KS =

 1 − ρ√
1−ρ2

− ρ√
1−ρ2

1
1−ρ2

 .
(b) For γ = 1,

Λγ (b, c) = [b, c]RI − 1

2
[b, c]KI [b, c]

′
,

where RI and KI are given by

RI = 21/2

[ ∫ 1

0
Wµ
x (r) dWy (r)∫ 1

0
Wµ
x (r) dWx (r)− ρ√

1−ρ2
∫ 1

0
Wµ
x (r) dWy (r)

]
and

KI = 2

 ∫ 1

0
Wµ
x (r)

2
dr − ρ√

1−ρ2
∫ 1

0
Wµ
x (r)

2
dr

− ρ√
1−ρ2

∫ 1

0
Wµ
x (r)

2
dr ρ

1−ρ2
∫ 1

0
Wµ
x (r)

2
dr +

∫ 1

0
Wµ
x (r)

2
dr

 ,
with Wx and Wy being two independent Wiener processes and

Wµ
x (r) = Wx (r)−

∫ 1

0

Wx (s) ds.

(c) For γ > 1,

Λγ (b, c) = [b, c]RE − 1

2
[b, c]KE [b, c]

′
,

where
(
KE

)−1/2
RE ∼ N (0, I2) independent of KE whose distribution is

KE ∼ χ2 (1) ·

 1 − ρ√
1−ρ2

− ρ√
1−ρ2

1
1−ρ2

 .
The log-likelihood ratio has an exact quadratic form of b and c in finite samples.

Proposition 4 finds the limit of experiments when the series is (a) stationary; (b) nearly
integrated; and (c) explosive. When |γ| < 1, the limit of experiments is Locally Asymp-
totically Normal (LAN). When γ = 1 the limit of experiments is Locally Asymptotically
Brownian Functional (LABF). When γ > 1, the limit of experiments is Locally Asymp-
totically Mixed Normal (LAMN). Because LAN is a special case of LAMN, the limit of
experiments is LAMN for every γ except for γ = 1. By Le Cam’s Third Lemma, the
asymptotic power of a test φ is given by

lim
T→∞

E
b·σ1/2

yy.xσ
−1/2
xx gT (γ),γ+c·gT (γ)

φ (R) = E0,γφ exp {Λγ (b, c)} .

As T →∞, the null rejection probability is controlled in a neighborhood that shrinks
with rate gT (γ). Define

f0,γi (r) = f0,γ+ci·gT (γ) (r) ,
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where |ci| ≤ c for i = 1, ..., n (we assume that n is odd and c(n+1)/2 = 0 for convenience).
Theorem 2 and Proposition 4 allow us to refine the partition within a shrinking interval
for γ. The approximation error converges in probability to zero for any bounded values of
b and c.

Let φ∗Γn,α be the test based on the measure ν∗, which assigns the same mass 1/n on
Γn = {γ1, ..., γn}. This test rejects H0 when

ψ (r) >

∑n
i=1 k

∗
i f0,γi (r)

n−1
∑n
j=1 f0,γj (r)

,

where k∗1 , ..., k
∗
n are constants such that the null rejection probability equals α at γ1, ..., γn.

Analogously, let φ†Γn,α be the test based on the measure ν†, which assigns all mass on
γ(n+1)/2 = γ. This test rejects H0 when

ψ (r) >

∑n
i=1 k

†
i f0,γi (r)

f0,γ (r)
,

where k∗1 , ..., k
∗
n are constants such that the null rejection probability equals α at γi =

γ + ci · gT (γ), i = 1, ..., n. We, of course, do not know the true parameter γ.

Both tests φ∗Γn,α and φ†Γn,α reject H0 when the test statistic ψ (r) is larger than a
critical value function. The respective critical value functions can be written in terms of
the log-likelihood ratio differences ΛT (0, γ + ci · gT (γ) ; 0, γ). The test φ∗Γn,α rejects H0

when

ψ (r) >

∑n
i=1 k

∗
i exp {ΛT (0, γ + ci · gT (γ) ; 0, γ)}

n−1
∑n
j=1 exp {ΛT (0, γ + cj · gT (γ) ; 0, γ)}

. (3.11)

The test φ†Γn,α rejects H0 when

ψ (r) >

n∑
i=1

k†i exp {ΛT (0, γ + ci · gT (γ) ; 0, γ)} . (3.12)

Assume that ψ (R) is regular and asymptotically standard normal when the series is
stationary (or explosive). In particular, this assumption applies to the t-statistic. For each
γ, we write →c to denote convergence in distribution under P0,γ+c.gT (γ).

Assumption AP: The test statistic ψ (r) is a continuous function of the sufficient statis-
tics (a.e.). Furthermore, when |γ| < 1 (or γ > 1), ψ (R) →c N (0, 1) for any bounded
c.

Under Assumption AP, the critical value function converges to the 1− α quantile of a
normal distribution when either |γ| < 1 or γ > 1. This implies that both tests φ∗Γn,α and

φ†Γn,α are asymptotically UMPU in the stationary case and conditionally (on ancillary
statistics) UMPU in the explosive case.

Theorem 5. Assume that ψ satisfies Assumption AP. The following hold as T →∞:
(a) If |γ| < 1, then (i) k∗i →p Φ−1 (1− α) /n, and (ii) k†(n+1)/2 →p Φ−1 (1− α) and

k†i →p 0 for i 6= (n+ 1)/2.
(b) If γ = 1, then (i) k∗i converge to k∗i,∞ which satisfy

P

(
ψ (cl) >

∑n
i=1 k

∗
i,∞ exp

{
ciRγ (cl)− 1

2c
2
iKγγ (cl)

}
n−1

∑n
j=1 exp

{
cjRγ (cl)− 1

2c
2
jKγγ (cl)

}) = α, (3.13)
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l = 1, ..., n, and (ii) k†i converge to k†i,∞ which satisfy

P

(
ψ (cl) >

n∑
i=1

k†i,∞ exp

{
ciRγ (cl)−

1

2
c2iKγγ (cl)

})
= α, (3.14)

l = 1, ..., n, where ψ (cl) is defined as ψ (Rβ (cl) , Rγ (cl) ,Kββ (cl) ,Kβγ (cl) ,Kγγ (cl)) and

Rβ (c) = 21/2

[∫ 1

0

Wµ
x,c (r) dWy (r)− ρ√

1− ρ2
c

∫ 1

0

Wµ
x,c (r)

2
dr

]
,

Rγ (c) = 21/2

[∫ 1

0

Wµ
x (r) dWx (r)− ρ√

1− ρ2
Rβ (c)

]
,

Kββ (c) = 2

∫ 1

0

Wµ
x,c (r)

2
dr,

Kβγ (c) = −2
ρ√

1− ρ2

∫ 1

0

Wµ
x,c (r)

2
dr, and

Kγγ (c) = 2

[
ρ

1− ρ2

∫ 1

0

Wµ
x,c (r)

2
dr +

∫ 1

0

Wµ
x,c (r)

2
dr

]
,

for the two independent Wiener processes Wx and Wy, with Wx,c being the standard

Ornstein-Uhlenbeck process, and Wµ
x,c = Wx,c −

∫ 1

0
Wx,c (s) ds.

(c) If γ > 1 and ψ is the t-statistic, then (i) k∗i →p Φ−1 (1− α) /n, and (ii) k†(n+1)/2 →p

Φ−1 (1− α) and k†i →p 0 for i 6= (n+ 1)/2.

Comment: Theorem 5 is valid for |γ| ≤ 1 when errors are nonnormal and the error
covariance is estimated under mild moment conditions.

Parts (a) and (c) show that there is no critical-value adjustment when the series is either
stationary or explosive. Part (b) provides a size correction when the series is integrated.
We note that the t-statistic is not asymptotically pivotal under the nearly-integrated
asymptotics. Hence, the size adjustment is non-trivial; that is, not all n boundary condi-
tions are satisfied for the t-statistic if k∗i equals a constant for i = 1, ..., n or k†i = 0 for
i 6= (n+ 1) /2.

We, of course, do not know the true parameter γ. We could choose an auxiliary esti-
mator γ̂T or select a prespecified value of γ for the CVF. In this paper, we choose the
second option. As the CVF provides an adjustment only when γ = 1, we recommend this
value as the centering point of the CVF. We use the test

ψ (r) >

∑n
i=1 k

∗
i exp {ΛT (0, 1 + ci · gT (1) ; 0, 1)}

n−1
∑n
j=1 exp {ΛT (0, 1 + cj · gT (γ) ; 0, 1)}

. (3.15)

for the numerical simulations.

4. Numerical Simulations

In this section, we present numerical simulations for the approximately similar t-test.
We simulate the simple model with moderately small samples (T = 100). We perform
10,000 Monte Carlo simulations to evaluate each rejection probability. The nominal size
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α is 10% and β0 = 0. The disturbances εyt and εxt are serially independent and identically
distributed, with variance one and correlation ρ. We focus on the iterative algorithm which
provides size adjustments and on properties of the CVF. To avoid an additional level of
uncertainty, we assume for now the covariance matrix to be known. In Section 4.1, we
relax the assumption of known variance and evaluate the feasible similar t-test in terms
of size and power.

To find the approximated critical value function, we start with two initial points at
c = −50 and c = 20. For T = 100, the value of the autoregressive parameter is respectively
γ = 0.5 and γ = 1.2. The choice of these parameters relies on the fact that the t-statistic is
approximately normal in the stationary and explosive cases. We uniformly discretize the
range c ∈ [−50, 20] by 100 points and make sure all null rejection probabilities are near
10%. We approximate the null rejection probabilities for these points with J = 10, 000
Monte Carlo simulations. If at least one of them differs from 10% by more than 0.015,
we include the point whose discrepancy is the largest in the next iteration. We then re-
evaluate all null rejection probabilities and include an additional point if necessary, and
so forth. In Appendix A, we show that if the discrepancy error is 0.015, the probability
of unnecessarily adding one more point is less than 0.01%. The multipliers are obtained
solving the linear programming problem given in expression (2.8).

Fig 1: Null Rejection Probabilities
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(a) ρ = 0.95
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(b) ρ = −0.95

Figure 1 plots null rejection probabilities for ρ = 0.95 and ρ = −0.95. Taking c ranging
from −100 to 50 allows us to consider cases in which the regressors are stationary (γ =
0.00, ..., 0.50), nearly integrated (γ = 0.85, ..., 0.95), exactly integrated (γ = 1.00), nearly
explosive (γ = 1.05 or 1.10), and explosive (γ = 1.20, ..., 1.50).

When ρ = 0.95 and we include only the initial points γ = 0.5 and γ = 1.2, the null
rejection probability is lower than 10% for values of γ between the endpoints γ = 0.5 and
γ = 1.2. The associated test seems to have correct size but the null rejection probability
is near zero when γ = 1. As a result, the power of a test using only the two endpoints
can be very low when the series is nearly integrated. By adding additional points, the
null rejection probability becomes closer to 10% for all values γ ∈ [0.5, 1.2]. In practice,
our algorithm includes about 10 additional points. When ρ = −0.95 and we consider only
the initial points γ = 0.5 and γ = 1.2, the null rejection probabilities can be as large
as 55%. Applied researchers would then reject the null considerably more often than the
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reported nominal level. By sequentially adding the most discrepant points, the algorithm
eventually yields a null rejection probability close to 10%.

Figure 1 also compares the CVF approach with the usual bootstrap method, the para-
metric bootstrap, and subsampling. For the (nonparametric) bootstrap, we draw a random
sample from the centered empirical distribution function of the fitted residuals for εt from
OLS regressions. For the parametric bootstrap, we replace the unknown autoregressive
parameter γ with the OLS estimator. For the subsampling, we choose the subsampling
parameters following the recommendation of Romano and Wolf [19]. The bootstrap sam-
pling schemes have similar performance and do not have null rejection probability near
10% when the series are nearly integrated. This failure is due to the fact that the estimator
β̂ is not locally asymptotically equivariant in the sense of Beran [3]; see also Basawa et al.
[2]. The subsampling is a remarkably general method and has good performance when
γ = 1. However, its null rejection probability can be quite different from 10% for values
of γ near one. In the supplement, we show that the bootstrap and subsampling can be
even further away from the nominal level of 10% if we make inference in the presence of
a time trend.

Fig 2: Critical Value Function

(a) ρ = 0.95 (b) ρ = −0.95

Interestingly, the null rejection probability for the CVF method is not far from 10% even
for values of γ outside the range [0.5, 1.2] whether ρ is positive or negative. This suggests
that the critical value functions take values close to 1.28, the 90% quantile of a standard
normal distribution, when the series is stationary or explosive. Figure 2 supports this
observation when the series is stationary. This graph plots the critical value function as a
mapping of Rγ,T (1) and Kγγ,T (1). To shorten notation, we denote these statistics Rγ and
Kγγ respectively. Standard asymptotic arguments show that Kγγ converges in probability
to zero and Rγ/Kγγ diverges to −∞. Whether ρ = 0.95 or ρ = −0.95, the critical value
function takes values close to 1.28 when Kγγ is close to zero and Rγ is bounded away
from zero (which, of course, implies that their ratio diverges). We cannot visualize, in this
figure, the explosive case in which Kγγ diverges to ∞. In the supplement, we plot the
critical values as a function of Rγ/Kγγ and Kγγ and re-scale the axis to accommodate
for the explosive case as well. We show again that the critical value function takes values
near 1.28 also when the series is explosive.
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4.1. Size and Power Comparison

We now evaluate different size correction methods for the t-statistic when the variance
matrix for the innovations εyt and εxt is unknown. The covariance matrix is estimated using
residuals from OLS regressions.

We compare size and power of the similar t-test with the two other similar tests: the
L2 test of Wright [21] and the UMPCU test of Jansson and Moreira [10]. The figures
present power curves for c = −15 and c = 0. The rejection probabilities are plotted
against local departures from the null hypothesis. Specifically, the parameter of interest
is β = b · σyy.x · gT (γ) for b = −10,−9, ..., 10. The value b = 0 corresponds to β = 0 for
the null hypothesis H0 : β ≤ 0.

Figure 3 plots size and power comparisons for ρ = 0.95. The similar t-test has correct
size and null rejection probability near the nominal level when b = 0. Hence, replacing
the unknown variance by a consistent estimate has little effect on size in practice. Indeed,
the limiting distribution of the t-statistic and the CVF is the same whether the variance
is estimated or not2. The L2 test is also similar but does not have correct size when the
series is integrated. The L2 test actually has a bell-shaped power curve when the regressor
is integrated, but has a monotonic power curve when the series is nearly integrated. This
inconsistency makes it hard to use the L2 test for either one-sided or two-sided hypothesis
testing problems. Although the UMPCU test is a similar test, our reported null rejection
probability is near zero when b = 0 and the series is nearly integrated. This problem is
possibly due to the inaccuracy of the algorithm used by Jansson and Moreira [10] for
integral approximations (and their computed critical value).

Fig 3: Power (ρ = 0.95)
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(a) γ = 0.85
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Whether the series is nearly integrated or exactly integrated, the similar t-test domi-
nates the two other similar tests in terms of power. When c = −15 and b = 10, the similar
t-test has power above 90% while the L2 and UMPCU tests have power lower than 60%
and 30%, respectively. When c = 0 and b = 10, the similar t-test has power close to
50% while the L2 and UMPCU tests have power close to 40% and 30%. The fact that

2More generally, it is even possible to accommodate for heteroskedasticity and autocorrelation for the
innovations by adjusting the statistics RT and KT and estimating a long-run variance, as done by Jansson
and Moreira [10].
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the similar t-test outperforms the UMPCU test may seem puzzling at first. However, the
UMPCU test is optimal within the class of similar tests conditional on specific ancillary
statistics Sββ and Sγγ . As there exist similar tests beyond those considered by Jansson
and Moreira [10], our less restrictive requirement yields power gains. Therefore, the per-
formance of the similar t-test shows that the UMPCU test uses a conditional argument
that entails unnecessary power loss.

The similar t-test also has considerably better performance than the other similar tests
when the endogeneity coefficient is negative. Figure 4 presents power curves for ρ = −0.95.
All three tests present null rejection probabilities near the nominal level when b = 0. The
L2 test again can present bell-shaped power, and does not even have correct size. The
power functions for the similar t-test and UMPCU test are monotonic and have null
rejection probabilities smaller than 10% when c = −15 or c = 0.

Fig 4: Power (ρ = −0.95)
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The supplement presents size and power comparisons for all combinations of c = −100,
−50, −15, 0, 10, 30 and ρ = 0.5, −0.5, 0.95, −0.95. These numerical simulations further
show that the similar t-test has overall better performance than the L2 and UMPCU tests
in terms of size and power.

5. Conclusion and Extensions

This paper proposes a novel method to find tests with correct size for situations in which
conventional numerical methods do not perform satisfactorily. The critical value function
(CVF) approach is very general and relies on weighting schemes which can be found
through linear programming (LP). Considering the polynomial speed of interior-point
methods for LP, it is fast and straightforward to find the CVF. The weights are chosen so
that the test is similar for a finite number of null rejection probabilities. If the nuisance
parameter dimension is not too large, we expect the CVF method to work adequately.

In a model with persistent regressors, the CVF method yields a similar t-test which
outperforms other similar tests proposed in the literature. It would be interesting to as-
sess how our methodology performs in other models. For example, take the autoregressive
model. If the model has one lag, Hansen [9] suggests a “grid” bootstrap which delivers
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confidence regions with correct coverage probability (in a uniform sense). This method
relies on less restrictive conditions than the bootstrap. However, it requires the null dis-
tribution of the test statistic to be asymptotically independent of the nuisance parameter
(hence, it is applicable even for our model with persistent regressors). If the autoregres-
sive model has more lags, Romano and Wolf [19] propose subsampling methods based on
Dickey-Fuller representations. Their proposed confidence region which has correct cover-
age level can be conservative (in the sense that some of the coverage probabilities can
be larger than the nominal level). By inverting the tests based on the CVF method, we
are able to provide confidence regions which instead have coverage probabilities near the
nominal level.
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