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Abstract

This paper studies inference for the average treatment effect in randomized controlled trials with

covariate-adaptive randomization. Here, by covariate-adaptive randomization, we mean randomization

schemes that first stratify according to baseline covariates and then assign treatment status so as to

achieve “balance” within each stratum. Such schemes include, for example, Efron’s biased-coin design and

stratified block randomization. When testing the null hypothesis that the average treatment effect equals

a pre-specified value in such settings, we first show that the usual two-sample t-test is conservative in the

sense that it has limiting rejection probability under the null hypothesis no greater than and typically

strictly less than the nominal level. In a simulation study, we find that the rejection probability may in

fact be dramatically less than the nominal level. We show further that these same conclusions remain

true for a näıve permutation test, but that a modified version of the permutation test yields a test that is

non-conservative in the sense that its limiting rejection probability under the null hypothesis equals the

nominal level for a wide variety of randomization schemes. The modified version of the permutation test

has the additional advantage that it has rejection probability exactly equal to the nominal level for some

distributions satisfying the null hypothesis and some randomization schemes. Finally, we show that the

usual t-test (on the coefficient on treatment assignment) in a linear regression of outcomes on treatment

assignment and indicators for each of the strata yields a non-conservative test as well under even weaker

assumptions on the randomization scheme. In a simulation study, we find that the non-conservative tests

have substantially greater power than the usual two-sample t-test.
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1 Introduction

This paper studies inference for the average treatment effect in randomized controlled trials with covariate-

adaptive randomization. Here, by covariate-adaptive randomization, we mean randomization schemes that

first stratify according to baseline covariates and then assign treatment status so as to achieve “balance”

within each stratum. Many such methods are used routinely in randomized controlled trials in economics

and the social sciences more generally. Duflo et al. (2007) and Bruhn and McKenzie (2008) provide a review

focused on methods used in randomized controlled trials in development economics. In this paper, we take

as given the use of such a treatment assignment mechanism satisfying weak assumptions and study its

consequences for testing the null hypothesis that the average treatment effect equals a pre-specified value in

such settings.

Our first result establishes that the usual two-sample t-test is conservative in the sense that it has limiting

rejection probability under the null hypothesis no greater than and typically strictly less than the nominal

level. We additionally provide a characterization of when the limiting rejection probability under the null

hypothesis is in fact strictly less than the nominal level. As explained further in Remark 4.4 below, our result

substantially generalizes a related result obtained by Shao et al. (2010), who established this phenomenon

under much stronger assumptions and for only one specific treatment assignment mechanism. We show

further that these conclusions remain true for a näıve permutation test. In a simulation study, we find that

the rejection probability of these tests may in fact be dramatically less than the nominal level, and, as a

result, they may have very poor power when compared to other tests. Intuitively, the conservative feature

of these tests is a consequence of the dependence in treatment status across units and between treatment

status and baseline covariates resulting from covariate-adaptive randomization.

Motivated by these results, we go on to show that a modified version of the permutation test which

only permutes treatment status for units within the same stratum yields a test that is non-conservative

in the sense that its limiting rejection probability under the null hypothesis equals the nominal level for a

wide variety of randomization schemes. We refer to this test as the covariate-adaptive permutation test.

As explained further in Remark 4.11 below, this test or closely related tests have been previously proposed

and justified in finite samples for a much narrower version of the null hypothesis when treatment status is

determined using very specific randomization schemes. See, for example, Rosenberger and Lachin (2004,

Section 7.4), Rosenbaum (2007), and Heckman et al. (2011). Exploiting recent results on the large-sample

behavior of permutation tests by Chung and Romano (2013), our results, in contrast, asymptotically justify

the use of these tests for testing the null hypothesis that the average treatment effect equals a pre-specified

value for a much wider variety of randomization schemes, while retaining the finite-sample validity for the

narrower version of the null hypothesis and some randomization schemes.

We additionally consider the usual t-test (on the coefficient on treatment assignment) in a linear regression

of outcomes on treatment assignment and indicators for each of the strata. We refer to this test as the t-test

with strata fixed effects. Remarkably, this simple modification of the usual two-sample t-test yields a test

that is non-conservative as well under even weaker assumptions on the randomization scheme. On the other

hand, this test does not enjoy the finite-sample validity of the covariate-adaptive permutation test for the
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narrower version of the null hypothesis, though it remains valid asymptotically for an even wider variety of

randomization schemes.

While all of our results apply much more generally, it is important to emphasize that they apply in

particular to stratified block randomization. In stratified block randomization, units are first stratified

according to baseline covariates and then a subset of the units within each strata are chosen at random

to be assigned to treatment. In a sense made more precise in Example 3.4 below, when approximately

one half of the units within each strata are chosen to be assigned to treatment, this treatment assignment

mechanism exhibits the best finite-sample “balancing” properties. It has therefore become increasingly

popular, especially in development economics. Indeed, many very recent papers in development economics

use this particular randomization scheme, including, for example, Dizon-Ross (2014, footnote 13), Duflo

et al. (2014, footnote 6), Callen et al. (2015, page 24), and Berry et al. (2015, page 6).

The remainder of the paper is organized as follows. In Section 2, we describe our setup and notation.

In particular, there we describe the weak assumptions we impose on the treatment assignment mechanism.

In Section 3, we discuss several examples of treatment assignment mechanisms satisfying these assumptions,

importantly including stratified block randomization. Our main results about the four tests mentioned above

are contained in Section 4. In Section 5, we examine the finite-sample behavior of these tests as well as some

other tests via a small simulation study. Proofs of all results are provided in the Appendix.

2 Setup and Notation

Let Yi denote the (observed) outcome of interest for the ith unit, Ai denote an indicator for whether the

ith unit is treated or not, and Zi denote observed, baseline covariates for the ith unit. Further denote by

Yi(1) the potential outcome of the ith unit if treated and by Yi(0) the potential outcome of the ith unit if

not treated. As usual, the (observed) outcome and potential outcomes are related to treatment assignment

by the relationship

Yi = Yi(1)Ai + Yi(0)(1−Ai) . (1)

Denote by Pn the distribution of the observed data

X(n) = {(Yi, Ai, Zi) : 1 ≤ i ≤ n}

and denote by Qn the distribution of

W (n) = {(Yi(1), Yi(0), Zi) : 1 ≤ i ≤ n} .

Note that Pn is jointly determined by (1), Qn, and the mechanism for determining treatment assignment.

We therefore state our assumptions below in terms of assumptions on Qn and assumptions on the mechanism

for determining treatment status. Indeed, we will not make reference to Pn in the sequel and all operations

are understood to be under Qn and the mechanism for determining treatment status.
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We begin by describing our assumptions on Qn. We assume that W (n) consists of n i.i.d. observations,

i.e., Qn = Qn, where Q is the marginal distribution of (Yi(1), Yi(0), Zi). We further restrict Q to satisfy the

following, mild requirement:

Assumption 2.1. Q satisfies

E[Y 2
i (1)] <∞ and E[Y 2

i (0)] <∞ .

Next, we describe our assumptions on the mechanism determining treatment assignment. As mentioned

previously, in this paper we focus on covariate-adaptive randomization, i.e., randomization schemes that

first stratify according baseline covariates and then assign treatment status so as to achieve “balance” within

each stratum. In order to describe our assumptions on the treatment assignment mechanism more formally,

we require some further notation. To this end, let S : supp(Zi)→ S, where S is a finite set, be the function

used to construct strata and, for 1 ≤ i ≤ n, let Si = S(Zi). Denote by S(n) the vector of strata (S1, . . . , Sn)

and denote by A(n) the vector of treatment assignments (A1, . . . , An). For s ∈ S, let p(s) = P{Si = s} and

Dn(s) =
∑

1≤i≤n

A∗i I{Si = s} , (2)

where

A∗i = Ai −
1

2
.

Note that Dn(s) as defined in (2) is simply a measure of the imbalance in stratum s. In order to rule out

trivial strata, we, of course, assume that p(s) > 0 for all s ∈ S. Our other requirements on the treatment

assignment mechanism are summarized in the following assumption:

Assumption 2.2. The treatment assignment mechanism is such that

(a) W (n) ⊥⊥ A(n)|S(n),

(b)

{{
Dn(s)√

n

}
s∈S

∣∣∣S(n)

}
d→ N(0,ΣD) a.s., where ΣD = diag{ς2D(s) : s ∈ S} and

ς2D(s) = p(s)τ(s) with 0 ≤ τ(s) ≤ 1

4
for all s ∈ S .

Assumption 2.2.(a) simply requires that the treatment assignment mechanism is a function only of the

vector of strata and an exogenous randomization device. Assumption 2.2.(b) is an additional requirement

that is satisfied by a wide variety of randomization schemes. In the following section, we provide several

important examples of treatment assignment mechanisms satisfying this assumption, including many that

are used routinely in economics and other social sciences.

Our object of interest is the average effect of the treatment on the outcome of interest, defined to be

θ(Q) = E[Yi(1)− Yi(0)] . (3)
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For a pre-specified choice of θ0, the testing problem of interest is

H0 : θ(Q) = θ0 versus H1 : θ(Q) 6= θ0 (4)

at level α ∈ (0, 1).

3 Examples

In this section, we briefly describe several different randomization schemes that satisfy our Assumption 2.2.

A more detailed review of these methods and their properties can be found in Rosenberger and Lachin

(2004). In our descriptions, we make use of the notation A(k−1) = (A1, . . . , Ak−1) and S(k) = (S1, . . . , Sk)

for 1 ≤ k ≤ n, where A(0) is understood to be a constant.

Example 3.1. (Simple Random Sampling) Simple random sampling (SRS), also known as Bernoulli trials,

refers to the case where A(n) consists of n i.i.d. random variables with

P{Ak = 1|S(n), A(k−1)} = P{Ak = 1} =
1

2
(5)

for 1 ≤ k ≤ n. In this case, Assumption 2.2.(a) follows immediately from (5), and Assumption 2.2.(b) follows

from the central limit theorem with τ(s) = 1
4 for all s ∈ S. Note that E[Dn(s)] = 0 for all s ∈ S, so SRS

ensures “balance” on average, yet in finite samples Dn(s) may be far from zero.

Example 3.2. (Biased-Coin Design) A biased-coin design is a generalization of simple random sampling

originally proposed by Efron (1971) with the aim of improving “balance” in finite samples. In this random-

ization scheme, treatment assignment is determined recursively for 1 ≤ k ≤ n as follows:

P{Ak = 1|S(k), A(k−1)} =


1
2 if Dk−1(Sk) = 0

λ if Dk−1(Sk) < 0

1− λ if Dk−1(Sk) > 0

, (6)

where Dk−1(Sk) =
∑

1≤i≤k−1A
∗
i I{Si = Sk}, and 1

2 < λ ≤ 1. Here, D0(S1) is understood to be zero. The

randomization scheme adjusts the probability with which the kth unit is assigned to treatment in an effort

to improve “balance” in the corresponding stratum in finite samples. It follows from Lemma B.9 that this

treatment assignment mechanism satisfies Assumption 2.2. In particular, Assumption 2.2.(b) holds with

τ(s) = 0 for all s ∈ S. In this sense, we see that biased-coin design provides improved “balance” relative to

simple random sampling.

Example 3.3. (Adaptive Biased-Coin Design) An adaptive biased-coin design, also known as Wei’s urn

design, is an alternative generalization of SRS originally proposed by Wei (1978). This randomization scheme

is similar to a biased-coin design, except that the probability λ in (6) depends on Dk−1(Sk), the magnitude of

imbalance in the corresponding stratum. More precisely, in this randomization scheme, treatment assignment
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is determined recursively for 1 ≤ k ≤ n as follows:

P{Ak = 1|S(k), A(k−1)} = ϕ

(
Dk−1(Sk)

k − 1

)
, (7)

where ϕ(x) : [−1, 1] → [0, 1] is a pre-specified non-increasing function satisfying ϕ(−x) = 1 − ϕ(x). Here,
D0(S1)

0 is understood to be zero. It follows from Lemma B.10 that this treatment assignment mechanism

satisfies Assumption 2.2. In particular, Assumption 2.2.(b) holds with τ(s) = 1
4 (1− 4ϕ′(0))−1, which lies in

the interval (0, 1
4 ) for the choice of ϕ(x) recommended by Wei (1978) and used in Section 5. In this sense,

adaptive biased-coin designs provide improved “balance” relative to simple random sampling (i.e., τ(s) < 1
4 ),

but to a lesser extent than biased-coin designs (i.e., τ(s) > 0).

Example 3.4. (Stratified Block Randomization) An early discussion of stratified block randomization is

provided by Zelen (1974). This randomization scheme is sometimes also referred to as block randomization

or permuted blocks within strata. In order to describe this treatment assignment mechanism, for s ∈ S,

denote by n(s) the number of units in stratum s and let n1(s) ≤ n(s) be given. In this randomization

scheme, n1(s) units in stratum s are assigned to treatment and the remainder are assigned to control, where

all (
n(s)

n1(s)

)
possible assignments are equally likely and treatment assignment across strata are independent. By setting

n1(s) =

⌊
n(s)

2

⌋
, (8)

this scheme ensures |Dn(s)| ≤ 1 for all s ∈ S and therefore exhibits the best “balance” in finite samples

among the methods discussed here. It follows from Lemma B.11 that this treatment assignment mechanism

satisfies Assumption 2.2. In particular, as in Example 3.2, Assumption 2.2.(b) holds with τ(s) = 0 for all

s ∈ S.

Remark 3.1. Another treatment assignment mechanism for randomized controlled trials that has received

considerable attention is re-randomization. See, for example, Bruhn and McKenzie (2008) and Lock Morgan

and Rubin (2012). In this case, as explained by Lock Morgan and Rubin (2012), the properties of Dn(s)

depend on the rule used to decide whether to re-randomize and how to re-randomize. As a result, the

analysis of such randomization schemes is necessarily case-by-case, and we do not consider them further in

this paper.

Remark 3.2. Another treatment assignment mechanism that has been used in clinical trials is are mini-

mization methods. These methods were originally proposed by Pocock and Simon (1975) and more recently

extended and further studied by Hu and Hu (2012). In Hu and Hu (2012), treatment assignment is deter-

mined recursively for 1 ≤ k ≤ n as follows:

P{Ak = 1|S(k), A(k−1)} =


1
2 if Imbk = 0

λ if Imbk < 0

1− λ if Imbk > 0

, (9)
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where 1
2 ≤ λ ≤ 1 and Imbk = Imbk(S(k), A(k−1)) is a weighted average of different measures of imbalance.

See Hu and Hu (2012) for expressions of these quantities. The analysis of this randomization scheme is

relatively more involved than those in Examples 3.1-3.3 as it introduces dependence across different strata.

We therefore do not consider it further in this paper.

Remark 3.3. Our framework does not accommodate response-adaptive randomization schemes. In such

randomization schemes, units are assigned to treatment sequentially and treatment assignment for the ith

unit, Ai, depends on Y1, . . . , Yi−1. This feature leads to a violation of part (a) of our Assumption 2.2. It is

worth emphasizing that response-adaptive randomization schemes are only feasible when at least some of the

outcomes are observed at some point of the treatment assignment process, which is unusual in experiments

in economics and other social sciences.

4 Main Results

4.1 Two-Sample t-Test

In this section, we consider using the two-sample t-test to test (4) at level α ∈ (0, 1). In order to define this

test, for a ∈ {0, 1}, let

Ȳn,a =
1

na

∑
1≤i≤n

YiI{Ai = a}

σ̂2
n,a =

1

na

∑
1≤i≤n

(Yi − Ȳn,a)2I{Ai = a} ,

where na =
∑

1≤i≤n I{Ai = a}. The two-sample t-test is given by

φt-test
n (X(n)) = I{|T t-test

n (X(n))| > z1−α2 } , (10)

where

T t-test
n (X(n)) =

Ȳn,1 − Ȳn,0 − θ0√
σ̂2
n,1

n1
+

σ̂2
n,0

n0

(11)

and z1−α2 is the 1− α
2 quantile of a standard normal random variable. This test may equivalently be described

as the usual t-test (on the coefficient on treatment assignment) in a linear regression of outcomes on treatment

assignment with heteroskedasticity-robust standard errors. It is used routinely throughout economics and

the social sciences, including settings with covariate-adaptive randomization. Note that further results on

linear regression are developed in Section 4.4 below.

The following theorem describes the asymptotic behavior of the two-sample t-statistic defined in (11)

and, as a consequence, the two-sample t-test defined in (10) under covariate-adaptive randomization. In

particular, the theorem shows that the limiting rejection probability of the two-sample t-test under the null

hypothesis is generally strictly less than the nominal level.
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Theorem 4.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 2.2. Then,
Ȳn,1 − Ȳn,0 − θ(Q)√

σ̂2
n,1

n1
+

σ̂2
n,0

n0

d→ N(0, ς2t-test) ,

where ς2t-test ≤ 1. Furthermore, ς2t-test < 1 unless

(1− 4τ(s)) (E[m1(Zi)|Si = s] + E[m0(Zi)|Si = s])
2

= 0 for all s ∈ S , (12)

where

ma(Zi) = E[Yi(a)|Zi]− E[Yi(a)] (13)

for a ∈ {0, 1}. Thus, for the problem of testing (4) at level α ∈ (0, 1), φt-test
n (X(n)) defined in (10) satisfies

lim sup
n→∞

E[φt-test
n (X(n))] ≤ α (14)

whenever Q additionally satisfies the null hypothesis, i.e., θ(Q) = θ0. Furthermore, the inequality in (14) is

strict unless (12) holds.

Remark 4.1. Note that the two-sample t-test defined in (10) uses the 1− α
2 quantile of a standard normal

random variable instead of the corresponding quantile of a t-distribution. Theorem 4.1 remains true with

such a choice of critical value. See Imbens and Kolesar (2012) for a recent review of some such degrees of

freedom adjustments.

Remark 4.2. While we generally expect that (12) will fail to hold, there are some important cases in

which it does hold. First, as explained in Example 3.1, for simple random sampling Assumption 2.2 holds

with τ(s) = 1
4 for all s ∈ S. Hence, (12) holds, and Theorem 4.1 implies, as one would expect, that the

two-sample t-test is not conservative under simple random sampling. Second, if stratification is irrelevant

for potential outcomes in the sense that E[Yi(a)|Si] = E[Yi(a)] for all a ∈ {0, 1}, then E[ma(Zi)|Si] = 0 for

a ∈ {0, 1}. Hence, (12) again holds, and Theorem 4.1 implies that the two-sample t-test is not conservative

when stratification is irrelevant for potential outcomes. Note that a special case of irrelevant stratification

is simply no stratification, i.e., Si is constant.

Remark 4.3. In the proof of Theorem 4.1 in the Appendix, it is shown that

ς2t-test =
ς2
Ỹ

+ ς2H + ς2A
ς2Y

, (15)

where

ς2Y = 2Var[Yi(1)] + 2Var[Yi(0)] (16)

ς2
Ỹ

= 2Var[Ỹi(1)] + 2Var[Ỹi(0)] (17)

ς2H = E[(E[m1(Zi)|Si]− E[m0(Zi)|Si])2] (18)

ς2A = E
[
2τ(Si) (E[m1(Zi)|Si] + E[m0(Zi)|Si])2

]
(19)
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with Ỹi(a) = Yi(a)−E[Yi(a)|Si]. From (15), we see that three different sources of variation contribute to the

variance. The first quantity, ς2
Ỹ

, reflects variation in the potential outcomes; the second quantity, ς2H , reflects

variation due to heterogeneity in the responses to treatment, i.e., m1 6= m0; and the third quantity, ς2A,

reflects variation due to “imperfectly balanced” treatment assignment, i.e., τ(s) > 0 in Assumption 2.2.(b).

Remark 4.4. Under substantially stronger assumptions than those in Theorem 4.1, Shao et al. (2010) also

establish conservativeness of the two-sample t-test for a specific covariate-adaptive randomization scheme.

Shao et al. (2010) require, in particular, that ma(Zi) = γ′Zi, that Var[Yi(a)|Zi] does not depend on Zi, and

that the treatment assignment rule is a biased-coin design, as described in Example 3.2. Theorem 4.1 relaxes

all of these requirements.

Remark 4.5. While Theorem 4.1 characterizes when the limiting rejection probability of the two-sample

t-test under the null hypothesis is strictly less than the nominal level, it does not reveal how significant this

difference might be. In our simulation study in Section 5, we find that the rejection probability may in fact

be dramatically less than the nominal level and that this difference translates into substantial power losses

when compared with non-conservative tests studied in Sections 4.3 and 4.4.

4.2 Näıve Permutation Test

In this section, we consider using a näıve permutation test to test (4) at level α ∈ (0, 1). In order to define

this test, let Gn to be the group of permutations of n elements. Define the action of g ∈ Gn on X(n) as

follows:

gX(n) = {(Yi, Ag(i), Zi) : 1 ≤ i ≤ n} ,

i.e., g ∈ Gn acts on X(n) by permuting treatment assignment. For a given choice of test statistic Tn(X(n)),

the näıve permutation test is given by

φnäıve
n (X(n)) = I{Tn(X(n)) > ĉnäıve

n (1− α)} , (20)

where

ĉnäıve
n (1− α) = inf

x ∈ R :
1

|Gn|
∑
g∈Gn

I{Tn(gX(n)) ≤ x} ≥ 1− α

 . (21)

The following theorem describes the asymptotic behavior of näıve permutation test defined in (20) with

Tn(X(n)) given by (11) under covariate-adaptive randomization. In particular, it shows that the näıve

permutation test, like the two-sample t-test, also has limiting rejection probability under the null hypothesis

generally strictly less than the nominal level.

Theorem 4.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 2.2. For the problem of testing (4) at level α ∈ (0, 1), φnäıve
n (X(n)) defined in (20) with Tn(X(n))
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given by |T t-stat
n (X(n))| in (11) satisfies

lim sup
n→∞

E[φnäıve
n (X(n))] ≤ α (22)

whenever Q additionally satisfies the null hypothesis, i.e., θ(Q) = θ0. Furthermore, the inequality in (22) is

strict unless (12) holds.

Remark 4.6. This result essentially follows from Theorem 4.1, which establishes the asymptotic behavior

of the two-sample t-statistic, and results in Janssen (1997) and Chung and Romano (2013), which establish

the asymptotic behavior of ĉnäıve
n (1− α) defined in (21).

Remark 4.7. It may often be the case that Gn is too large to permit computation of ĉnäıve
n (1− α) defined

in (21). In such situations, a stochastic approximation to the test may be used by replacing Gn with

Ĝn = {g1, . . . , gB}, where g1 equals the identity permutation and g2, . . . , gB are i.i.d. Unif(Gn). Theorem

4.2 remains true with such an approximation provided that B →∞ as n→∞.

Remark 4.8. While Theorem 4.2 characterizes when the limiting rejection probability of the näıve permu-

tation test under the null hypothesis is strictly less than the nominal level, it does not reveal how significant

this difference might be. In our simulation study in Section 5, we find that, like the two-sample t-test stud-

ied in the previous section, the rejection probability may in fact be dramatically less than the nominal level

and that this difference translates into substantial power losses when compared with non-conservative tests

studied in Sections 4.3 and 4.4.

4.3 Covariate-Adaptive Permutation Test

It follows from Theorems 4.1-4.2 and Remark 4.2 that the two-sample t-test and näıve permutation test are

conservative in the sense that their limiting rejection probability under the null hypothesis is generally strictly

less than the nominal level. As explained in Remarks 4.5 and 4.8, the finite-sample rejection probability

may in fact be dramatically less than the nominal level. In this section, we propose a modified version of the

permutation test, which we term the covariate-adaptive permutation test, that is not conservative in this

way.

In order to define the test, we require some further notation. Define

Gn(S(n)) = {g ∈ Gn : Sg(i) = Si for all 1 ≤ i ≤ n} , (23)

i.e., Gn(S(n)) is the subgroup of permutations of n elements that only permutes indices within strata.

Define the action of g ∈ Gn(S(n)) on X(n) as before. For a given choice of test statistic Tn(X(n)), the

covariate-adaptive permutation test is given by

φcap
n (X(n)) = I{Tn(X(n)) > ĉcap

n (1− α)} , (24)
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where

ĉcap
n (1− α) = inf

x ∈ R :
1

|Gn(S(n))|
∑

g∈Gn(S(n))

I{Tn(gX(n)) ≤ x} ≥ 1− α

 . (25)

The following theorem describes the asymptotic behavior of the covariate-adaptive permutation test

defined in (24) with Tn(X(n)) given by |T t-stat
n (X(n))| in (11) under covariate-adaptive randomization. In

particular, it shows that the limiting rejection probability of the proposed test under the null hypothesis

equals the nominal level. As a result of this, we show in our simulations that the test has dramatically greater

power than either the two-sample t-test or the näıve permutation test. In comparison with our preceding

results, the theorem further requires that τ(s) = 0 for all s ∈ S, but, as explained in Section 3, this property

holds for a wide variety of treatment assignment mechanisms, including biased-coin designs, stratified block

randomization, and the minimization method proposed by Hu and Hu (2012).

Theorem 4.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 2.2 with τ(s) = 0 for all s ∈ S. For the problem of testing (4) at level α ∈ (0, 1), φcap
n (X(n))

defined in (24) with Tn(X(n)) given by |T t-stat
n (X(n))| in (11) satisfies

lim
n→∞

E[φcap
n (X(n))] = α

whenever Q additionally satisfies the null hypothesis, i.e., θ(Q) = θ0.

Remark 4.9. Note that {Dn(s)/
√
n : s ∈ S} is invariant with respect to transformations g ∈ Gn(S(n)).

For this reason, it is not surprising that the validity of the covariate-adaptive permutation test requires that

there is no (limiting) variation in this quantity in the sense that τ(s) = 0 for all s ∈ S.

Remark 4.10. An additional advantage of the covariate-adaptive permutation test is that it satisfies

E[φcap
n (X(n))] ≤ α (26)

for any Q such that

Yi(0)|Si
d
= Yi(1)|Si (27)

and treatment assignment mechanism such that

gA(n)|S(n) d
= A(n)|S(n) for all g ∈ Gn(S(n)) . (28)

This property clearly holds, for example, for simple random sampling and stratified block randomization.

Moreover, if one uses a randomized version of the test, as described in Chapter 15 of Lehmann and Romano

(2005), then the inequality in (26) holds with equality.

Remark 4.11. For testing the much narrower null hypothesis that (27) holds and for very specific random-

ization schemes, the use of the test in (24) has been proposed previously. See, for example, Rosenberger

and Lachin (2004, Section 7.4), Rosenbaum (2007), and Heckman et al. (2011). Theorem 4.3 asymptotically

justifies the use of (24) for testing (4) for a wide variety of treatment assignment mechanisms while retaining
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this finite-sample validity. The proof of Theorem 4.3 exploits recent developments in the literature on the

asymptotic behavior of permutation tests. In particular, we employ a novel coupling construction following

the approach put forward by Chung and Romano (2013) in order to show that the test statistic Tn(X(n)) in

(11) and the group of permutations Gn(S(n)) in (23) satisfy the conditions in Hoeffding (1952).

Remark 4.12. As with the näıve permutation test, it may often be the case that Gn(S(n)) is too large to

permit computation of ĉcap
n (1−α) defined in (25). In such situations, a stochastic approximation to the test

may be used by replacing Gn(S(n)) with Ĝn = {g1, . . . , gB}, where g1 equals the identity permutation and

g2, . . . , gB are i.i.d. Unif(Gn(S(n))). Theorem 4.3 remains true with such an approximation provided that

B →∞ as n→∞.

4.4 Linear Regression with Strata Indicators

In this section, we consider using the usual t-test (on the coefficient on treatment assignment) in a linear re-

gression of outcomes on treatment assignment and indicators for each of the strata. As mentioned previously,

we refer to this test as the t-test with strata fixed effects. We consider tests with both homoskedasticity-only

and heteroskedasticity-robust standard errors. Note that the two-sample t-test studied in Section 4.1 can

be viewed as the usual t-test (on the coefficient on treatment assignment) in a linear regression of outcomes

on treatment assignment only with heteroksedasticity-robust standard errors. It follows from Theorem 4.1

and Remark 4.2 that such a test is conservative in the sense that the limiting rejection probability under

the null hypothesis may be strictly less than the nominal level. Remarkably, in this section, we show that

the addition of strata fixed effects results in a test is not conservative in this way, regardless of whether

homoskedasticity-only or heteroskedasticity-robust standard errors are used.

In order to define the test, consider estimation of the equation

Yi = βAi +
∑
s∈S

δsI{Si = s}+ εi (29)

by ordinary least squares. Denote by β̂n the resulting estimator of β in (29). Let

T sfe
n (X(n)) =

√
n(β̂n − θ0)√

V̂n,β

,

where V̂n,β equals either the usual homoskedasticity-only or heteroskedasticity-robust standard error for β̂n.

See (A-53) and (A-55) in the Appendix for exact expressions. Using this notation, the test of interest is

given by

φsfe
n (X(n)) = I{|T sfe

n (X(n))| > z1−α2 } . (30)

The following theorem describes the asymptotic behavior of the proposed test. In particular, it shows

that its limiting rejection probability under the null hypothesis equals the nominal level. In the simulation

results below, we show that, like the covariate-adaptive permutation test, the test has dramatically greater

power than either the two-sample t-test or the näıve permutation test. Note that, in contrast to our preceding
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result on the covariate-adaptive permutation test, the theorem does not require τ(s) = 0 for all s ∈ S. On

the other hand, the t-test with strata fixed effects studied here does not share with the covariate-adaptive

permutation test the finite-sample validity explained in Remark 4.10.

Theorem 4.4. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 2.2. Then,
√
n(β̂n − θ(Q))

d→ N(0, ς2sfe) . (31)

Furthermore,

V̂n,β
P→ ς2sfe , (32)

where V̂n,β equals either the usual homoskedasticity-only or heteroskedasticity-robust standard error for β̂n.

Thus, for the problem of testing (4) at level α ∈ (0, 1), φsfe
n (X(n)) defined in (30) with either choice of V̂n,β

satisfies

lim
n→∞

E[φsfe
n (X(n))] = α (33)

for Q additionally satisfying the null hypothesis, i.e., θ(Q) = θ0.

Remark 4.13. The above result in Theorem 4.4 that one may use either the usual homoskedasticity-only

or heteroskedasticity-robust standard error for β̂n may seem surprising at first, but it may be viewed as a

generalization of the following familiar fact in the usual two-sample t-test: even if the variances in the two

samples are different, one may use either the pooled or unpooled estimate of the variance whenever the ratio

of the two sample sizes tends to one.

Remark 4.14. In the proof of Theorem 4.4 in the Appendix, it is shown that

ς2sfe = ς2
Ỹ

+ ς2H , (34)

where ς2
Ỹ

and ς2H are defined as in (17) and (18), respectively. Remarkably, from (34), we see that variation

due to “imperfectly balanced” treatment assignment, i.e., ς2D(s) > 0 in Assumption 2.2, does not contribute

to the variance ς2sfe.

Remark 4.15. As in the literature on linear panel data models with fixed effects, β̂n may be equivalently

computed using ordinary least squares and the deviations of Yi and Ai from their respective means within

strata. However, it is important to note that the resulting standard errors are not equivalent to the standard

errors associated with ordinary least squares estimation of (29). We therefore do not recommend computing

β̂n using the deviations of Yi and Ai from their respective means within strata.

Remark 4.16. Imbens and Rubin (2015, Ch. 9.6) examine the limit in probability of β̂n under a specific

randomization assignment, namely, stratified block randomization; see Example 3.4. In contrast to our

results, they do not impose the requirement that n1(s) is chosen to achieve “balance” as in (8). As a

result, Assumption 2.2.(b) does not necessarily hold, and they conclude that β̂n is generally not consistent

for the average treatment effect, θ(Q). By exploiting Assumption 2.2.(b), we not only conclude that β̂n is

consistent for θ(Q), but the test φsfe
n (X(n)) has limiting rejection probability under the null hypothesis equal

to the nominal level. Importantly, Imbens and Rubin (2015) do not include results on φsfe
n (X(n)). Note
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that the required arguments are involved due to A(n) not being i.i.d., relying in particular on non-standard

convergence results, such as Lemmas B.1 and B.2 in the Appendix.

Remark 4.17. Assumption 2.2.(b) implies in particular that Dn(s)
n

P→ 0 for all s ∈ S. In other words, for

each stratum, the fraction of units assigned to treatment and control are approximately equal in the sense

that the ratio tends to one. While researchers often choose to assign units to treatment and control in this

way, it may be desired to assign fewer people to treatment than to control when, for instance, treatment

is “expensive.” Bugni et al. (2016) study inference on the average treatment effect in such settings. They

show, in particular, that none of the tests considered in this paper provide non-conservative inference. Indeed,

non-conservative inference based on β̂n requires a standard error different from the usual heteroskedasticity-

robust stardard error. A by-product of their analysis is that the expression for the limiting variance of
√
n(β̂n − θ(Q)) provided by Imbens and Rubin (2015, Theorem 9.1) is generally incorrect.

Remark 4.18. It is important to point out that the asymptotic validity of neither the covariate-adaptive

permutation test nor the t-test with strata fixed effects discussed in this section rely on a particular model

of (potential) outcomes. In the simulations below, we see that when such additional information is available,

it may be possible to exploit it to devise even more powerful methods (e.g., linear regression of outcomes

on treatment assignment and covariates). However, these methods may perform quite poorly when this

information is incorrect, which is also apparent in the simulations below.

5 Simulation Study

In this section, we examine the finite-sample performance of several different tests of (4), including those

introduced in Section 4, with a simulation study. For a ∈ {0, 1} and 1 ≤ i ≤ n, potential outcomes are

generated in the simulation study according to the equation:

Yi(a) = µa +ma(Zi) + σa(Zi)εa,i . (35)

where µa, ma(Zi), σa(Zi), and εa,i are specified as follows. In each of the following specifications, n = 100

and {(Zi, ε0,i, ε1,i) : 1 ≤ i ≤ n} are i.i.d.

Model 1: Zi ∼ Beta(2, 2) (re-centered and re-scaled to have mean zero and variance one); σ0(Zi) =

σ0 = 1 and σ1(Zi) = σ1; ε0,i ∼ N(0, 1) and ε1,i ∼ N(0, 1); m0(Zi) = m1(Zi) = γZi. Note that in this

case

Yi = µ0 + (µ1 − µ0)Ai + γZi + ηi ,

where

ηi = σ1Aiε1,i + σ0(1−Ai)ε0,i

and E[ηi|Ai, Zi] = 0.

Model 2: As in Model 1, but m0(Zi) = m1(Zi) = sin(γZi).
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Model 3: As in Model 2, but m1(Zi) = sin(γZi) +
√
Zi + 2.25.

Model 4: As in Model 3, but σ0(Zi) = Z2
i and σ1(Zi) = Z2

i σ1.

Model 5: As in Model 4, but ε0,i ∼ 1
3 t3 and ε1,i ∼ 1

3 t3; Zi ∼ Unif(−2, 2); and

m0(Zi) = m1(Zi) =

γZ2
i if Zi ∈ [−1, 1]

γ(2− Z2
i ) otherwise

.

For each of the above specifications of ma(Zi), σa(Zi), and εi,a, we consider both (γ, σ1) = (2, 1) and

(γ, σ1) = (4,
√

2). For each resulting specifications, we additionally consider both (µ0, µ1) = (0, 0) (i.e.,

under the null hypothesis) and (µ0, µ1) = (0, 1
2 ) (i.e., under the alternative hypothesis).

Treatment assignment is generated according to one of the four different covariate-adaptive randomization

schemes. In each of the schemes, strata are determined by dividing the support of Zi (which is a closed

interval in all specifications) into ten intervals of equal length and having S(Zi) be the function that returns

the interval in which Zi lies. In particular, |S| = 10 in all specifications.

SRS: Treatment assignment is generated as in Example 3.1.

BCD: Treatment assignment is generated as in Example 3.2 with λ = 2
3 .

WEI: Treatment assignment is generated as in Example 3.3 with φ(x) = 1−x
2 .

SBR: Treatment assignment is generated as in Example 3.4 with blocks of size bn(s)
2 c.

In all cases, observed outcomes Yi are generated according to (1).

In the simulation results below, we consider the following five different tests:

t-test: The usual two-sample t-test studied in Section 4.1.

Näıve: The näıve permutation test studied in Section 4.2.

Reg: The usual t-test (on the coefficient on treatment assignment) in a linear regression of outcomes

Yi on treatment assignment Ai and covariates Zi using heteroskedasticity-robust standard errors.

SYZ: The bootstrap-based test proposed by Shao et al. (2010).

CAP: The covariate-adaptive permutation test studied in Section 4.3.

SFE: The t-test with strata fixed effects studied in Section 4.4. In this case, we consider both

homoskedasticity-only and heteroskedasticity-robust standard errors: homoskedastic/robust.

In all cases, rejection probabilities are computed using 104 replications.

Table 1 displays the results of the simulation study for (γ, σ1) = (2, 1) and Table 2 displays the results of

the simulation study for (γ, σ1) = (4,
√

2). In the ‘SFE’ column in both tables, the first number corresponds
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Rejection rate under null - θ = 0 Rejection rate under alternative - θ = 1/2
Model CAR t-test Näıve Reg SYZ CAP SFE t-test Näıve Reg SYZ CAP SFE

1 SRS 5.39 4.81 5.45 4.92 5.04 5.07/5.26 20.03 18.86 68.18 19.08 44.94 61.38/61.73
WEI 0.69 0.57 5.01 5.39 4.98 5.32/5.13 13.25 11.94 69.71 35.7 50.61 64.02/64.02
BCD 0.90 0.68 4.94 6.05 5.00 4.90/4.99 13.08 11.63 69.50 35.87 50.02 64.96/65.26
SBR 0.01 0.01 5.20 4.93 5.05 5.13/5.04 5.30 4.42 70.10 59.49 61.45 66.14/66.47

2 SRS 5.69 5.03 5.20 5.11 5.01 5.49/5.29 53.80 51.97 55.13 52.36 57.71 63.85/62.65
WEI 3.05 2.65 3.23 5.91 4.51 5.15/4.88 55.12 53.00 56.64 65.17 63.32 66.12/66.63
BCD 3.08 2.65 3.28 5.89 5.00 4.90/4.96 54.99 52.84 56.16 65.19 63.59 67.13/65.94
SBR 2.19 1.95 2.37 5.63 4.75 5.22/4.57 55.95 53.58 57.12 70.71 67.73 68.09/67.81

3 SRS 5.43 4.80 5.05 4.98 5.03 5.42/4.98 49.32 47.20 54.15 47.89 55.05 63.43/62.15
WEI 2.74 2.41 3.51 6.10 4.85 4.69/5.02 49.92 47.70 55.06 61.72 59.93 65.79/64.22
BCD 2.56 2.22 3.39 5.69 4.81 5.16/4.90 48.80 46.47 54.43 61.33 60.76 65.65/64.70
SBR 1.66 1.45 2.40 6.24 4.98 4.83/4.85 50.08 47.95 55.85 68.92 65.39 66.01/66.44

4 SRS 5.18 4.51 5.09 4.96 4.77 5.03/5.80 34.47 32.59 37.80 32.89 39.11 41.97/46.90
WEI 3.54 3.03 4.08 6.67 5.18 5.25/5.83 33.92 32.21 36.93 42.79 40.99 44.45/46.43
BCD 3.17 2.80 3.91 5.78 4.73 5.07/5.84 33.74 31.91 37.31 42.09 40.68 44.69/46.80
SBR 2.91 2.52 3.75 7.29 5.06 5.88/6.06 33.66 31.69 36.99 47.52 42.20 45.20/46.26

5 SRS 5.68 5.09 5.27 5.32 5.11 4.97/4.79 31.45 29.71 30.84 30.21 48.63 60.88/61.55
WEI 1.08 0.87 0.94 6.10 4.75 4.79/4.88 26.72 24.80 25.53 48.68 53.46 63.83/64.29
BCD 1.14 0.94 1.07 5.73 4.99 4.68/4.61 26.61 24.74 25.52 49.26 55.38 64.06/64.44
SBR 0.19 0.16 0.17 5.62 5.22 4.86/4.86 23.30 20.49 21.83 64.67 63.50 64.63/ 64.68

Table 1: Parameter values: γ = 2, σ1 = 1.

to homoskedasticity-only standard errors and the second number corresponds to the heteroskedasticity-robust

standard errors. We organize our discussion of the results by test:

t-test: As expected in light of Theorem 4.1 and Remark 4.2, we see the two-sample t-test has rejection

probability under the null hypothesis very close to the nominal level under simple random sampling,

but has rejection probability under the null hypothesis strictly less than the nominal level under the

more complicated randomization schemes. Indeed, in some instances, the rejection probability under

the null hypothesis is close to zero. Moreover, for all specifications, the two-sample t-test has nearly

the lowest rejection probability under the alternative hypothesis. Remarkably, this difference in power

is pronounced even under simple random sampling.

Näıve: The results for the näıve permutation test are very similar to those for the two-sample t-test.

Reg: The usual t-test (on the coefficient on treatment assignment) in a linear regression of outcomes

Yi on treatment assignment Ai and covariates Zi using heteroskedasticity-robust standard errors has

rejection probability under the null hypothesis very close to the nominal level for Model 1, i.e., when the

linear regression is correctly specified. Interestingly, even though the linear regression is incorrectly

specified for all other models, the rejection probability of the test under the null hypothesis never

exceeds the nominal level, though it is frequently much less than the nominal level. Not surprisingly,

for Model 1, the test also has the highest rejection probability under the alternative hypothesis. For

all other models, the rejection probability of the test under the alternative hypothesis is lower than

that of some of the other tests considered below.

SYZ: For most specifications, the bootstrap-based test proposed by Shao et al. (2010) has rejection
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Rejection rate under null - θ = 0 Rejection rate under alternative - θ = 1/2
Model CAR t-test Näıve Reg SYZ CAP SFE t-test Näıve Reg SYZ CAP SFE

1 SRS 5.89 5.27 5.13 5.37 5.30 4.86/5.26 9.73 8.81 52.02 9.11 31.81 41.80/42.70
WEI 0.37 0.31 5.15 5.46 4.93 5.20/5.04 2.20 1.80 51.55 15.03 32.97 44.08/43.78
BCD 0.56 0.50 4.69 5.22 4.61 4.99/4.63 2.32 1.98 52.57 15.20 33.54 43.99/44.43
SBR 0.00 0.00 5.21 3.62 5.09 5.27/4.98 0.01 0.01 51.95 30.43 39.08 46.90/45.56

2 SRS 5.65 5.14 5.04 5.24 4.96 4.73/4.96 43.22 41.42 41.47 41.97 43.99 45.18/46.52
WEI 4.24 3.78 3.83 6.43 5.26 4.43/5.22 42.83 40.78 40.74 48.89 46.38 47.32/47.76
BCD 4.16 3.63 3.65 6.08 5.20 4.88/5.04 42.84 40.57 40.63 49.16 47.04 48.42/47.14
SBR 3.42 3.22 3.10 6.57 5.01 5.35/5.26 42.82 41.82 40.81 53.62 49.16 49.96/49.27

3 SRS 5.51 4.85 4.89 5.04 5.03 5.36/5.06 42.17 40.45 40.78 40.81 42.93 46.27/45.06
WEI 4.23 3.73 3.86 6.20 5.20 5.13/5.02 42.26 40.21 40.86 48.50 46.02 48.51/47.78
BCD 3.73 3.33 3.39 5.67 4.85 5.14/4.77 41.63 39.78 40.44 47.85 45.86 48.10/47.37
SBR 3.21 2.96 2.83 6.31 4.81 5.31/4.93 42.12 41.14 40.58 53.48 48.86 49.10/48.98

4 SRS 5.44 4.66 4.98 4.79 5.27 5.09/5.95 28.54 26.91 28.06 27.48 29.92 31.53/34.38
WEI 4.07 3.51 3.77 5.74 4.74 5.43/5.36 27.68 26.02 27.27 31.76 30.26 33.57/34.50
BCD 4.19 3.65 3.95 6.01 4.86 4.96/5.70 27.97 26.49 27.44 32.25 30.86 33.30/34.53
SBR 3.80 3.58 3.58 7.53 5.00 6.77/6.23 27.53 26.51 26.68 36.58 31.13 34.91/33.65

5 SRS 5.59 4.96 5.13 5.23 5.22 4.91/4.86 14.18 13.21 13.78 13.40 27.59 35.46/36.10
WEI 0.75 0.59 0.55 6.51 5.18 4.79/4.81 6.38 5.60 5.81 22.41 29.84 37.17/37.59
BCD 0.69 0.57 0.70 5.82 4.78 4.56/4.68 5.79 5.03 5.43 22.07 30.65 37.22/37.43
SBR 0.03 0.01 0.02 5.15 5.23 4.90/4.85 1.66 1.31 1.55 36.18 36.36 38.00/37.57

Table 2: Parameter values: γ = 4, σ1 =
√

2.

probability under the null hypothesis very close to the nominal level, though in some instances the

rejection probability under the null hypothesis mildly exceeds the nominal level (e.g., 7.53% under

Model 4 and stratified block randomization with γ = 4 and σ1 =
√

2). Its rejection probability under

the alternative hypothesis is often considerably lower than that of the other tests considered below.

Recall, however, that Shao et al. (2010) only justify the use of this test for biased-coin design.

CAP: As expected in light of Theorem 4.3, the covariate-adaptive permutation test has rejection

probability under the null hypothesis very close to the nominal level in all specifications. Indeed, among

all the tests considered here, it arguably has rejection probability under the null hypothesis closest to the

nominal level across all specifications. As explained in Remark 4.10, its rejection probability under the

null hypothesis even equals the nominal level in finite-samples for some specifications. Furthermore, its

rejection probability under the alternative hypothesis typically exceeds that of all the tests considered

previously and often by a considerably margin. On the other hand, its rejection probability under the

alternative hypothesis is typically less than that of the following test.

SFE: As expected in light of Theorem 4.4, the t-test with strata fixed effects has rejection probability

under the null hypothesis very close to the nominal level in nearly all specifications. Its rejection

probability under the alternative hypothesis typically exceeds that of all the tests considered previ-

ously and often by a considerable margin. Note that the results using homoskedasticity-only and

heteroskedasticity-robust standard errors are nearly identical.
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Appendix A Proof of the main results

Throughout the Appendix we employ the following notation, not necessarily introduced in the text.

σ2
X(s) For a random variable X, σ2

X(s) = Var[X|S = s]

σ2
X For a random variable X, σ2

X = Var[X]

µa For a ∈ {0, 1}, E[Yi(a)]

Ỹi(a) For a ∈ {0, 1}, Yi(a)− E[Yi(a)|Si]

ma(Zi) For a ∈ {0, 1}, E[Yi(a)|Zi]− µa
ς2Y 2σ2

Y (1) + 2σ2
Y (0)

ς2
Ỹ

2σ2
Ỹ (1)

+ 2σ2
Ỹ (0)

ς2A
∑
s∈S p(s)τ(s)(2E[m1(Zi)|Si = s] + 2E[m0(Zi)|Si = s])2

ς2H
∑
s∈S p(s)(E[m1(Zi)|Si = s]− E[m0(Zi)|Si = s])2

n(s) Number of individuals in strata s ∈ S

n1(s) Number of individuals in the treatment group in strata s ∈ S

Table 3: Useful notation

A.1 Proof of Theorem 4.1

We start the proof by showing that the numerator of the root in the statement of the theorem satisfies

√
n
(
Ȳn,1 − Ȳn,0 − θ(Q)

) d→ N
(
0, ς2Ỹ + ς2H + ς2A

)
. (A-36)

Consider the following derivation:

√
n(Ȳn,1 − Ȳn,0 − θ(Q)) =

√
n

(
1

n1

n∑
i=1

(Yi(1)− µ1)Ai −
1

n0

n∑
i=1

(Yi(0)− µ0)(1−Ai)

)

= R∗n,1
1√
n

n∑
i=1

((
1

2
− Dn

n

)
(Yi(1)− µ1)Ai −

(
1

2
+
Dn
n

)
(Yi(0)− µ0)(1−Ai)

)
= R∗n,1(R∗n,2 +R∗n,3) ,

where we used Dn =
∑
s∈S Dn(s), n1

n
= Dn

n
+ 1

2
, and the following definitions:

R∗n,1 ≡
(
Dn
n

+
1

2

)−1(
1

2
− Dn

n

)−1

,

R∗n,2 ≡
1

2
√
n

n∑
i=1

((Yi(1)− µ1)Ai − (Yi(0)− µ0)(1−Ai)) ,

R∗n,3 ≡ −
Dn√
n

1

n

n∑
i=1

((Yi(1)− µ1)Ai + (Yi(0)− µ0)(1−Ai)) .

By Assumption 2.2.(b), Dn
n

P→ 0, which in turn implies that R∗n,1
P→ 4. Lemma B.1 implies R∗n,2

d→ 1
4
N(0, ς2

Ỹ
+ς2H+ς2A).

Lemma B.2 and Assumption 2.2.(b) imply R∗n,3
P→ 0. The desired conclusion thus follows from the continuous mapping
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theorem.

We next prove that

√
n

√
σ̂2
n,1

n1
+
σ̂2
n,0

n0

P→ ςY . (A-37)

This follows from showing that
nσ̂2
n,a

na

P→ 2σ2
Y (a) for a ∈ {0, 1}. We only show the result for a = 1; the proof of the

result for a = 0 is analogous. Start by writing Ȳn,1 as follows:

Ȳn,1 ≡
1

n1

n∑
i=1

AiYi = µ1 +
n

n1

1

n

n∑
i=1

Ai(Yi(1)− µ1) . (A-38)

Then consider the following derivation:

nσ̂2
n,1

n1
=

n

n1

1

n1

n∑
i=1

(Yi − Ȳn,1)2Ai

=
n

n1

1

n1

n∑
i=1

(µ1 − Ȳn,1 + Yi(1)− µ1)2Ai

=
n

n1

(
n

n1

1

n

n∑
i=1

(Yi(1)− µ1)2Ai − (µ1 − Ȳn,1)2
)

=

(
n

n1

)2

R?n,4 −
(
n

n1

)3

R?2n,5 ,

where we used (A-38) and the following definitions:

R?n,4 ≡ 1

n

n∑
i=1

(Yi(1)− µ1)2Ai ,

R?n,5 ≡ 1

n

n∑
i=1

(Yi(1)− µ1)Ai .

Since n
n1

= (Dn
n

+ 1
2
)−1 and Dn

n

P→ 0 by Assumption 2.2.(b), it follows that n
n1

P→ 2. The result follows from showing

that R?n,4
P→ 1

2
σ2
Y (1) and R?n,5

P→ 0. Since E[(Yi(1)− µ1)2] = σ2
Y (1) and E[(Yi(1)− µ1)] = 0, this follows immediately

from Lemma B.2.

To prove that ς2
Ỹ

+ ς2H + ς2A ≤ ς2Y holds with strict inequality unless (12) holds, notice that for a ∈ {0, 1},

σ2
Ỹ (a) = σ2

Y (a) −
∑
s∈S

E[(Yi(1)− µ1)|Si = s]2p(s) = σ2
Y (a) −

∑
s∈S

E[ma(Zi)|Si = s]2p(s) . (A-39)

Using (A-39), we see that

ς2Y − ς2Ỹ − ς
2
H − ς2A = 2(σ2

Y (1) − σ2
Ỹ (1)) + 2(σ2

Y (0) − σ2
Ỹ (0))

−
∑
s∈S

p(s)(E[m1(Zi)|Si = s]− E[m0(Zi)|Si = s])2

−
∑
s∈S

p(s)τ(s) (2E[m1(Zi)|Si = s] + 2E[m0(Zi)|Si = s])2

=
∑
s∈S

p(s) (1− 4τ(s)) (E[m1(Zi)|Si = s] + E[m0(Zi)|Si = s])2 ,

where, by Assumption 2.2.(b), τ(s) ∈ [0, 1
4
]. The right-hand side of this last display is non-negative and it is zero if

and only if (12) holds, as required.
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A.2 Proof of Theorem 4.3

Below we assume without loss of generality that θ0 = 0; the general case follows from the same arguments with Yi

replaced by Yi − θ0Ai.

Let Gn|S(n) and G′n|S(n) ∼ Unif(Gn(S(n))) with Gn, G′n and X(n)independent conditional on S(n). Define

ς2cap =
ς2
Ỹ

+ ς2H
ς2Y

. (A-40)

We first argue for Q such that θ(Q) = 0 that

(Tn(GnX
(n)), Tn(G′nX

(n)))
d→ (T, T ′) , (A-41)

where T and T ′ are independent with common c.d.f. Φ(t/ςcap).

Step 1: Following Chung and Romano (2013), we start the proof of (A-41) by coupling the data X(n) with auxiliary

“data” X̃(n) = {(Vi, Ai, Zi) : 1 ≤ i ≤ n} constructed according to the following algorithm. Set I = {1, . . . , n} and

Kn = 0. For each s ∈ S, repeat the following two stages n(s) times:

1. Stage 1: Draw Cj ∈ {0, 1} such that P{Cj = 1} = 1
2
.

2. Stage 2: If there exists i ∈ I such that Ai = Cj and Si = s, set Vj = Yi and set I = I \ {i}; otherwise, draw a

new, independent observation from the distribution of Yi(a)|Si = s, set it equal to Vj and set Kn = Kn + 1.

Note that Kn constructed in this way is an upper bound on the number of elements in {Vi : 1 ≤ i ≤ n} that are not

identically equal to elements in {Yi : 1 ≤ i ≤ n}. Indeed, there exists g0 ∈ Gn(S(n)) such that

Kn ≥
n∑
i=1

I{Vg0(i) 6= Yi} .

Step 2: We now prove that for Q such that θ(Q) = 0 and

TUn (X(n)) ≡
√
n

(
1

n1

n∑
i=1

YiAi −
1

n0

n∑
i=1

Yi(1−Ai)

)
, (A-42)

it follows that

(TUn (GnX
(n)), TUn (G′nX

(n)))
d→ (TU , TU′) , (A-43)

where TU and TU′ are independent with common distribution given by N(0, ς2
Ỹ

+ ς2H) when τ(s) = 0 for all s ∈ S.

Arguing as in the proof of Lemma 5.1 in Chung and Romano (2013), (A-43) follows by verifying the following two

conditions:

(TUn (GnX̃
(n)), TUn (G′nX̃

(n)))
d→ (TU , TU′) (A-44)

TUn (Gng0X̃
(n))− TUn (GnX

(n)) = oP (1) . (A-45)

Lemma B.3 establishes (A-44) and Lemma B.4 establishes (A-45).

Step 3: Note that we can write Tn(GnX
(n)) as

Tn(GnX
(n)) =

TUn (GnX
(n))

TLn (GnX(n))
,
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where TLn (X(n)) =
√
TL,1n (X(n)) + TL,0n (X(n)) with

TL,1n (X(n)) =
n

n1

1

n1

n∑
i=1

(Yi − Ȳn,1)2Ai

TL,0n (X(n)) =
n

n0

1

n0

n∑
i=1

(Yi − Ȳn,0)2(1−Ai) .

Since

TL,1n (GnX
(n)) =

1(
n1
n

)2
(

1

n

n∑
i=1

Yi(1)2AGn(i) −
(
1
n

∑n
i=1 Yi(1)AGn(i)

)2
n1
n

)

and Assumption 2.2.(b) implies that n1
n

= Dn
n

+ 1
2

P→ 1
2
, it follows from Lemma B.2 that TL,1n (GnX

(n))
P→ 2σ2

Y (1). A

similar argument shows that TL,0n (GnX
(n))

P→ 2σ2
Y (0). It thus follows that

TLn (GnX
(n))

P→ ςY . (A-46)

Combining (A-43) and (A-46), we see that (A-41) holds.

It now follows from Lemma B.6 that ĉcapn (1− α)
P→ ςcapΦ−1(1− α). When τ(s) = 0 for all s ∈ S, it follows that

ς2A = 0 and so ς2cap = ς2t-test. Combining this last result with Theorem 4.1, we see that limn→∞E[φcap
n (X(n))] = α

whenever θ(Q) = θ0, completing the proof of the theorem.

A.3 Proof of Theorem 4.4

We first prove that (31) holds with ς2sfe = ς2
Ỹ

+ ς2H . To this end, write β̂n as

β̂n =

∑n
i=1 ÃiYi∑n
i=1 Ã

2
i

,

where Ãi is the projection of Ai on the strata indicators, i.e., Ãi = Ai − n1(Si)/n(Si), where

n1(Si)

n(Si)
=
∑
s∈S

I{Si = s}n1(s)

n(s)
.

Next, note that

√
n(β̂n − θ(Q)) =

√
n

1
n

∑n
i=1 Ã

2
i

((
1

n

n∑
i=1

ÃiYi

)
− θ(Q)

(
1

n

n∑
i=1

Ã2
i

))

=
1

1
n

∑n
i=1 Ã

2
i

(
1

4

√
n

(
1

n

n∑
i=1

4ÃiYi − θ(Q)

)
− θ(Q)

√
n

(
1

n

n∑
i=1

Ã2
i −

1

4

))
.

Below we argue that

√
n

(
1

n

n∑
i=1

Ã2
i −

1

4

)
= oP (1) (A-47)

√
n

(
1

n

n∑
i=1

4ÃiYi − θ(Q)

)
= 4Rn,1 + 4Rn,3 + oP (1) (A-48)

where Rn,1 and Rn,3 are defined, respectively, as in (B-58) and (B-60) below. By inspecting the proof of Lemma B.1,

we also have that 4Rn,1 + 4Rn,3
d→ N(0, ς2

Ỹ
+ ς2H), from which (31) thus follows.
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Step 1: To see that (A-47) holds, note that

√
n

(
1

n

n∑
i=1

Ã2
i −

1

4

)
=
√
n

(
1

n

n∑
i=1

(
Ai −

∑
s∈S

I{Si = s}n1(s)

n(s)

)2

− 1

4

)

=
√
n

(
1

n

n∑
i=1

(
Ai − 2Ai

∑
s∈S

I{Si = s}n1(s)

n(s)
+
∑
s∈S

I{Si = s}
(
n1(s)

n(s)

)2
)
− 1

4

)

=
√
n

1

n

n∑
i=1

(
Ai −

1

2

)
−
√
n
∑
s∈S

(
n1(s)
n

)2
n(s)
n

+
√
n

1

4

=
√
n
∑
s∈S

Dn(s)

n
−
∑
s∈S

√
n

(
n1(s)

n
− p(s)

2

)
+ oP (1)

=
√
n

[∑
s∈S

Dn(s)

n
−
∑
s∈S

(√
n

(
n(s)

2n
− p(s)

2

)
+
Dn(s)

n

)]
+ oP (1) , (A-49)

where the fourth equality follows from the following:

√
n


(
n1(s)
n

)2
n(s)
n
− p(s)

4

 =
√
n

(
n1(s)

n
− p(s)

2

)
−
√
n

4

(
n(s)

n
− p(s)

)
+ oP (1)

√
n

(
n1(s)

n
− p(s)

2

)
=
Dn(s)√

n
+
√
n

1

2

(
n(s)

n
− p(s)

)
= OP (1)

√
n

(
n(s)

n
− p(s)

)
= OP (1) .

Note further that the term in brackets in (A-49) equals zero because
∑
s∈S p(s) = 1 and

∑
s∈S n(s) = n.

Step 2: To see that (A-48) holds, note that

√
n

(
1

n

n∑
i=1

4ÃiYi − θ(Q)

)
=

1√
n

n∑
i=1

4AiYi −
√
nθ(Q)− 2√

n

∑
s∈S

n∑
i=1

2n1(s)

n(s)
I{Si = s}Yi . (A-50)

Consider the first two terms. Use that A∗i = Ai − 1
2

and the definition of Yi to see that

1√
n

n∑
i=1

4AiYi −
√
nθ(Q) =

4√
n

n∑
i=1

A∗i Yi +
2√
n

∑
i=1

Yi −
√
nθ(Q)

=
2√
n

n∑
i=1

((Yi(1)− µ1)Ai − (Yi(0)− µ0)(1−Ai)) +
2√
n

∑
i=1

Yi

+
2√
n

n∑
i=1

(Aiµ1 − (1−Ai)µ0)−
√
n(µ1 − µ0)

= 4Rn,1 + 4Rn,3 + 4Rn,2 +
2√
n

∑
i=1

Yi +
2√
n

n∑
i=1

(A∗i (µ1 + µ0)) , (A-51)

where Rn,2 is defined as in (B-59) below and the last equality follows from the derivation in the beginning of the

21



proof of Lemma B.1. Now consider the third term in (A-50). Since 2n1(s)
n(s)

= 2Dn(s)
n(s)

+ 1, we see that

2√
n

∑
s∈S

n∑
i=1

2n1(s)

n(s)
I{Si = s}Yi =

2√
n

∑
s∈S

n∑
i=1

2Dn(s)

n(s)
I{Si = s}Yi +

2√
n

∑
s∈S

n∑
i=1

I{Si = s}Yi

=
∑
s∈S

2Dn(s)√
n

2n

n(s)

1

n

n∑
i=1

I{Si = s}Yi +
2√
n

n∑
i=1

Yi

=
∑
s∈S

2Dn(s)√
n

2n

n(s)

(
p(s)

2
(µ1 + µ0 + E[m1(Zi) +m0(Zi)|Si = s]) + oP (1)

)

+
2√
n

n∑
i=1

Yi

= 4Rn,2 +
2√
n

n∑
i=1

Yi +
2√
n

n∑
i=1

(A∗i (µ1 + µ0)) + oP (1) , (A-52)

where the third equality follows from 1
n

∑n
i=1 I{Si = s}Yi = p(s)

2
(µ1 + µ0 + E[m1(Zi) +m0(Zi)|Si = s]) + oP (1),

and the last equality follows from n
n(s)

= 1
p(s)

+ oP (1), Dn(s)√
n

= OP (1) from Assumption 2.2.(b), and the definition of

Rn,2 in (B-59). The desired result (A-48) thus follows from (A-50)–(A-52).

Next we prove (32). We first prove the result for homoskedasticity-only standard errors, i.e.,

V̂homo =

(
1

n

n∑
i=1

û2
i

)(
C′nCn
n

)−1

[1,1]

P→ ς2Ỹ + ς2H , (A-53)

where Cn is a n×|S|+1 matrix with the treatment assignment vector An in the first column and the strata indicators

vector in the rest of the columns, and ûi is the least squares residual of the regression in (29).

Next note that 1
n
C′nCn

P→ ΣC where

ΣC ≡



1/2 1
2
p(1) 1

2
p(2) · · · 1

2
p(|S|)

1
2
p(1) p(1) 0 · · · 0

1
2
p(2)

...
. . .

...

...
...

. . .
...

1
2
p(|S|) 0 · · · · · · p(|S|)


and Σ−1

C =



4 −2 −2 · · · −2

−2 1 + 1
p(1)

1 · · · 1

−2
...

. . .
...

...
...

. . .
...

−2 1 · · · · · · 1 + 1
p(|S|)


. (A-54)

The convergence in probability follows from n1
n

= Dn
n

+ 1
2

P→ 1
2
, n1(s)

n
= Dn(s)

n
+ 1

2
n(s)
n

P→ p(s)
2

, and n(s)
n

P→ p(s) for

all s ∈ S. The second result follows from analytically computing the inverse matrix, which we omit here. It follows

that the [1, 1] component of Σ−1
C equals 4. By Lemma B.8, we have that 1

n

∑n
i=1 û

2
i
P→ 1

4

(
ς2
Ỹ

+ ς2H
)
. The result in

(A-53) immediately follows.

We now prove the result for heteroskedasticity-robust standard errors, i.e.,

V̂hc =

[(
C′nCn
n

)−1(C′n diag{û2
i : 1 ≤ i ≤ n}Cn
n

)(
C′nCn
n

)−1
]
[1,1]

P→ ς2Ỹ + ς2H . (A-55)

22



First note that

C′n diag{û2
i : 1 ≤ i ≤ n}Cn
n

=
1

n



∑n
i=1 û

2
iAi

∑n
i=1 û

2
iAiI{Si = 1} · · ·

∑n
i=1 û

2
iAiI{Si = |S|}∑n

i=1 û
2
iAiI{Si = 1}

∑n
i=1 û

2
i I{Si = 1} · · · 0

...
...

. . .
...∑n

i=1 û
2
iAiI{Si = |S|} 0 · · ·

∑n
i=1 û

2
i I{Si = |S|}

 .

It follows from Lemma B.8 that
C′n diag{û2

i : 1 ≤ i ≤ n}Cn
n

P→ Ω (A-56)

where each component of the matrix Ω corresponds to the respective limits in Lemma B.8. It follows that

(
C′nCn
n

)−1(C′n diag{û2
i : 1 ≤ i ≤ n}Cn
n

)(
C′nCn
n

)−1
P→ Σ−1

C ΩΣ−1
C =

[
ς2
Ỹ

+ ς2H V12

V′12 V22

]
, (A-57)

where we omit the expressions of V12 and V22 as we do not need them for our arguments. From here, (A-55) follows

immediately.

From the previous results, the final conclusion of the theorem, (33), follows immediately.

Appendix B Auxiliary Results

Lemma B.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Then,

1

2
√
n

n∑
i=1

((Yi(1)− µ1)Ai − (Yi(0)− µ0)(1−Ai))
d→ 1

4
N(0, ς2Ỹ + ς2H + ς2A) ,

where ς2
Ỹ

, ς2H , and ς2A are defined in Table 3.

Proof. Let Ỹi(a) ≡ Yi(a)− E[Yi(a)|Si], ma(Zi) ≡ E[Yi(a)|Zi]− µa, and consider the following derivation:

1

2
√
n

n∑
i=1

((Yi(1)− µ1)Ai − (Yi(0)− µ0)(1−Ai))

=
1

2
√
n

n∑
i=1

(
Ỹi(1)Ai − Ỹi(0)(1−Ai)

)
+

1

2
√
n

n∑
i=1

(E[m1(Zi)|Si]Ai − E[m0(Zi)|Si](1−Ai))

= Rn,1 +
1

2
√
n

n∑
i=1

A∗i

(∑
s∈S

E[m1(Zi)|Si = s]I{Si = s}+
∑
s∈S

E[m0(Zi)|Si = s]I{Si = s}

)

+
1

4
√
n

n∑
i=1

(∑
s∈S

E[m1(Zi)|Si = s]I{Si = s} −
∑
s∈S

E[m0(Zi)|Si = s]I{Si = s}

)
= Rn,1 +Rn,2 +Rn,3 ,
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where we used A∗i = Ai − 1
2

and the following definitions:

Rn,1 ≡
1

2
√
n

n∑
i=1

(Ỹi(1)Ai − Ỹi(0)(1−Ai)) , (B-58)

Rn,2 ≡
1

2

∑
s∈S

Dn(s)√
n

(E[m1(Zi)|Si = s] + E[m0(Zi)|Si = s]) , (B-59)

Rn,3 ≡
1

4

∑
s∈S

√
n

(
n(s)

n
− p(s)

)
(E[m1(Zi)|Si = s]− E[m0(Zi)|Si = s]) . (B-60)

The result follows from the continuous mapping theorem once we show that Rn ≡ (Rn,1, Rn,2, Rn,3)
d→

(ζR1 , ζR2 , ζR3) where ζR1 , ζR2 , and ζR3 are independent and satisfy ζR1 ∼ 1
4
N(0, ς2

Ỹ
), ζR2 ∼ 1

4
N(0, ς2A), and

ζR3 ∼ 1
2
N(0, ς2H).

We first show that

(Rn,1, Rn,2, Rn,3)
d
= (R∗n,1, Rn,2, Rn,3) + oP (1) (B-61)

for a random variable R∗n,1 that satisfies R∗n,1 ⊥⊥ (Rn,2, Rn,3) and R∗n,1
d→ ζR1 . To this end, note that under the

assumption that W (n) is i.i.d. and Assumption 2.2(a), the distribution of Rn,1 is the same as the distribution of the

same quantity where units are ordered by strata and then ordered by Ai = 1 first and Ai = 0 second within strata.

In order to exploit this observation, it is useful to introduce some further notation. Define N(s) ≡
∑n
i=1 I{Si < s}

and F (s) ≡ P{Si < s} for all s ∈ S. Furthermore, independently for each s ∈ S and independently of (A(n), S(n)),

let {(Ỹ si (1), Ỹ si (0)) : 1 ≤ i ≤ n} be i.i.d. with marginal distribution equal to the distribution of (Ỹi(1), Ỹi(0))|Si = s.

With this notation, define

R̃n,1 ≡
1

2

∑
s∈S

 1√
n

n
(
N(s)
n

+
n1(s)
n

)∑
i=n

N(s)
n

+1

Ỹ si (1) +
1√
n

n
(
N(s)
n

+
n(s)
n

)∑
i=n

(
N(s)
n

+
n1(s)
n

)
+1

Ỹ si (0)

 . (B-62)

By construction, {Rn,1|S(n), A(n)} d
= {R̃n,1|S(n), A(n)}, and so Rn,1

d
= R̃n,1. Since Rn,2 and Rn,3 are functions of

S(n) and A(n), we have further that (Rn,1, Rn,2, Rn,3)
d
= (R̃n,1, Rn,2, Rn,3). Next, define

R∗n,1 ≡
1

2

∑
s∈S

 1√
n

⌊
n
(
F (s)+

p(s)
2

)⌋∑
i=bnF (s)c+1

Ỹ si (1) +
1√
n

bn(F (s)+p(s))c∑
i=
⌊
n
(
F (s)+

p(s)
2

)⌋
+1

Ỹ si (0)

 . (B-63)

Since R∗n,1 is a function of {(Ỹ si (1), Ỹ si (0)) : 1 ≤ i ≤ n, s ∈ S} ⊥⊥ (S(n), A(n)), and (Rn,2, Rn,3) is a function of

(S(n), A(n)), we see that R∗n,1 ⊥⊥ (Rn,2, Rn,3).

To complete the proof of (B-61), we establish that R∗n,1
d→ ζR1 and ∆n ≡ R̃n,1 −R∗n,1

P→ 0. To this end, consider

an arbitrary s ∈ S and define the following partial sum process:

gn(u) ≡ 1√
n

bnuc∑
i=1

Ỹ si (1) .

Under our assumptions, this converges weakly to a suitably scaled Brownian motion (see, e.g., Shorack and Wellner

(2009, Theorem 1, page 53) or Durrett (2010, Theorem 8.6.5, page 328)). Indeed, by elementary properties of

24



Brownian motion, we have that

1√
n

⌊
n
(
F (s)+

p(s)
2

)⌋∑
i=bnF (s)c+1

Ỹ si (1)
d→ N

(
0,
p(s)σ2

Ỹ (1)
(s)

2

)
,

where we have used that σ2
Ỹ s(1)

= σ2
Ỹ (1)

(s). Furthermore, since

(
N(s)

n
,
n1(s)

n

)
P→

(
F (s),

p(s)

2

)
,

it follows that

gn

(
N(s) + n1(s)

n

)
− gn

(
N(s)

n

)
−
(
gn

(
F (s) +

p(s)

2

)
− gn(F (s))

)
P→ 0 ,

where the convergence follows from elementary properties of Brownian motion and the continuous mapping theorem.

Repeating an analogous argument for Ỹ si (0) and using the independence of {(Ỹ si (1), Ỹ si (0)) : 1 ≤ i ≤ n, s ∈ S} across

both i and s, we conclude that R∗n,1
d→ ζR1 and ∆n ≡ R̃n,1 −R∗n,1

P→ 0.

From Assumption 2.2.(b) and the continuous mapping theorem,

{Rn,2|S(n)} d→ ζR2 a.s. (B-64)

Also, the central limit theorem and continuous mapping theorem imply that

Rn,3
d→ ζR3 . (B-65)

To complete the proof, we show that (Rn,1, Rn,2, Rn,3)
d→ (ζR1 , ζR2 , ζR3) with {ζR1 , ζR2 , ζR3} independent. From

(B-61), it suffices to show that (R∗n,1, Rn,2, Rn,3)
d→ (ζR1 , ζR2 , ζR3), i.e.,

P{R∗n,1 ≤ h1}P{Rn,2 ≤ h2, Rn,2 ≤ h3} → P{ζR1 ≤ h1}P{ζR2 ≤ h2}P{ζR3 ≤ h3} , (B-66)

for any h = (h1, h2, h3) ∈ R3 s.t. P{ζR1 ≤ h1}P{ζR2 ≤ h2}P{ζR3 ≤ h3} is continuous.

As a first case, we assume that P{ζR1 ≤ ·}, P{ζR2 ≤ ·}, and P{ζR3 ≤ ·} are continuous at h1, h2, h3, respectively.

Then, R∗n,1
d→ ζR1 implies P{R∗n,1 ≤ h1} → P{ζR1 ≤ h1} and (B-66) follows from the following argument:

P{Rn,2 ≤ h2, Rn,2 ≤ h3} = E[P{Rn,2 ≤ h2, Rn,3 ≤ h3|S(n)}]

= E[P{Rn,2 ≤ h2|S(n)}I{Rn,3 ≤ h3}]

= E[(P{Rn,2 ≤ h2|S(n)} − P{ζR2 ≤ h2})I{Rn,3 ≤ h3}] + E[P{ζR2 ≤ h2}I{Rn,3 ≤ h3}]

= E[(P{Rn,2 ≤ h2|S(n)} − P{ζR2 ≤ h2})I{Rn,3 ≤ h3}] + P{ζR2 ≤ h2}P{Rn,3 ≤ h3}

→ P{ζR2 ≤ h2}P{ζR3 ≤ h3} ,

where the convergence follows from the dominated convergence theorem, (B-64), and (B-65).

Finally, we now consider the case in which P{ζRj ≤ ·} is discontinuous at hj for some 1 ≤ j ≤ 3. Since ζRj

is normally distributed, this implies that ζj must be degenerate and equal to zero and thus hj = 0. In turn, since

P{ζR1 ≤ ·}P{ζ2 ≤ ·}P{ζ3 ≤ ·} is continuous at (h1, h2, h3), then this implies that Πk 6=jP{ζk ≤ hk} = 0. Since ζk

for k 6= j are also normally distributed, this implies for some k 6= j that ζk is also degenerate and equal to zero and
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hk < 0. Then, (B-66) follows from the following argument:

P{Rn,1 ≤ h1, Rn,2 ≤ h2, Rn,2 ≤ h3} ≤ P{Rn,k ≤ hk}

→ 0

= P{ζ1 ≤ h1}P{ζ2 ≤ h2}P{ζ3 ≤ h3} ,

where the convergence follows from hk < 0 and the fact that Rn,k
d→ ζRk with ζRk degenerate and equal to zero, and

the final equality uses that P{ζk ≤ hk} = 0.

Lemma B.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let Wi = f(Yi(1), Yi(0), Si) for some function f(·) satisfy E[|Wi|] <∞. Then

1

n

n∑
i=1

WiAi
P→ 1

2
E[Wi] . (B-67)

Furthermore,

1

n

n∑
i=1

WiAGn(i)
P→ 1

2
E[Wi] (B-68)

for Gn|S(n) ∼ Unif(Gn(S(n))) with Gn and X(n) independent conditional on S(n).

Proof. We prove only (B-67); the convergence (B-68) follows from analogous arguments.

By arguing as in the proof of Lemma B.1, note that

1

n

n∑
i=1

WiAi
d
=
∑
s∈S

1

n

n1(s)∑
i=1

W s
i ,

where, independently for each s ∈ S and independently of (A(n), S(n)), {W s
i : 1 ≤ i ≤ n} are i.i.d. with marginal

distribution equal to the distribution of Wi|Si = s. In order to establish the desired result, it suffices to show that

1

n

n1(s)∑
i=1

W s
i
P→ 1

2
p(s)E[W s

i ] . (B-69)

From Assumption 2.2.(b), n1(s)
n

= Dn(s)
n

+ 1
2
n(s)
n

P→ p(s)
2

, so (B-69) follows from

1

n1(s)

n1(s)∑
i=1

W s
i
P→ E[W s

i ] . (B-70)

To establish (B-70), use the almost sure representation theorem to construct ñ1(s)
n

such that ñ1(s)
n

d
= n1(s)

n
and
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ñ1(s)
n
→ 1

2
p(s) a.s. Using the independence of (A(n), S(n)) and {W s

i : 1 ≤ i ≤ n}, we see that for any ε > 0,

P


∣∣∣∣∣∣ 1

n1(s)

n1(s)∑
i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣ > ε

 = P


∣∣∣∣∣∣∣

1

nn1(s)
n

n
n1(s)
n∑

i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣∣ > ε


= P


∣∣∣∣∣∣∣

1

n ñ1(s)
n

n
ñ1(s)
n∑

i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣∣ > ε


= E

P

∣∣∣∣∣∣∣

1

n ñ1(s)
n

n
ñ1(s)
n∑

i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣∣ > ε
∣∣∣ ñ1(s)

n




→ 0 ,

where the convergence follows from the dominated convergence theorem and

P


∣∣∣∣∣∣∣

1

n ñ1(s)
n

n
ñ1(s)
n∑

i=1

W s
i − E[W s

i ]

∣∣∣∣∣∣∣ > ε
∣∣∣ ñ1(s)

n

→ 0 a.s. . (B-71)

To see that the convergence (B-71) holds, note that the weak law of large numbers implies that

1

nk

nk∑
i=1

W s
i
P→ E[W s

i ] (B-72)

for any subsequence nk →∞ as k →∞. Since n ñ1(s)
n
→∞ a.s., (B-71) follows from the independence of ñ1(s)

n
and

{W s
i : 1 ≤ i ≤ n} and (B-72).

Lemma B.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption 2.2

with τ(s) = 0 for all s ∈ S. Let Gn, G′n and X̃(n) be defined as in the proof of Theorem 4.3. For TUn (X(n)) defined

in (A-42), we have that (A-44) holds whenever Q additionally satisfies θ(Q) = 0.

Proof. Let g = Gn and g′ = G′n. Note that

TUn (gX̃(n)) =
2

1−
(
Dn
n

)2
(

1√
n

n∑
i=1

ViA
∗
g(i) +

Dn√
n

1

n

n∑
i=1

Vi

)
,

where A∗i = 2Ai − 1. Since Assumption 2.2.(b) holds with τ(s) = 0 for all s ∈ S, Dn√
n

P→ 0. From the weak law of

large numbers, we have further that

1

n

n∑
i=1

Vi
P→ E[Vi] .

It thus follows that

TUn (gX̃(n)) =
2√
n

n∑
i=1

ViA
∗
g(i) + oP (1) .

Repeating the same argument for TUn (g′X̃(n)), we see that

(TUn (gX̃(n)), TUn (g′X̃(n))) =

(
2√
n

n∑
i=1

ViA
∗
g(i),

2√
n

n∑
i=1

ViA
∗
g′(i)

)
+ oP (1) .
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Using the Cramér-Wold device, it suffices to show for real numbers a and b that

2√
n

n∑
i=1

Vi(aA
∗
g(i) + bA∗g′(i))

d→ N(0, (a2 + b2)(ς2Ỹ + ς2H)) . (B-73)

Note that the left-hand side of (B-73) equals

2√
n

n∑
i=1

(Vi − E[Vi|Si])(aA∗g(i) + bA∗g′(i)) +
2√
n

n∑
i=1

E[Vi|Si](aA∗g(i) + bA∗g′(i)) . (B-74)

Because
n∑
i=1

Ag(i)I{Si = s} =

n∑
i=1

Ag′(i)I{Si = s} = Dn(s) ,

the second term in (B-74) equals

2√
n

∑
s∈S

n∑
i=1

E[Vi|Si = s]I{Si = s}(aA∗g(i) + bA∗g′(i)) = 4(a+ b)
∑
s∈S

E[Vi|Si = s]
Dn(s)√

n
= oP (1) ,

where in the last equality we again use the fact that Dn(s)√
n

P→ 0. To analyze the first term in (B-74), define

ns(d, d
′) = |{1 ≤ i ≤ n : Ag(i) ≤ d,Ag′(i) ≤ d′, Si = s}| .

By arguing as in the proof of Lemma B.1, we see that this term is equal in distribution to the following:

∑
s∈S

2√
n

ns(0,0)∑
i=1

Ṽ si (−(a+ b)) +

ns(0,1)∑
i=ns(0,0)+1

Ṽ si (b− a) +

ns(1,0)∑
i=ns(0,1)+1

Ṽ si (a− b) +

ns(1,1)∑
i=ns(1,0)+1

Ṽ si (a+ b)

 , (B-75)

where, independently for each s ∈ S and independently of (A(n), S(n), g, g′), {Ṽ si : 1 ≤ i ≤ n} are i.i.d. with marginal

distribution equal to the distribution of Vi − E[Vi|Si]|Si = s. Next we argue that

ns(0, 0)

n

P→ p(s)

4
(B-76)

ns(0, 1)− ns(0, 0)

n

P→ p(s)

4
(B-77)

ns(1, 0)− ns(0, 1)

n

P→ p(s)

4
(B-78)

ns(1, 1)− ns(1, 0)

n

P→ p(s)

4
. (B-79)

First consider (B-76). Conditional on A(n) and S(n), ns(0, 0) is a hypergeometric random variable corresponding to

n0(s) draws from an urn with n(s) balls and n0(s) successes. Hence,

E

[
ns(0, 0)

n

∣∣A(n), S(n)

]
=
n0(s)2

n(s)n

P→ p(s)

4
(B-80)

Var

[
ns(0, 0)

n

∣∣A(n), S(n)

]
=

n0(s)2n1(s)2

n2n(s)2(n(s)− 1)2
P→ 0 ,

where the convergences in probability follow, as before, using Assumption 2.2.(b). It therefore follows by Chebychev’s

inequality (applied conditionally) that

P

{∣∣∣∣ns(0, 0)

n
− n0(s)2

n(s)n

∣∣∣∣ > ε
∣∣A(n), S(n)

}
P→ 0 ,
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which implies further that
ns(0, 0)

n
− n0(s)2

n(s)n

P→ 0 .

The convergence (B-76) thus follows from (B-80). The convergences (B-77)–(B-79) follow in the same way.

Therefore, again by arguing as in the proof of Lemma B.1, we see that (B-75) converges in distribution to a

normal with mean zero and variance given by

∑
s∈S

2p(s)((a+ b)2 + (a− b)2)Var[Vi|Si = s] = (a2 + b2)
∑
s∈S

4p(s)Var[Vi|Si = s] . (B-81)

To complete the proof, note that

Var[Vi|Si = s] =
1

2
Var[Yi(1)|Si = s] +

1

2
Var[Yi(0)|Si = s] +

(
1

2
E[Yi(1)|Si = s]2 +

1

2
E[Yi(0)|Si = s]2

)
−
(

1

2
E[Yi(1)|Si = s] +

1

2
E[Yi(0)|Si = s]

)2

=
1

2
σ2
Y (1)(s) +

1

2
σ2
Y (0)(s) +

1

4
(E[Yi(1)|Si = s]− E[Yi(0)|Si = s])2

=
1

2
σ2
Ỹ (1)(s) +

1

2
σ2
Ỹ (0)(s) +

1

4
(E[m1(Zi)|Si = s]− E[m0(Zi)|Si = s])2 ,

where in the final equality we have used the fact that µ1 = µ0 because θ(Q) = 0. It thus follows from the expressions

for ς2
Ỹ

and ς2H in Table 3 that (B-81) equals (a2 + b2)(ς2
Ỹ

+ ς2H), as desired.

Lemma B.4. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let Gn, g0 and X̃(n) be defined as in the proof of Theorem 4.3. Let TUn (X(n)) be defined as in (A-42). Then

(A-45) holds whenever Q additionally satisfies θ(Q) = 0.

Proof. Let g = Gn. Note that (A-45) equals

√
n

(
1

n1

n∑
i=1

(Vgg0(i) − Yg(i))Ai −
1

n0

n∑
i=1

(Vgg0(i) − Yg(i))(1−Ai)

)
. (B-82)

Since

Yg(i) = Yg(i)(1)Ag(i) + Yg(i)(0)(1−Ag(i)) ,

we have that (B-82) equals

√
n

(
1

n1

n∑
i=1

(Vgg0(i) − Yg(i)(1))Ag(i)Ai +
1

n1

n∑
i=1

(Vgg0(i) − Yg(i)(0))(1−Ag(i))Ai

− 1

n0

n∑
i=1

(Vgg0(i) − Yg(i)(1))Ag(i)(1−Ai)−
1

n0

n∑
i=1

(Vgg0(i) − Yg(i)(0))(1−Ag(i))(1−Ai)

)
. (B-83)

By construction, all but at most Kn of the terms in the four summations in (B-83) must be identically equal to

zero. Moreover, conditionally on g, g0, A(n) and Kn, (B-83) has mean equal to zero. This follows from the fact that

E[Vi] = 1
2
µ1 + 1

2
µ0 and µ1 − µ0 = 0 because θ(Q) = 0. Using the fact that Var[A+B] ≤ 2(Var[A] + Var[B]), we see

that, conditionally on g, g0, A(n) and Kn, (B-83) has variance bounded above by

Kn

n

((
n

n1

)2

+

(
n

n0

)2
)
M ,
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where

M = 4 max{Var[Vi − Yi(1)],Var[Vi − Yi(0)]} . (B-84)

Lemma B.5 implies that Kn
n

P→ 0. It therefore follows by Chebychev’s inequality (applied conditionally) that

P{|TUn (gg0X̃n)− TUn (gX(n))| > ε|g, g0, A(n),Kn}
P→ 0 ,

from which the desired unconditional convergence (A-45) also follows.

Lemma B.5. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let Kn be defined as in the proof of Theorem 4.3. Then,

Kn

n

P→ 0 . (B-85)

Proof. The argument provided here follows closely arguments in Chung and Romano (2013). For each s, let Na(s) =

|{Cj = a : j = 1, . . . , n(s)}| for Cj as in the proof of Theorem 4.3. In this notation,

Kn =
∑
s∈S

∑
a∈{0,1}

max{na(s)−Na(s), 0} .

In order to show (B-85), it suffices to show that for all s ∈ S and a ∈ {0, 1},

na(s)−Na(s)

n

P→ 0 . (B-86)

To this end, write

na(s)−Na(s)

n
=

(
na(s)

n
− n(s)

2n

)
−
(
Na(s)

n
− n(s)

2n

)
=

1

2

Dn(s)

n
− n(s)

n

(
Na(s)

n(s)
− 1

2

)
.

Under our assumptions, Dn(s)
n

P→ 0 and n(s)
n

P→ p(s). Note that for each a ∈ {0, 1} and s ∈ S, Na(s)|n(s) is distributed

according to a binomial distribution with n(s) trials and probability of success equal to 1
2
. It therefore follows from

Chebychev’s inequality (applied conditionally) that

P

{∣∣∣∣Na(s)

n(s)
− 1

2

∣∣∣∣ > ε
∣∣S(n)

}
≤ 1

nn(s)
n
ε2

P→ 0 .

It follows that
Na(s)

n(s)
− 1

2

P→ 0 ,

from which (B-86) follows.

Lemma B.6. Let Gn|S(n) and G′n|S(n) ∼ Unif(Gn(S(n))) with Gn, G′n, and X(n) independent conditional on S(n).

Suppose

(Tn(GnX
(n)), Tn(G′nX

(n))
d→ (T, T ′) , (B-87)

where T ∼ T ′ with c.d.f. R(t) and T and T ′ are independent. Then, for any continuity point t of R,

R̂n(t) =
1

|Gn(S(n))|
∑

g∈Gn(S(n))

I{Tn(gX(n)) ≤ t} P→ R(t) .
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Proof. Let t be a continuity point of R. Note that

E[R̂n(t)] = E[E[R̂n(t)|S(n)]]

= E

 1

|Gn(S(n))|
∑

g∈Gn(S(n))

P{Tn(gX(n)) ≤ t|S(n)}


= E[P{Tn(GnX

(n)) ≤ t|S(n)}]

= P{Tn(GnX
(n)) ≤ t}

→ R(t) ,

where the third equality follows from the distribution for Gn|S(n) and the independence of Gn and X(n) conditional

on S(n) and the convergence follows from (B-87). It therefore suffices to show that Var[R̂n(t)]→ 0. Equivalently, it

is enough to show that E[R̂2
n(t)]→ R2(t). To this end, note that

E[R̂2
n(t)] = E

 1

|Gn(S(n))|2
∑

g∈Gn(S(n))

∑
g′∈Gn(S(n))

I{Tn(gX(n)) ≤ t, Tn(g′X(n)) ≤ t}


= E

 1

|Gn(S(n))|2
∑

g∈Gn(S(n))

∑
g′∈Gn(S(n))

P{Tn(gX(n)) ≤ t, Tn(g′X(n)) ≤ t|S(n)}


= E[P{Tn(GnX

(n)) ≤ t, Tn(G′nX
(n)) ≤ t|S(n)}]

= P{Tn(GnX
(n)) ≤ t, Tn(G′nX

(n)) ≤ t}

→ R2(t) ,

where, as before, the third equality follows from the distributions for Gn|S(n) and G′n|S(n) and the independence of

Gn, G′n, and X(n) conditional on S(n), and the convergence follows from (B-87).

Lemma B.7. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let γ = (β, δ1, . . . , δ|S|)
′ be the parameters in the regression (29) and let γ̂n be the least squares estimator of γ.

Then,

γ̂n
P→ γ ≡


θ(Q)

µ0 + 1
2
E[m1(Zi)|Si = 1] + 1

2
E[m0(Zi)|Si = 1]

...

µ0 + 1
2
E[m1(Zi)|Si = |S|] + 1

2
E[m0(Zi)|Si = |S|]

 .

Proof. First note that γ̂n = (C′nCn)−1C′nYn, where Cn is an n×|S|+ 1 matrix with the treatment assignment vector

An in the first row and the strata indicators vector in the rest of the rows, and Yn is an n × 1 vector of outcomes.

The (s + 1)th element of 1
n
C′nYn equals 1

n

∑n
i=1AiYi if s = 0 and 1

n

∑n
i=1 I{Si = s}Yi for s ∈ S. In turn, this last

term satisfies

1

n

n∑
i=1

I{Si = s}Yi =
n1(s)

n
(µ1 + E[m1(Zi)|Si = s]) +

(
n(s)

n
− n1(s)

n

)
(µ0 + E[m0(Zi)|Si = s])

+
1

n

n∑
i=1

AiI{Si = s}Ỹi(1) +
1

n

n∑
i=1

(1−Ai) I{Si = s}Ỹi(0)

= p(s)

(
1

2
(µ1 + E[m1(Zi)|Si = s]) +

1

2
(µ0 + E[m0(Zi)|Si = s])

)
+ oP (1) ,
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where in the last step we used n1(s)
n

= Dn(s)
n

+ 1
2
n(s)
n

P→ p(s)
2

, n(s)
n

P→ p(s), and that 1
n

∑n
i=1AiI{Si = s}Ỹi(a)

P→ 0

for a ∈ {0, 1} by Lemma B.2. Also by Lemma B.2,

1

n

n∑
i=1

AiYi =
1

n

n∑
i=1

AiYi(1)
P→ 1

2
µ1 ,

so that we conclude that

1

n
C′nYn

P→


1
2
µ1

p(1)
(
1
2
(µ1 + E[m1(Zi)|Si = 1]) + 1

2
(µ0 + E[m0(Zi)|Si = 1])

)
...

p(|S|)
(
1
2
(µ1 + E[m1(Zi)|Si = 1]) + 1

2
(µ0 + E[m0(Zi)|Si = |S|])

)

 .

The result then follows from the above display, (A-54), and some additional algebra.

Lemma B.8. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies Assumption

2.2. Let Ci ≡ [Ai, I{Si = 1}, . . . , I{Si = |S|}]′ be the ith row of the matrix Cn formed by stacking the treatment

assignment vector An in the first column and the strata indicators vector in the rest of the columns, ûi be the

least squares residuals of the regression in (29), and γ̂n be the least squares estimator of the regression coefficients

γ = (β, δ1, . . . , δ|S|)
′. Then,

ûi =
∑
s∈S

I{Si = s}A∗iE [m1(Zi)−m0(Zi)|Si = s] + Ỹi(1)Ai + Ỹi(0)(1−Ai) + Ci(γ − γ̂n) . (B-88)

Furthermore,

1

n

n∑
i=1

û2
i
P→ 1

4
(ς2H + ς2Ỹ ) (B-89)

1

n

n∑
i=1

û2
iAi

P→ 1

8
ς2H +

1

2
σ2
Ỹ (1) (B-90)

1

n

n∑
i=1

û2
i I {Si = s} P→ p(s)

(
1

4
(E [m1(Zi)−m0(Zi)|Si = s])2 +

1

2
σ2
Ỹ (1)(s) +

1

2
σ2
Ỹ (0)(s)

)
(B-91)

1

n

n∑
i=1

û2
i I {Si = s}Ai

P→ p(s)

(
1

8
(E [m1(Zi)−m0(Zi)|Si = s])2 +

1

2
σ2
Ỹ (1)(s)

)
. (B-92)

Proof. Consider the following derivation:

Yi = Yi(1)Ai + Yi(0)(1−Ai)

= θ(Q)Ai + µ0 + Ỹi(1)Ai + Ỹi(0)(1−Ai) +
∑
s∈S

I{Si = s} (AiE[m1(Zi)|Si = s] + (1−Ai)E[m0(Zi)|Si = s]) .

Using Lemma B.7, we have that

Ciγ = θ(Q)Ai + µ0 +
∑
s∈S

I{Si = s}
(

1

2
E[m1(Zi)|Si = s] +

1

2
E[m0(Zi)|Si = s]

)
.
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Hence,

ui = Yi − Ciγ

=
∑
s∈S

I{Si = s}A∗iE [m1(Zi)−m0(Zi)|Si = s] + Ỹi(1)Ai + Ỹi(0) (1−Ai) . (B-93)

Since ûi = ui + Ci(γ − γ̂n), the desired expression for (B-88) follows.

To prove (B-89) - (B-92), note that for any univariate random variable Xi such that

1

n

n∑
i=1

(
C′iCi ⊗Xi

)
= OP (1) and

1

n

n∑
i=1

CiuiXi = OP (1) , (B-94)

we have that

1

n

n∑
i=1

û2
iXi =

1

n

n∑
i=1

u2
iXi + (γ − γ̂n)′

1

n

n∑
i=1

(
C′iCi ⊗Xi

)
(γ − γ̂n) + 2(γ − γ̂n)

1

n

n∑
i=1

CiuiXi

=
1

n

n∑
i=1

u2
iXi + oP (1) ,

where in the second equality we used γ̂n
P→ γ from Lemma B.7. Since the condition in (B-94) certainly holds for

Xi = 1, I{Si = s}, Ai, and I{Si = s}Ai, it is enough to show that (B-89) - (B-92) holds with u2
i in place of û2

i .

Using (B-93), we have that

u2
i =

∑
s∈S

1

4
I{Si = s} (E [m1(Zi)−m0(Zi)|Si = s])2 + Ỹi(1)2Ai + Ỹi(0)2 (1−Ai)

+
∑
s∈S

I{Si = s}E [m1(Zi)−m0(Zi)|Si = s] Ỹi(1)Ai

−
∑
s∈S

I{Si = s}E [m1(Zi)−m0(Zi)|Si = s] Ỹi(0)(1−Ai) .

Lemma B.2 thus implies that

1

n

n∑
i=1

u2
i
P→ 1

4

∑
s∈S

p(s) (E [m1(Zi)−m0(Zi)|Si = s])2 +
1

2
σ2
Ỹ (1) +

1

2
σ2
Ỹ (0)

=
1

4
(ς2H + ς2Ỹ )

1

n

n∑
i=1

u2
iAi

P→ 1

8

∑
s∈S

p(s) (E [m1(Zi)−m0(Zi)|Si = s])2 +
1

2
σ2
Ỹ (1)

=
1

8
ς2H +

1

2
σ2
Ỹ (1) + oP (1)

1

n

n∑
i=1

u2
i I{Si = s} P→ 1

4
p(s) (E [m1(Zi)−m0(Zi)|Si = s])2 +

1

2
σ2
Ỹ (1)(s) +

1

2
σ2
Ỹ (0)(s)

1

n

n∑
i=1

u2
i I{Si = s}Ai

P→ 1

8
p(s) (E [m1(Zi)−m0(Zi)|Si = s])2 +

1

2
σ2
Ỹ (1)(s) ,

thus completing the proof.

Lemma B.9. Let A(n) be a treatment assignment generated by the biased coin design mechanism described in Example

3.2. Then, Assumption 2.2 holds.
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Proof. Part (a) holds by definition. For part (b), note that for s 6= s′, Dn(s) ⊥⊥ Dn(s′)|S(n). Moreover, within

stratum the assignment is exactly the one considered in Markaryan and Rosenberger (2010, Theorem 2.1). It follows

from that theorem that

{Dn(s)|S(n)} = OP (1) a.s.

These two properties imply that part (b) holds with τ(s) = 0 for all s ∈ S.

Lemma B.10. Let A(n) be a treatment assignment generated by the adaptive biased coin design mechanism described

in Example 3.3. Then, Assumption 2.2 holds.

Proof. Part (a) holds by definition. Part (b) holds by Wei (1978, Theorem 3) adapted to account for stratification.

This result implies that {
Dn(s)√

n
|S(n)

}
d→ N

(
0,

1

4(1− 4ϕ′(0))

)
a.s. (B-95)

Since Dn(s) ⊥⊥ Dn(s′)|S(n) for s 6= s′, part (b) holds with τ(s) = 1
4(1−4ϕ′(0)) for all s ∈ S.

Lemma B.11. Let A(n) be a treatment assignment generated by the stratified block randomization mechanism de-

scribed in Example 3.4. Then, Assumption 2.2 holds.

Proof. Part (a) follows by definition. Next note that, conditional on S(n), n(s) =
∑n
i=1 I{Si = s} and n1(s) = bn(s)

2
c

are non-random. Thus, conditional on S(n), {Dn(s) : s ∈ S} is non-random with

Dn(s) =

0 if n(s) is even or n(s) = 0

−1 if n(s) is odd

for all s ∈ S. Part (b) then follows with τ(s) = 0 for all s ∈ S.
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