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Abstract

The goal of many randomized experiments and quasi-experimental studies in eco-

nomics is to inform policies that aim to raise incomes and reduce economic inequality.

A policy maximizing the sum of individual incomes may not be desirable if it mag-

nifies economic inequality and post-treatment redistribution of income is infeasible.

This paper develops a method to estimate the optimal treatment assignment policy

based on observable individual covariates when the policy objective is to maximize an

equality-minded rank-dependent social welfare function, which puts higher weight on

individuals with lower-ranked outcomes. We estimate the optimal policy by maximiz-

ing a sample analog of the rank-dependent welfare over a properly constrained set of

policies. Although an analytical characterization of the optimal policy under a rank-

dependent social welfare is not available even with the knowledge of potential outcome

distributions, we show that the average social welfare attained by our estimated policy

converges to the maximal attainable welfare at n−1/2 rate uniformly over a large class

of data distributions. We also show that this rate is minimax optimal. We provide an

application of our method using the data from the National JTPA Study.
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1 Introduction

In causal inference studies analyzing experimental or quasi-experimental data, treatment re-

sponse generally varies with individual observable characteristics. Learning about such het-

erogeneity from the data is essential for designing individualized treatment rules that assign

treatments on the basis of individual observable characteristics. The optimal individualized

treatment rule maximizes a social welfare criterion representing the policy maker’s prefer-

ences over population distributions of post-treatment outcomes. The literature on statistical

treatment choice initiated by Manski (2004) emphasizes this perspective of welfare-based em-

pirical policy design and pursues statistically sound ways to estimate the optimal treatment

assignment rule.

Research on statistical treatment rules typically focuses on the utilitarian social welfare

criterion defined by the mean of the outcomes in the population,1 even though welfare eco-

nomics offers a variety of alternative criteria. The utilitarian social welfare criterion offers

analytical and computational convenience because it is additive across subgroups of the pop-

ulation and depends only on the mean of the outcome distribution. The optimal treatment

rule then depends only on the conditional average treatment effect. Empirical researchers

studying causal impacts of social programs have stressed the importance of evaluating dis-

tributional impacts, which are overlooked when only mean outcomes are considered (e.g.,

Bitler et al. (2006)). The distributional impact of a policy is especially important when the

policy maker is concerned about economic inequality in the population.

We study the problem of treatment assignment that aims to maximize a rank-dependent

social welfare function (SWF), which has the form

W ≡
∫
Yi · ω(Rank(Yi))di, (1.1)

where Yi is individual i’s outcome, Rank(Yi) is the outcome rank of i from the bottom of

the outcome distribution, and ω(·) is a non-negative weight assigned to each rank. The

class of generalized Gini SWFs proposed by Mehran (1976) and Weymark (1981) consists

of SWFs of the form (1.1) with non-increasing ω(·). It closely relates to income inequality

1More generally, the utilitarian welfare is defined as the mean of a function of applied to each individual

outcome.
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indices, including the widely-used Gini index. Blackorby and Donaldson (1978) show that,

given a specification of ω(·), the rank-dependent SWF can be written as a product of the

average outcome and one minus the generalized relative index of inequality, e.g., Gini. This

implies that these SWFs generate a ranking of outcome distributions that is increasing in the

average outcome and decreasing in the chosen index of inequality. While inequality measures

are predominantly applied to net income, our analysis allows Yi to denote other outcome

variables of interest, including functions of income, consumption, wealth, or human capital.

We will therefore refer to Yi simply as “the outcome” in this paper.

The goal is to choose a treatment rule δ that assigns individuals to one of two treatments

d ∈ {0, 1} depending on their observable pre-treatment covariates X ∈ X . This choice

is made after experimental data has been collected and analyzed. We do not consider the

problem of optimal experimental design in this paper, taking the design as given. We assume

that an individual’s treatment outcome does not depend on treatments received by others.

The policy-maker in our setup can only impact the distribution of outcomes through the

choice of a treatment assignment rule and cannot combine it with other redistributive policies.

Finding a policy that maximizes a rank-dependent SWF is a non-trivial problem without

a closed-form solution even if the conditional distributions of potential outcomes (P (Y0|X)

and P (Y1|X)) are known. A utilitarian SWF
(∫

u(Yi)di
)

is additive across subgroups of

the population, so it is optimal to assign for each subgroup the treatment with the highest

conditional mean E(u(Yd)|X). In contrast, a rank-dependent SWF is not separable across

subgroups, as the ranking of treatment assignment rules for a given covariate value may

change depending on the treatment assignment of other subgroups.

We show in Theorem 2.1 that an equality-minded rank-dependent SWF is always maxi-

mized by a non-randomized treatment rule (assigning the same treatment to all individuals

with identical covariates). This result greatly simplifies the space of treatment rules that

need to be considered. It also allows us to index treatment rules by their decision sets

G ⊂ X , denoting all values of the covariates {X ∈ G} for which treatment 1 is assigned.

Our aim is to estimate from the sample data a treatment assignment rule Ĝ ∈ G belonging

to a constrained (but generally large) set of feasible policies G ≡ {G ⊂ X}, which is a

collection of non-randomized treatment rules indexed by their decision sets. Policy makers
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often face legal, ethical, or political constraints that restrict how individual characteristics

can be used to determine treatment assignment. One of the advantages of our framework is

that it easily incorporates such exogenous restrictions. Our analytical results also require G

to satisfy a certain complexity restriction (a finite VC-dimension) to prevent overfitting. As

argued in Kitagawa and Tetenov (2015), this is not restrictive for public policy applications

and provide rich examples of treatment rule classes that satisfy this complexity restriction.

We propose estimating the treatment rule Ĝ by maximizing a sample analog of W (G),

the SWF evaluated at the population distribution of Y that would realize if treatment

assignment rule G is implemented. This idea of estimating a policy by maximizing an

empirical welfare criterion is in line with the method proposed in Kitagawa and Tetenov

(2015) for the utilitarian welfare case. Following the terminology suggested there, we also

refer to the method proposed in the current paper for the rank-dependent social welfare as

Empirical Welfare Maximization (EWM). The maximum welfare achievable by treatment

rules from the constrained class G is W ∗
G ≡ sup

G∈G
W (G). We assess the statistical performance

of Ĝ in terms of the average welfare it achieves (with respect to the sampling distribution

P n of a size n sample). Specifically, we derive a non-asymptotic and distribution-free upper

bound on regret W ∗
G−EPn [W (Ĝ)] in terms of the sample size n and a measure of complexity

of G, and show that it converges to zero at n−1/2 rate. We also show that this rate is

minimax optimal over a minimally constrained class of population distributions, ensuring

that no other data-driven treatment rule can lead to a faster welfare loss convergence rate

uniformly over the class of distributions. Even though a rank-dependent SWF depends

on the entire conditional distributions of potential outcomes given covariates, the welfare

convergence rate is the same as the minimax optimal rate that the EWM rule attains in the

utilitarian case (Theorems 2.1 and 2.2 in Kitagawa and Tetenov (2015)).

The remainder of this paper is organized as follows. Section 1.1 provides an overview

of related literature. Section 2 discusses the properties of equality-minded rank-dependent

social welfare functions and their application to the analysis of treatment choice. In Section

3, we introduce the general analytical framework and show the convergence rate properties

of the EWM rule for rank-dependent welfare. Section 4 provides several extensions of the

model including the cases where propensity scores need to be estimated or where a cost or
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capacity constraint is present. In Section 5, we apply our method to the experimental data

from the National JTPA study. We collect all the proofs in the appendix.

1.1 Related Literature

The analysis of statistical treatment rules was pioneered by Manski (2004), and is a growing

area of research in econometrics. Important recent developments can be found in Dehejia

(2005), Hirano and Porter (2009), Stoye (2009, 2012), Chamberlain (2011), Bhattacharya

and Dupas (2012), Tetenov (2012), Kasy (2014, 2016) and Kitagawa and Tetenov (2015),

among others. All the existing works on treatment choice except for Kasy (2016) exclusively

posit a utilitarian welfare criterion (the sum of the outcomes in the population) as the

objective function of the policy maker. Motivated by the policy concerns about economic

inequality, the current paper analyzes the treatment choice problem for a class of rank-

dependent social welfare functions that embody inequality aversion. The main contributions

of the current paper are (i) introducing a rank-dependent social welfare function into the

treatment choice problem, (ii) developing an estimation method for the optimal policy, and

(iii) characterizing its optimality in terms of the convergence rate of the average welfare loss.

Several features distinguish the current analysis from the EWM approach for the utilitarian

welfare case considered in Kitagawa and Tetenov (2015): (i) the analytical characterization

of the optimal assignment policy is not available even with the knowledge of the distribution

of (Y0, Y1, X), (ii) the empirical welfare criterion involves a nonlinear transformation of the

empirical distribution, and (iii) as illustrated in Section 2.1 below, the rank-dependent welfare

criterion is non-decomposable, so optimal assignment for one subpopulation depends on

what treatment is assigned to other subpopulations. These features also distinguish this

paper from machine learning and statistics literature on empirical risk minimization problems

(Vapnik (1998)), where the empirical risk criterion always takes the form of a sample average.

Within the econometrics literature on policy choice, Kasy (2016) is the only existing

paper that analyzes a class of social welfare functions including the rank-dependent social

welfare. Our approach differs from his in several aspects. First, Kasy (2016) considers a linear

approximation of the rank-dependent welfare function around a status-quo policy in order

to discuss (partial) identification of a welfare-improving local policy change. We instead
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focus on a globally optimal policy without invoking approximations. Second, we assume

that the welfare criterion is point-identified by the sampling process, while Kasy (2016)

focuses on partial identification of the welfare criterion and construction of social planner’s

incomplete preference ordering over policies. Third, we study estimation of an optimal policy

and examine optimality of the estimator in terms of welfare regret convergence rate, while

Kasy (2016) studies asymptotically valid inference on the welfare rankings.

The causal impact on non-utilitarian social welfare has been rarely considered in program

evaluation studies. Aaberge et al. (2016) estimate a rank-dependent social welfare function

of two policy alternatives: with and without the uniform implementation of the treatment.

Firpo and Pinto (2015) estimate the impact of uniform implementation of the treatment on

measures of inequality, including the Gini coefficient. Instead, the focus of the current paper

is on estimating the optimal treatment rule from a large class of individualized assignment

rules.

We consider social welfare functions that satisfy the axiom of anonymity, i.e., they are

functionals of the distribution of the outcomes after treatment assignment and indifferent

to reshuffling of the outcomes between individuals. Thus our objective does not depend on

the distribution of individual treatment effects P (Y1−Y0), which has also received attention

recently in the program evaluation literature (Heckman et al. (1997b), Firpo and Ridder

(2008), Fan and Park (2010)).

Building social welfare function satisfying the Pigou-Dalton principle of transfers is one

of the central themes in the literature of inequality measurement and welfare economics

(see Cowell (1995, 2000), Lambert (2001)). Currently, there are two widely-used classes of

social welfare functions that meet the Pigou-Dalton principle. The first one is the class

of Atkinson-type SWFs (Atkinson (1970)), W (F ) =
∫ −∞

0
U(y)dF (y), where F (y) is the

cumulative distribution function (cdf) of the outcome and U(·) is a concave non-decreasing

function. Since the Atkinson-type social welfare function is linear in F , the EWM approach

of Kitagawa and Tetenov (2015) can be readily applied by defining the outcome observations

as U(Y ). The second class, which is this paper’s main focus, is the class of rank-dependent

social welfare functions introduced by Mehran (1976), Blackorby and Donaldson (1978) and

Weymark (1981) and axiomatized by Yaari (1988). The key axiom of Yaari (1988) that
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distinguishes rank-dependent social welfare from Atkinson-type social welfare is Invariance

under a Rank-Preserving Lump-Sum Change of Incomes at the Upper Tail, which means

that the preference ordering between two income distributions F and F ′ is invariant to any

fixed lump-sum increase (decrease) in income of all those above (below) the τ -th quantile

of F and F ′ for any τ ∈ (0, 1). On the other hand, the key axiom that characterizes the

Atkinson-type social welfare is the independence axiom: the preference ordering between F

and F ′ is invariant to any mixing with another common income distribution.2 These rich

and insightful works in welfare economics have not yet been well linked to econometrics and

empirical analysis for policy design. One of the main aims of the current paper is to establish

a link between these two important literatures.

2 Treatment Choice with Equality-Minded Social Wel-

fare Functions

We call a SWF equality minded if it satisfies the Pigou-Dalton Principle of Transfers : A

transfer of income from a higher ranked individual to a lower ranked individual is always

desirable when it does not change their ranks in the income distribution. The equality-

minded SWFs analyzed in this paper are the rank-dependent SWFs with decreasing welfare

weights (also called generalized Gini SWFs), introduced by Mehran (1976) and Weymark

(1981) and axiomatized by Yaari (1988). An equality-minded rank-dependent SWF admits

the following representation:

W (F ) =

∫
R

Λ(F (y))dy, (2.1)

where Λ(·) : [0, 1] → [0, 1] is a non-increasing, non-negative function with Λ(0) = 1 and

Λ(1) = 0. The rank-dependent SWF meets the Pigou-Dalton Principle of Transfers if and

only if Λ(·) is convex.

2As noted in Machina (1982), the rank-dependent social welfare function generalizes the Atkinson-type

social welfare exactly as the rank-dependent expected utility theory generalizes the classical von Neumann-

Morgenstern expected utility theory (Machina (1982) and Quiggin (1982)) by relaxing the controversial

independence axiom.
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The term rank-dependent is due to an equivalent representation of (2.1) as a weighted

sum of incomes. If Λ(·) is almost everywhere differentiable, then by integration by parts

W (F ) can be equivalently expressed as

W (F ) =

∫ 1

0

F−1(t)ω(t)dt, (2.2)

where F−1(t) ≡ inf{y : F (y) ≥ t} is the outcome of individuals at t-th quantile and ω(t) =

d[1−Λ(t)]
dt

is the welfare weight assigned to that quantile. Thus W (F ) is a weighted average

of outcomes Y , where the ω(·) specifies the rank-specific weight. If the SWF is equality-

minded then Λ(·) is convex, hence ω(·) is non-increasing and assigns larger welfare weights

to individuals with lower-ranked outcomes.

Throughout the paper, we consider equality-minded SWFs satisfying the following as-

sumption:

Assumption 2.1 (SWF).

The policy-maker’s SWF has representation (2.1), where Λ(·) : [0, 1] → [0, 1] is a non-

increasing, convex function with Λ(0) = 1 and Λ(1) = 0. We also assume that Λ(·) is

almost everywhere differentiable and its right derivative at the origin denoted by Λ′(0) is

bounded, |Λ′(0)| <∞.

Assumption 2.1 states that the rank specific weight function ω(·) defined in (2.2) does

not asymptote at the origin, implying that the rank specific weight assigned to the lowest

rank is bounded. For instance, this assumption is satisfied for the extended Gini family of

social welfare functions {Wk(F ) =
∫∞

0
(1− F (y))k−1 : 2 < k <∞} considered in Donaldson

and Weymark (1980, 1983) and Aaberge et al. (2016). On the other hand, the Rawlsian

social welfare that can be approximated by limk→∞Wk(F ) is ruled out from our analysis.

One prominent example from this class is the Gini social welfare function (Blackorby

and Donaldson (1978), Weymark (1981)),

WGini(F ) ≡ E(Y )(1− IGini(F )), (2.3)

where IGini(F ) = 1−
∫ 1
0 F

−1(t)2(1−t)dt
E(Y )

is the Gini inequality index. This social welfare can be

represented in the form of (2.2) with ω(t) = 2(1− t), implying Λ(t) = (1− t)2.
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We consider the problem of choosing a policy that assigns individuals to one of two

treatments d ∈ {0, 1} in order to maximize the chosen SWF. A treatment assignment rule

δ : X → [0, 1] specifies the proportion of individuals with observable pre-treatment covariates

X ∈ X ⊂ Rdx who will be assigned to treatment 1 by the policy-maker. The policy randomly

assigns individuals with covariates X to the two treatments with probabilities 1− δ(X) and

δ(X)). The population distribution of outcomes induced by treatment rule δ has cdf

Fδ(y) ≡
∫
X

[
(1− δ(x))FY0|X=x(y) + δ(x)FY1|X=x(y)

]
dPX(x), (2.4)

where Y0 and Y1 denote the potential outcomes of the two treatments with conditional

distributions FY0|X and FY1|X given X and PX is the marginal distribution of X.

If the population distribution of (Y0, Y1, X) were known, the optimal policy maximizing

the social welfare function (2.1) would be

δ∗ ∈ arg max
δ
W (Fδ). (2.5)

For the utilitarian welfare function (the mean of Y ), the welfare maximization problem

simplifies to

δ∗util ∈ arg max
δ

∫
X

[(1− δ(x))E(Y0|X = x) + δ(x)E(Y1|X = x)] dPX(x). (2.6)

The utilitarian social welfare is additive across covariates and depends on the outcome dis-

tributions only through their conditional means E(Yd|X). The optimal utilitarian policy

is

δ∗util = 1 {x ∈ X : E(Y1|X = x) > E(Y0|X = x)} .

In contrast, the optimal rule for a rank-dependent welfare function (2.1) depends on the

whole conditional distributions of potential outcomes FY0|X and FY1|X , not only on their

means. The optimal rule can differ from the utilitarian one if there is no first-order stochastic

dominance relationship between FY0|X and FY1|X for some covariate values.

Even with the knowledge of the distribution of (Y0, Y1, X), a simple characterization of

the optimal rule does not seem available for rank-dependent SWFs. The following theorem

mitigates this complication by substantially reducing the set of candidate treatment rules

that need to be considered.
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Theorem 2.1. If W (·) satisfies Assumption 2.1, then for every measurable treatment rule

δ : X → [0, 1], there exists a non-randomized treatment rule δG(x) ≡ 1{x ∈ G} for some

Borel set G ⊂ X , such that W (FδG) ≥ W (Fδ).

If all upper level sets of δ belong to a collection G of Borel subsets of X :

{x : δ(x) ≥ t} ∈ G, ∀t ∈ R,

then there exists δG(x), G ∈ G, such that W (FδG) ≥ W (Fδ).

Proof. See Appendix A.

This theorem shows that a treatment assignment rule maximizing an equality-minded

rank-dependent welfare is non-randomized (assigns all individuals with the same covariates

to the same treatment). We can therefore restrict our search for an optimal policy to the set

of non-randomized rules that can be succinctly characterized by their decision sets G ⊂ X .

Decision set G determines the group of individuals {X ∈ G} to whom treatment 1 is assigned.

With abuse of notation, we denote the welfare of a non-randomized treatment rule with

decision set G by W (G), suppressing the cumulative distribution function in its argument,

W (G) ≡W (FG),

FG(y) ≡
∫
X

[
FY0|X=x(y)1{x /∈ G}+ FY1|X=x(y)1{x ∈ G}

]
dPX(x). (2.7)

Our goal is to estimate from the sample data a treatment assignment rule that attains

the maximum level of social welfare W ∗
G ≡ sup

G∈G
W (G) over the set of feasible policies G ≡

{G ⊂ X}, which is a collection of non-randomized treatment rules (subsets of the covariate

space X ). An important feature of our empirical welfare maximization approach is that the

complexity of G is constrained by a finite Vapnik-Cervonenkis (VC) dimension:

Assumption 2.2 (VC).

The class of decision sets G has a finite VC-dimension v <∞.

The VC-dimension is a restriction on the complexity of the set of feasible policies. With-

out it, maximizing a sample analog of W (G) over G can lead to arbitrarily complicated

policies (overfitting) and prevent us from learning the optimal policy on the basis of a finite
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number of observations. It does not require G to be finite and allows for very large classes

of treatment rules. For example, a class of treatment rules defined by a linear equation in

functions of x, G ≡
{
G = {x :

∑m
i=1 βjfj(x) ≥ 0}, β ∈ Rm

}
has a finite VC-dimension. See

Kitagawa and Tetenov (2015) for other examples of classes G that satisfy Assumption 2.2.

2.1 Illustrating Example

In this section, we illustrate the properties of rank-dependent SWFs in comparison with the

utilitarian one in a simple setting with the Gini SWF, WGini(F ) =
∫∞

0
(1−F (y))2dy. We first

compare the welfare ordering on the parametric family of log-normal outcome distributions.

Second, we consider a simple treatment choice problem with binary X in order to illustrate

how the optimal rules fundamentally differ between the two SWFs.

First, consider the welfare ordering over the family of log-normal distributions of out-

comes, Y ∼ logN(µ, σ2), ignoring the treatment choice problem. The mean of Y is given

by E(Y ) = exp(µ + σ2/2). The Gini inequality coefficient for logN(µ, σ2) is given by

2Φ
(
σ/
√

2
)
− 1 (see, e.g., Cowell (1995)), where Φ(·) is the cdf of the standard normal

distribution. By (2.3), we have

WGini(F ) = 2 exp

(
µ+

σ2

2

)[
1− Φ

(
σ√
2

)]
. (2.8)

This welfare function is increasing in µ, whereas it is not monotonic in σ. For instance, when

µ = 0, WGini(FY ) is decreasing in σ for σ < 0.87 and increasing for σ > 0.87. See Figure 1

for a plot of WGini(F ) over σ ∈ [0, 2] holding µ = 0 fixed. The U-shape of the Gini social

welfare indicates that for σ < 0.87, the negative contribution to the social welfare from an

increase in the Gini coefficient dominates the positive contribution from an increase in the

mean, while for σ > 0.87, this relationship reverses. In Figure 2, we plot the densities of the

log-normal distributions for σ = 0.25, 0.5, and 1. Since E(Y ) is monotonically increasing

both in µ and σ, higher σ is always preferable in terms of the utilitarian social welfare. In

contrast, as shown in the welfare values plotted in Figure 1, the Gini social welfare yields

the complete opposite welfare ordering over the three log-normal distributions in Figure 2.

Consider now the treatment choice problem. Suppose there is only one binary covariate

X ∈ {a, b} with Pr(X = a) = Pr(X = b) = 1/2. Consider the following parameterization of
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the potential outcome distributions:

Y1|(X = a) ∼ logN(µa, σ
2
a), Y0|(X = a) ∼ logN(0, 0.82),

Y1|(X = b) ∼ logN(µb, σ
2
b), Y0|(X = b) ∼ logN(0, 0.82). (2.9)

According to Theorem 2.1, it suffices to consider non-randomized rules to search for an opti-

mal one. We therefore consider ranking the following four policies: G = {∅, {a}, {b}, {a, b}} ≡

{G∅, Ga, Gb, Gab}.

Suppose σa = σb = 0.8 and µa, µb > 0. Then, in each subpopulation of X = a and

X = b, the distribution of Y1 stochastically dominates the distribution of Y0. Since the

rank-dependent social welfare is clearly monotonic in the first-order stochastic dominance

relationship, treating both {X = a} and {X = b} maximizes the Gini social welfare. This

optimal rule indeed coincides with that of the utilitarian welfare case. In general, when the

stochastic dominance relationships between Y1|X- and Y0|X-distributions are present for all

X, the optimal rule for the rank-dependent social welfare agrees with the utilitarian one and

can be obtained by solving the treatment choice problem separately in each subpopulation.

These results change drastically once we let σa 6= σb. Suppose we fix µa = µb = 0, while

we vary both σa and σb over [0.1, 1.6]. As the mean of a log normal random variable is

increasing in σ, the optimal treatment rule for the utilitarian welfare is obtained by

G∗util =



G∅ if σa < 0.8 and σb < 0.8,

Ga if σa ≥ 0.8 and σb < 0.8,

Gb if σa < 0.8 and σb ≥ 0.8,

Gab if σa ≥ 0.8 and σb ≥ 0.8.

In Figure 3, we plot the utilitarian optimal treatment rule at each grid point of (σa, σb) ∈

[0.1, 1.6]2. Since the utilitarian social welfare is additive over the subpopulations, a treatment

preferable for one subpopulation does not depend on the treatment assigned to the other

subpopulation. The regions in which different rules from G are optimal form a quadrant

partition, as shown in Figure 3.

In Figure 4, we plot the optimal policies in terms of the Gini social welfare. The regions in

which different rules from G are optimal are strikingly different compared with the utilitarian
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welfare case (G∗util) shown in Figure 3. In the neighborhood of (σa, σb) = (0.8, 0.8), the

subpopulations to be treated under the Gini social welfare are the converse of those to be

treated under the utilitarian welfare. This is because the Gini social welfare is decreasing in

σ in the neighborhood of σ = 0.8 (Figure 1), while the utilitarian welfare is monotonically

increasing in σ. Another notable difference is that in contrast to the quadrant partition

observed in the utilitarian welfare case, the partition in the equality-minded welfare case is

more complex. Some treatment rules are optimal in disconnected regions, e.g., Gab is optimal

in the south-west and the north-east regions of the plot. Furthermore, the region in which

Ga is optimal can border the region in which Gb is optimal. On the border between these

regions, the policy maker chooses whether to treat X = a only or X = b only, rather than

whether to additionally treat the other subpopulation.

3 EWM for Equality-Minded Welfare

We proceed to propose our method of estimating the treatment rule in finite samples and

analyze its properties. Let the data be a size n random sample of Zi = (Yi, Di, Xi), where

Xi refers to the observable pre-treatment covariates of individual i, Di ∈ {0, 1} is a binary

indicator of the individual’s experimental treatment, and Yi ∈ R+ is her/his observed post-

treatment outcome. The population from which the sample is drawn is characterized by P , a

joint distribution of (Y0i, Y1i, Di, Xi), where Y0i and Y1i are the potential outcomes that would

be observed if i’s treatment status were Di = 0 and Di = 1, respectively. We assume that

the propensity score e(X) = Pr(D = 1|X = x) is known. Section 4.2 extends the analysis

to include propensity score estimation. Based on this data, the policy-maker has to choose

a conditional treatment rule G ∈ G that determines whether individuals with covariates X

in a target population will be assigned to treatment 0 or to treatment 1. The following are

our maintained assumptions about the class of population distributions of (Y0, Y1, D,X):

Assumption 3.1.

(UCF) Unconfoundedness: (Y0, Y1) ⊥ D|X.

(BO) Bounded Outcomes: There exists M < ∞ such that the support of Y is contained in

[0,M ].
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(SO) Strict Overlap: There exist κ ∈ (0, 1/2] such that the propensity score satisfies e(x) ∈

[κ, 1− κ] for all x ∈ X .

These assumptions generally hold if the data come from an experiment with randomized

treatment assignment. In observational studies, on the other hand, Unconfoundedness rules

out situations in which the observed treatment assignments depend on subjects’ unobserved

characteristics that can be associated with their potential outcomes. Strict Overlap can

be also violated in an observational study if only one of the treatments is assigned in the

sampling process for some covariate values. We do not constrain any feature of the joint

distribution of (Y0, Y1, X) except that Y0 and Y1 have a bounded support. The outcome

variable and the covariates can be discrete, continuous, or their combination, and the support

of X does not have to be bounded.

We estimate the treatment rule by maximizing a sample analog of the population SWF.

The equality-minded EWM treatment rule Ĝ maximizes a sample analog Ŵ (G) of the welfare

criterion over the set of feasible rules G ∈ G. The unknown outcome distribution FG induced

by treatment rule G in (2.7) could be estimated by

F̂G(y) ≡ 1

n

n∑
i=1

[
Di · 1{Yi ≤ y}

e(Xi)
· 1{Xi ∈ G}+

(1−Di) · 1{Yi ≤ y}
1− e(Xi)

· 1{Xi /∈ G}
]
. (3.1)

The sample analog of welfare (equation (2.1)) is defined as3

Ŵ (G) ≡
∫ M

0

Λ(F̂G(y) ∧ 1)dy. (3.2)

The equality-minded EWM treatment rule is then

Ĝ ∈ arg max
G∈G

Ŵ (G). (3.3)

The cdf sample analog F̂G(y) is increasing in y, but will not be a proper cdf when

F̂G(M) 6= 1. It could be rescaled to a proper cdf as follows:

F̂R
G (y) ≡

F̂G(y)/F̂G(M̂) if F̂G(M̂) > 0,

1{y ≥ M̂} if F̂G(M̂) = 0,

(3.4)

3The minimum (∧) of F̂G(y) and 1 is taken because F̂G(y) may take values greater than 1, for which Λ(·)

is not defined.
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where M̂ ≡ max
1≤i≤n

Yi is the largest outcome observed in the sample. We also consider prop-

erties of the equality-minded EWM rule using rescaled cdfs F̂R
G (y)

ĜR ≡ arg max
G∈G

ŴR(G), where ŴR(G) ≡
∫ M̂

0

Λ(F̂R
G (y))dy. (3.5)

Rescaling also eliminates the need to specify the bound M ex ante.

3.1 Rate Optimality of EWM

The next theorem derives a uniform upper bound of the average welfare loss of the EWM

rule.

Theorem 3.1. Under Assumptions 2.1 and 2.2, the average welfare loss of treatment rules

Ĝ and ĜR satisfies

sup
P∈P

EPn
[
W ∗
G −W (Ĝ)

]
≤ C|Λ′(0)|M

κ

√
v

n
, (3.6)

sup
P∈P

EPn
[
W ∗
G −W (ĜR)

]
≤ CR|Λ′(0)|M

κ

√
v

n
, (3.7)

where P is the class of all distributions satisfying Assumption 3.1 and C > 0, CR > 0 are

universal constants.

Proof. See Appendix A.

This theorem shows that for a large class of data generating processes characterized by

Assumption 3.1, the welfare loss of the EWM rule is guaranteed to converge to the maximal

attainable welfare no slower than at n−1/2 rate. The uniform convergence rate of n−1/2

coincides with that of the EWM rule for the utilitarian welfare shown in Theorem 2.1 of

Kitagawa and Tetenov (2015). This is a nontrivial result, given that the rank-dependent

welfare function depends on the whole conditional distributions of the potential outcomes

given covariates, rather than only on their conditional means, as is the case for the utilitarian

welfare criterion.

The next proposition provides a universal lower bound for the worst-case average welfare

loss of any treatment rule.
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Theorem 3.2. Suppose that Assumptions 2.1 and 2.2 hold with v ≥ 2, then for any non-

randomized treatment choice rule Ĝ that is a function of the sample, and for any t∗ ∈ (0, 1]

at which Λ(·) is differentiable, it holds

sup
P∈P

EPn
[
W ∗
G −W (Ĝ)

]
≥ e−4

2
M |Λ′(t∗)|

√
t∗

√
v − 1

n
for all n ≥ 4(v − 1)/t∗, (3.8)

where P is the class of all distributions satisfying Assumption 3.1.

Proof. See Appendix A.

Since Λ(·) is convex and |Λ′(0)| > 0, there also exists some t∗ > 0 for which |Λ′(t∗)| > 0.

Hence the bound (3.8) is always positive for some t∗ > 0. A comparison of the lower bound

of this theorem with the welfare loss upper bound of the EWM rule obtained in Theorem 3.1

shows that the EWM rule is minimax rate optimal over the class of data generating processes

satisfying Assumption 3.1. We can therefore claim that in the absence of any additional

restrictions other than Assumption 3.1, no other data-driven procedure for obtaining a non-

randomized rule can outperform the EWM rule in terms of the uniform convergence rate over

P . This optimality claim is analogous to that of the EWM rule for the utilitarian welfare

case (Theorems 2.1 and 2.2 in Kitagawa and Tetenov (2015)), and the minimax optimal rate

attained by the equality-EWM rule is the same as the optimal rate in the utilitarian welfare

case. It is remarkable to see that even in the absence of any analytical characterization

of the true optimal assignment rule in terms of the population distribution of (Y0, Y1, X),

maximizing the empirical welfare leads to a policy, by implementing which the social welfare

is guaranteed to reach the attainable maximum welfare at the minimax optimal rate.

It is also worth noting that the VC-dimension of G appears in the same order both in

the upper and lower bound expressions of Theorems 3.1 and 3.2. Since these bounds are

non-asymptotic, we can let v increase with the sample size, and we can still conclude the

minimax rate optimality of the equality-EWM rule. This insight is similar to the EWM rule

for the utilitarian welfare case (Remark 2.2 in Kitagawa and Tetenov (2015)).
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4 Extensions

4.1 Social Welfare is Defined on a Population Larger than the

Sampled Population

As illustrated in Section 2.1, one of the distinguishing features of the rank-dependent social

welfare is that it is not additive over the multiple populations. This implies that if the

population for which the policy intervention takes place (e.g., unemployed workers) is only

a subset of the population on which the rank-dependent SWF is defined (e.g., population

of a country), it is important to explicitly take into account the outcome distribution of the

non-targeted subset of the population in estimating the optimal assignment rule.

Suppose that the social welfare function is defined on the population whose outcome

distribution is given by a mixture of two subpopulations

J = ηF + (1− η)H, η ∈ (0, 1), (4.1)

where F is the outcome distribution from which the experimental data (Y,D,X) with size n

are sampled and for which a treatment assignment policy is estimated and to be implemented.

H is the outcome distribution of those that were excluded from the sampling process and

are out of scope of the treatment assignment policy intervention. The mixture weight η

represents the size of subpopulation F . For simplicity, we assume that η and H are known

to the social planner. We also assume that the outcome distribution H is invariant to a

treatment assignment policy applied to the subpopulation F , e.g., no spill-over or general

equilibrium effect across F and H.

Suppose that the social welfare is defined on J . Hence, implementing treatment assign-

ment rule {X ∈ G} on subpopulation F attains

W (JG) ≡
∫ ∞

0

Λ(ηFG(y) + (1− η)H(y))dy,

where FG(·) is the cdf defined in (2.7). The empirical welfare maximization method in the

current case is set up as maximizing a sample analog of W (JG),

Ĝ ∈ arg max
G∈G

W (ηF̂G(y) + (1− η)H(y)),
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where F̂G(y) is as defined in (3.1).

The uniform convergence property of Theorem 3.1 carries over to the current case except

for a minor change in the constant term, as shown in the next corollary. Its proof can be

obtained similarly to Theorem 3.1.

Corollary 4.1. Under Assumptions 2.1, 2.2 and 3.1,

sup
P∈P

EPn

[
sup
G∈G

W (JG)−W (JĜ)

]
≤ C|Λ′(0)|ηM

κ

√
v

n
, (4.2)

where C > 0 is a universal constant defined in Theorem 3.1.

4.2 EWM with Estimated Propensity Score

Unknown propensity score is common in observational studies. This section considers that

the equality-minded EWM approach with estimated propensity scores and investigates the

influence of the lack of knowledge on propensity scores to the uniform convergence rate of

the welfare loss criterion.

Let ê(x) be an estimator for the propensity score Pr(D = 1|X = x). The empirical welfare

criterion of assignment policy {X ∈ G} with the estimated propensity scores plugged in is

given by

W (F̂ e
G) =

∫ M

0

Λ(F̂ e
G(y) ∧ 1)dy,

F̂ e
G(y) ≡ 1

n

n∑
i=1

[
Di1{Yi ≤ y}

ê(Xi)
· 1{Xi ∈ G}+

(1−Di)1{Yi ≤ y}
1− ê(Xi)

· 1{Xi /∈ G}
]
.

The equality-EWM rule with estimated propensity score is defined accordingly as

Ĝe ∈ arg max
G∈G

W (F̂ e
G).

To characterize the uniform convergence rate of the welfare loss of Ĝe, we first assume that

ê(·) is uniformly consistent to the true propensity score e(·) in the following sense.

Assumption 4.1. For a class of data generating processes Pe, there exists a sequence
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φn →∞ such that

lim sup
n→∞

sup
P∈Pe

φnEPn

[
1

n

n∑
i=1

∣∣∣∣1− e(Xi)

ê(Xi)

∣∣∣∣
]
<∞ and (4.3)

lim sup
n→∞

sup
P∈Pe

φnEPn

[
1

n

n∑
i=1

∣∣∣∣1− 1− e(Xi)

1− ê(Xi)

∣∣∣∣
]
<∞

hold.

When the class of data generating processes Pe constrains the propensity score to a

parametric family with compact support of X, parametric estimator ê(Xi) satisfies this

assumption with φn = n1/2. When the propensity scores are estimated nonparametrically

instead, φn is generally slower than n1/2. The rate of φn for nonparametrically estimated

propensity scores depends on the smoothness of e(·) and the dimension of X, as we discuss

further below.

Theorem 4.1. Suppose Assumptions 2.1, 2.2 and 3.1 hold. For a class of data generating

process Pe, if an estimator for the propensity score satisfies Assumption 4.1, then

sup
P∈Pe∩P

EPn
[
W ∗
G −W (FĜe)

]
≤ O

(
φ−1
n ∨

√
v

n

)
. (4.4)

Proof. See Appendix A.

This theorem extends Theorem 2.5 (e) of Kitagawa and Tetenov (2015) to the rank-

dependent social welfare case. The shown uniform convergence rate implies that the para-

metrically estimated propensity score achieving φn = n1/2 does not affect the convergence

rate property of the welfare loss. With nonparametrically estimated propensity score, on

the other hand, the uniform welfare loss convergence rate can be slower than the one with

the known propensity score obtained in Theorem 3.1. For instance, if ê(Xi) is estimated by

local polynomial regression (with proper trimming), then for a suitably defined Pe, we have

φn = n
1

2+dx/βe , where βe ≥ 1 is the parameter constraining smoothness of e(·) in terms of the

degree of Hölder class of functions and dx ≥ 1 is the dimension of X. Since 1
2+dx/βe

< 1
2
, the

upper bound of the uniform convergence rate shown in Theorem 4.1 implies

sup
P∈Pe∩P

EPn
[
W ∗
G −W (FĜe)

]
≤ O

(
n
− 1

2+dx/βe

)
, (4.5)

21



as far as the VC-dimension of G is either constant or does not grow too fast as the sample

size. For a formal derivation of (4.5) and the precise construction of the local polynomial

estimator for e(·), see Appendix B.

4.3 Cost of Treatment and Capacity Constraint

The analyses in the preceding sections ignore the cost of treatment although most of the

programs in reality are not cost-free. In this section, we discuss how to take into account

the cost of treatment in the estimation of welfare maximizing treatment assignment policy.

For tractability, we restrict the search of an optimal policy to non-randomized ones.

Let 0 ≤ c(x) < ∞, x ∈ X , be the cost of treatment 1 for a subject whose observable

characteristics are x. We assume that treatment 0 is cost-free and c(·) is known. Under

the utilitarian welfare, it is simple to construct the social welfare criterion net of the cost

of treatment by simply subtracting the per-capita cost of treatment C(G) ≡
∫
G
c(x)dPX(x)

from the mean of outcomes. Thanks to the additivity of the utilitarian welfare, the optimal

policy subject to the treatment cost is invariant to assumptions about who pays the cost.

In contrast, for the case of rank-dependent social welfare, this invariance no longer holds;

we have to be explicit about who bears the cost in the construction of the social welfare

criterion.

To illustrate, consider a scenario where the outcome variable is income and the cost of

treatment is self-financed by each recipient of the treatment, i.e., each recipient of treatment

pays own cost without a borrowing constraint. In this case, by transforming one’s potential

outcomes to Ỹ1i ≡ Y1i + c̄ − c(Xi) and Ỹ0i = Y0i + c̄, where c̄ = supx∈X c(x),4 we can write

the rank-dependent SWF of policy G as

W sf (G) =

∫ ∞
0

Λ(F sf
G (y))dy

F sf
G (y) ≡

∫
X

[
FỸ0|X=x(y)1{x /∈ G}+ FỸ1|X=x(y)1{x ∈ G}

]
dPX(x), (4.6)

4To be consistent with our Assumption 3.1 (BO), we add c̄ to the potential outcomes to ensure that the

support of Ỹ1i to be contained in [0,M + c̄]. Note that a uniform addition of a constant does not affect the

welfare ranking of the policies.
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where FỸ0|X=x(·) and FỸ1|X=x(·) are the cdfs of the transformed potential outcomes. An

empirical welfare for W sf (G) can be obtained by replacing F̂G(y) in (3.2) by

F̂ sf
G (y) ≡ 1

n

n∑
i=1

[
Di · 1{Yi + c̄− c(Xi) ≤ y}

e(Xi)
· 1{Xi ∈ G}+

(1−Di) · 1{Yi + c̄ ≤ y}
1− e(Xi)

· 1{Xi /∈ G}
]
,

Since this modification does not affect validity of Assumption 3.1, the EWM rule with the

self-financed treatment cost attains the uniform welfare loss upper bounds of Theorem 3.1

with M + c̄ in place of M .

Consider an alternative scenario where the treatment cost is financed by all the pop-

ulation members equally in a lump-sum manner, i.e., per-capita treatment cost C(G) is

subtracted from every individual’s income independent of his assigned treatment. Using the

representation of the rank-dependent SWF given in (2.2), the rank-dependent social welfare

under the lump-sum treatment cost can be expressed as

W ls(G) ≡
∫ 1

0

[F−1
G (t) + c̄− C(G)]ω(t) = W (G) + c̄− C(G), (4.7)

where we use
∫ 1

0
ω(t)dt = Λ(0) − Λ(1) = 1.5 An empirical welfare in this case is simple to

construct, Ŵ ls(G) ≡ Ŵ (G) + c̄− 1
n

∑n
i=1 c(Xi) · 1{Xi ∈ G}, and the EWM rule is obtained

by maximizing Ŵ ls(·) over G ∈ G.

As a comparison of W sf (G) and W ls(G) shows, the SWFs with treatment cost can differ

depending on the assumption about how the cost of treatment is financed by the population.

This implies that with the rank-dependent SWF, not only a treatment assignment policy

but also an allocation of the cost of treatment can be a vehicle of policy intervention with

which the social planner can affect the social welfare. In this paper, we do not consider the

joint optimization of the treatment assignment and cost allocation.

Another practical concern ruled out in the preceding sections is a capacity constraint,

which limits the proportion of the population that can be assigned to treatment. Suppose

that the proportion of the target population that could receive treatment 1 cannot exceed

K ∈ (0, 1). When PX is unknown, Kitagawa and Tetenov (2015) propose a capacity con-

strained EWM procedure for the utilitarian welfare case by assuming that when treatment

5Again, adding c̄ to all the quantiles is to ensure that the support of the outcome distribution is contained

in [0,M + c̄].
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rule G violates the capacity constraint, PX(G) > K, the scarce treatment is randomly ra-

tioned to a fraction K/PX(G) of the population of {X ∈ G} independently of (Y0, Y1, X).

This random-rationing approach can be straightforwardly extended to the EWM for the

rank-dependent social welfare.

With the capacity constraint and random rationing, the cdf of outcomes realized at an

assignment policy G can be written as

FK
G (y) =

∫
X

FY0|X=x(y)1{x /∈ G}+
(

1−min
{

1, K
PX(G)

})
FY0|X=x(y)1{x ∈ G}

+ min
{

1, K
PX(G)

}
FY1|X=x(y)1{x ∈ G}

 dPX(x).

We hence obtain the social welfare under the capacity constraint and random rationing as

WK(G) ≡
∫ 1

0
Λ(FK

G (y))dy. Its sample analog can be constructed by replacing F̂G(y) in (3.2)

with

F̂K
G (y) =

1

n

n∑
i=1

 (1−Di)1{Yi≤y}
1−e(Xi) · 1{Xi /∈ G}+

(
1−min

{
1, K

PX,n(G)

})
(1−Di)1{Yi≤y}

1−e(Xi) · 1{Xi ∈ G}

+ min
{

1, K
PX,n(G)

}
Di1{Yi≤y}
e(Xi)

· 1{Xi ∈ G}

 ,
where PX,n(G) is a sample analog of PX(G). By combining the proof of Theorem 3.1 and

the proof of Theorem 4.1 in Kitagawa and Tetenov (2015), we can show that the resulting

EWM rule converges to the maximal attainable welfare at n−1/2 rate.

5 Empirical Illustration

To illustrate equality-minded empirical treatment choice, we apply our method to the exper-

imental data from the National Job Training Partnership Act (JTPA) Study.6 A detailed

description of the study and an assessment of average program effects for five large subgroups

of the target population is found in Bloom et al. (1997). The study randomized whether

applicants were eligible to receive a mix of training, job-search assistance, and other services

provided by the JTPA for a period of 18 months. It collected background information about

the applicants prior to random assignment, as well as administrative and survey data on

applicants’ earnings in the 30-month period following assignment. We use the same sample

6We use the data provided in the Joshua Angrist’s Data Archive at

http://economics.mit.edu/faculty/angrist/data1/data/abangim02
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Table 1: Gini welfare and average income under selected treatment rules that condition on

education and pre-program earnings.

Treatment rule: Representative income Average Share of population

for Gini welfare function income assigned to treatment

Simple treatment rules

Treat nobody $6,610 $14,969 0

Treat everyone $7,310 $16,238 1

Quadrant class conditioning on years of education and pre-program earnings

Maximize average income $7,406 $16,583 0.8266

Maximize Gini welfare $7,440 $15,953 0.7266

Linear class conditioning on years of education and pre-program earnings

Maximize average income $7,411 $16,626 0.8197

Maximize Gini welfare $7,478 $16,063 0.7760
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Figure 5: Treatment rules that maximize Gini welfare function and average income within

the quadrant class conditioning on years of education and pre-program earnings
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Figure 6: Treatment rules that maximize Gini welfare function and average income within

the linear class conditioning on years of education and pre-program earnings
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of 11204 adults (22 years and older) used in the original evaluation of the program and many

subsequent studies (Bloom et al., 1997, Heckman et al., 1997a, Abadie et al., 2002). The

probability of being assigned to treatment was two thirds in this sample.

For this illustration, total individual earnings in the 30-month period following program

assignment serve as the measure of income. We evaluate the Gini social welfare function

as an example of an equality-minded criterion. We use average income as an example of

a utilitarian criterion. For simplicity, we consider only the distribution of earnings in the

population sampled for the experiment in the social welfare function. In practice, the tar-

geted population is only part of the total population. The social welfare function should

be evaluated on the full income distribution that combines both targeted and non-targeted

individuals.

Pre-treatment variables on which we consider conditioning treatment assignment are the

individual’s years of education and earnings in the year prior to assignment. We do not use

race, sex, or age to condition treatment assignment. Though treatment effects may vary

with these characteristics, using them to condition treatment assignment is often socially

unacceptable and illegal. Education and earnings are verifiable characteristics, which is

also important for conditioning treatment assignment. The performance of treatment rules

that condition on unverifiable characteristics is hard to evaluate if individuals change their

self-reported characteristics to obtain their desired treatment assignment.

Table 1 compares empirical estimates of social welfare measures for a few alternative

treatment rules. First, we consider simple treatment rules that either assign nobody or

everybody to treatment. Second, we consider empirically optimal rules from the class of

quadrant treatment rules:

GQ ≡
{
{x : s1(education− t1) > 0 & s2(prior earnings− t2) > 0} ,

s1, s2 ∈ {−1, 0, 1}, t1, t2 ∈ R

}
. (5.1)

This class of treatment eligibility rules is easily implementable and is often used in practice.

To be assigned to treatment according to such rules, an individual’s education and pre-

program earnings both have to be above (or below) some specific thresholds. Third, we

consider empirically optimal rules from the class of linear treatment rules:

GLES ≡ {{x : β0 + β1 · education + β2 · prior earnings > 0} , β0, β1, β2 ∈ R} . (5.2)
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The first column evaluates the Gini social welfare function, expressed in terms of the repre-

sentative income of the policy. The income distribution generated by the policy is valued as

much as an equal income distribution with the representative income. The second column

lists the average income. The third column lists the proportion of the target population

assigned to treatment by each policy.

Figure 5 compares the quadrant treatment rules maximizing the sample analogs of the

Gini SWF and of the average income. Figure 6 compares the linear treatment rules maxi-

mizing these criteria. The size of black dots shows the number of individuals with different

covariate values. Many individuals would be assigned to treatment by both rules, but there

are also notable differences. Both quadrant and linear treatment rules maximizing the Gini

SWF are focused on assigning low income, low education individuals to treatment. Treat-

ment rules maximizing the average income instead favor low income, but more educated

individuals. In both cases, treatment rules maximizing the Gini SWF would assign the

program treatment to a lower proportion of the target population.

6 Conclusion

This paper develops an empirical welfare maximization method for treatment choice when

the policy maker’s objective is to maximize a rank-dependent SWF. We showed that we

can learn the optimal feasible assignment policy under a rank-dependent social welfare at

the same uniform convergence rate as we can for the optimal utilitarian assignment rule.

The key restriction underlying these rate results is the complexity restriction (Assumption

2.2) imposed on the set of feasible policies. This complexity restriction should be seen as

an attractive feature rather than a disadvantage of the method, as it offers a flexible and

convenient way to incorporate the exogenous constraints that the policy maker faces in

realistic settings of policy design. Our analytical results cover a general class of equality-

minded rank-dependent SWFs. Computing the EWM rule is more challenging than in the

utilitarian welfare case. Efficient computation for the equality-minded EWM rule remains

an open question.
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A Appendix: Lemmas and Proofs

Proof of Theorem 2.1. Denote an upper level set of δ(x) at level u ∈ [0, 1] by G(u) ≡ {x ∈

X : δ(x) ≥ u}. By noting

δ(x) =

∫ 1

0

1{x ∈ G(u)}du,

we can rewrite Fδ(y) defined in (2.4) as

Fδ(y) =

∫
X

[∫ 1

0

1{x /∈ G(u)}du · FY0|X=x(y) +

∫ 1

0

1{x ∈ G(u)}du · FY1|X=x(y)

]
dPX(x)

=

∫ 1

0

[∫
X

(
1{x /∈ G(u)} · FY0|X=x(y) + 1{x ∈ G(u)} · FY1|X=x(y)

)
dPX(x)

]
du

=

∫ 1

0

FG(u)(y)du,

where FG(u)(y) is the distribution of outcomes induced by treatment rule δG(u) ≡ 1{x ∈

G(u)}. By convexity of Λ(·), we obtain

Λ(Fδ(y)) ≤
∫ 1

0

Λ(FG(u)(y))du,

and this leads to

W (Fδ) ≤
∫ 1

0

W (FG(u))du ≡ W̄ . (A.1)

Suppose that W̄ −W (FG(u)) > 0 for all u ∈ [0, 1]. Then the integral of this function over

the set u ∈ [0, 1] of positive measure must also be strictly positive,

0 <

∫ 1

0

(
W̄ −W (FG(u))

)
du = W̄ − W̄ ,

which is a contradiction. Therefore, there exists u∗ ∈ [0, 1] for which W (FG(u∗)) ≥ W̄ , hence

W (FG(u∗)) ≥ W (Fδ). If all upper level sets G(u) of δ belong to G, then also G(u∗) ∈ G.

Proof of Theorem 3.1. Take an arbitrary set G∗ ∈ G, then

W (G∗)−W (Ĝ) = W (G∗)− Ŵ (Ĝ) + Ŵ (Ĝ)−W (Ĝ)

≤ W (G∗)− Ŵ (G∗) + Ŵ (Ĝ)−W (Ĝ)

≤ 2 sup
G∈G

∣∣∣Ŵ (G)−W (G)
∣∣∣ ,
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where the second line follows since Ŵ (Ĝ) maximizes Ŵ (G) over G ∈ G. Since W ∗
G =

maxG∈GW (G), it follows that

W ∗
G −W (Ĝ) ≤ 2 sup

G∈G

∣∣∣Ŵ (G)−W (G)
∣∣∣ . (A.2)

Since Λ(·) is convex and non-increasing,

sup
G∈G

∣∣∣Ŵ (G)−W (G)
∣∣∣ = sup

G∈G

∣∣∣∣∫ M

0

Λ(F̂G(y))dy −
∫ M

0

Λ(FG(y))dy

∣∣∣∣
≤ sup

G∈G

∫ M

0

∣∣∣Λ(F̂G(y))− Λ(FG(y))
∣∣∣ dy

≤
∫ M

0

sup
G∈G

∣∣∣Λ(F̂G(y))− Λ(FG(y))
∣∣∣ dy

≤ |Λ′(0)|
∫ M

0

sup
G∈G

∣∣∣F̂G(y)− FG(y)
∣∣∣ dy. (A.3)

Combining (A.2) and (A.3), the average welfare loss of Ĝ can be bounded by

EPn
[
W ∗
G −W (Ĝ)

]
≤ 2|Λ′(0)|

∫ M

0

EPn

[
sup
G∈G

∣∣∣F̂G(y)− FG(y)
∣∣∣] dy. (A.4)

Now consider treatment rule ĜR ≡ arg max
G∈G

ŴR(G) that maximizes empirical welfare

computed from rescaled cdfs ŴR(G) ≡
∫ M̂

0
Λ(F̂R

G (y))dy. The argument used to obtain

equation (A.2) also applies, thus

W ∗
G −W (ĜR) ≤ 2 sup

G∈G

∣∣∣ŴR(G)−W (G)
∣∣∣ . (A.5)

An analog of (A.3) also holds for ŴR(G) (note that F̂R
G (y) = 1 for all y ≥ M̂ and Λ(1) = 0):

sup
G∈G

∣∣∣ŴR(G)−W (G)
∣∣∣ = sup

G∈G

∣∣∣∣∣
∫ M̂

0

Λ(F̂R
G (y))dy −

∫ M

0

Λ(FG(y))dy

∣∣∣∣∣
= sup

G∈G

∣∣∣∣∣
∫ M̂

0

Λ(F̂R
G (y))dy +

∫ M

M̂

Λ(F̂R
G (y))dy −

∫ M

0

Λ(FG(y))dy

∣∣∣∣∣
= sup

G∈G

∣∣∣∣∫ M

0

Λ(F̂R
G (y))dy −

∫ M

0

Λ(FG(y))dy

∣∣∣∣
≤ sup

G∈G

∫ M

0

∣∣∣Λ(F̂R
G (y))− Λ(FG(y))

∣∣∣ dy
≤ |Λ′(0)|

∫ M

0

sup
G∈G

∣∣∣F̂R
G (y)− FG(y)

∣∣∣ dy. (A.6)
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Combining (A.5) and (A.6), the average welfare loss of ĜR can by bounded by

EPn
[
W ∗
G −W (ĜR)

]
≤ 2|Λ′(0)|

∫ M

0

EPn

[
sup
G∈G

∣∣∣F̂R
G (y)− FG(y)

∣∣∣] dy. (A.7)

We will show that for any G and y ≤M ,∣∣∣F̂R
G (y)− FG(y)

∣∣∣ ≤ ∣∣∣F̂G(y)− FG(y)
∣∣∣+
∣∣∣F̂G(M)− FG(M)

∣∣∣ . (A.8)

First, we consider the case when F̂G(M̂) > 0. It follows from the definition (3.4) that∣∣∣F̂G(y)− F̂R
G (y)

∣∣∣ =
F̂G(y)

F̂G(M̂)

∣∣∣F̂G(M̂)− 1
∣∣∣ ≤ ∣∣∣F̂G(M)− FG(M)

∣∣∣
since F̂G(y) ≤ F̂G(M̂) = F̂G(M) and FG(M) = 1. Then∣∣∣F̂R

G (y)− FG(y)
∣∣∣ ≤ ∣∣∣F̂G(y)− FG(y)

∣∣∣+
∣∣∣F̂G(y)− F̂R

G (y)
∣∣∣

≤
∣∣∣F̂G(y)− FG(y)

∣∣∣+
∣∣∣F̂G(M)− FG(M)

∣∣∣ .
If, instead, F̂G(M̂) = 0, it implies that F̂G(y) = 0 for all y, including F̂G(M) = 0. Since

F̂R
G (y) ∈ [0, 1] and FG(y) ∈ [0, 1], and FG(M) = 1 by Assumption 3.1(BO),∣∣∣F̂R

G (y)− FG(y)
∣∣∣ ≤ 1 =

∣∣∣F̂G(M)− FG(M)
∣∣∣ .

Hence inequality (A.8) also holds when F̂G(M̂) = 0.

By combining (A.7), and (A.8), the average welfare loss of the rescaled EWM treatment

rule ĜR can be bounded by

EPn
[
W ∗
G −W (ĜR)

]
≤ 2|Λ′(0)|

∫ M

0

EPn

[
sup
G∈G

∣∣∣F̂G(y)− FG(y)
∣∣∣] dy (A.9)

+ 2|Λ′(0)| ·M · EPn
[
sup
G∈G

∣∣∣F̂G(M)− FG(M)
∣∣∣] .

To bound (A.4) and (A.9), we derive a distribution-free upper bound for

EPn

[
sup
G∈G

∣∣∣F̂G(y)− FG(y)
∣∣∣] .

Denote the observations by Zi = (Yi, Di, Xi), i = 1, . . . , n and the sample average with

respect to them by En(·). To apply a maximal inequality for the centered empirical process

to EPn

[
sup
G∈G

∣∣∣F̂G(y)− FG(y)
∣∣∣], note that with y fixed, it can be written as

EPn

[
sup
f∈F
|En(f)− EP (f)|

]
,
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where

F ≡
{
f(Zi) =

Di · 1{Yi ≤ y}
e(Xi)

· 1{Xi ∈ G}+
(1−Di) · 1{Yi ≤ y}

1− e(Xi)
· 1{Xi /∈ G}, G ∈ G

}
.

F is a VC-subgraph class of functions with envelope κ−1 and VC-dimension less than or equal

to v by Lemma A.1 of Kitagawa and Tetenov (2015). Accordingly, by applying the maximal

inequality for the centered empirical processes over the VC-subgraph class of functions in

the form given in Lemma A.4 of Kitagawa and Tetenov (2015), we obtain

EPn

[
sup
G∈G

∣∣∣F̂G(y)− FG(y)
∣∣∣] ≤ C1κ

−1

√
v

n
, (A.10)

where C1 is a universal constant.

Plugging inequality (A.10) into (A.4) yields

EPn
[
W ∗
G −W (Ĝ)

]
≤ 2C1|Λ′(0)|M

κ

√
v

n
.

Since this upper bound does not depend on P ∈ P , this completes the proof of (3.6).

Similarly, plugging (A.10) into (A.9) completes the proof of (3.7)

EPn
[
W ∗
G −W (ĜR)

]
≤ 4C1|Λ′(0)|M

κ

√
v

n
.

Proof of Theorem 3.2. We consider a suitable subclass P∗ ⊂ P , for which the worst case

welfare loss can be bounded from below by a distribution-free term that converges at rate

n−1/2. To simplify the proof, we restrict the range of outcomes to Y ∈ [0, 1]. To rescale to

Y ∈ [0,M ], we multiply M to the lower bound as the rank-dependent welfare is linear in

multiplicative constant M .

The construction of P∗ proceeds as follows. By the definition of VC-dimension, there

exists a set of v points in X , denoted x1, . . . , xv ∈ X that are shattered by G. We constrain the

marginal distribution of X to being supported only on (x1, . . . , xv). Let t∗ ∈ (0, 1] stated in

the current theorem be given. We put mass p ≡ t∗

v−1
at xi, i < v, and mass 1−t∗ at xv. Thus-

constructed marginal distribution of X is common in P∗. Let the distribution of treatment

indicator D be independent of (Y0, Y1, X), and let D follow the Bernoulli distribution with

Pr(D = 1) = 1/2. Let b = (b1, . . . , bv−1) ∈ {0, 1}v−1 be a bit vector used to index a
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member of P∗, i.e., P∗ = {Pb : b ∈ {0, 1}v−1} consists of a finite number of DGPs. For each

j = 1, . . . , (v − 1), and depending on b, construct the following conditional distributions of

potential outcomes given X = xj; if bj = 1,

Y0|(X = xj) ∼ Ber

(
1− γ

2

)
, Y1|(X = xj) ∼ Ber

(
1 + γ

2

)
, (A.11)

and, if bj = 0,

Y0|(X = xj) ∼ Ber

(
1 + γ

2

)
, Y1|(X = xj) ∼ Ber

(
1− γ

2

)
, (A.12)

where Ber(m) denotes the Bernoulli distribution with mean m and γ ∈ (0, 1) is chosen

properly in a later step of the proof. For j = v, we set the distribution of potential outcomes

to be degenerate at the maximum value of Y , P (Y0 = Y1 = 1|X = xv) = 1. Clearly, Pb ∈ P

for every b ∈ {0, 1}v−1. We accordingly define P∗ =
{
Pb : b ∈ {0, 1}v−1} ⊂ P .

Note that when the outcome distribution is Bernoulli with mean µ, the equality-minded

welfare function equals W (F ) = Λ(1 − µ), which is a non-decreasing function of µ. Hence,

given knowledge of Pb, an optimal treatment assignment rule for the equality-minded welfare

coincides with that for the utilitarian welfare case,

G∗b = {xj : j < v, bj = 1} ,

which is feasible, since G∗b ∈ G by the construction of the support points of X. The maxi-

mized social welfare is accordingly obtained as

W (G∗b) = Λ (1− µ∗) ,

µ∗ ≡ p(v − 1)

(
1 + γ

2

)
+ (1− t∗) = t∗

(
1 + γ

2

)
+ (1− t∗),

which does not depend on b.

Let Ĝ be an arbitrary treatment choice rule as a function of observations Zi ≡ (Yi, Di, Xi),

i = 1, . . . , n, and b̂ ∈{0, 1}(v−1) be a binary vector whose j-th element is b̂j = 1{xj ∈ Ĝ}.

Let µĜ be the mean of outcome Y when treatment assignment rule Ĝ is implemented for a

given realization of the sample. For P ∈ P∗ outcomes are binary, hence

µĜ ≡
∫
Ĝ

Pr(Y1 = 1|X = x)dPX(x) +

∫
Ĝc

Pr(Y0 = 1|X = x)dPX(x).
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Consider π (b), a prior distribution for b, such that b1, . . . , bv−1 are iid and b1 ∼ Ber(1/2).

The welfare loss satisfies the following inequalities:

sup
P∈P

EPn
[
W ∗
G −W (Ĝ)

]
≥ sup

Pb∈P∗
EPnb

[
W (G∗b)−W (Ĝ)

]
≥

∫
b

EPnb

[
W (G∗b)−W (Ĝ)

]
dπ(b)

=

∫
b

EPnb
[
Λ(1− µ∗)− Λ(1− µĜ)

]
dπ(b)

≥
∫
b

EPnb
[
|Λ′(1− µĜ)|(µ∗ − µĜ)

]
dπ(b)

≥ |Λ′(t∗)|
∫
b

EPnb
[
µ∗ − µĜ

]
dπ(b), (A.13)

where the fourth line follows since Λ(·) is convex and non-increasing. The fifth line follows

from the observation that for all P ∈ P∗, µG ≥ 1 − t∗ for any treatment rule G, therefore

|Λ′(1− µĜ)| ≥ |Λ′(t∗)|.

Consider now bounding
∫
b
EPnb

[
µ∗ − µĜ

]
dπ(b) from below. Building on the lower bound

calculation for the classification risk of the empirical risk minimizing classifier in Lugosi

(2002), the proof of Theorem 2.2 in Kitagawa and Tetenov (2015) considers bounding a

similar quantity, though the current construction of P∗ is different from theirs. Therefore, in

what follows, we reproduce the proof of Theorem 2.2 in Kitagawa and Tetenov (2015) with

some necessary modifications.

Consider∫
b

EPnb
[
µ∗ − µĜ

]
dπ(b) ≥ γ

∫
b

EPnb

[
PX(G∗b4Ĝ)

]
dπ(b)

= γ

∫
b

∫
Z1,...,Zn

PX

(
{b(X) 6= b̂(X)}

)
dP n (Z1, . . . , Zn|b) dπ(b)

≥ inf
Ĝ
γ

∫
b

∫
Z1,...,Zn

PX

(
{b(X) 6= b̂(X)}

)
dP n (Z1, . . . , Zn|b) dπ(b)

where each b(X) and b̂(X) is an element of b and b̂ such that b(xj) = bj, b̂(xj) = b̂j,

and b(xv) = b̂(xv) = 0. Note that the last expression can be seen as the minimized Bayes

risk with the loss function corresponding to the classification error for predicting binary

unknown random variable b(X). Hence, the minimizer of the Bayes risk is attained by the
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Bayes classifier,

Ĝ∗ =

{
xj : π(bj = 1|Z1, . . . , Zn) ≥ 1

2
, j < v

}
,

where π(bj|Z1, . . . , Zn) is the posterior of bj. The minimized Bayes risk is given by

γ

∫
Z1,...,Zn

EX [min {π (b(X) = 1|Z1, . . . , Zn) , 1− π (b(X) = 1|Z1, . . . , Zn)}] dP̃ n

= γ

∫
Z1,...,Zn

v−1∑
j=1

p [min {π (bj = 1|Z1, . . . , Zn) , 1− π(bj = 1|Z1, . . . , Zn)}] dP̃ n,(A.14)

where P̃ n is the marginal likelihood of {(Yi, Di, Xi) : i = 1, . . . , n} corresponding to prior

π(b). For each j = 1, . . . , (v − 1) let

k+
j = # {i : Xi = xj, YiDi = 1 or (1− Yi)(1−Di) = 1} ,

k−j = # {i : Xi = xj, (1− Yi)Di = 1 or Yi(1−Di) = 1} .

The posterior for bj = 1 can be written as

π(bj = 1|Z1, . . . , Zn) =


1
2

if #{i : Xi = xj} = 0,

( 1+γ
2 )

k+
j ( 1−γ

2 )
k−
j

( 1+γ
2 )

k+
j ( 1−γ

2 )
k−
j +( 1+γ

2 )
k−
j ( 1−γ

2 )
k+
j

otherwise.

Hence,

min {π (bj = 1|Z1, . . . , Zn) , 1− π(bj = 1|Z1, . . . , Zn)}

=
min

{(
1+γ

2

)k+j (1−γ
2

)k−j , (1+γ
2

)k−j (1−γ
2

)k+j }(
1+γ

2

)k+j (1−γ
2

)k−j +
(

1+γ
2

)k−j (1−γ
2

)k+j
=

min
{

1, (1+γ
1−γ )k

+
j −k

−
j

}
1 + (1+γ

1−γ )k
+
j −k

−
j

=
1

1 + a|k
+
j −k

−
j |
, where a =

1 + γ

1− γ
> 1. (A.15)

Coarsen an observation of (Yi, Di) into Ỹi defined as

Ỹi =

1 if YiDi + (1− Yi)(1−Di) = 1,

−1 otherwise.

(A.16)
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Since k+
j − k−j =

∑
i:Xi=xj

Ỹi, plugging (A.15) into (A.14) yields

γ
v−1∑
j=1

pEP̃n

[
1

1 + a

∣∣∣∑i:Xi=xj
Ỹi

∣∣∣
]
≥ γ

2

v−1∑
j=1

pEP̃n

[
1

a

∣∣∣∑i:Xi=xj
Ỹi

∣∣∣
]
≥ γ

2
p
v−1∑
i=1

a
−EP̃n

∣∣∣∑i:Xi=xj
Ỹi

∣∣∣
,

where EP̃n(·) is the expectation with respect to the marginal likelihood of {(Yi, Di, Xi), i =

1, . . . , n}. The second line follows by a > 1, and the third line follows by Jensen’s inequality.

Given our prior specification for b, the marginal distribution of Yi is Pr(Ỹi = 1) = Pr(Ỹi =

−1) = 1/2. Hence,

EP̃n

∣∣∣∣∑i:Xi=xj
Ỹi

∣∣∣∣ =
n∑
k=0

(
n

k

)
pk (1− p)n−k E

∣∣∣∣2B(k,
1

2
)− k

∣∣∣∣
holds, where B(k, 1

2
) is a random variable following the binomial distribution with parameters

k and 1
2
. By noting

E

∣∣∣∣B(k,
1

2
)− k

2

∣∣∣∣ ≤
√
E

(
B(k,

1

2
)− k

2

)2

( ∵ Cauchy-Schwartz inequality)

=

√
k

4
,

we obtain

EP̃n

∣∣∣∣∑i:Xi=xj
Ỹi

∣∣∣∣ ≤ n∑
k=0

(
n

k

)
pk (1− p)n−k

√
k

= E
√
B (n, p)

≤ √
np. ( ∵ Jensen’s inequality).

Hence, the Bayes risk (A.14) is bounded from below by

γ

2
p(v − 1)a−

√
np

≥ γ

2
p(v − 1)e−(a−1)

√
np ( ∵ 1 + x ≤ ex ∀x)

=
pγ

2
(v − 1)e−

2γ
1−γ
√
np, (A.17)

therefore∫
b

EPnb
[
µ∗ − µĜ

]
dπ(b) ≥ pγ

2
(v − 1)e−

2γ
1−γ
√
np. (A.18)

This lower bound of the Bayes risk has the slowest convergence rate when γ is set to be

proportional to n−1/2. Specifically, let γ =
√

v−1
nt∗

. Then for all n ≥ 4(v− 1)/t∗, γ ≤ 1/2 and
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since p = t∗

v−1
,

− 2γ

1− γ
√
np = − 2

1− γ

√
v − 1

nt∗

√
nt∗

v − 1
= − 2

1− γ
≥ −4.

Then

pγ

2
(v − 1)e−

2γ
1−γ
√
np ≥ pγ

2
(v − 1)e−4 =

t∗

2

√
v − 1

nt∗
e−4 =

e−4

2

√
t∗

√
v − 1

n

Inserting this bound into (A.18) and multiplying by M provides a lower bound for (A.13).

This completes the proof.

Proof of Theorem 4.1. For any G ∈ G, it holds

W (FG)−W (FĜe) ≤ W (F̂G)−W (F̂ e
G)−W (F̂Ĝe) +W (F̂ e

Ĝe
)

+W (FG)−W (FĜe)−W (F̂G) +W (F̂Ĝe) (A.19)

≤ 2 sup
G∈G
|W (F̂G)−W (F̂ e

G)|+ 2 sup
G∈G

∣∣∣W (F̂G)−W (FG)
∣∣∣ ,

where the first inequality uses W (F̂ e
Ĝe

) −W (F̂ e
G) ≥ 0. By convexity and monotonicity of

Λ(·), we have

|W (F̂G)−W (F̂ e
G)| ≤ |Λ′(0)|

∫ M

0

|F̂G(y)− F̂ e
G(y)|dy. (A.20)

For every y, |F̂G(y)− F̂ e
G(y)| can be bounded by

|F̂G(y)− F̂ e
G(y)| ≤ 1

n

n∑
i=1

∣∣∣∣ 1

e(Xi)
− 1

ê(Xi)

∣∣∣∣Di1{Yi ≤ y}1{Xi ∈ G}

+
1

n

n∑
i=1

∣∣∣∣ 1

1− e(Xi)
− 1

1− ê(Xi)

∣∣∣∣ (1−Di)1{Yi ≤ y}1{Xi /∈ G}

=
1

n

n∑
i=1

∣∣∣∣ 1

e(Xi)
− 1

ê(Xi)

∣∣∣∣Di +
1

n

n∑
i=1

∣∣∣∣ 1

1− e(Xi)
− 1

1− ê(Xi)

∣∣∣∣ (1−Di)

(A.21)

Combining (A.20) and (A.21) gives

EPn

[
sup
G∈G
|W (F̂G)−W (F̂ e

G)|
]
≤ EPn

[
1

n

n∑
i=1

∣∣∣∣1− e(Xi)

ê(Xi)

∣∣∣∣
]

+EPn

[
1

n

n∑
i=1

∣∣∣∣1− 1− e(Xi)

1− ê(Xi)

∣∣∣∣
]
.

(A.22)
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Hence, from (A.19) and (A.22), we obtain

sup
P∈Pe∩P

EPn
[
W ∗
G −W (FĜe)

]
≤2 sup

P∈Pe
EPn

[
1

n

n∑
i=1

∣∣∣∣1− e(Xi)

ê(Xi)

∣∣∣∣
]

+ sup
P∈Pe

EPn

[
1

n

n∑
i=1

∣∣∣∣1− 1− e(Xi)

1− ê(Xi)

∣∣∣∣
]

+ 2 sup
P∈P

EPn

[
sup
G∈G

∣∣∣W (F̂G)−W (FG)
∣∣∣]

Assumption 4.1 and supP∈P EPn
[
supG∈G

∣∣∣W (F̂G)−W (FG)
∣∣∣] = O(

√
v
n
) shown in the proof

of Theorem 3.1 lead to the conclusion.

B Equality-minded EWM with Nonparametrically Es-

timated Propensity Score

In this appendix, we consider the equality-minded EWM approach with unknown propensity

score estimated nonparametrically by local polynomial regressions. We provide regularity

conditions under which the nonparametric estimator of the propensity score satisfies As-

sumption 4.1 with certain φn.

We consider the leave-one-out local polynomial estimator for e(·), i.e., ê(Xi) is constructed

by fitting the local polynomials excluding the i-th observation. For any multi-index s =

(s1, . . . , sdx) ∈ Ndx and any (x1, . . . , xdx) ∈ Rdx , we define |s| ≡
∑dx

i=1 si, s! ≡ s1! · · · sdx !,

xs ≡ xs11 · · ·x
sdx
dx

, and ‖x‖ ≡
(
x2

1 + · · ·+ x2
dx

)
. Let K(·) : Rdx → R be a kernel function and

h > 0 be a bandwidth, whose dependence on the sample size is implicit in the notation.

At each Xi, i = 1, . . . , n, we define the leave-one-out local polynomial coefficient estimators

with degree l ≥ 0 as

θ̂(Xi) = arg min
θ

∑
j 6=i

[
Dj − θTU

(
Xj −Xi

h

)]2

K

(
Xj −Xi

h

)
,

where U
(
Xj−Xi

h

)
is the vector with elements indexed by the multi-index s, i.e., U

(
Xj−Xi

h

)
≡((

Xj−Xi
h

)s)
|s|≤l

. With a slight abuse of notation, we define U (0) = (1, 0, . . . , 0)T . Let λn(Xi)

be the smallest eigenvalue of B(Xi) ≡
(
nhdx

)−1∑
j 6=i U

(
Xj−Xi

h

)
UT
(
Xj−Xi

h

)
K
(
Xi−Xj

h

)
.
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Accordingly, we construct leave-one-out local polynomial fit for e(Xi) by

ẽ(Xi) = UT (0)θ̂(Xi) · 1 {λn(Xi) ≥ tn} (B.1)

where tn is a positive sequence that slowly converges to zero, such as tn ∝ (log n)−1. This

trimming constant regularizes the regressor matrix of the local polynomial regression and

simplifies the proof of the uniform consistency of the local polynomial estimator.

To characterize Pe in Assumption 4.1, we impose the following restrictions, which are

identical to Assumption 2.4 in Kitagawa and Tetenov (2015).

Assumption B.1. (Smooth-e) Smoothness of the propensity score: The propensity score

e(·) belongs to a Hölder class of functions with degree βe ≥ 1 and constant Le <∞. 7

(PX) Support and Density Restrictions on PX : Let X ⊂ Rdx be the support of PX . Let

Leb(·) be the Lebesgue measure on Rdx . There exist constants c and r0 such that

Leb (X ∩B(x, r)) ≥ cLeb(B(x, r)) ∀0 < r ≤ r0, ∀x ∈ X , (B.2)

and PX has the density function dPX
dx

(·) with respect to the Lebesgue measure of Rdx that

is bounded from above and bounded away from zero, 0 < p
X
≤ dPX

dx
(x) ≤ p̄X < ∞ for all

x ∈ X .

(Ker) Bounded Kernel with Compact Support: The kernel function K(·) have support

[−1, 1]dx ,
∫
Rdx K(u)du = 1, and supuK (u) ≤ Kmax <∞.

Assumption B.1 (PX) is borrowed from Audibert and Tsybakov (2007), and it provides

regularity conditions on the marginal distribution of X. Inequality condition (B.2) constrains

the shape of the support of X, and it essentially rules out the case where X has “sharp”

spikes, i.e., X ∩B(x, r) has an empty interior or Leb (X ∩B(x, r)) converges to zero as r → 0

faster than the rate of r2 for some x in the boundary of X .

7Let Ds denote the differential operator Ds ≡ ∂
s1+···+sdx

∂x
s1
1 ···x

sdx
dx

. Let β ≥ 1 be an integer. For any x ∈ Rdx

and any (β − 1) times continuously differentiable function f : Rdx → R, we denote the Taylor expansion

polynomial of degree (β − 1) at point x by fx(x′) ≡
∑
|s|≤β−1

(x′−x)
s

s! Dsf(x). Let L > 0. The Hölder class of

functions in Rdx with degree β and constant 0 < L <∞ is defined as the set of function f : Rdx → R that are

(β − 1) times continuously differentiable and satisfy, for any x and x′ ∈ Rdx , the inequality |fx(x′)− f(x)| ≤

L ‖x− x′‖β .
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The next lemma collects several properties of the local polynomial estimators that are

useful to prove the bound shown in (4.5). These claims are borrowed from Theorem 3.2 in

Audibert and Tsybakov (2007) and Lemma B.4 in Kitagawa and Tetenov (2015).

Lemma B.1. Let Pe consist of the data generating processes satisfying Assumption B.1

(Smooth-e) and (PX). Let ẽ(Xi) be the leave-one-out estimator for the propensity score de-

fined in (B.1) whose kernel function satisfies B.1 (Ker).

(i) There exist positive constants c1, c2, and c3 that depend only on βe, dx, Le, c, r0, p
X

,

and p̄X , such that, for any 0 < h < r0/c, any c1h
β < δ, and any n ≥ 2,

P n−1 (|ẽ(x)− e (x)| > δ) ≤ c2 exp
(
−c3nh

dxδ2
)
,

holds for almost all x with respect to PX , where P n−1 (·) is the distribution of
{

(Yi, Di, Xi)
n−1
i=1

}
.

(ii)

sup
P∈Pe

∫
X
EPn−1 [|ẽ(x)− e (x)|] dPX(x) ≤ O(hβe) +O

(
1√
nhdx

)
(B.3)

holds. Hence, an optimal choice of bandwidth that leads to the fastest convergence rate of

the uniform upper bound is h ∝ n
− 1

2βe+dx and the resulting uniform convergence rate is

sup
P∈Pe

∫
X
EPn−1 [|ẽ(x)− e (x)|] dPX(x) ≤ O

(
n
− 1

2+dx/βe

)
.

Making use of Lemma B.1, the next proposition shows a propensity score estimator

constructed by suitably trimming ẽ(Xi) satisfies Assumption 4.1.

Proposition B.1. Let Pe consist of data generating processes that satisfy Assumption B.1

(Smooth-e) and (PX). Let ẽ(Xi) be the leave-one-out local polynomial estimator with degree

l = (βe − 1) whose kernel satisfies Assumption B.1 (Ker). Let

ê(Xi) ≡ min {1− εn,max{εn, ẽ(Xi)}} ∈ [εn, 1− εn] (B.4)

with a sequence of trimming constants εn satisfies εn = O(n−a) for some a > 0. Then, ê(Xi)

satisfies Assumption 4.1 with φn = n
1

2+dx/βe .
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Proof of Proposition B.1. Assume that n is large enough so that εn ≤ κ/2 holds. Since

ê(Xi) = ẽ(Xi) whenever ẽ(Xi) ∈
[
κ
2
, 1− κ

2

]
⊂ [εn, 1− εn], the following bounds are valid

∣∣∣∣1− e(Xi)

ê(Xi)

∣∣∣∣ ≤


2
κ
|ẽ(Xi)− e(Xi)| if ẽ(Xi) ∈

[
κ
2
, 1− κ

2

]
ε−1
n if ẽ(Xi) /∈

[
κ
2
, 1− κ

2

]
.

Hence,

EPn

[
1

n

n∑
i=1

∣∣∣∣1− e(Xi)

ê(Xi)

∣∣∣∣
]

= EPn

[∣∣∣∣1− e(Xn)

ê(Xn)

∣∣∣∣]
≤ 2

κ
EPn|ẽ(Xn)− e(Xn)|+ ε−1

n P n
(
ẽ(Xn) /∈

[κ
2
, 1− κ

2

])
(B.5)

By Lemma B.1 (ii),

sup
P∈Pe

EPn|ẽ(Xn)− e(Xn)| = sup
P∈Pe

∫
X
EPn−1

[∣∣∣∣1− e(x)

ê(x)

∣∣∣∣] dPX(x) ≤ O
(
n
− 1

2+dx/βe

)
Furthermore, by Lemma B.1 (i),

P n
(
ẽ (Xn) /∈

[κ
2
, 1− κ

2

])
=

∫
X
P n−1

(
ẽ (x) /∈

[κ
2
, 1− κ

2

])
dPX (x)

≤
∫
X
P n−1

(
|ẽ (x)− e(x)| ≥ κ

2

)
dPX (x)

≤ c2 exp

(
−c3κ

2

4
nhdx

)
holds for all n satisfying c1h

β < κ/2, where the c1, c2, and c3 are the constants defined in

Lemma B.1 (i). Since εn is assumed to converge at a polynomial rate, ε−1
n P n

(
ê (Xn) /∈

[
κ
2
, 1− κ

2

])
converges faster thanO(n

− 1
2+dx/βe ). Thus, from (B.5), we conclude sup

P∈Pe
EPn

[
1
n

∑n
i=1

∣∣∣1− e(Xi)
ê(Xi)

∣∣∣] ≤
O
(
n
− 1

2+dx/βe

)
. The other bound of Assumption 4.1 can be shown similarly.

Combining Proposition B.1 with Theorem 4.1 proves equation (4.5) in the main text.
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