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1 Introduction1

We study models with discrete endogenous variables and compare the use of two stage least squares (2SLS)
in a linear probability model with bounds analysis using a nonparametric instrumental variable model.
2SLS has the advantage of providing an easy to compute point estimator of a slope coe¢ cient which can

be interpreted as a local average treatment e¤ect (LATE). However, the 2SLS estimator does not measure
the value of other useful treatment e¤ect parameters without invoking untenable restrictions.
The nonparametric instrumental variable (IV) model has the advantage of being weakly restrictive, so

more generally applicable, but it usually delivers set identi�cation. Nonetheless it can be used to consistently
estimate bounds on many parameters of interest including, for example, average treatment e¤ects. We
illustrate using data from Angrist & Evans (1998) and study the e¤ect of family size on female employment.
The instrumental variable model takes the form:

Y1 = h(Y2;W;U), (1.1)

where Y1 is an outcome of interest, Y2 is an endogenous variable, and W is a vector of exogenous variables.
U denotes unobserved heterogeneity. In addition to (Y1; Y2;W ), realizations of an instrumental variable (IV)
Z which does not enter (1.1) are available. IV models limit the dependence of U and Z imposing for example
stochastic or mean independence restrictions. The models are incomplete in the sense that details of the
process generating values of endogenous Y2 are not speci�ed. Structural equation (1.1) may for example be
one of a system of simultaneous equations, the structure of the others being left unspeci�ed.
A linear speci�cation, Y1 = � + Y2� +W
 + U , is used in many applications. If the required expec-

tations exist, then a mean independence restriction E[U jw; z] = 0 delivers the relationship E[Y1jw; z] =
�+ E[Y2jw; z]� + w
, and point identi�cation of the parameters follows under a simple rank condition.

�University College London and Centre for Microdata Methods and Practice, Department of Economics, Gower Street,
London WC1E 6BT, United Kingdom, andrew.chesher@ucl.ac.uk, adam.rosen@ucl.ac.uk. We thank Amit Gandhi for insightful
comments and discussion. We acknowledge �nancial support through a grant (RES-589-28-0001) to the ESRC Research Centre,
CeMMAP, through the funding of the �Programme Evaluation for Policy Analysis�node of the UK National Centre for Research
Methods and from the European Research Council grant ERC-2009-StG-240910-ROMETA. A version of this paper is pubished
in the May 2013 issue of the American Economic Review: Papers and Proceedings.

1This revision of the March 2013 working paper with the same title corrects an error in the de�nition of the set Ap(y2; w)c
on page 3. Subsequent expressions and calculations are una¤ected by the correction. In producing this revision references have
been updated.
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In this paper we focus on models with discrete Y1 and Y2, henceforth referred to as �the endogenous
variables�, in particular binary outcome models with dummy endogenous variables. In such cases the 2SLS
or equivalently linear IV estimator retains the quality of being easy to compute. Yet the assumptions
required for its justi�cation are incompatible with the discrete nature of the endogenous variables. It is
well-known for instance that linear IV estimators often lead to �tted probabilities that lie outside the unit
interval for certain covariate values. Control function approaches that respect the binary nature of Y1, e.g.
those discussed by Blundell & Powell (2003) and Lewbel, Dong & Yang (2012), generally require Y2 to be
continuously distributed.
Nonetheless, 2SLS is often used in empirical work with discrete endogenous variables. Two main jus-

ti�cations are used in support of this. The �rst is that the 2SLS estimator is easy to compute, and the
linear IV model should be thought of only as an approximation to the process generating outcomes. The
second is that even with discrete endogenous variables, the 2SLS estimator is consistent for the local average
treatment response (LATE) under the restrictions of Imbens & Angrist (1994).
The �rst of these arguments seems to us unsound, as computational ease does not justify reliance on a

model which does not respect elementary properties of the data at hand. The second argument however
does not hinge on the validity of the untenable assumption of the linear IV model. The assumptions under
which the 2SLS estimator is consistent for the LATE allow for discrete endogenous variables and are readily
interpretable. This argument, put forward in Angrist & Pischke (2009), is compelling if the LATE parameter
is of interest.
There may be interest in other functionals of the distribution of treatment e¤ects, such as average or

quantile treatment e¤ects. Unless treatment response is homogeneous, the LATE parameter, and thus the
2SLS estimator, will not in general coincide with these. A comprehensive analysis of the relation between
various treatment e¤ect parameters is provided by Heckman & Vytlacil (2005).

2 The Nonparametric Binary Response Model

We consider a nonparametric threshold-crossing model for binary Y1,

Y1 = 1 [p (Y2;W ) < U ] , (2.1)

and normalize the function p so that U is uniformly distributed on the unit interval, and impose the inde-
pendence restriction U ? (W;Z). The model is a special case of the IV unordered choice models studied
by Chesher, Rosen & Smolinski (2013), hereafter CRS. It was shown in Chesher (2010) that IV models for
discrete outcomes generally point identify neither the function h in (1.1) nor many interesting functionals
of it. Yet the model can deliver non-trivial set identi�cation of functionals of h, and the sets may be small
enough to allow data to convey valuable information and the impact of a policy to be usefully bounded.
While we focus here on nonparametric modeling, CRS provides set identi�cation results that accom-

modate further restrictions on the structural relation or the distribution of unobservables, for example
parametric restrictions. Chesher (2013) investigates the use of index and monotonicity restrictions in the
context of binary outcomes.
Discrete outcomes are common in microeconometrics and it is good to have robust and �exible ways

of handling endogeneity. Most attempts to date use complete models that place structure on the process
determining Y2. Leading examples are parametric models for which a likelihood function can be de�ned as
used in Heckman (1978) and semi- and nonparametric models with a triangular recursive equation structure,
see for example Blundell & Powell (2003), Chesher (2003), and Imbens & Newey (2009). In these models
U and Y2 vary independently conditional on the value of some control function depending on Y2 and the
covariates (W;Z).
These potentially point identifying complete models place strong restrictions on the process generating

endogenous explanatory variables. They are typically nested in our nonparametric IV model, in which case
they identify points in our IV model�s identi�ed set. If only the IV model�s restrictions are held to be
plausible, then the choice of one complete model over another is arbitrary.
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The identi�ed set delivered by IV models for discrete outcomes is characterized for a general class of
multiple discrete choice models in CRS using powerful tools developed in random set theory, see Molchanov
(2005). Here we set out the implications of these results for binary outcome threshold crossing models of
which leading parametric examples are probit and logit models, our contribution being the extension of these
models to cases with endogenous explanatory variables and IV restrictions.
In this paper we focus on set identi�cation of an average treatment e¤ect (ATE) with a single endogenous

variable. Set identi�cation of the ATE under alternative nonparametric restrictions has been previously
considered by e.g. Manski (1990), Balke & Pearl (1997), and Shaikh & Vytlacil (2011). The characterizations
of CRS that we invoke are for identi�ed sets of structural functions as well as the distribution of unobserved
heterogeneity, and can be used to trace out the identi�ed set for any functional of these quantities, not
just the ATE. Moreover these characterizations easily accommodate further semiparametric and parametric
restrictions. We illustrate the application of the results using data on female employment and family size
employed in Angrist & Evans (1998).

3 Identi�cation Analysis

Key in the analysis of CRS are level sets, Uh(y1;y2; w), of the function h, de�ned as follows.

Uh(y1;y2; w) = fu : y1 = h(y2; w; u)g (3.1)

In continuous outcome models with scalar latent U these sets are usually singleton residuals, but in discrete
outcome models they are typically non-singleton sets. Any particular function h along with any observed
probability distribution for Y = (Y1; Y2) given (W;Z) = (w; z), denoted FY jWZ delivers a set-valued random
variable, Uh(Y1;Y2; w), whose realizations are the level sets de�ned in (3.1). Let P indicate probabilities
calculated using a distribution FY jWZ . Let RW denote the support of W and RZ(w) the support of Z when
W = w. The objects of interest are the structural function h and the conditional distribution of U given
(W;Z) = (w; z), denoted GU jWZ .
CRS show the identi�ed set of functions (h;GU jWZ) supported by a model M and a probability distri-

bution FY jWZ comprises all pairs (h;GU jWZ) that: (a) are admitted by the model M and (b) satisfy the
following inequalities

8S 2 C(w; z), GU jWZ(Sjw; z) � P[Uh(Y1;Y2; w) � Sjw; z], (3.2)

for almost every (w; z) in the support of (W;Z). Here C(w; z) is the collection of all unions of the sets on
the support of the random set Uh(Y1;Y2; w) given Z = z, and GU jWZ(Sjw; z) is the probability mass placed
on the set S by the distribution GU jWZ when (W;Z) = (w; z). Essential elements of the model M are
restrictions limiting the dependence of U on (W;Z).
In the context of the binary threshold-crossing model (2.1) the only relevant elements of the collection

of sets C(w; z) are the pairs of intervals, [0; p(y2; w)] and (p(y2; w); 1], generated as y2 takes all values on the
support of Y2. The distribution GU jWZ is uniform and does not depend on (W;Z), so GU jWZ(Sjw; z) is just
the length of the interval, either p(y2; w) or 1� p(y2; w).
De�ne the sets2 Ap(y2; w) and Ap(y2; w)c:

Ap(y2; w) � fy�2 : p(y�2 ; w) � p(y2; w)g ,
Ap(y2; w)c � fy�2 : p(y�2 ; w) � p(y2; w)g ,

and consider a model M which may place parametric restrictions on the threshold functions p, for example
specifying a probit functional form and an index restriction. Applying the result just set out we �nd that

2 In the March 2013 issue of this working paper, and in the published 2013 AEA Papers and Proceedings article, Chesher &
Rosen (2013), the set Ap(y2; w)c was incorrectly de�ned as the complement of the set Ap(y2; w). The complement of Ap(y2; w)
has a strong inequality where the weak inequality appears in the correct de�nition of Ap(y2; w)c given here. Thanks to Je¤
Rowley for alerting us to this. This was an error in de�ning notation and subsequent expressions and calculations are not
a¤ected by the change.

3



the identi�ed set of threshold crossing functions comprises the functions p admitted by the model M and
satisfying, for almost every (y2; w), the following inequalities.

sup
z2RZ(w)

(P [Y1 = 0 ^ Y2 2 Ap(y2; w)jw; z]) � p(y2; w) � inf
z2RZ(w)

(1� P [Y1 = 1 ^ Y2 2 Ap(y2; w)cjw; z]) .

(3.3)

4 Family Size and Employment

We apply these results in an analysis of the identifying power of a model for, and data on, female employment
used in Angrist & Evans (1998). The element of this study on which we focus uses data from the US Census
Public Use Microsamples on 254; 654 married mothers aged 21-35 in 1980 with at least 2 children and oldest
child less than 18. The dependent variable in the model, Y1, is binary, equal to 1 if a woman worked for
pay in 1979. The potentially endogenous variable, Y2, is binary, equal to 1 for women having three or more
children. The instrumental variables are also binary, one taking the value 1 if the second birth of a woman
was twins, the other taking the value 1 if the �rst two children have the same sex. We consider models in
which the only explanatory variable is Y2, so p(y2; w) becomes p(y2).
De�ne parameters as follows.

� �0 � 1 � p(0): the mean potential Y1 outcome when Y2 is zero. In this binary outcome case this is a
counterfactual probability.

� �1 � p(0)� p(1): the di¤erence in mean potential Y1 outcomes comparing Y2 = 1 and Y2 = 0. This is
the Average Treatment E¤ect (ATE) in the IV model.

One of the approaches advocated in Angrist & Pischke (2009), hereafter AP09, who use this data, employs
a linear probability model

Y1 = �lpm + �lpmY2 + ",

estimating the parameters by 2SLS. Under the normalization E["] = 0 there is �0 = �lpm and the ATE is
�1 = �lpm.
The 2SLS and ordinary least squares (OLS) estimators, under mild conditions, converge to the following

probability limits.

�2sls =
cov(Z; Y1)

cov(Z; Y2)
, �2sls = E[Y1]� �2slsE[Y2],

�ols =
cov(Y1; Y2)

var(Y2)
, �ols = E[Y1]� �olsE[Y2],

In general these depend on the probability distribution of the instrumental variable, in the latter case through
dependence of Y2 on Z. The value of �2sls is the LATE introduced in Imbens & Angrist (1994).
In Figures 2-9 of Appendix A we exhibit identi�ed sets for (�0; �1) delivered by the IV model when

probabilities are generated by a triangular model like that used in Heckman (1978) with

Y1 = 1 [��� � ��Y2 < U�]
Y2 = 1 [�
 � �Z < V �]

and correlated zero-mean, unit-variance Gaussian errors (U�; V �). In this structure the value of the ATE
is �(�� + ��) � �(��). We show the locations of the probability limits of 2SLS and OLS estimators
under di¤erent distributions of the instrumental variable. The results show that there can be substantial
instrument sensitivity. The LATE, that is �2sls, tends to lie close to the value of the ATE delivered by the
Gaussian unobservable triangular structure, but can take values outside the identi�ed set delivered by the
nonparametric instrumental variable model.
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Linear probability model estimates of �lpm using the aforementioned 1980 census data from Angrist &
Evans (1998) are as follows.

IV: Same-sex IV: Twins OLS
�0:138
(:029)

�0:084
(:017)

�0:115
(:002)

The quarter of a million observations deployed in the estimation deliver small standard errors (in parentheses).
Figure 1 shows estimated sharp identi�ed sets delivered by the IV model and the 2SLS estimates obtained

using each instrument one-at-a-time and the OLS estimate. In this model with a binary instrument Z and
no exogenous covariates W the identi�ed set represented in (3.3) is simply those pairs of (�0; �1) such that
�1 � 0 and for each z 2 f0; 1g

f10 (z) + f11 (z) � �0 � 1� f00 (z) ,
f11 (z) � �0 + �1 � f10 (z) + f11 (z) ,

or, �1 � 0 and for each z 2 f0; 1g

f10 (z) � �0 � f10 (z) + f11 (z) ,
f10 (z) + f11 (z) � �0 + �1 � 1� f01 (z) ,

where fij (z) � P [Y1 = i ^ Y2 = jjz].
The same-sex instrument delivers an identi�ed set comprised of two parallelograms (drawn in blue) one

on each side of the �1 = 0 axis. The 2SLS estimate lies in the lower parallelogram, close to the OLS estimate.
The identi�ed set is very large and disconnected. The simple IV model using the same-sex instrument and
these data has little to say about the e¤ect (ATE) of a third child on female labour force participation.
It is not possible to sign the e¤ect on the counterfactual employment probability of advancing to a third
child. This happens because the IV model is only partially identifying and the same-sex instrument is not an
accurate predictor of advancing to a third child - the probability of having three or more children conditional
on the �rst two children having the same (di¤erent) sex is 0:41 (0:35).
With the twins instrument the situation is very di¤erent. The identi�ed set is a one-dimensional line,

drawn in red in Figure 1. The twins instrument is in one sense a very precise predictor of advancement
to a third child because if the second birth is a twin birth then necessarily the mother has three children.
The probability of having three or more children conditional on the second birth being (not being) a twin
birth is 1:00 (0:38). It can be shown that in this situation the IV model point identi�es neither �0 nor �1
individually but it does point identify their sum, so the identi�ed set (the red line in Figure 1) lies on a line
with slope �1 and intercept �0 + �1. Using the twins instrument the IV model identi�es the sign of �1 but
the estimate of the interval in which it lies is quite large, [�:25;�:05]. Employing both instruments only
marginally tightens this bound given the weakness of the same-sex instrument.
In this binary endogenous variable case, associated with each point in an identi�ed set for (�0; �1) there

is a unique pair of conditional distributions of U given Y2 = y2 2 f0; 1g that generates the probability
distributions of (Y1; Y2) given Z that deliver the set. Examples for a variety of values of (�0; �1) in the
estimated same-sex identi�ed set are shown in Figures 10-18 in Appendix B. The results show that at the
2SLS estimate the endogeneity of Y2 is very weak but extreme points in the identi�ed set are associated with
widely varying degrees and directions of endogeneity.

5 Concluding Remarks

We have applied results from the recent literature on partial identi�cation to the study of treatment e¤ect
parameters in binary response models with binary endogenous variables, or treatments. We compared a fully
nonparametric, set identifying analysis to that delivered by the commonly used 2SLS estimator. The 2SLS
estimator is simple to use but limited in application, delivering a point estimator of the LATE parameter
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Figure 1: Identi�ed sets for (�0; �1) and 2SLS and OLS estimates.
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but not of other treatment e¤ect parameters unless there is treatment e¤ect homogeneity. We used a set
identifying nonparametric IV framework to characterize the sharp identi�ed set for an average treatment
e¤ect, and compared it to the 2SLS and OLS estimands, both numerically (in the Appendix) and in an
application using data on female labor supply from Angrist & Evans (1998).
The results indicate that practitioners should use the 2SLS estimator with caution. If researchers are

interested in measuring a LATE, they can safely stop with 2SLS. If other parameters are of interest, 2SLS,
equivalently linear IV, does not su¢ ce. Our analysis should caution applied researchers who might wish
to interpret 2SLS estimators as approximations for causal e¤ects or treatment e¤ect parameters other than
LATE, by showing that at least one such parameter, namely the ATE, can in fact be quite far from the
LATE. If one is interested in the ATE then bounds analysis may be preferable. Nonetheless, if one wishes
to use 2SLS then bounds analysis provides a valuable sensitivity analysis.
Here we have focused on a nonparametric model with a simple binary instrument. Even in this case, the

bounds can be useful, although they may be wider than hoped in some circumstances. If this is all that data
and plausible assumptions deliver then this is important to learn. On the other hand, many applications
feature instruments with much richer support. Further, there are more restrictive models than the fully
nonparametric one used here that likewise respect the discrete nature of endogenous variables, and which in
general deliver narrower bounds. Our results on the set identifying power of the incomplete IV model apply
to a much wider range of problems than studied here.
There are both a variety of useful weakly restrictive models shown to deliver bounds on interesting

quantities, and a growing number of inference methods available, for example Chernozhukov, Hong & Tamer
(2007), Andrews & Shi (2013), Chernozhukov, Lee & Rosen (2013) and references therein. These tools
expand the range of models, and parameters of interest, which can be studied in applications by practitioners,
whether or not there is point identi�cation.
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Appendices:
These Appendices contain:

1. examples of identi�ed sets delivered by an instrumental variable threshold crossing model for a binary
outcome,

2. displays of conditional probability distributions of structural equation errors given endogenous explana-
tory variables.

A Examples of identi�ed sets delivered by the IV model

We illustrate the identi�ed sets delivered by the IV threshold crossing model using probability distributions
created by us, generated using a Gaussian triangular structure, one of the cases studied in Heckman (1978),
as follows.

Y1 = 1[��� � ��Y2 < U�] Y2 = 1[�
 � �Z < V �]�
U�

V �

�
jZ � N

��
0
0

�
;

�
1 r
r 1

��
Z 2 RZ � f�1; 0; 1g

Here �0 = �(a) and the average treatment e¤ect is �1 = �(b + a) � �(a) where � is the standard normal
distribution function.
Figures 2-9 show identi�ed sets (grey) for (�0; �1) at a variety of parameter settings. Throughout �� =


 = 0 and �� � 1.
The value of (�0; �1) in the triangular Gaussian structure is marked in green. The points marked red and

blue are discussed shortly. The IV model is partially identifying so other structures could have generated
the probability distributions that delivered these sets. Example include non-triangular structures and non-
Gaussian structures and in those cases the value of (�0; �1) would be at di¤erent points in the identi�ed
set.
In this simple case the sets comprise either one, or two disconnected, parallelograms. When the endoge-

nous variable (here binary) has K points of support identi�ed sets are unions of up to K! convex polytopes
which may be disconnected, see Chesher (2013) for an illustration. In Figures 2-6 the identi�ed sets are
connected, the strength of the instrument steadily increases (the coe¢ cient � is increasing) and as it does
the identi�ed set shrinks. There would be point identi�cation if � increased without limit. In Figures 7-9
the correlation r is positive and the identi�ed set is disconnected until the instrument becomes quite strong.
The points marked red and blue in Figures 2-9 show pseudo-true values

�2sls =
cov(Z; Y1)

cov(Z; Y2)
�2sls = E[Y1]� �2slsE[Y2]

�ols =
cov(Y1; Y2)

var(Y2)
�ols = E[Y1]� �olsE[Y2]

of 2SLS (red) and OLS (blue) estimators obtained using a linear probability model and 500 randomly chosen
distributions of the instrumental variable.3

The pseudo-true value of the OLS estimator is quite sensitive to the distribution of the instrumental
variable. The pseudo-true value of the 2SLS estimator (LATE) is less variable and is often close to the
triangular model value but sometimes it falls outside the identi�ed set. When the set is large it is of course
far from many of the observationally equivalent values of (�0; �1).

3The instrumental variable has support on f�1; 0; 1g. To generate a random distribution on this support, three independent
uniform pseudo-random variates (B1; B2; B3) were generated and probabilities generated as Bi=�jBj for i 2 f1; 2; 3g.
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B Distribution of latent U conditional on endogenous explanatory
variable Y2

In this binary endogenous variable case there is associated with each point in the identi�ed set for (�0; �1)
a unique pair of conditional distributions of U given Y2 = y2 2 f0; 1g that generates the probability distrib-
utions of (Y1; Y2) given Z that deliver the identi�ed set. Figures 10-18 show some of these distributions for
the Angrist & Evans (1998) analysis (described in the main text) using the same-sex instrument. Figure 10
shows the distributions at the AP09 2SLS estimate. There is hardly any endogeneity here. The remaining
Figures show the distributions (right hand panes) associated with some extreme points in identi�ed set (the
points are highlighted in the left hand panes). Di¤erent points in the identi�ed set are associated with widely
varying degrees and directions of endogeneity.
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Figure 2: Identi�ed set for �0 and �1 using probabilities generated by a triangular structure.
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Figure 3: Identi�ed set for �0 and �1 using probabilities generated by a triangular structure.
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Figure 4: Identi�ed set for �0 and �1 using probabilities generated by a triangular structure.
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Figure 5: Identi�ed set for �0 and �1 using probabilities generated by a triangular structure.
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Figure 6: Identi�ed set for �0 and �1 using probabilities generated by a triangular structure.
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Figure 7: Identi�ed set for �0 and �1 using probabilities generated by a triangular structure.
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Figure 8: Identi�ed set for �0 and �1 using probabilities generated by a triangular structure.
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Figure 9: Identi�ed set for �0 and �1 using probabilities generated by a triangular structure.
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Figure 10: Right hand pane shows conditional distribution functions of U given Y2 associated with the
highlighted point in the estimated identi�ed set shown in the left hand pane. This Figure shows the 2SLS
estimator.
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Figure 11: Right hand pane shows conditional distribution functions of U given Y2 associated with the
highlighted point in the estimated identi�ed set shown in the left hand pane.
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Figure 12: Right hand pane shows conditional distribution functions of U given Y2 associated with the
highlighted point in the estimated identi�ed set shown in the left hand pane.
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Figure 13: Right hand pane shows conditional distribution functions of U given Y2 associated with the
highlighted point in the estimated identi�ed set shown in the left hand pane.
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Figure 14: Right hand pane shows conditional distribution functions of U given Y2 associated with the
highlighted point in the estimated identi�ed set shown in the left hand pane.
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Figure 15: Right hand pane shows conditional distribution functions of U given Y2 associated with the
highlighted point in the estimated identi�ed set shown in the left hand pane.
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Figure 16: Right hand pane shows conditional distribution functions of U given Y2 associated with the
highlighted point in the estimated identi�ed set shown in the left hand pane.
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Figure 17: Right hand pane shows conditional distribution functions of U given Y2 associated with the
highlighted point in the estimated identi�ed set shown in the left hand pane.

26



0.0 0.2 0.4 0.6 0.8 1.0

­1.0

­0.5

0.0

0.5

1.0

ρ0

ρ 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

CDF of U given Y2

U

Y2 = 0
Y2 = 1

Figure 18: Right hand pane shows conditional distribution functions of U given Y2 associated with the
highlighted point in the estimated identi�ed set shown in the left hand pane.
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