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Abstract

We propose a semi-parametric coupled component GARCH model for intraday and overnight

volatility that allows the two periods to have different properties. To capture the very heavy

tails of overnight returns, we adopt a dynamic conditional score model with t innovations. We

propose a several step estimation procedure that captures the nonparametric slowly moving

components by kernel estimation and the dynamic parameters by t maximum likelihood. We

establish the consistency and asymptotic normality of our estimation procedures. We extend the

modelling to the multivariate case. We apply our model to the study of the Dow Jones industrial

average component stocks over the period 1991-2016 and the CRSP cap based portfolios over

the period of 1992-2015. We show that actually the ratio of overnight to intraday volatility has

increased in importance for big stocks in the last 20 years. In addition, our model provides

better intraday volatility forecast since it takes account of the full dynamic consequences of the

overnight shock and previous ones.

1 Introduction

The balance between intraday and overnight returns is of considerable interest as it sheds light on

many issues in finance: the efficient markets hypothesis, the calendar time versus trading time mod-

els, the process by which information is impacted into stock prices, the relative merits of auction

versus continuous trading, the effect of high frequency trading on market quality, and the globaliza-

tion and connectedness of international markets. We propose a time series model for intraday and

overnight returns that respects their temporal ordering and permits them to have different properties.

In particular, we propose a volatility model for each return series that has a long run component

that slowly evolves over time, and is treated nonparametrically, and a parametric dynamic volatility
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component that allows for short run deviations from the long run process, which depend on previous

intraday and overnight shocks. We adopt a dynamic conditional score (DCS) model, Harvey (2013)

and Harvey and Luati (2014), that links the news impact curves of the innovations to the shock

distributions, which we assume to be t-distributions with unknown degrees of freedom (which may

differ between day and night). In practice, the overnight return distribution is more heavy tailed

than the intraday return, and in fact very heavily tailed. Our model allows for a difference in tail

thickness in the conditional distributions. The short run dynamic process allows for leverage effects

and separates the overnight shock from the intraday shock. Our model extends Blanc, Chichepor-

tiche, and Bouchaud (2014) who consider an asymmetric ARCH(∞) process with t shocks. We also

introduce a multivariate model that allows for time varying correlations.

We apply our model to the study of 28 Dow Jones industrial average component stocks over the

period 1991-2016, a period which saw several substantial institutional changes. There are several

purposes for our application. First, many authors have argued that the introduction of computerized

trading and the increased prevalence of high frequency trading strategies in the period post 2005

has lead to an increase in volatility, see Linton, O’Hara, and Zigrand (2013). A direct comparison of

volatility before and after would be problematic here because of the Global Financial Crisis (GFC),

which raised volatility during the same period that High Frequency Trading (HFT) was becoming

more prevalent. However, this hypothesis would suggest that the ratio of intraday to overnight

volatility should have increased during this period because trading is not taking place during the

market close period. We would like to evaluate whether this has occurred. One could just compare the

daily return volatility from the intraday segment with the daily return volatility from the overnight

segment, as many studies such as French and Roll (1986) have done. However, this would ignore both

fast and slow variation in volatility through business cycle and other causal factors. Also, overnight

raw returns are very heavy tailed and so sample variances are not very accurate. We use our dynamic

two component model that allows for both fast and slow dynamic components to volatility, as is now

common practice ( Engle and Lee, 1999; Engle and Rangel, 2008; Hafner and Linton, 2010; Rangel

and Engle, 2012; and Han and Kristensen, 2015). Our model also allows dynamic feedback between

overnight and intraday volatility, which is of interest in itself. Our model generates heavy tails in

observed returns and parameter estimates that are robust to this phenomenon. Our model therefore

allows us to compare the long run components of volatility over this period without over reliance on

Gaussian-type theory. We show that for the Dow Jones stocks actually the long run component of

overnight volatility has increased in importance during this period relative to the long run component

of intraday volatility. We provide a formal test statistic that quantifies the strength of this effect.

This seems to be hard to reconcile with the view that trading has increased volatility. We also

document the short run dynamic processes. Notably, we find, unlike Blanc, Chicheportiche, and

Bouchaud (2014), that overnight returns significantly affect future intraday volatility. We also find

overnight return shocks to have t-distributions with degrees of freedom roughly equal to three, which

emphasizes the potential fragility of Gaussian-based estimation routines that earlier work has been

based on. We also estimate the multivariate model and document that there has been an upward

trend in the long run component of contemporary overnight correlation between stocks as well as in
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the long run component of contemporary intraday correlation between stocks. However, the trend

development for the overnight correlations started later than for intraday, and started happening

only after 2005, whereas the intraday correlations appear to have slowly increased more or less from

the beginning of the period.

We also apply our model to 10 cap based portfolios over the period 1992-2015. The ratio of

overnight to intraday volatility has indeed increased for large stocks, but has decreased for small

stocks. Notably, the slope increases monotonically from the smallest to the largest cap decile. From

the multivariate model, we find small stocks had rather weak co-movement with the market in the

early 90s. But the co-movement has been increased considerably during this period, although still

smaller than that of big stocks.

A second practical purpose for our model is to improve forecasts of intraday volatility or close

to close volatility. Our model allows us to condition on the opening price to forecast intraday

volatility or to update the close to close volatility forecast and also to take account of the full

dynamic consequences of the overnight shock and previous ones. We compare forecast performance

of our model with a procedure based only on close to close returns and find in most cases superior

performance.

Overnight returns have attracted much attention during recent years. Specifically, Cooper, Cliff,

and Gulen (2008) suggest that the US equity premium over the last decade is solely due to overnight

returns. Berkman, Koch, Tuttle, and Zhang (2012) find positive overnight returns tend to be followed

by reversals in the subsequent trading day, because retail investors who dominating open prices tend

to buy high-attention stocks, driving up the open price. Following this, Aboody, Even-Tov, Lehavy,

and Trueman (forthcoming) suggest to use overnight returns as a firm-specific sentiment. On the

other hand, Aretz and Bartram (2015) find evidence that intraday returns outperform overnight

returns from a sample with stocks in 35 countries, and suggest this also holds in the US market. In

contrast with the mixed evidence for mean values, it is generally agreed that overnight returns are

less volatile at least in the US market (Lockwood and Linn, 1990; French and Roll, 1986; Aretz and

Bartram, 2015), but more leptokurtic (Ng and Masulis, 1995; Blanc, Chicheportiche, and Bouchaud,

2014). We are going to provide some new evidences for these questions with our coupled component

GARCH model.

2 Model and Properties

We let rDt denote intraday returns and rNt denote overnight returns on day t. We take the ordering

that night precedes day so that rDt = ln(PC
t /P

O
t ) and rNt = ln(PO

t /P
C
t−1), where PO

t denotes the

opening price on day t and PC
t denotes the closing price on day t. Our model allows intraday returns

to depend on overnight returns with the same t, but overnight returns just depend on lagged variables.

Suppose that (
1 δ

0 1

)(
rDt
rNt

)
=

(
µD

µN

)
+ Π

(
rDt−1
rNt−1

)
+

(
uDt
uNt

)
, (1)
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where uDt and uNt are conditional mean zero shocks. Under the EMH, δ = 0 and Π = 0, but we

allow these coefficients to be nonzero to pick up small short run effects such as due to microstructure,

Scholes and Williams (1977).

We further suppose that the error process has conditional heteroskedasticity, with both long run

and short run effects. Specifically, we suppose that

ut =

(
exp(λDt ) exp(σD(t/T )) 0

0 exp(λNt ) exp(σN(t/T ))

)(
εDt
εNt

)
, (2)

where: εDt and εNt are i.i.d. mean zero shocks from t distributions with vD and vN degrees of freedom,

respectively, while σD(·) and σN(·) are unknown but smooth functions that will represent the slowly

varying (long-run) scale of the process, and T is the number of observations. Suppose that for

j = D,N :

σj (s) =
∑∞

i=1
θjiψ

j
i (s) , s ∈ [0, 1] (3)

for some orthonormal basis {ψji (s)}∞i=1 with
∫ 1

0
ψji (s) ds = 0 and∫

ψji (s)ψjk (s) ds =

{
1 if i = k

0 if i 6= k.

Different from Hafner and Linton (2010), we suppose σD(·) and σN(·) integrate to zero to achieve

identification. So we do not have to restrict the parameters of the short run dynamic processes. In

the following, j is always used to denote D,N without further mentioning.

Regarding the short run dynamic part of (2), we adopt a dynamic conditional score approach,

Creal, Koopman, and Lucas (2012) and Harvey and Luati (2014). Let ejt = exp(−σj(t/T ))ujt , and

the conditional score function is defined as

mj
t =

(1 + vj)(e
j
t)

2

vj exp(2λjt) + (ejt)
2
− 1, vj > 0.

We suppose that λDt and λNt are linear combinations of past values of the shocks determined by the

conditional score function

λDt = ωD(1− βD) + βDλ
D
t−1 + γDm

D
t−1 + ρDm

N
t (4)

+ γ∗D(mD
t−1 + 1)sign(eDt−1) + ρ∗D(mN

t + 1)sign(eNt )

λNt = ωN(1− βN) + βNλ
N
t−1 + γNm

N
t−1 + ρNm

D
t−1 (5)

+ ρ∗N(mD
t−1 + 1)sign(eDt−1) + γ∗N(mN

t−1 + 1)sign(eNt−1).

This gives two dynamic processes for the short run scale of the overnight and intraday return. We

allow the overnight shock to affect the intraday scale through the parameter ρD, and we allow for

leverage effects through the parameters γ∗D, ρ
∗
D, ρ

∗
N , and γ∗N .

1 Let

φ = (ωD, βD, γD, γ
∗
D, ρD, ρ

∗
D, vD, ωN , βN , γN , γ

∗
N , ρN , ρ

∗
N , vN)

ᵀ ∈ R14

1The shock variable mj
t can be expressed as mj

t = (vj + 1)bjt − 1, where bjt has a beta distribution, beta (1/2, vj/2).
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be the finite dimensional parameters of interest.

Harvey (2013) argues that the quadratic innovations that feature in GARCH models naturally

fit with the Gaussian distribution for the shock, but once one allows heavier tail distributions like

the t-distribution, it is anomalous to focus on quadratic innovations, and indeed this focus leads to

a lack of robustness because large shocks are fed substantially into the volatility update. He argues

it is more natural to link the shock to volatility to the distribution of the rescaled return shock,

which in the case of the t distribution has the advantage that large shocks are automatically down

weighted, and in such a way driven by the shape of the error distribution.2 The DCS model has

the incidental advantage that there are analytic expressions for moments, autocorrelation functions,

multi-step forecasts, and their mean squared errors. In the appendix we prove that if |βj| < 1,

j = D,N, then ejt and λjt are strongly stationary and β-mixing with exponential decay.

2.1 Further properties of the model

Before introducing our estimation procedure we gather together some properties of our model that

are useful in applications. For example, we may obtain the dynamic intraday value at risk conditional

on overnight returns and past information as follows

V aRD
t (α) = µDt + sDt tα(vD),

µDt = E(rDt |Ft−1, rNt ) = µD − δrNt − Π11r
D
t−1 − Π12r

N
t−1

sDt = sd(rDt |Ft−1, rNt ) = exp(λDt ) exp(σD(t/T )),

where tα(v) is the α quantile of the t-distribution with degrees of freedom v. Here, Ft−1 is the

sigma field generated by {rDt−1, rNt−1, rDt−2, rNt−2, . . .} and Ft−1 ∪ {rNt } is the sigma field generated by

{rNt , rDt−1, rNt−1, rDt−2, rNt−2, . . .}. To obtain the value at risk given only past intraday returns say, requires

some further arguments.

The conditional second order moments conditioning on different information sets are:

var(rDt |Ft−1, rNt ) =
vD

vD − 2
exp(2λDt + 2σD(t/T ))

var(rNt |Ft−1) =
vN

vN − 2
exp(2λNt + 2σN(t/T ))

var(rDt |Ft−1) = δ2
vN

vN − 2
exp(2λNt + 2σN(t/T )) +

vD
vD − 2

exp(2σD(t/T ))E
[
exp(2λDt )|Ft−1

]
cov

(
rDt , r

N
t |Ft−1

)
= −δ vN

vN − 2
exp(2λNt + 2σN(t/T ))

corr
(
rDt , r

N
t |Ft−1

)
=

−δ
√

vN
vN−2

exp(λNt + σN(t/T ))√
δ2 vN

vN−2
exp(2λNt + 2σN(t/T )) + vD

vD−2
exp(2σD(t/T ))E [exp(2λDt )|Ft−1]

var
(
rDt + rNt |Ft−1

)
=
vN(1− δ)2

vN − 2
exp(2λNt + 2σN(t/T )) +

vD
vD − 2

exp(2σD(t/T ))E
[
exp(2λDt )|Ft−1

]
.

2This type of argument is similar to the argument in limited dependent variable models such as binary choice where

a linear function of covariates is connected to the observed outcome by a link function determined by the distributional

assumption.
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In the online appendix we show that

E
[
exp(2λDt )|Ft−1

]
=

1

2
exp(−2ρD)Λt ×1 F1(1/2, 1/2 + vN/2, (2ρD + 2ρ∗D)(vN + 1)) (6)

+
1

2
exp(−2ρD)Λt ×1 F1(1/2, 1/2 + vN/2, (2ρD − 2ρ∗D)(vN + 1)),

where Λt = exp(2ωD(1−βD)+2βDλ
D
t−1+2γDm

D
t−1+2γ∗D(mD

t−1+1)sign(eDt−1) and 1F1 is the Kummer’s

function

1F1(α, β, c) = 1 +
∞∑
k=0

(
k−1∏
r=1

α + r

β + r

)
ck

k!
, α, β > 0.

From this we obtain an explicit formula for var(rDt |Ft−1), corr
(
rDt , r

N
t |Ft−1

)
, and var

(
rDt + rNt |Ft−1

)
,

which can be used for forecasting. In the online appendix we also give explicit expressions for the

unconditional moments.

3 Estimation

We first outline our estimation strategy. Taking unconditional expectations of the absolute errors

we have for j = N,D,

E
(∣∣ujt ∣∣) = E(

∣∣εjt ∣∣)E (exp
(
λjt
))

exp(σj(t/T )) = cj(φ)× exp(σj(t/T )),

where cj is a constant that depends in a complicated way on the parameter vector φ. Therefore,

we can estimate σN(s), σD(s) as follows. Suppose that we know δ, µ,Π (in practice these can be

replaced by root-T consistent estimators). Although we defined the sieve expansion of σ, we use

kernel technology to estimate the nonparametric part. Let K(u) be a kernel with support [−1, 1]

and h a bandwidth, and let Kh(.) = K(./h)/h. Then let

σ̃j(s) = log

(
1

T

T∑
t=1

Kh(s− t/T )
∣∣ujt ∣∣

)
(7)

for any s ∈ (0, 1). In fact, we employ a boundary modification for s ∈ [0, h]∪ [1−h, 1], whereby K is

replaced by a boundary kernel, which is a function of two arguments K(u, c), where the parameter

c controls the support of the kernel; thus left boundary kernel K(u, c) with c = s/h has support

[−1, c] and satisfies
∫ c
−1K(u, c)du = 1,

∫ c
−1 uK(u, c)du = 0, and

∫ c
−1 u

2K(u, c)du < ∞. Similarly for

the right boundary. The purpose of the boundary modification is to ensure that the bias property

holds throughout [0, 1]. For identification, we rescale σ̃j(t/T ) as

σ̃j(t/T ) = σ̃j(t/T )− 1

T

T∑
t=1

σ̃j(t/T ). (8)

Note that σ̃j(u) can be written as σ̃j(u) =
∑∞

i=1 θ̃
j
iψ

j
i (s) for some coefficients θ̃ji determined uniquely

by the sample value. For notational convenience we will represent σ̃j in terms of {θ̃ji }∞i=1 or just θ̃

for shorthand.
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Let ẽNt = exp(−σ̃N(t/T ))uNt and ẽDt = exp(−σ̃D(t/T ))uDt , and let θ̃ denote {σ̃j(s), s ∈ [0, 1],

j = N,D}. Define the global log-likelihood function for φ (apart from an unnecessary constant and

conditional on the estimated values of θ)

lT (φ; θ̃) =
1

T

T∑
t=1

(
lNt (φ; θ̃) + lDt (φ; θ̃)

)
,

ljt (φ; θ̃) = −λjt(φ; θ̃)− vj + 1

2
ln

(
1 +

(ẽjt)
2

vj exp(2λjt(φ; θ̃))

)
+ ln Γ

(
vj + 1

2

)
− 1

2
ln vj − ln Γ

(vj
2

)
,

(9)

where λjt(φ; θ̃) are defined in (4) and (5). For practical purposes, λj1|0 may be set equal to the

unconditional mean, λj1|0 = ωj. We estimate φ by maximizing lT (φ; θ̃) with respect to φ. Let φ̃ denote

these estimates.

Given estimates of φ and the preliminary estimates of σD(·), σN(·), we calculate

η̃Nt = exp(−λ̃Nt )uNt ; η̃Dt = exp(−λ̃Dt )uDt ,

where λ̃jt = λjt(φ̃; θ̃). We then update the estimates of σD(·), σN(·) using the local likelihood function

in Severini and Wong (1992) given η̃jt and ṽj, i.e., we minimize the objective function

L̃jT (γ; λ̃j, s) =
1

T

T∑
t=1

Kh(s− t/T )

[
γ +

ṽj + 1

2
ln

(
1 +

(η̃jt exp(−γ))2

ṽj

)]
(10)

with respect to γ ∈ R, for j = D,N separately, where λ̃j = (λ̃j1, . . . , λ̃
j
T )

ᵀ
. Likewise here we use a

boundary kernel for s ∈ [0, h] ∪ [1− h, 1]. In practice we use Newton-Raphson iterations making use

of the derivatives of the objective functions, which are given in (23).

To summarize, the estimation algorithm is as follows.

Algorithm

Step 1. Estimate δ, µj,Π by least squares and σ̃j(u), u ∈ [0, 1], j = N,D from (7) and (8)

Step 2. Estimate φ by optimizing lT (φ; θ̃)with respect to φ (by Newton-Raphson) to give φ̃.

Step 3. Given the initial estimates θ̃ and φ̃, we replace λjt with λ̃jt = λjt(φ̃; θ̃). Then let

σ̂j (s) optimize L̃jT (σj (s) ; λ̃, s) with respect to σj (s) . For identification, we rescale σ̂j(t/T ) =

σ̂j(t/T )− 1
T

∑T
t=1 σ̂

j(t/T ).

Step 4. Repeat Steps 2-3 to update θ̂ and φ̂ until convergence. We define convergence in terms of

the distance measure

∆r =
∑
j=D,N

∫ [
σ̂j,[r](u)− σ̂j,[r−1](u)

]2
du+

(
φ̂[r] − φ̂[r−1]

)ᵀ (
φ̂[r] − φ̂[r−1]

)
,

that is, we stop when ∆r ≤ ε for some prespecified small ε.
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4 Large Sample Properties of Estimators

In this section we give the asymptotic distribution theory of the estimators considered above. The

proofs of all results are given in the Appendix. Let hjt = λjt + σj(t/T ), and let:

At =

[
1 aDNt
0 1

]
, Bt−1 =

[(
βD + aDDt−1

)
0

aNDt−1
(
βN + aNNt−1

)] ,
aDDt−1 = −2

(
γD + γ∗Dsign(uDt−1)

)
(vD + 1) bDt−1

(
1− bDt−1

)
aDNt = −2

(
ρD + ρ∗Dsign(uNt )

)
(vN + 1) bNt

(
1− bNt

)
aNNt−1 = −2

(
γN + γ∗Nsign(uNt−1)

)
(vN + 1) bNt−1

(
1− bNt−1

)
aNDt−1 = −2

(
ρN + ρ∗Nsign(uDt−1)

)
(vD + 1) bDt−1

(
1− bDt−1

)
bDt =

(eDt )2

vD exp(2λDt ) + (eDt )2
; bNt =

(eNt )2

vD exp(2λNt ) + (eNt )2
.

We use the maximum row sum matrix norm, ‖·‖∞ , defined by

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij| .

Assumptions A

1. ‖E (At ⊗ At)‖∞ < ∞, ‖EBtEAt‖∞ < 1, ‖E (Bt−1At−1 ⊗Bt−1At−1)‖∞ < ‖EBtEAt‖∞ ,and the

top-Lyapunov exponent of the sequence of AtBt−1 is strictly negative. The top Lyapunov expo-

nent is defined as Theorem 4.26 of Douc, Moulines, and Stoffer (2014).

2. 0 ≤ |βj| < 1.

3. hjt starts from infinite past. The parameter φ0 is an interior point of Φ ⊂ R14, where Φ is the

parameter space of φ0.

4. The functions σj are twice continuously differentiable on [0, 1], j = D,N.

5. E|ujt |2+δ <∞ for some δ > 0, j = D,N.

6. The kernel function K is bounded, symmetric about zero with compact support, that is K(v) = 0

for all |v| > C1 with some C1 <∞. Moreover, it is Lipschitz, that is |K(v)−K(v′)| ≤ L|v−v′|
for some L <∞ and all v, v′ ∈ R. Denote ||K||22 =

∫
K(s)2ds.

7. h (T )→ 0,as T →∞ such that T 1/2−δh→∞ for some small δ > 0.

Assumptions A3-A7 are used to derive the properties of σ̃j(s), in line with Vogt and Lin-

ton (2014) and Vogt (2012). But we only require that E|ujt |2+δ < ∞, since we use σ̃j(s) =

log
(

1
T

∑T
t=1Kh(s− t/T )

∣∣ujt ∣∣) . This is in line with the fact that the fourth-order moment of overnight

8



returns often does not exist. The mixing condition in Vogt and Linton (2014) is replaced by Assump-

tion A2, because of our tight model structure. Assumption A1 is required to derive the stationarity

of score functions, where ‖E (At ⊗ At)‖∞ < ∞ can be verified easily, since bNt in At follows a beta

distribution.

The first result gives the uniform convergence rate of the initial estimator σ̃j(s). The proof mainly

follows Theorem 3 in Vogt and Linton (2014).

Lemma 1 Suppose that Assumptions A2-A7 hold. Then,

sup
s∈[0,1]

∣∣σ̃j(s)− σj0(s)∣∣ = Op

(
h2 +

√
log T

Th

)
.

We next present an important orthogonality condition that allows us to establish a simple theory

for the parametric component.

Theorem 1 Suppose that Assumptions A1-A4 hold. Then, for each k and i, for k ∈ {1, . . . ,∞} and

i ∈ {1, . . . , 14} , we have

1

T

T∑
t=1

E

[
∂lt(φ0; θ0)

∂θk

∂lt(φ0; θ0)

∂φi

]
= O(

1

T
).

The proof of Theorem 1 is provided in Appendix A. Theorem 1 implies that the score functions

with respect to θ and φ are asymptotic orthogonal. The intuition behind is that σj is a function

of a deterministic variable, t/T , while λjt is a stationary process independent of time t. The cross

product of their score functions can be somehow separated. The asymptotic orthogonality implies

the particular asymptotic property of φ̃ and φ̂ in Theorem 2 follows.

Let

I(φ0) = E

[
∂lt(φ0; θ0)

∂φ

∂lt(φ0; θ0)

∂φᵀ

]
.

Theorem 2 Suppose that Assumptions A1-A7 hold. Then

√
T
(
φ̃− φ0

)
=
√
T
(
φ̂− φ0

)
+ oP (1) =⇒ N

(
0, I(φ0)

−1)
Theorem 3 Suppose that Assumptions A1-A7 hold. Then for u ∈ (0, 1)

√
Th

(
σ̂D(u)

σ̂N(u)
−

σD0 (u)

σN0 (u)

)
=⇒ N

(
0, ||K||22

(
(vD+3)
2vD

0

0 (vN+3)
2vN

))
. (11)

Theorem 2 shows that φ̃ and φ̂ have the same asymptotic property. Together with Theorem 3, we

obtain the consistency and asymptotic normality of φ̃, φ̂ and σ̂j(s). The form of the limiting variance

in (11) is consistent with the known Fisher information for the estimation of scale parameter of a

t-distribution with known location and degrees of freedom (these quantities are estimated at a faster

rate), which makes this part of the procedure also efficient in the sense considered in Tibshirani

(1984).
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The proofs of Theorem 2 and 3 are provided in Appendix A. The information matrix, I(φ0), can

be computed explicitly. We can conduct inference with Theorem 2 and Theorem 3 using plug-in

estimates of the unknown quantities.

The kernel estimator σ̃(s) in the initial step can be replaced by the sieve estimator of θ. It is easy

to show that θ̃ converges to θ paralleling Lemma 1, and Theorem 1, 2 and 3 remain the same.

5 A Multivariate model

We next consider an extension to a multivariate model. We keep a similar structure to the univariate

model except that we allow the slowly moving component to be matrix valued. Suppose that

rt =

(
rDt
rNt

)
; µ =

(
µD

µN

)
,

where rDt , r
D
t are n× 1 vectors containing all the intraday and overnight returns respectively, and let

Drt = µ+ Πrt−1 + ut,

where uDt and uNt are mean zero shocks, while

D =

(
In diag (∆)

0 In

)
; Π =

(
diag(Π11) diag(Π12)

diag(Π21) diag(Π22)

)
,

and ∆,Π11,Π12,Π21,and Π22 are n× 1 vectors.

Alternatively, to investigate the unsystematic risk, we can specify rt using a capital asset pricing

model (CAPM)

rDit = aDi + βDDi rDmt + βDNi rNmt + uDit (12)

rNit = aNi + βNNi rNmt + βNDi rDmt−1 + uNit , (13)

where rDmt and rNmt are the market returns and rDit and rNit are the returns of stock i.

For the variance equation, we suppose that

ut =

(
ΣD( t

T
)

1
2 diag

(
exp(λDt )

)
0

0 ΣN( t
T

)
1
2 diag

(
exp(λNt )

) )( εDt
εNt

)
,

where: εjit is i.i.d. shocks from univariate t distributions with vij degrees of freedom, while λjt are

n× 1 vectors.

We assume that ΣD(.) and ΣN(.) are smooth matrix functions but are otherwise unknown. We

can write these covariance matrices in terms of the correlation matrices and the variances as follows

Σj(s) = diag
(
exp(σj(s))

)
Rj(s)diag

(
exp(σj(s))

)
, j = D,N, (14)

with diag (exp(σj(s))) being the volatility matrix and Rj(s) being the correlation matrix with unit

diagonal elements. For identification, we still assume
∫ 1

0
σji (s)ds = 0, for i ∈ {1, . . . n}.

10



As with the univariate model, define ejt = diag
(
exp(λjt)

)
εjt , and suppose that

mj
it =

(1 + vij)(e
j
it)

2

vij exp(2λjit) + (ejit)
2
− 1,

λDit = ωiD(1− βiD) + βiDλ
D
it−1 + γiDm

D
it−1 + ρiDm

N
it

+ γ∗iD(mD
it−1 + 1)sign(uDit−1) + ρ∗iD(mN

it + 1)sign(uNit ),

λNit = ωiN(1− βiN) + βiNλ
N
it−1 + γiNm

N
it−1 + ρiNm

D
it−1

+ ρ∗iN(mD
it−1 + 1)sign(uDit−1) + γ∗iN(mN

it−1 + 1)sign(uNit−1).

For each i define the parameter vector φi = (ωiD, βiD, γiD, γ
∗
iD, ρiD, ρ

∗
iD, viD, ωiN , βiN , γiN , γ

∗
iN , ρiN , ρ

∗
iN , viN)

ᵀ ∈
R14 and let φ = (φ

ᵀ

1, . . . , φ
ᵀ

n)
ᵀ

denote all the dynamic parameters.

Define ιi the vector with the ith element 1 and all others 0, so that εjit = ιᵀi diag
(
exp(−λjt)

) (
Σj( t

T
)
)−1/2

ujt .

The normalized global log-likelihood function is

lT (φ,Σ(·)) =
1

T

T∑
t=1

(
lNt + lDt

)

ljt (φ,Σ(·)) =
n∑
i=1

(
−

n∏
i=1

λjit −
vij + 1

2
ln

(
1 +

(ιᵀi diag
(
exp(−λjt − σj(t/T ))

) (
Σj
(
t
T

))−1/2
ujt)

2

vij

))

− 1

2
log

∣∣∣∣Σj

(
t

T

)∣∣∣∣+
n∑
i=1

(
ln Γ

(
vij + 1

2

)
− 1

2
ln vij − ln Γ

(vij
2

))
.

We first define an initial estimator for Σj( t
T

) and then obtain an estimator of φ, and then we

update them. Suppose that we know ∆,Π and µ. To give an estimator of Σj( t
T

) robust to heavy

tails, we estimate the volatility parameter

σ̃ji (s) = log

(
1

T

T∑
t=1

Kh(s− t/T )
∣∣ujit∣∣

)
. (15)

For identification, we rescale σ̃j(t/T ) as

σ̃ji (t/T ) = σ̃ji (t/T )− 1

T

T∑
t=1

σ̃ji (t/T ). (16)

Supposing that the heavy tails issue is less severe in the estimation of correlation, which seems

reasonable; we estimate the correlation parameter by standard procedures

R̃j
ik(s) =

∑T
t=1Kh(s− t/T )ujiku

j
ik√∑T

t=1Kh(s− t
T

)ujitu
j
it

∑T
t=1Kh(s− t

T
)ujktu

j
kt

(17)

for s ∈ (0, 1), and boundary modification as previously detailed.
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Alternatively, we can use a robust correlation estimator. Omitting the superscript j = D,N here,

we first compute the pairwise Kendall tau

τ̂k,l (s) =

T∑
i=1

T−1∑
j=i

Kh(s− i
T

)Kh(s− j
T

) (I {(ui,k − uj,k) (ui,l − uj,l) > 0} − I {(ui,k − uj,k) (ui,l − uj,l) < 0})

T∑
i=1

T−1∑
j=i

Kh(s− i
T

)Kh(s− j
T

) (I {(ui,k − uj,k) (ui,l − uj,l) > 0}+ I {(ui,k − uj,k) (ui,l − uj,l) < 0})
.

(18)

Then applying the relation between Kendall tau and the linear correlation coefficient for the elliptical

distribution suggested by Lindskog, Mcneil, and Schmock (2003) and Battey and Linton (2014), we

obtain the robust linear correlation estimator,

ρ̂k,l (s) = sin
(π

2
τ̂k,l (s)

)
.

In some cases, the matrix of pairwise correlations must be adjusted to ensure that the resulting

matrix is positive definite.

We have

Σ̃j(s) = diag
(
exp(σ̃j(s))

)
R̃j(s)diag

(
exp(σ̃j(s))

)
, j = D,N. (19)

Letting ẽjt = Σ̃j( t
T

)−1/2ujt , we obtain φ̃i by maximizing the univariate log-likelihood function of ẽjit
in (9) for each i = 1, . . . , n. To update the estimator for each Σj( t

T
), denote Θ = (Σj)−1/2. We first

obtain Θ̂ with the local likelihood function given λ̃jt and ṽj, i.e., maximize the local objective function

LjT (Θ; λ̃, s) =
1

T

T∑
t=1

Kh(s− t/T )

log |Θ| −
n∑
i=1

 ṽij + 1

2
ln

1 +
(ιᵀi diag

(
exp(−λ̃jt)

)
Θujt)

2

ṽij


with respect to vech(Θ), and let Σ̂j(t/T ) = Θ̂−2. The derivatives of the objective function are given

in (33) and (34) in Appendix B.

To summarize, the estimation algorithm is as follows.

Algorithm

Step 1. Estimate D, µ,Π (or the CAPM structure)by least squares, σ̃j(u), u ∈ [0, 1], j = N,D

from (15) and (16), and R̃j
ik from (17).

Step 2. Let ẽjt = Σ̃j( t
T

)−1/2ujt . We obtain φ̃i by maximizing the univariate log-likelihood function

of ẽjit in (9) for each i = 1, . . . , n.

Step 3. We replace λjt with λ̃jt = λjt(φ̃; θ̃). For each Σj(
t
T

), denote Θj = (Σj)−1/2. Then obtain Θ̂

with the local likelihood function given λ̃jt and ṽj, with the Newton-Raphson iterations making

use of the derivaties of the objective functions.

Step 4. Repeat Steps 2-3 to update φ̂ and Σ̂j( t
T

) until convergence.
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Our multivariate model can be considered as a GARCH model with a slowly moving correlation

matrix. Assuming diagonality on the short run component λjt enables us to estimate the model easily

and rapidly. In particular, the computation time of the initial estimator is only of order n, with n

being the number of assets considered; it is thus feasible even with quite large n. The extension to

models with non-diagonal short run components is possible, but only feasible with small n.

Blanc, Chicheportiche, and Bouchaud (2014) impose a pooling assumption in their modelling,

which translates here to the restriction that φi = φ1 for all i = 1, . . . , n. This improves efficiency

when the restriction is true. We can test the restriction by a standard Wald procedure or Likelihood

ratio statistic. In the application we find these pooling restrictions are strongly rejected by the data.

6 Application to Dow Jones stocks

6.1 Descriptive statistics

We investigate 28 components of the Dow Jones industrial average index over the period 1991-11-12

to 2016-04-13. The 28 stocks are: MMM, AXP, AAPL.O, BA, CAT, CVX, CSCO.O, KO, DD, XOM,

GE, HD, IBM, INTC.O, JNJ, JPM, MCD, MRK, MSFT.O, NKE, PFE, PG, TRV, UNH, UTX, VZ,

WMT, DIS. The stocks GS and V are excluded since they did not officially go public until 1999

and 2008, respectively. The data is obtained from Thompson Reuters Eikon, and has been adjusted

for corporate actions. We define overnight returns as the log price change between the close of one

trading day to the opening of the next trading day. We do not incorporate weekend and holiday

effects into our model, since they are not the focus of this paper, and our model is already rather

complicated in terms of both model specification and estimation. In addition, although the weekend

effect is documented by studies such as French (1980) and Rogalski (1984), and further supported

by Cho, Linton, and Whang (2007) with a stochastic dominance approach, many studies suggest

the disappearance of the weekend effect, including Mehdian and Perry (2001) and Steeley (2001).

In particular, Sullivan, Timmermann, and White (2001) claim that calendar effects are the result of

data-snooping.

Many studies find significantly higher overnight returns, for example, Cooper, Cliff, and Gulen

(2008) and Berkman, Koch, Tuttle, and Zhang (2012). Cooper, Cliff, and Gulen (2008) even suggest

the US equity premium is solely due to overnight returns during the research period from 1993 to

2006. To investigate this overnight anomaly, Figure B.1 in the online appendix plots the cumulative

returns for these 28 stocks. For AAPL, CAT, CSCO, HD, INTC, JPM, PFE, UTX and WMT,

positive cumulative returns mainly stem from overnight periods, while for MMM, KO, DD, XOM,

JNJ, MCD, MRK, NKE, PG, TRV, VZ and DIS, positive cumulative returns mainly come from

intraday periods. There is no clear dominance of positive overnight returns from these Dow Jones

stocks.

Berkman, Koch, Tuttle, and Zhang (2012) find significant positive mean overnight returns of

+10 basis points (bp) per day, along with -7 bp for intraday returns from 3000 largest U.S. stocks.

Following their procedure, we first compute the cross-sectional mean (or median) returns for each
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day, then compute the time series mean and the standard deviation of these cross-sectional mean

(or median) values. The mean intraday return is 2.18 bp with standard error 1.22 bp, while the

mean overnight return is 1.60 bp with standard error 0.70 bp. The difference between overnight and

intraday mean is not statistically significant.

Table B.1 in the online appendix provides summary statistics for intraday and overnight returns.

Compared with intraday returns, overnight returns exhibit more negative skewness and leptokurtosis.

More specifically, 10 of these 28 stocks exhibit negative intraday skewness, while 26 of 28 stocks have

negative overnight skewness. The largest sample kurtosis for overnight returns is extremely high,

suggesting non-existence of the population kurtosis.

6.2 Results of the univariate model

Table B.2 in the online appendix reports the estimates and their robust standard errors in the mean

equations. We multiply returns by 100 to give more readable coefficients. Πij refers to the element of

the ith row jth column in the coefficient matrix Π. For the prediction of intraday returns, 12 of the

28 stocks have significant Π11 that are all negative, and 7 of 28 stocks have significant δ which are

all positive. This suggests that both overnight and intraday returns tend to have a negative effect

in their subsequent intraday return. However, we do not find clear patterns for predicting overnight

returns. The constant terms, µD and µN , are positive for most Dow Jones stocks.

Table B.3 in the online appendix gives the estimates of dynamic parameters. Parameters βD and

βN are significantly different from 1, and ρD, γD, ρN and γN are positive and significant. In addition,

we find significant leverage effects, with negative and significant ρ∗D, γ∗D, ρ∗N and γ∗N , suggesting higher

volatility after negative returns.

We are also concerned about the difference between overnight and intraday parameters. Ta-

ble B.4 in the online appendix reports Wald tests with the null hypothesis that the intraday and

overnight parameters are equal within each stock. The parameter ωD, determining the uncondi-

tional short-run scale, is significantly larger than ωN . The overnight degree-of-freedom parameter

is around 3, significantly smaller than the intraday counterpart at approximately 8. Both are in

line with the descriptive statistics in Table B.1 in the online appendix and previous studies that

suggest overnight returns are more leptokurtic but less volatile. With other pairs of intraday and

overnight parameters, βj, γ, ρj, γ
∗
j , ρ
∗
j , the null hypothesis is seldom rejected. However, the joint null

hypothesis, (βD, γ, ρD, γ
∗
D, ρ

∗
D) = (βN , γ, ρN , γ

∗
N , ρ

∗
N), is rejected by many stocks. It is noteworthy

that the null hypothesis H0 : γN = ρD is not rejected by our data, which is inconsistent with Blanc,

Chicheportiche, and Bouchaud (2014). They suggest that past overnight returns weakly affect future

intraday volatilities, except for the very next one, but substantially impact future overnight volatili-

ties. This inconsistency is probably because the dynamic conditional score model shrinks the impact

of extreme overnight observations. After this shrinkage, overnight innovations become closer to the

intraday innovations.

Many paper have argued that the introduction of high frequency trading in the period post 2005

has led to an increase in volatility. Figure A.1 in Appendix C plots the intraday and overnight
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This figure shows the dynamic ratio of overnight to intraday volatility, based on the univariate coupled

component model with one subplot for each stock. The five dashed vertical lines from left to right

represent the dates: 10 March 2000(dot-com bubble), 11 September 2001(the September 11 attacks),

16 September 2008(financial crisis), 6 May 2010 (flash crash) and 1 August 2011 (August 2011 stock

markets fall), respectively. Intraday and overnight volatiles are defined as
√

νj
νj−2exp(2λ

j
t + 2σj( tT )), for

j = D,N .

Figure 1: Ratios of overnight to intraday volatility: univariate model
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volatilities,
√

νj
νj−2exp(2λ

j
t + 2σj( t

T
)), for j = D,N . The intraday volatility (red lines) significantly

dominated than the overnight volatility (black lines) in the first half period, but this domination has

disappeared gradually, especially after the 2008 financial crisis. We can also notice that the intraday

volatilities after 2005 are in general smaller than that before 2005, except the financial crisis period.

This is contrary to what often argued about high frequency trading increasing volatilities. To further

investigate this, we plot the ratios of overnight to intraday volatility in Figure 1. The stocks all

exhibit upward trends over the 24-year period considered here, and many of them experienced peaks

around August 2011, corresponding to the August 2011 stock markets fall. As a robustness check,

we investigate the ratio of VIX to the Rogers and Satchell (1991) volatility (RS volatility). The idea

is that the VIX measures one-month ahead volatility, total volatility including presumably intraday

and overnight, whereas the aggregated RS volatility only includes intraday volatility. Therefore,

the ratio reflects the variability of intraday to overnight to some extent, although it is quite noisy.

Figure B.4 in the online appendix presents: (1) the RS volatility on daily Dow Jones stocks, Vrs,t; (2)

one-month ahead RS volatility,
√∑22

i=1 V
2
rs,t+1; (3) VIX; and (4) the ratio of VIX to the one month

ahead RS volatility. The reported RS volatility is the average RS volatility across the 28 stocks. The

ratio of VIX to the one month ahead RS volatility still shows an upward trend during the sample

period.

Figure B.2 in the online appendix depicts the long-run intraday and overnight components,

σD(t/T ) and σN(t/T ), and their 95% point-wise confidence intervals. Most stocks arrived at their

first peaks around 10 March 2000, corresponding to the Dot-com bubble event, while some arrived

at around September 2011, right after the 9-11 attacks. The intraday components reached their

second peaks during the financial crisis in September 2008, while overnight components continued to

rise and reaching their highest points during the 2010 Flash crash. Roughly speaking, the intraday

components were larger than the overnight ones before the first peaks, but smaller after the financial

crisis of September 2008. However, it is imperative to remember that the long-run components are

constructed with rescaling
∫ 1

0
σ(s)ds = 0. In general, the intraday volatility are still larger.

We test the constancy of the ratio of long run overnight to intraday volatility through the null

hypothesis

H0 : exp
(
σN0 (·)

)
= ρ exp

(
σD0 (·)

)
(20)

for some ρ ∈ R+ versus the general alternative. By Theorem 3 and the delta method, exp(σ̂D(s)) and

exp(σ̂N(s)) converge jointly to a normal distribution, and are asymptotically mutually independent.

It follows that for s ∈ (0, 1),

τ̂(s) =
√
Th
(
exp

(
σ̂N(s)

)
− ρ̂ exp

(
σ̂D(s)

))
=⇒ N

(
0, ρ2V D

s + V N
s

)
ρ̂ =

1

T

T∑
t=1

exp
(
σ̂N(t/T )

)
exp (σ̂D(t/T ))

,

where V j
s = exp

(
2σj0(s)

) (vj+3)

2vj
||K||22, for j = D,N.

Figure B.3 in the online appendix displays the test statistics τ̂(s) and the 95 % point-wise con-

fidence intervals for s ∈ [0, 1]. Consistent with the results above, the equal ratio null hypothesis is

mostly rejected before the first peaks occurred (in 2000) and after the second peaks (in 2010).
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All these evidences indicate that the intraday volatility has decreased in importance during the

last 24 years relative to the overnight volatility for the Dow Jones stocks.

We also want to compare our coupled component GARCH model with its one component version

for the open to close return to assess the improvement in volatility forecast from using overnight

returns. We construct 10 rolling windows, each containing 5652 in-sample and 50 out-of-sample

observations. In each rolling window, the parameters in the short-run variances are estimated with

the in-sample data once and stay the same during the one-step out-of-sample forecast. In the one-

step ahead forecast of the long-run covariance matrices, the single-side weight function is used. For

instance, to forecast the long-run covariance matrix of period τ (s = τ/T ), we set the two-side weight

function Kh(s − t/T ) = 0, for t >= τ , and then rescale Kh(s − t/T ) to obtain a sum of 1. Table

B.5 in the online appendix reports Giacomini and White (2006) model pair-wise comparison tests

with the out-of-sample quasi Gaussian and student t log-likelihood loss functions. For most stocks,

the coupled component GARCH model dominates the one component model. Some dominances are

statistically significant. We omit the comparison for overnight variance forecast between the one

component and the coupled component model, since it is not plausible to estimate a GARCH model

with overnight returns alone.

Ljung-Box tests on the absolute and squared standardized residuals are used to verify whether the

coupled component GARCH model is adequate to capture the heteroskedasticity, shown in Table B.6

in the online appendix . With the absolute form, strong heteroskedasticity exists in both intraday and

overnight returns, but disappears in the standardized residuals, implying that our model captures the

heteroskedasticity well. On the other hand, we are sometimes unable to detect the heteroskedasticity

in overnight returns with squared values. In general, the use of the absolute form is more robust

when the distribution is heavy tailed.

Figure B.5 in the online appendix displays the quantile-quantile(Q-Q) plots of the intraday in-

novations, comparing with the student t distribution with ν̂D degrees of freedom. The points in the

Q-Q plots approximately lie on a line, showing that the intraday innovations closely approximate the

t distribution. Figure B.6 in the online appendix displays the Q-Q plots of the overnight innovations.

Many stocks have several outliers in the lower left corners. Our model only partly captures the

negative skewness and leptokurtosis of overnight innovations.

6.3 Results of the multivariate model

Figure A.2 and Figure A.3 in Appendix C present the long run correlations between intraday and

overnight returns, respectively. Each subplot presents the 27 time series of long run correlations

between that individual stock and the remaining stocks. The correlations exhibit an obvious upward

trend during our sample period of 1998-2016, and are typically high during the 2008 financial crisis.

Figure B.7 in the online appendix plots the eigenvalues of the dynamic covariance matrices, as well

as their proportions (the eigenvalues divided by the sum of eigenvalues). The dynamic of eigenvalues

reinforces the previous remark that the stock markets experienced high risk in the 2001 9-11 attacks

and in the 2008 financial crisis. The largest eigenvalue represents a strong common component,

illustrating that a large proportion of the market financial risk can be explained by one single factor.
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More specifically, the largest eigenvalue proportion increased substantially between 1998 and 2016.

The second and third largest eigenvalues still accounted for a considerable proportion of risk in the

volatile period from 2000 to 2002, but became rather insignificant in the volatile period from 2008

to 2011. The largest intraday eigenvalue proportion reached its peak in 2008, while the largest

overnight eigenvalue proportion remained consistently high until 2011. Remarkably, the largest

eigenvalue explained nearly 50% of intraday risk in the 2008 financial crisis, and 70% of overnight

risk in the August 2011 stock markets fall.

Table B.7 in the online appendix provides estimates of the multivariate model. Compared to the

univariate models, the average βD decreases to 0.8796 from 0.9515, and the average βN decreases to

0.8926 from 0.9553. Together with the increase of γj and ρj, this shows that more weights are given

to information in the most recent trading days by taking correlations into consideration.

One concern is that our initial correlation estimator is based on the Pearson product moment

correlation. This Pearson estimator may perform poorly due to the heavy tails of overnight inno-

vations. Therefore, we also try the robust correlation estimator in the initial step. But the results

remain similar as shown in Figure B.2 in the online appendix. It plots the largest eigenvalue pro-

portions of the estimated covariance matrices to see the difference between using robust (in black)

and non-robust (in red) correlation estimators in the initial step. We use solid lines for the initial

estimators, and dash lines for the updated estimators. The updated estimators are obtained in the

final estimation step, as previously detailed. Despite the large difference of initial estimators, in

particular for overnight returns, the updated estimators are roughly similar. Like the eigenvalues,

the updated covariances themselves also remain unchanged for different initial estimators.

To investigate the idiosyncratic risk, we estimate the mean equation with a CAPM structure. As

reported in Table B.8 in the online appendix, the intraday alpha (αD) is significant in 6 stocks, and

the overnight alpha (αN) is significant in 15 stocks. The intraday and overnight beta coefficients,

βDD and βNN , are very close, varying from 0.5 to 1.5 and all significantly positive. For several stocks,

the beta coefficients associated with previous market returns, βDN and βNN , are also significant with

absolute values larger than 0.1. We then investigate the dynamic covariance of the residuals in the

CAPM model. The idiosyncratic risk is indeed quite small for most Dow Jones stocks, implied by

Figure (B.9–B.10) in the online appendix.

7 Application to CRSP stocks

In this section, we investigate 10 cap based portfolios with CRSP stocks from July 1992 to December

2015. July 1992 is the first month that CRSP provides opening stock prices. The prices are adjusted

for stock splits and dividends with the cumulative factor in CRSP. Stocks with non-active trade

status are excluded for that day, as well as stocks with overnight or intraday returns larger than 50%

in absolute value.3 CRSP sorts all stocks into 10 deciles based on their market capitalization values,

and provide the portfolio assignment for each stock each year. We compute three versions of value

3In CRSP, if the closing price is not available on any given trading day, the number in the price field has a negative

sign to indicate that it is a bid/ask average and not an actual closing price. We exclude these negative closing price.
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weighted intraday and overnight returns for 10 cap based deciles, according to the assignment with

three market types: NYSE/AMEX/NASDAQ, NASDAQ, and NYSE.

7.1 Overnight returns

Table A.1 in Appendix C reports descriptive statistics for overnight and intraday returns of the deciles

constructed with NYSE/AMEX/NASDAQ stocks (Panel A). The standard errors are estimated based

on the standard deviations of the value weighted returns cross time. The mean intraday and overnight

returns are positive and significant, except the mean intraday return in the largest cap decile. Small

stocks show higher returns than large stocks, especially during intraday, probably suggesting the

existence of size effects. Specifically, the mean intraday (overnight) return is 9.4 bp (6.0 bp) per

day in the smallest decile, 9.6 pb (3.2 bp) in the second smallest decile, and only 1.6 bp (2.7 bp) in

the largest decile. However, the median values of intraday returns are often larger than 10 bp while

their overnight counterparts are overall much smaller around 6 bp. This indicates the right skewness

of intraday returns. Panel B and C give the descriptive statistics for NASDAQ deciles and NYSE

deciles, respectively. In general, NASDAQ deciles have higher returns than NYSE deciles.

Figure A.4 in Appendix C plots the sample autocorrelation function of intraday and overnight

returns for deciles with stocks on NYSE /AMEX/NASDAQ. Both intraday and overnight returns

exhibit large and significant positive autocorrelations in small cap deciles. It is worth noting that the

autocorrelations of overnight returns decay at a very slow rate, which suggests the existence of long

memory. This is somehow consistent with Aboody, Even-Tov, Lehavy, and Trueman (forthcoming).

They documented overnight returns can serve as a measure of firm-specific investor sentiment, partly

by showing overnight returns are persistent for periods extending several weeks, and argued that

short-term persistence is stronger for harder-to-value firms.

We also notice that the overnight returns in large cap deciles (deciles 5-10) show significant

negative first-order autocorrelations, with magnitude around −0.1. For intraday deciles, only the

largest cap decile exhibits significantly negative first order autocorrelation, around −0.07. In addition

to the autocorrelations, Figure A.5 in Appendix C shows the cross correlations between overnight

returns and intraday returns. The correlation between rDt and rNt on the same day is around 0.1 and

significant in most cap deciles, but insignificant in the largest decile. The cross correlation between

rDt−1 and rNt is significant for all cap deciles, with magnitude even larger than the correlation between

rDt and rNt for decile 1, 2, 3 and 10, which indicates strong positive effects from intraday (overnight)

returns to the subsequent overnight (intraday) returns.

7.2 Results of the univariate model

We estimate the univariate coupled component GARCH model for each cap decile. Table A.2 of

Appendix C reports the estimates and their robust standard errors in the mean equations. Most

deciles exhibit negative and significant δ, indicating overnight returns have positive effects on the

subsequent intraday returns. One exception is the largest decile, with insignificantly δ. These positive

effects seem to be conflicted with the strong reversal effects reported in Berkman, Koch, Tuttle, and
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This figure plots the ratio of overnight to intraday volatility for cap based deciles. Decile 1 has

the smallest capitalization and decile 10 has the largest. The intraday and overnight volatility are√
νj
νj−2exp(2λ

j
t + 2σj( tT )) for j = D,N , respectively.

Figure 2: Ratio of overnight to intraday volatility of cap based deciles: NYSE/AMEX/NASDAQ
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Zhang (2012). But note that the reversal effects describe the cross-sectional difference in returns,

while our positive effects describe the time-series properties of each return series.

Table A.4 in Appendix C reports the estimates of the dynamic parameters for NYSE/AMEX/NASDAQ

deciles. Parameters βD and βN are significantly different from 1, and ρD, γD, ρN and γN are signifi-

cantly positive. The leverage effects are significant, suggesting higher volatility after negative returns.

Now the overnight degrees of freedom are larger than 4, less heavy tailed than that of individual

stocks in the previous section.

One main advantage of the coupled component model, relative to the traditional one component

version, is that it allows us to investigate the overnight and intraday volatility separately, and to

obtain their ratios. As depicted in Figure 2 for NYSE/AMEX/NASDAQ stocks, the ratio of overnight

to intraday volatility exhibits a downward trend in small cap deciles and an upward trend in large

cap deciles. We also notice that the slopes increases monotonically from the smallest cap decile to

the largest cap decile. Moreover, the ratio was considerably higher during the crisis period. Results

remain similar when we consider NASDAQ stocks or NYSE stocks alone (Figure A.6), although the

slop is somehow flatter for NYSE stocks. Actually, according to the market capitalization values in

2015, the average capitalization value of the smallest NYSE decile is 0.0993 million, which is between

decile 2 and decile 3 in NYSE/AMEX/NASDAQ, and between decile 3 and decile 4 in NASDAQ,

as shown in Table A.3 of Appendix C. If we look at the decile 1 of NYSE and decile 3 or decile 4 of

NASDAQ, they indeed exhibit similar ratios of overnight to intraday volatility.

With the same approach, we also conduct 10 beta sorted portfolios and 10 standard deviation

sorted portfolios. The beta and standard deviation values decrease from decile 1 to decile 10. Most

deciles exhibit increasing overnight to intraday volatility ratio during the period, but there is no

monotonic pattern across deciles.

Overall, the ratio of overnight to intraday volatility has been increased during the sample period

at least for large stocks, and the ratio was typically higher during the financial crisis period, which

is quite consistent with what we observed from the Dow Jones stocks in the previous section.

7.3 Results of the multivariate model

We next investigate the correlations between overnight and intraday returns with the multivariate

model. Figure A.8 in Appendix C presents the long run correlations between intraday and overnight

returns in Panel A and Panel B, respectively. Each subplot presents the 9 time series of long run

correlations between that decile and the remaining deciles. Both intraday and overnight correlations

have increased gradually during the sample period. Especially, the smallest cap decile had rather low

correlations with other deciles, around 0.2 (0.3) for overnight (intraday) in 1992, and this number

increased considerably to around 0.8 (0.6) for overnight (intraday) in 2015. Despite this substantial

increase, comparing with large stocks, small stocks still co-move less with remaining stocks. We may

expect different correlations during trading and non-trading hours. Indeed, the short run intraday

and overnight correlations might be different. But the correlations reported here are the slowly

moving long run correlations. We can not observe big difference between these long run intraday

and overnight correlations.
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8 Conclusion

We have introduced a new coupled component GARCH model for intraday and overnight volatility.

This model is able to capture the heavy tails of overnight returns. For each component, we fur-

ther specify a non-parametric long run smoothly evolving component with a parametric short term

fluctuates. The large sample properties of the estimators are provided for the univariate model.

The empirical results show that the ratio of overnight to intraday volatility for specially large

stocks has increased during the last 20 years when accounting for both slowly changing and rapidly

changing components. This is contrary to what is often argued with regard to the change in market

structure and the predatory practices of certain traders.

The information in overnight returns is valuable for updating the forecast of the close to close

volatility. In the multivariate model we find that (slowly moving) correlations between assets have

increased during our sample period. In particular, the co-movement of small stocks with the market

has increased considerably.
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9 Appendix

9.1 Appendix A: Proof of theorems and lemmas in the univariate model

9.1.1 Proof of Lemma 1

Denote Hj(s) = exp(σj(s)). We drop the superscript j in what follows and have

|ut| = H(t/T ) |et| = E |et|H(t/T ) +H(t/T ) (|et| − E |et|)
|ut|
E |et|

= H(t/T ) +
H(t/T )

E |et|
(|et| − E |et|)

=: H(t/T ) + ξt

where Eξt = 0. Suppose we know E |et| .This gives a non-parametric regression function, so we can

invoke the Nadaraya-Waston estimator

H̃(s)
∗

=

∑T
t=1Kh(s− t/T ) |ut|

E|et|∑T
t=1Kh(s− t/T )

.

From Lemma 2, {et} is a β mixing process with exponential decay, and ξt thereby is also a β

mixing process with exponential decay. Invoking Theorem 3 in Vogt and Linton (2014), Theorem

4.1 in Vogt (2012) or Kristensen (2009) yields:

sup
s∈[C1h,1−C1h]

∣∣∣H̃(s)
∗ −H0(s)

∣∣∣ = Op

(√
log T

Th
+ h2

)
.

Denote σ̃(s)
∗

= log H̃(s)
∗
. Taylor expansion at H0(s) gives

σ̃(s)
∗

= σ(s) +
(
H̃(s)

∗ −H(s)
) 1

H(s)
− 1

2

(
H̃(s)

∗ −H(s)
)2 1

¯H(s)2
,

where H̄(s) is function between H̃(s)
∗

and H0(s). Therefore,

sup
s∈[C1h,1−C1h]

∣∣σ̃(s)
∗ − σ0(s)

∣∣ = Op

(
h2 +

√
log T

Th

)
.

For s ∈ [0, h] ∪ [1− h, 1], we use a boundary kernel to ensure the bias property holds through [0, 1].

Until now we have obtained the property for the un-rescaled estimator σ̃(s)
∗
. Next, we are going

to show the convergence rate of the rescaled estimator σ̃(s). Recall that

σ̃(s) = σ̃(s)− 1

T

T∑
t=1

σ̃(
t

T
),

and we can rewrite σ̃(s) as:

σ̃(s) = σ̃(s)
∗ − 1

T

T∑
t=1

σ̃(
t

T
)
∗
,
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as E |et| in σ̃(s)
∗

has vanished due to the rescaling. Plugging this into sups∈[C1h,1−C1h] |σ̃(s)− σ0(s)|
gives

sup
s∈[0,1]

|σ̃(s)− σ0(s)|

= sup
s∈[0,1]

∣∣∣∣∣σ̃(s)
∗ − 1

T

T∑
t=1

σ̃(
t

T
)
∗ − σ0(s)

∣∣∣∣∣
= sup

s∈[0,1]

∣∣∣∣∣σ̃(s)
∗ − 1

T

T∑
t=1

σ̃(
t

T
)
∗ − σ0(s)−

1

T

T∑
t=1

σ0(
t

T
) +

1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣
≤ sup

s∈[0,1]

∣∣σ̃(s)
∗ − σ0(s)

∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

(
σ̃(
t

T
)
∗ − σ0(

t

T
)

)∣∣∣∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣
= Op

(
h2 +

√
log T

Th

)
+Op

(
h2 +

√
log T

Th

)
+

∣∣∣∣∣ 1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣
= Op

(
h2 +

√
log T

Th

)
+

∣∣∣∣∣ 1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣ .
We only have to work out the second term

∣∣∣ 1T ∑T
t=1 σ0(

t
T

)
∣∣∣ . According to Theorem 1.3 in Tasaki

(2009),

lim
T→∞

T 2

(∫ 1

0

σ0(s)ds−
1

2T

T∑
t=1

σ0(
t

T
)− 1

2T

T−1∑
t=0

σ0(
t

T
)

)
= − 1

12
(σ′0(1)− σ′0(0)) .

Since
∫ 1

0
σ0(s)ds = 0 and σ′0(1)− σ′0(0) is bounded by Assumption A4, it follows∣∣∣∣∣ 1

T

T∑
t=1

σ0(
t

T
)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

2T

T∑
t=1

σ0(
t

T
) +

1

2T

T−1∑
t=0

σ0(
t

T
)

∣∣∣∣∣+

∣∣∣∣∣ 1

2T

T∑
t=1

σ0(
t

T
)− 1

2T

T−1∑
t=0

σ0(
t

T
)

∣∣∣∣∣
= O(T−2) +

1

2T
|σ0(1)− σ0(0)|

= O(T−1).

Therefore, the uniform convergence rate is

sup
s∈[0,1]

|σ̃(s)− σ0(s)| = Op

(
h2 +

√
log T

Th

)
+O(T−1)

= Op

(
h2 +

√
log T

Th

)
.

9.1.2 Proof of Theorem 1

Let φi = βD and θk be an element in function σD(·) (for simplicity, the subscript k is omitted in

the following explanation). Recall that hjt = λjt + σj(t/T ), and the log-likelihood function, without
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unnecessary constant, can be rewritten as a function of hjt

ljt = −hjt −
vj + 1

2
ln

(
1 +

(ujt)
2

vj exp(2hjt)

)
+ ln Γ

(
vj + 1

2

)
− 1

2
ln vj − ln Γ

(vj
2

)
with the score functions

∂lt
∂θ

=
∂lDt
∂hDt

∂hDt
∂θ

+
∂lNt
∂hDt

∂hDt
∂θ

= mD
t

∂hDt
∂θ

+mN
t

∂hDt
∂θ

∂lt
∂βD

=
∂lDt
∂hDt

∂hDt
∂βD

= mD
t

∂hDt
∂βD

+mN
t

∂hDt
∂βD

.

Recall that mj
t = (vj + 1)bjt − 1,with bjt independent and identically beta distributed, we have

E
(
mN
t m

D
t

)
= 0, E

(
mj
t

)2
is time invariant, and E

(
mj
t

)2
<∞. Therefore, we can write

T∑
t=1

E
∂lt
∂θ

∂lt
∂βD

= E
(
mD
t

)2 T∑
t=1

∂hDt
∂θ

∂hDt
∂βD

+ E
(
mN
t

)2 T∑
t=1

E
∂hNt
∂θ

∂hNt
∂βD

.

To prove the theorem, it then suffices to show that∥∥∥∥∥
T∑
t=1

E

(
∂hDt
∂θ
∂hNt
∂θ

)(
∂hDt
∂βD

∂hNt
∂βD

)∥∥∥∥∥
∞

= O(1).

By expressing λjt as a function of ϕ and
{(
σj( t−i

T
), ujt−i

)
, i ≥ 0

}
, we can write

∂hjt
∂θ

as

(
∂hDt
∂θ
∂hNt
∂θ

)
=

T∑
k=0

 ∂hDt
∂σD( t−k

T
)

∂σD( t−k
T

)

∂θ

∂hNt
∂σD( t−k

T
)

∂σD( t−k
T

)

∂θ


=

T∑
k=0

 ∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)

ψDi

(
t− k
T

)
,

when the limit exists. Thus we obtain,

1

T

T∑
t=1

E

(
∂hDt
∂θ
∂hNt
∂θ

)(
∂hDt
∂βD

∂hNt
∂βD

)

=
1

T

T∑
k=0

T∑
t=1

E

 ∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)

(∂hDt
∂βD

∂hNt
∂βD

)
ψDi

(
t− k
T

)

=
1

T

T∑
k=0

E

 ∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)

(∂hDt
∂βD

∂hNt
∂βD

) T∑
t=1

ψDi

(
t− k
T

)
.

The second equality follows since E

 ∂hDt
∂σj( t−k

T
)

∂hNt
∂σj( t−k

T
)

(∂hDt
∂βD

∂hNt
∂βD

)
is invariant across time t by Lemma 4.
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Taylor expansion of
∑T

t=1 ψ
D
i

(
t−k
T

)
around

∑T
t=1 ψ

D
i

(
t−k
T

)
gives

1

T

∑
t

ψDi

(
t− k
T

)
=

1

T

∑
t

ψDi

(
t

T

)
− 1

T

k

T

∑
t

ψD
′

i

(
t

T

)
+O

(
k

T

)2

= O

(
1

T

)
+O

(
k

T

)
+O

(
k

T

)2

= O

(
k

T

)
.

Hence, it suffices to show

T∑
k=0

∥∥∥∥∥∥k
E

 ∂hDt
∂σD( t−k

T
)

∂hNt
∂σD( t−k

T
)

(∂hDt
∂βD

∂hNt
∂βD

)∥∥∥∥∥∥
∞

<∞,

which is obtained by Lemma 3.

The proof with respect to vD is similar, but the score function is slightly different. The score

functions of lDt and lNt with respect to vD are

∂lDt
∂vD

= −1

2
ln

(
1 +

(uDt )2

vD exp(2hDt )

)
+

∂

∂vD

(
ln Γ

(
vD + 1

2

)
− ln Γ

(vD
2

))
− 1

2vD

+
vD + 1

2
(

1 +
(uDt )2

vD exp(2hDt )

) (uDt )2

v2D exp(2hDt )

(
1 + 2vD

∂hDt
∂vD

)
+
∂hDt
∂vD

(21)

∂lNt
∂vD

=
vN + 1

2
(

1 +
(uNt )2

vN exp(2hNt )

) (uNt )2

v2N exp(2hNt )

(
1 + 2vN

∂hNt
∂vD

)
+
∂hNt
∂vD

.

Then we can have

T∑
t=1

E
∂lDt
∂θ

∂lDt
∂vD

=
T∑
t=1

EmD
t

∂hDt
∂θ

[
∂hDt
∂vD

− 1

2
ln

(
1 +

(uDt )2

vD exp(2hDt )

)]

+
T∑
t=1

EmD
t

∂hDt
∂θ

∂ ln Γ
(
vD+1

2

)
− 1

2
ln vD − ln Γ

(
vD
2

)
∂vD

+
T∑
t=1

EmD
t

∂hDt
∂θ

 vD + 1

2
(

1 +
(uDt )2

vD exp(2hDt )

) (uDt )2

v2D exp(2hDt )

(
1 + 2vD

∂hDt
∂vD

)
=

1

2
E

(
mD
t

(
− ln

(
1 +

(εDt )2

vD

)
+

vD + 1

2vD + (εDt )2
(εDt )2

vD

))
1

T

T∑
t=1

E
∂hDt
∂θ

+ E

(
mD
t

(
1 +

(vD + 1) (εDt )2

2vD + (εDt )2

))
1

T

T∑
t=1

E
∂hDt
∂vD

∂hDt
∂θ

.

The first term vanishes by Lemma 5. Then we can use the same procedure above to obtain∑T
t=1E

∂hDt
∂vD

∂hDt
∂θ

= O(1), and to finish the proof for vD.
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9.1.3 Proof of Theorem 2

The general strategy is we first show the estimator obtained by maximizing
∑
l(φ; θ̃) and

∑
l(φ; θ)

has the same asymptotic distribution, provided
∥∥∥θ̃ − θ0∥∥∥ converges to 0. Then we show

∥∥∥θ̃ − θ0∥∥∥
converges to 0, given the uniform convergence rate for ˜σ(s) in Lemma 1. As a result, the asymptotic

property of φ̃ follows as in a parameter model.

Following Severini and Wong (1992), the expansion of 1√
T

∑T
t=1

∂lt(φi0,θ̃)
∂φ

at θ0 gives

1√
T

T∑
t=1

∂lt(φ0; θ̃)

∂φ
=

1√
T

T∑
t=1

∂lt(φ0; θ0)

∂φ
+

1√
T

∞∑
k

T∑
t=1

∂2lt(φ0; θ0)

∂φ∂θk
(θ̃k − θk,0) + op(1). (22)

According to Theorem 1, we have E
∑T

t=1
∂2lt(φ;θ)
∂φi∂θk

= O(1), for each k and i, k ∈ {1, . . . ,∞} and

i ∈ {1, . . . , 14} . It follows that
T∑
t=1

∂2lt(φ0; θ0)

∂φi∂θk
= Op(

√
T ).

Given that the dimension of the sieve space grows slowly and θ̃ converges to θ, the second term in

(22) will be of order op(1).

Next we investigate the relationship between the kernel estimator and θ̃ in a very general setting.

Recall that σ(s) =
∑∞

j=1 θjψj(s) for some orthogonal basis ψj. We assume that σ̃(s) is a member of

the same normed space as σ(s) in which case we can write

σ̃(s) =
∞∑
j=1

θ̃jψj(s)

for some coefficients θ̃j, j = 1, 2, . . . . We have∫
(σ̃(s)− σ(s))2 ds =

∫ ( ∞∑
j=1

(
θ̃j − θj

)
ψj(s)

)2

ds

=
∞∑
j=1

(
θ̃j − θj

)2 ∫
ψ2
j (s)ds

=
∞∑
j=1

(
θ̃j − θj

)2
under the assumption that ψj are orthonormal. So given the L2 rate of convergence of σ̃ we have

the same convergence rate for the implied coefficients. Hence, given the uniform convergence rate

for σ̃(s) in Lemma 1, we have
∥∥∥θ̃ − θ0∥∥∥ converges to 0, and the estimator obtained by maximizing∑

l(φ; θ̃) and
∑
l(φ; θ) has the same property.

Therefore, the asymptotic property of φ̃ can be obtained with the similar procedure of Harvey

(2013). He gives the consistency and asymptotic normality of the estimator for the parametric beta-

t-egarch model. The basic idea is that the first three derivatives of lt with respect to φ (except vj)

are linear combinations of bht (1 − bt)
k, h, k = 0, 1, 2, . . ., with bt = (1+v)(et)2

v exp(2λt)+(et)2
. Since bt is beta

distributed, these first three derivatives are all bounded. It is then straightforward to show that the

29



score function satisfies a CLT, and its derivative converges to the information matrix by the ergodic

theorem.

Obviously, φ̂ has the same asymptotic property of φ̃, since
∑T

t=1
∂lt(φi0,θ̃)

∂φ
and

∑T
t=1

∂lt(φi0,θ)
∂φ

have

the same asymptotic property.

9.1.4 Proof of Theorem 3

Consider the local likelihood function given ηjt and vj, i.e., minimize the objective function

LjT (σj; s) =
1

T

T∑
t=1

Kh(s− t/T )

[
σj +

vj + 1

2
ln

(
1 +

(ηjt exp(−σj))2

vj

)]

with respect to ω, for j = D,N separately. The first order and second order derivatives are:

∂LjT (σj; s)

∂σj
=

1

T

T∑
t=1

Kh(s− t/T )
[
−(vj + 1)bjt(σ

j) + 1
]

∂2LjT (σj; s)

∂σj2
= 2(vj + 1)

1

T

T∑
t=1

Kh(s− t/T )
[
bjt(σ

j)
(
1− bjt(σj)

)]
, (23)

where

bjt(σ
j) =

(ηjt )
2

vj

exp(2σj) +
(ηjt )

2

vj

.

We have
√
Th
(
σ̂j(s)− σj0(s)

)
=

[
1

Th

∂2LjT (σj0; s)

∂σj2

]−1
1√
Th

∂LjT (σj0; s)

∂σj
+ op(1),

This is asymptotically normal with mean zero and variance (when the t distribution is correct)

var

[
1√
Th

∂LjT (σj0; s)

∂σj

]
= ||K||22E

[(
1− (vj + 1)bjt(σ

j
0(s))

)2]
t/T=s

.

This follows because

E
[(

1− (vj + 1)bjt(σ
j
0(s))

)2]
= f(t/T )

for some smooth function f, and recall ηjt = exp(σj(t/T ))εjt . It follows that

h2

Th

T∑
t=1

K2
h(s− t/T )f(t/T )→ ||K||22f(s),

Therefore,

√
Th
(
σ̂j(s)− σj0(s)

)
=⇒ N

0,
||K||22

E
[(

1− (vj + 1)bjt
)2]

t/T=s
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Further, since bjt is distributed as beta(1
2
,
vj
2

), with

E
[(

1− (vj + 1)bjt
)2]

t/T=s
=

2vj
(vj + 3)

.

It thus follows that
√
Th
(
σ̂j(s)− σj0(s)

)
=⇒ N

(
0,

√
(vj + 3)

2vj
||K||22

)
.

when the t distribution is correct.

9.1.5 Other Lemmas

Lemma 2 If |βj| < 1, j = D,N, then ejt and λjt are strictly stationary and β-mixing with exponential

decay.

Proof. For simplicity, we consider the model without leverage effects

λDt = ωD(1− βD) + βDλ
D
t−1 + γDm

D
t−1 + ρDm

N
t

λNt = ωN(1− βN) + βNλ
N
t−1 + γNm

N
t−1 + ρNm

D
t−1.

Let us write it as
λDt
λNt
mD
t

mN
t

 =


βD 0 γD 0

0 βN ρN βN

0 0 0 0

0 0 0 0



λDt−1
λNt−1
mD
t−1

mN
t−1

+


ρDm

N
t + ωD(1− βD)

ωN(1− βN)

mD
t

mN
t

 .

Since mN
t and mD

t are i.i.d random variables and follow a beta distribution, we can easily find an

integer s ≥ 1 to satisfy

E

∣∣∣∣∣∣∣∣∣
ρDm

N
t + ωD(1− βD)

ωN(1− βN)

mD
t

mN
t

∣∣∣∣∣∣∣∣∣

s

<∞

(Condition A2 in Carrasco and Chen (2002)). The largest eigenvalue of the matrix∣∣∣∣∣∣∣∣∣
βD 0 γD 0

0 βN ρN βN

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣
is smaller than 1 by assumption. Define Xt =

(
λDt λNt mD

t mN
t

)ᵀ
. According to Proposition

2 in Carrasco and Chen (2002), the process Xt is Markov geometrically ergodic and E |Xt|s <
∞. Moreover, if Xt is initialized from the invariant distribution, it is then strictly stationary and

β-mixing with exponential decay. The process {ejt} is a generalized hidden Markov model and

stationary β-mixing with a decay rate at least as fast as that of {λjt} by Proposition 4 in Carrasco

and Chen (2002). The extension to the model with leverage effects is straightforward, by defining

Xt =
(
λDt λNt mD

t mN
t sign

(
eDt
)

sign
(
eNt
))ᵀ

.
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Lemma 3 Under Assumption A1-A4, it holds that∑
k

k

∥∥∥∥∥E
([

∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

](
∂

∂βD
hDt

∂
∂βD

hNt

))∥∥∥∥∥
∞

<∞.

Proof. By (26) and (27), we have

E

 ∂hDt+1

∂σD(t+k/T )
∂hNt+1

∂σD(t+k/T )

( ∂
∂βD

hDt+1
∂

∂βD
hNt+1

)
= EAt+1

(
aDDt
aNDt

)(
λDt − ωD 0

)
ATt+1; k = 1

E

 ∂hDt+1

∂σD(t+k/T )
∂hNt+1

∂σD(t+k/T )

( ∂
∂βD

hDt+1
∂

∂βD
hNt+1

)
= E

(
1

0

)(
λDt − ωD 0

)
ATt+1 = 0; k = 0.

When k > 1, it holds

vec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)
= vecAt

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k

(
λDt−1 − ωD 0

)
ATt

+ vecAt

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k

(
λDt−2 − ωD 0

)
ATt−1B

T
t−1A

T
t

+ ...

+ vecAt

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k

(
λDt−k+1 − ωD 0

)
ATt−k+2B

T
t−k+2...A

T
t−1B

T
t−1A

T
t

=
k−1∑
j=1

(At ⊗ At)

(
j−1∏
i=1

(Bt−i ⊗Bt−i) (At−i ⊗ At−i)

)
vec

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))
.

Since (Bt−1 ⊗Bt−1) (At−1 ⊗ At−1) and BtAt are i.i.d, and EBtAt = EBtEAt, we obtain

Evec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)
(24)

=
k−1∑
j=1

E (At ⊗ At)E (Bt−i ⊗Bt−i) (At−i ⊗ At−i)j−1Evec

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))
.

By (4), we can express λDt−1 as a function of
{(
mD
t−i,m

N
t−i+1

)
, i > 1

}
. Note that Bt, At,and Λt are

independent of
{(
mD
s ,m

N
s

)
, s 6= t

}
. Therefore, we have

E

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD

))

= γDE

(
k−1∏
i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1D

(
mD
t−i +

(
mD
t−i + 1

)
sign(eDt−i)

)
+ ρDE

(
k−1∏
i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1D

(
mN
t−i+1 + (mN

t−i+1 + 1)sign(eNt−i+1)
)
,
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with the first term∥∥∥∥∥E
(
k−1∏
i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1D

(
mD
t−i +

(
mD
t−i + 1

)
sign(eDt−i)

)∥∥∥∥∥
∞

≤
(∑k−1

i=j+1
βi−1D

)∥∥E (Bt

(
mD
t + (mD

t + 1)sign(eDt )
)
At
)∥∥
∞ ‖EBtEAt‖k−j−1∞ ‖EΛt‖∞

+ βk−jD

∥∥EΛt−k
(
mD
t−k + (mD

t−k + 1)sign(eDt−k)
)∥∥
∞ ‖EBtEAt‖k−j∞

≤ βD
1− βD

∥∥E (Bt

(
mD
t + (mD

t + 1)sign(eDt )
)
At
)∥∥
∞ ‖EΛt‖∞ ‖EBtEAt‖k−j−1∞

+ βk−jD

∥∥EΛt−k
(
mD
t−k + (mD

t−k + 1)sign(eDt−k)
)∥∥
∞ ‖EBtEAt‖k−j∞

and the second term∥∥∥∥∥E
(
k−1∏
i=j

Bt−iAt−i

)
Λt−k

∑k

i=j+1
βi−1D

(
mN
t−i+1 + (mN

t−i+1 + 1)sign(eNt−i+1)
)∥∥∥∥∥
∞

≤ βD
1− βD

∥∥E (Bt

(
mN
t + (mN

t + 1)sign(eNt )
)
At
)∥∥
∞ ‖EΛt‖∞ ‖EBtEAt‖k−j−1∞ .

According to the definition of ‖‖∞ ,∥∥∥∥∥Evec

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))∥∥∥∥∥
∞

≤

∥∥∥∥∥E
((

k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))∥∥∥∥∥
∞

Therefore, ∥∥∥∥∥Evec

((
k−1∏
i=j

Bt−iAt−i

)
Λt−k

(
λDt−j − ωD 0

))∥∥∥∥∥
∞

≤ cT ‖EBtEAt‖k−j−1 (25)

with

cT =
βD

1− βD
|γD|

∥∥E (Bt

(
mD
t + (mD

t + 1)sign(eDt )
)
At
)∥∥
∞ ‖EΛt‖∞

+ ‖EBtEAt‖∞
∥∥EΛt−k

(
mD
t−k + (mD

t−k + 1)sign(eDt−k)
)∥∥
∞

+
βD

1− βD
|ρD|

∥∥E (Bt

(
mN
t + (mN

t + 1)sign(eNt )
)
At
)∥∥
∞ ‖EΛt‖∞ .

Substituting (25) into (24) gives∥∥∥∥∥Evec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)∥∥∥∥∥
∞

≤
k−1∑
j=1

‖E (At ⊗ At)‖∞ ‖E (Bt−i ⊗Bt−i) (At−i ⊗ At−i)‖j−1∞ cT ‖EBtEAt‖k−j−1∞

≤ cT ‖E (At ⊗ At)‖∞
k−1∑
j=1

‖E (Bt−i ⊗Bt−i) (At−i ⊗ At−i)‖j−1∞ ‖EBtEAt‖k−j−1∞

≤ cT ‖E (At ⊗ At)‖∞
‖EBtEAt‖k−2∞

1− ‖E(Bt−i⊗Bt−i)(At−i⊗At−i)‖∞
‖EBtEAt‖∞

,
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provided that ‖EBtEAt‖∞ < 1 and ‖E (Bt−1At−1 ⊗Bt−1At−1)‖∞ < ‖EBtEAt‖∞ .It is then straight-

forward to show ∑
k

k

∥∥∥∥∥Evec

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)∥∥∥∥∥
∞

<∞

and thereby ∑
k

k

∥∥∥∥∥E
(

∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

)(
∂

∂βD
hDt

∂
∂βD

hNt

)∥∥∥∥∥
∞

<∞.

Lemma 4 The score functions of hjt with respect to βD, vD and σj(t/T ) are(
∂

∂βD
hDt

∂
∂βD

hNt

)
= At

(
λDt−1 − ωD

0

)
+ AtBt−1

(
∂

∂βD
hDt−1

∂
∂βD

hNt−1

)
(26)

=
∞∑
j=1

At

j−1∏
i=1

Bt−iAt−i

(
λDt−j − ωD

0

)
.

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)
= AtBt−1

 ∂hDt−1

∂σD(t−k/T )
∂hNt−1

∂σD(t−k/T )

 (27)

= At

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k, k > 1(

∂hDt
∂σD(t/T )
∂hNt

∂σD(t/T )

)
=

(
1

0

)
; and

(
∂hDt

∂σD(t−1/T )
∂hNt

∂σD(t−1/T )

)
= At

(
aDDt−1
aNDt−1

)
,

with Λt =

(
aDDt
aNDt

)
.If the top-Lyapunov exponent of the sequence of AtBt−1 is strictly negative,

(
∂

∂βD
hDt

∂
∂βD

hNt

)
,(

∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

)
and

(
∂hDt

∂σD(t−k/T )
∂hNt

∂σD(t−k/T )

)(
∂hDt
∂βD

∂hNt
∂βD

)
are strictly stationary.

Proof. Since hjt = λjt + σj(t/T ), we can write hjt in a recursive formula as

hDt = σD(t/T )− βDσD(
t− 1

T
) + ωD(1− βD) + βDh

D
t−1 + γDm

D
t−1

+ ρDm
N
t + γ∗D(mD

t−1 + 1)sign(uDt−1) + ρ∗D(mN
t + 1)sign(uNt ) (28)

hNt = σN(t/T )− βNσN(
t− 1

T
) + ωN(1− βN) + βNh

N
t−1 + γNm

N
t−1

+ ρNm
D
t−1 + ρ∗N(mD

t−1 + 1)sign(uDt−1) + γ∗N(mN
t−1 + 1)sign(uNt−1). (29)

and mD
t and mN

t can be expressed as

mD
t =

(1 + vD)(uDt )2 exp(−2hDt )

vD + (uDt )2 exp(−2hDt )
− 1, vD > 0

mN
t =

(1 + vN)(uNt )2 exp(−2hNt )

vN + (uNt )2 exp(−2hNt )
− 1, vN > 0.
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Taking the first order derivative of equation (28) and (29) with respect to βD gives

∂hDt
∂βD

= −σD(
t− 1

T
)− ωD + hDt−1 + βD

∂

∂βD
hDt−1 +

∂

∂βD
γDm

D
t−1 +

∂

∂βD
ρDm

N
t

+
∂

∂βD
γ∗D(mD

t−1 + 1)sign(uDt−1) +
∂

∂βD
ρ∗D(mN

t + 1)sign(uNt ) (30)

∂hNt
∂βD

= βN
∂

∂βD
hNt−1 +

∂

∂βD
γNm

N
t−1 +

∂

∂βD
ρNm

D
t−1

+
∂

∂βD
ρ∗N(mD

t−1 + 1)sign(uDt−1) +
∂

∂βD
γ∗N(mN

t−1 + 1)sign(uNt−1) (31)

and the derivatives of mD
t−1 and mN

t−1 are

∂

∂βD
mD
t−1 =

∂mD
t−1

∂hDt−1

∂

∂βD
hDt−1 = −2 (vD + 1) bDt−1

(
1− bDt−1

) ∂

∂βD
hDt−1

∂

∂βD
mN
t−1 =

∂mN
t−1

∂hNt−1

∂

∂βD
hNt−1 = −2 (vN + 1) bNt−1

(
1− bNt−1

) ∂

∂βD
hNt−1.

Substituting them back into (30) and (31) gives

∂hDt
∂βD

= λDt−1 − ωD +
(
βD + aDDt−1

) ∂

∂φ
hDt−1 + aDNt

∂

∂φ
hNt

∂hNt
∂βD

= 0 +
(
βN + aNNt−1

) ∂

∂φ
hNt−1 + aNDt−1

∂

∂φ
hDt−1

with the matrix form (
∂

∂βD
hDt

∂
∂βD

hNt

)
= At

(
λDt−1 − ωD

0

)
+ AtBt−1

(
∂

∂βD
hDt−1

∂
∂βD

hNt−1

)
.

Note that AtBt−1 and At

(
λDt−1 − ωD

0

)
are strictly stationary and ergodic, by Theorem 4.27 in Douc,

Moulines, and Stoffer (2014), when the top-Lyapunov exponent of the sequence of AtBt−1 is strictly

negative,

(
∂

∂βD
hDt

∂
∂βD

hNt

)
converges and is strictly stationary.

Likewise, taking the first order derivative of hjt with respect to σD
(
t−k
T

)
yields

∂hDt
∂σD((t− k) /T )

=
(
βD + aDDt−1

) ∂hDt−1
∂σD((t− k) /T )

+ aDNt
∂hNt

∂σD((t− k) /T )
, k > 1

∂hDt
∂σD(t/T )

= 1,
∂hDt

∂σD((t− 1) /T )
= aDDt−1 + aDNt aNDt−1

∂hNt
∂σD((t− k) /T )

=
(
βN + aNNt−1

) ∂hNt−1
∂σD((t− k) /T )

+ aNDt−1
∂hDt−1

∂σD((t− k) /T )
, k > 1

∂hNt
∂σD(t/T )

= 0,
∂hNt

∂σD((t− 1) /T )
= aNDt−1 ,
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and (27) follows. Similarly,

(
∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)/T )

)
is strictly stationary across time t.

Finally, we can write
∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)T )
∂hDt
∂βD
∂hNt
∂βD

 =

(
AtBt−1 0

0 AtBt−1

)
∂hDt−1

∂σD((t−k)/T )
∂hNt−1

∂σD((t−k)/T )
∂hDt−1

∂βD
∂hNt−1

∂βD

+

At
(
λDt−1 − ωD

0

)
0

 .

Both


∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)/T )
∂hDt
∂βD
∂hNt
∂βD

 and

(
∂hDt

∂σD((t−k)/T )
∂hNt

∂σD((t−k)/T )

)(
∂hDt
∂βD

∂hNt
∂βD

)
are strictly stationary, since the top-Lyapunov

exponent of the sequence

(
AtBt−1 0

0 AtBt−1

)
, same as that of AtBt−1, is strictly negative by as-

sumption.

Lemma 5 When Assumption A1-A4 holds, we have 1
T

∑T
t=1E

∂hDt
∂θ

= 0.

Proof. Similar to the proof of Theorem 1, we only need to show
∑T

t=1 k

∥∥∥∥∥E
(

∂hDt
∂σN ((t−k)/T )

∂hNt
∂σN ((t−k)T )

)∥∥∥∥∥
∞

<

∞ . Note that E

(
∂hDt

∂σN ((t−k)/T )
∂hNt

∂σN ((t−k)/T )

)
= EAtBt−1At−1Bt−2..At−k+2Bt−k+1At−k+1Λt−k = A (BA)k−1 Λ,

when k > 1. Obviously,
∑T

t=1 k

∥∥∥∥∥E
(

∂hDt
∂σN ((t−k)/T )

∂hNt
∂σN ((t−k)/T )

)∥∥∥∥∥
∞

<∞.

9.2 Appendix B: Derivatives in the multivariate model

We now give the first-order and second-order derivatives of the global log-likelihood function in the

multivariate model, given λt and v. Without subscripts j and ignoring some unnecessary parts, the

log-likelihood function is

lt = log |Θ| −
n∑
i=1

(
vi + 1

2
ln

(
1 +

(ιᵀi diag (exp(−λt)) Θut)
2

vi

))
.
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Then

dlt = d log |Θ| −
n∑
i=1

(vi + 1) (ιᵀi diag (exp(−λt)) Θut) exp(−λit)
vi + (ιᵀi diag (exp(−λt)) Θut)

2 trutι
ᵀ
i dΘ

= tr
(
Θ−1dΘ

)
− tr

(
n∑
i=1

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2 utι

ᵀ
i dΘ

)

= tr

[(
Θ−1 −

n∑
i=1

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2 utι

ᵀ
i

)
dΘ

]

=

[
vec

(
Θ−1 −

n∑
i=1

ιiu
ᵀ
t

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

)]ᵀ
dvecΘ

=

[
vec

(
Θ−1 −

n∑
i=1

ιiu
ᵀ
t

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

)]ᵀ
DndvechΘ, (32)

where Dn is the duplication matrix so that vecΘ = DnvechΘ. Therefore, the first order derivative of

the global log-likelihood function is

∂LT (Θ;λt, s)

∂vechΘ
= − 1

T
Dᵀ
nvec

n∑
i=1

(
ιi

T∑
t=1

(
Kh(s− t/T )uᵀt

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

))
+Dᵀ

nvec
(
Θ−1

)
. (33)

To compute the Hessian matrix, we evaluate the differential of the Jacobian matrix in (32)

dvecDᵀ
n

(
Θ−1 −

n∑
i=1

ιiu
ᵀ
t

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + (exp(−2λit)ι
ᵀ
iΘut)

2

)
Dn

= Dᵀ
ndvecΘ−1 −Dᵀ

nvec
n∑
i=1

(
d

(vi + 1) exp(−2λit)ι
ᵀ
iΘut

vi + exp(−2λit) (ιᵀiΘut)
2

)
ιiu

ᵀ
t

= Dᵀ
ndvecΘ−1 −Dᵀ

n

n∑
i=1

(
vi − exp(−2λit) (ιᵀiΘut)

2
)

(vi + 1) exp(−2λit)(
vi + exp(−2λit) (ιᵀiΘut)

2
)2 vec (ιiι

ᵀ
i dΘutu

ᵀ
t )

= −Dᵀ
n

(
Θ−1 ⊗Θ−1

)
DndvechΘ

−Dᵀ
n

n∑
i=1

(
vi − exp(−2λit) (ιᵀiΘut)

2
)

(vi + 1) exp(−2λit)(
vi + exp(−2λit) (ιᵀiΘut)

2
)2 (utu

ᵀ
t )⊗ (ιiι

ᵀ
i )DndvechΘ.

The Hessian matrix of the global log-likelihood function is thus

∂2LT (Θ;λt, s)

∂vechΘ∂ (vechΘ)ᵀ

= −Dᵀ
n

 n∑
i=1

 T∑
t=1

Kh(s− t/T )
(
vi − exp(−2λit) (ιᵀiΘut)

2
)

(vi + 1)

T
(
vi + exp(−2λit) (ιᵀiΘut)

2
)2

exp(2λit)
utu

ᵀ
t

⊗ (ιiι
ᵀ
i )

Dn

−Dᵀ
n

(
Θ−1 ⊗Θ−1

)
Dn (34)

37



9.3 Appendix C: tables and figures

Panel A: cap based deciles of NYSE/AMEX/NASDAQ stocks

mean s.e. median

decile day(%) night(%) day(%) night(%) day(%) night(%) T stat. avg. no.

1-small 0.0942 0.0606 0.0107 0.0079 0.1184 0.0642 2.5290 493.3080

2 0.0964 0.0323 0.0093 0.0060 0.1380 0.0389 5.8126 571.2961

3 0.0793 0.0308 0.0096 0.0055 0.1436 0.0371 4.3742 604.6714

4 0.0601 0.0392 0.0111 0.0061 0.1318 0.0456 1.6503 630.0765

5 0.0484 0.0414 0.0130 0.0067 0.1233 0.0546 0.4786 643.4898

6 0.0426 0.0388 0.0137 0.0070 0.1161 0.0552 0.2447 655.4365

7 0.0401 0.0376 0.0141 0.0072 0.1051 0.0492 0.1546 664.1175

8 0.0416 0.0253 0.0143 0.0073 0.1101 0.0409 1.0122 673.6501

9 0.0324 0.0324 0.0136 0.0073 0.1049 0.0487 0.0003 683.3976

10-large 0.0155 0.0270 0.0126 0.0081 0.0543 0.0441 -0.7725 699.5996

Panel B: cap based deciles of NASDAQ stocks

mean s.e. median

size day(%) night(%) day(%) night(%) day(%) night(%) T stat. avg. no.

1-small 0.1056 0.0623 0.0135 0.0104 0.1110 0.0599 2.5372 262.8418

2 0.0902 0.0497 0.0106 0.0073 0.1254 0.0542 3.1557 305.5648

3 0.1060 0.0238 0.0102 0.0065 0.1531 0.0294 6.7834 321.6926

4 0.0670 0.0461 0.0107 0.0064 0.1325 0.0548 1.6795 335.6151

5 0.0645 0.0436 0.0130 0.0070 0.1401 0.0546 1.4182 346.0700

6 0.0565 0.0552 0.0157 0.0080 0.1373 0.0670 0.0753 351.3748

7 0.0471 0.0478 0.0159 0.0081 0.1294 0.0690 -0.0388 358.4989

8 0.0382 0.0575 0.0162 0.0082 0.1069 0.0765 -1.0609 361.1587

9 0.0341 0.0439 0.0169 0.0086 0.1124 0.0569 -0.5148 368.2421

10-large 0.0028 0.0672 0.0184 0.0108 0.0686 0.0862 -3.0218 378.3676

Panel C: cap based deciles of NYSE stocks

mean s.e. median

decile day(%) night(%) day(%) night(%) day(%) night(%) T stat. avg. no.

1-small 0.0793 0.0063 0.0108 0.0056 0.1021 0.0067 6.0203 219.2011

2 0.0474 0.0014 0.0100 0.0053 0.0866 0.0044 4.0480 231.0752

3 0.0443 0.0088 0.0110 0.0057 0.0919 0.0134 2.8591 232.3123

4 0.0383 0.0145 0.0122 0.0062 0.0883 0.0136 1.7341 232.0882

5 0.0428 0.0117 0.0134 0.0068 0.0947 0.0128 2.0683 232.8432

6 0.0413 0.0134 0.0135 0.0069 0.0927 0.0152 1.8429 233.4402

7 0.0355 0.0142 0.0131 0.0068 0.0871 0.0237 1.4465 235.8511

8 0.0322 0.0190 0.0126 0.0068 0.0855 0.0325 0.9232 236.4532

9 0.0255 0.0242 0.0127 0.0073 0.0698 0.0352 0.0895 238.8781

10-large 0.0179 0.0164 0.0120 0.0079 0.0455 0.0342 0.1040 240.4777

This table gives the summary statistics for the intraday and overnight returns: mean, median, standard

error of the mean, T statistics, and the average number of stocks. The T statistics are used to test the

null hypothesis that the mean value of overnight returns equals the mean value of intraday returns.

Table A.1: Descriptive statistics for intraday and overnight returns
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Panel A: cap based deciles of NYSE/AMEX/NASDAQ stocks

decile δ µD µN Π11 Π12 Π21 Π22

1-small -0.0306 0.0722 0.0457 0.2304 0.0028 0.0592 0.1504

(0.0282) (0.0113) (0.0081) (0.0247) (0.0267) (0.0170) (0.0224)

2 -0.1375 0.0722 0.0183 0.2526 -0.0045 0.1002 0.1359

(0.0391) (0.0097) (0.0063) (0.0239) (0.0340) (0.0151) (0.0251)

3 -0.2024 0.0643 0.0230 0.2038 -0.0365 0.0838 0.0368

(0.0514) (0.0101) (0.0060) (0.0247) (0.0406) (0.0151) (0.0268)

4 -0.2375 0.0557 0.0362 0.0827 -0.0115 0.0604 -0.0171

(0.0495) (0.0117) (0.0065) (0.0260) (0.0477) (0.0157) (0.0281)

5 -0.2247 0.0478 0.0424 0.0205 -0.0070 0.0411 -0.0719

(0.0573) (0.0136) (0.0070) (0.0299) (0.0550) (0.0158) (0.0284)

6 -0.1841 0.0428 0.0403 0.0079 -0.0111 0.0305 -0.0726

(0.0570) (0.0142) (0.0072) (0.0280) (0.0562) (0.0153) (0.0290)

7 -0.1877 0.0399 0.0397 0.0158 -0.0101 0.0351 -0.0920

(0.0537) (0.0145) (0.0074) (0.0261) (0.0524) (0.0143) (0.0281)

8 -0.1887 0.0411 0.0266 0.0111 0.0021 0.0327 -0.1051

(0.0573) (0.0147) (0.0074) (0.0274) (0.0551) (0.0148) (0.0290)

9 -0.1673 0.0312 0.0346 0.0375 0.0018 0.0467 -0.1117

(0.0547) (0.0140) (0.0074) (0.0257) (0.0520) (0.0143) (0.0280)

10-large -0.0482 0.0164 0.0289 -0.0685 0.0094 0.0498 -0.1012

(0.0459) (0.0128) (0.0081) (0.0247) (0.0440) (0.0170) (0.0286)

Panel B: cap based deciles of NYSE stocks

decile δ µD µN Π11 Π12 Π21 Π22

1-small -0.3385 0.0699 0.0027 0.1242 -0.0412 0.0483 -0.0361

(0.0734) (0.0114) (0.0062) (0.0393) (0.0804) (0.0225) (0.0391)

2 -0.2984 0.0454 -0.0016 0.0441 -0.0351 0.0644 -0.0779

(0.0895) (0.0105) (0.0056) (0.0366) (0.0832) (0.0257) (0.0531)

3 -0.2602 0.0434 0.0069 0.0253 -0.0260 0.0630 -0.0941

(0.0875) (0.0114) (0.0059) (0.0360) (0.0856) (0.0253) (0.0526)

4 -0.2736 0.0380 0.0144 0.0098 0.0004 0.0383 -0.0920

(0.0691) (0.0126) (0.0064) (0.0312) (0.0696) (0.0193) (0.0399)

5 -0.2336 0.0432 0.0113 -0.0044 -0.0122 0.0377 -0.1049

(0.0700) (0.0138) (0.0069) (0.0330) (0.0684) (0.0187) (0.0380)

6 -0.2123 0.0413 0.0138 -0.0033 0.0157 0.0282 -0.1199

(0.0699) (0.0138) (0.0070) (0.0326) (0.0689) (0.0182) (0.0359)

7 -0.2305 0.0347 0.0147 0.0225 0.0063 0.0335 -0.1198

(0.0644) (0.0134) (0.0069) (0.0300) (0.0629) (0.0164) (0.0332)

8 -0.1973 0.0315 0.0200 0.0291 -0.0051 0.0373 -0.1165

(0.0616) (0.0129) (0.0069) (0.0286) (0.0589) (0.0166) (0.0318)

9 -0.1558 0.0257 0.0258 0.0060 -0.0099 0.0412 -0.1082

(0.0587) (0.0130) (0.0074) (0.0275) (0.0553) (0.0171) (0.0337)

10-large -0.0505 0.0193 0.0171 -0.0755 0.0063 0.0475 -0.0945

(0.0462) (0.0122) (0.0080) (0.0253) (0.0454) (0.0188) (0.0300)

Panel C: cap based deciles of NASDAQ stocks

decile δ µD µN Π11 Π12 Π21 Π22

1-small 0.1181 0.0824 0.0526 0.2004 0.0284 0.0086 0.1359

(0.0240) (0.0134) (0.0106) (0.0194) (0.0264) (0.0155) (0.0190)

2 -0.0246 0.0698 0.0349 0.2347 -0.0129 0.0792 0.1539

(0.0295) (0.0107) (0.0075) (0.0213) (0.0267) (0.0142) (0.0207)

3 -0.0578 0.0792 0.0126 0.2536 -0.0080 0.0749 0.1377

(0.0384) (0.0106) (0.0068) (0.0236) (0.0330) (0.0143) (0.0253)

4 -0.1190 0.0563 0.0383 0.1818 -0.0323 0.0796 0.0554

(0.0448) (0.0111) (0.0067) (0.0227) (0.0345) (0.0139) (0.0231)

5 -0.1717 0.0613 0.0420 0.0631 -0.0174 0.0364 -0.0190

(0.0451) (0.0137) (0.0073) (0.0257) (0.0433) (0.0136) (0.0231)

6 -0.1544 0.0572 0.0566 0.0127 -0.0250 0.0238 -0.0492

(0.0496) (0.0164) (0.0083) (0.0278) (0.0473) (0.0132) (0.0233)

7 -0.1409 0.0480 0.0501 -0.0018 -0.0150 0.0149 -0.0628

(0.0516) (0.0164) (0.0083) (0.0252) (0.0475) (0.0127) (0.0238)

8 -0.1346 0.0377 0.0608 0.0200 -0.0025 0.0247 -0.0754

(0.0469) (0.0167) (0.0085) (0.0228) (0.0436) (0.0117) (0.0229)

9 -0.1006 0.0335 0.0467 0.0383 -0.0129 0.0374 -0.0923

(0.0486) (0.0173) (0.0087) (0.0225) (0.0445) (0.0115) (0.0224)

10-large 0.0152 0.0009 0.0737 -0.0545 0.0342 0.0541 -0.0988

(0.0414) (0.0187) (0.0110) (0.0234) (0.0367) (0.0122) (0.0223)

Estimates of mean equation parameters for cap based deciles, with standard errors in parentheses. The

mean equation is specified as

(
1 δ

0 1

)(
rDt
rNt

)
=

(
µD

µN

)
+

(
Π11 Π12

Π21 Π22

)(
rDt−1
rNt−1

)
+

(
uDt
uNt

)
.

Table A.2: Estimates of the mean equations
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decile1 decile2 decile3 decile4 decile5 decile6 decile7 decile8 decile9 decile10

cap nyse/amex/nasdaq 0.0230 0.0676 0.1252 0.2298 0.3747 0.6418 1.1669 2.1138 4.8682 38.9714

cap nyse 0.0993 0.2274 0.3800 0.6326 1.0605 1.7561 2.5854 4.9514 10.3084 56.4557

cap nasdaq 0.0169 0.0424 0.0786 0.1262 0.2099 0.3456 0.6023 1.0475 2.1272 22.7218

beta 1.5301 1.2385 1.0712 0.9612 0.8637 0.7639 0.6643 0.5264 0.3531 0.2501

std. dev. 0.0612 0.0391 0.0315 0.0271 0.0236 0.0212 0.0185 0.0157 0.0129 0.0091

The first three rows show the average capitalization value (in million) of cap based deciles for

NYSE/AMEX/NASDAQ, NYSE, and NASDAQ, respectively. Since the capitalization value varies across

years, we present the average value in 2015 instead of the whole period. The fourth (last) row shows the

average beta (standard deviation) value in beta (standard deviation) sorted deciles.

Table A.3: Average capitalization, beta and standard deviation values

decile1 decile2 decile3 decile4 decile5 decile6 decile7 decile8 decile9 decile10

βD 0.9508 0.9277 0.9276 0.9261 0.9215 0.9060 0.9302 0.9344 0.9418 0.9499

(0.0077) (0.0106) (0.0101) (0.0100) (0.0103) (0.0117) (0.0087) (0.0077) (0.0068) (0.0056)

γD 0.0485 0.0568 0.0619 0.0605 0.0562 0.0528 0.0426 0.0414 0.0372 0.0277

(0.0049) (0.0051) (0.0054) (0.0055) (0.0051) (0.0048) (0.0042) (0.0042) (0.0041) (0.0035)

ρD 0.0332 0.0503 0.0402 0.0413 0.0312 0.0348 0.0280 0.0281 0.0349 0.0322

(0.0044) (0.0054) (0.0053) (0.0056) (0.0055) (0.0055) (0.0050) (0.0049) (0.0048) (0.0043)

γ∗D -0.0093 -0.0097 -0.0162 -0.0208 -0.0223 -0.0268 -0.0260 -0.0272 -0.0319 -0.0363

(0.0026) (0.0029) (0.0030) (0.0032) (0.0032) (0.0035) (0.0031) (0.0030) (0.0030) (0.0031)

ρ∗D -0.0020 -0.0102 -0.0168 -0.0171 -0.0216 -0.0219 -0.0232 -0.0274 -0.0277 -0.0282

(0.0023) (0.0029) (0.0031) (0.0031) (0.0033) (0.0035) (0.0031) (0.0032) (0.0031) (0.0031)

νD 10.7398 9.7630 9.1173 7.5708 9.0529 11.0662 11.3517 11.1961 10.4456 9.5211

(1.2586) (1.1054) (0.9099) (0.6376) (0.8902) (1.2855) (1.3326) (1.2980) (1.1378) (1.0101)

ωD -0.4778 -0.6712 -0.6608 -0.5677 -0.4206 -0.3241 -0.2966 -0.3039 -0.3781 -0.4399

(0.0297) (0.0273) (0.0268) (0.0261) (0.0240) (0.0216) (0.0224) (0.0228) (0.0239) (0.0232)

βN 0.9575 0.9355 0.9396 0.9447 0.9342 0.9308 0.9417 0.9394 0.9480 0.9531

(0.0060) (0.0083) (0.0073) (0.0069) (0.0080) (0.0083) (0.0074) (0.0075) (0.0065) (0.0058)

γN 0.0415 0.0555 0.0537 0.0527 0.0504 0.0502 0.0442 0.0480 0.0491 0.0363

(0.0046) (0.0052) (0.0052) (0.0052) (0.0055) (0.0055) (0.0053) (0.0056) (0.0056) (0.0048)

ρN 0.0522 0.0582 0.0538 0.0557 0.0545 0.0515 0.0433 0.0501 0.0471 0.0359

(0.0047) (0.0052) (0.0050) (0.0052) (0.0053) (0.0052) (0.0049) (0.0052) (0.0048) (0.0043)

γ∗N -0.0125 -0.0195 -0.0199 -0.0160 -0.0222 -0.0236 -0.0222 -0.0260 -0.0254 -0.0330

(0.0024) (0.0030) (0.0029) (0.0027) (0.0031) (0.0033) (0.0030) (0.0034) (0.0032) (0.0034)

ρ∗N -0.0056 -0.0106 -0.0176 -0.0177 -0.0211 -0.0227 -0.0268 -0.0275 -0.0291 -0.0311

(0.0026) (0.0030) (0.0030) (0.0029) (0.0031) (0.0032) (0.0031) (0.0033) (0.0034) (0.0032)

νN 7.1157 6.6378 6.1400 5.1110 4.9166 4.8815 4.6815 4.3985 4.3945 5.1849

(0.5842) (0.4938) (0.4245) (0.3100) (0.2870) (0.2850) (0.2682) (0.2437) (0.2389) (0.3222)

ωN -0.9078 -1.2087 -1.3144 -1.2991 -1.2501 -1.2194 -1.2254 -1.2657 -1.3134 -1.0869

(0.0340) (0.0293) (0.0294) (0.0309) (0.0274) (0.0263) (0.0268) (0.0279) (0.0305) (0.0272)

Estimates of the dynamic parameters for cap based portfolios with standard errors in parentheses.

Table A.4: Estimates of the dynamic parameters for cap based deciles: NYSE/AMEX/NASDAQ
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This figure shows the estimated intraday (in red) and overnight (in black) volatilities,√
νj
νj−2exp(2λ

j
t + 2σj( tT )), based on the univariate coupled component model, with one subplot for each

stock. The five dashed vertical lines from left to right represent the dates: 10 March 2000 (dot-com

bubble), 17 September 2011 (the September 11 attacks), 16 September 2008(financial crisis), 6 May 2010

(flash crash) and 1 August 2011 (August 2011 stock markets fall), respectively.

Figure A.1: Intraday and overnight volatilities of Dow Jones stocks

41



Each panel presents the long run intraday correlations between that individual stock and the remaining

stocks, as implied by the multivariate coupled component model. The five dashed vertical lines from left

to right represent the dates: 10 March 2000 (dot-com bubble), 17 September 2011 (the September 11

attacks), 16 September 2008(financial crisis), 6 May 2010 (flash crash) and 1 August 2011 (August 2011

stock markets fall), respectively.

Figure A.2: Long run intraday correlations between Dow Jones stocks

42



Each panel presents the long run overnight correlations between that stock and the remaining stocks, as

implied by the multivariate coupled component model. The five dashed vertical lines from left to right

indicate the dates: 10 March 2000 (dot-com bubble), 11 September 2001 (the September 11 attacks),

16 September 2008 (financial crisis), 6 May 2010 (flash crash) and 1 August 2011 (August 2011 stock

markets fall), respectively.

Figure A.3: Long run overnight correlations between Dow Jones stocks
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(a) intraday

(b) overnight

This figure plots the autocorrelations of intraday (overnight) returns for cap based portfolios on

NYSE/AMEX/NASDAQ stocks in Panel A (Panel B).

Figure A.4: Autocorrelations of intraday and overnight returns
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Cross correlations between overnight and intraday returns, rNt and rDt+Lag, for the cap based portfolios

in NYSE/AMEX/NASDAQ

Figure A.5: Autocorrelation of overnight returns: NYSE/AMEX/NASDAQ
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(a) NYSE

(b) NASDAQ

Panel A (Panel B) plots the ratio of overnight to intraday volatility for cap based portfolios for NYSE

(NASDAQ) stocks: decile 1 with the smallest capitalization value and decile 10 with the largest capital-

ization value. Intraday and overnight volatilities are defined as
√

νj
νj−2exp(2λ

j
t + 2σj( tT )), for j = D,N ,

respectively.

Figure A.6: Ratio of overnight to intraday volatility for cap based portfolios: NYSE and NASDAQ
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(a) beta based deciles

(b) standard deviation based deciles

Panel A plots the ratio of overnight to intraday volatility for beta sorted deciles. Decile 1 has the largest

beta, around 1.53 on average, while decile 10 has the smallest beta, around 0.25 on average. Panel B

plots the ratio for standard deviation sorted deciles. Decile 1 has the largest standard deviation, around

0.06 on average, and decile 10 has the smallest standard deviation, around 0.009 on average. Intraday

and overnight volatilities are defined as
√

νj
νj−2exp(2λ

j
t + 2σj( tT )), for j = D,N , respectively.

Figure A.7: Ratio of overnight to intraday volatility for beta or standard deviation sorted portfolios:

NYSE/AMEX/ NASDAQ
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(a) intraday correlations

(b) overnight correlations

Each panel presents the long-run intraday correlations between that size decile and the remaining size

deciles, as implied by the multivariate coupled component model.

Figure A.8: Long run correlations between cap based deciles
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Online Appendix to

a coupled component GARCH model for intraday and

overnight volatility∗

Oliver Linton†

University of Cambridge

Jianbin Wu‡

Xiamen University

January 17, 2017

This online appendix contains the following three items. First, we provide the first and second

order derivatives of the global. Second, we provide the first and second order conditional moments

of λt. Third, this document also contains several other figures and tables that are referred to in the

main text.

1 First-order and second-order moments of λt

The expectation of exp(2λDt ) given Ft−1 is

E
[
exp(2λDt )|Ft−1

]
= ΛtE

[
exp(2ρDm

N
t + 2ρ∗D(mN

t + 1)sign(eNt ))|Ft−1
]
,

We can express E
[
exp(2ρDm

N
t + 2ρ∗D(mN

t + 1)sign(eNt ))|Ft−1
]

as

1

2
exp(−2ρD)

{
E
[
exp((2ρD + 2ρ∗D)(vN + 1)bNt ) + exp((2ρD − 2ρ∗D)(vN + 1)bNt |Ft−1

]}
.

Since bNt follows a beta (1/2, vN/2) distribution,

E
[
exp((2ρD + 2ρ∗D)(vN + 1)bNt )

]
= 1F1(1/2, 1/2 + vN/2, (2ρD + 2ρ∗D)(vN + 1)),

Hence, we have

E
[
exp(2λDt )|Ft−1

]
=

1

2
exp(−2ρD)Λt 1F1(1/2, 1/2 + vN/2, (2ρD + 2ρ∗D)(vN + 1))

+
1

2
exp(−2ρD)Λt 1F1(1/2, 1/2 + vN/2, (2ρD − 2ρ∗D)(vN + 1)).

∗We would like to thank Piet Sercu, Haihan Tang and Chen Wang for helpful comments.
†Faculty of Economics, Austin Robinson Building, Sidgwick Avenue, Cambridge, CB3 9DD. Email:

obl20@cam.ac.uk.Thanks to the Cambridge INET for financial support.
‡School of Management, Xiamen, China. Email:jianbin.wu@xmu.edu.cn
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For the unconditional second order moments, we first write the dynamic function of λjt as

λDt = βt−1
D λD1 + ωD(1− βD)

∑t−1

k=1
βk−1
D + γD

∑t−1

k=1
βk−1
D mD

t−k + ρD
∑t−1

k=1
βk−1
D mN

t−k+1

+ γ∗D
∑t−1

k=1
βk−1
D (mD

t−k + 1)sign(eDt−k) + ρ∗D
∑t−1

k=1
βk−1
D (mN

t−k+1 + 1)sign(eNt−k+1)

λNt = βt−1
N λN1 + ωN(1− βN)

∑t−1

k=1
βk−1
N + γN

∑t−1

k=1
mN

t−kβ
k−1
N + ρN

∑t−1

k=1
βk−1
N mD

t−k

+ ρ∗N
∑t−1

k=1
βk−1
N (mD

t−k + 1)sign(eDt−k) + γ∗N
∑t−1

k=1
βk−1
N (mN

t−k + 1)sign(eNt−k)

When λjt starts from infinite past,

λDt = ωD + γD
∑∞

k=1
βk−1
D mD

t−k + ρD
∑∞

k=1
βk−1
D mN

t−k+1 (1)

+ γ∗D
∑∞

k=1
βk−1
D (mD

t−k + 1)sign(eDt−k) + ρ∗D
∑∞

k=1
βk−1
D (mN

t−k+1 + 1)sign(eNt−k+1)

λNt = ωN + γN
∑∞

k=1
mN

t−kβ
k−1
N + ρN

∑∞

k=1
βk−1
N mD

t−k

+ ρ∗N
∑∞

k=1
βk−1
N (mD

t−k + 1)sign(eDt−k) + γ∗N
∑∞

k=1
βk−1
N (mN

t−k + 1)sign(eNt−k).

The unconditional second order moments var
(
uDt
)

and var
(
uNt
)

are

var
(
ujt
)

=
vj

vj − 2
E exp(2λjt)E exp

(
2σj(t/T )

)
with

E exp
(
2λNt

)
=

1

4
exp

(
2ωN −

2 (γN + ρN)

1− βN

)
[∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (γN + γ∗N)

(
vN + 1

)
βk
N

)
+
∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (γN − γ∗N)

(
vN + 1

)
βk
N

)]
[∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (ρN + ρ∗N) (vD + 1)βk

N

)
+
∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (ρN − ρ∗N) (vD + 1)βk

N

)]

E exp
(
2λDt

)
=

1

4
exp

(
2ωD −

2 (γD + ρD)

1− βD

)
[∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (γD + γ∗D)

(
vD + 1

)
βk
D

)
+
∏∞

k=0
1F1

(
1

2
,
vD + 1

2
, 2 (γD − γ∗D)

(
vD + 1

)
βk
D

)]
[∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (ρD + ρ∗D)

(
vN + 1

)
βk
D

)
+
∏∞

k=0
1F1

(
1

2
,
vN + 1

2
, 2 (ρD − ρ∗D)

(
vN + 1

)
βk
D

)]
.
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2 Figures and tables

This figure shows the cumulative intraday (in red) and cumulative overnight (in black) returns with one

subplot for each stock.

Figure B.1: Cumulative intraday and overnight returns
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This figure shows the estimated intraday (in red) and overnight (in black) long run components,σD(t/T )

and σN (t/T ), based on the univariate coupled component model, with one subplot for each stock. The

five dashed vertical lines from left to right represent the dates: 10 March 2000(dot-com bubble), 17

September 2011(after the September 11 attacks), 16 September 2008(financial crisis), 6 May 2010 (flash

crash) and 1 August 2011 (August 2011 stock markets fall), respectively.

Figure B.2: Long run component σj( t
T

): univariate model
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The red lines represent the statistics of the ratio tests, with the null hypothesis H0 : exp
(
σN
0 (t/T )

)
=

ρ exp
(
σD
0 (t/T )

)
. The black lines indicate the 95% confidence intervals of the statistics under the null.

The five dashed vertical lines from left to right represent the dates: 10 March 2000(dot-com bubble), 17

September 2001 (after the September 11 attacks), 16 September 2008(financial crisis), 6 May 2010 (flash

crash) and 1 August 2011 (August 2011 stock markets fall), respectively.

Figure B.3: Statistics of ratio tests: univariate model
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The figure shows the Rogers and Satschell(RS) volatility, the one-month ahead monthly RS volatility,

VIX, and the ratio of VIX to the one-month ahead monthly RS volatility. The RS volatility is the average

RS volatility across the 28 stocks.

Figure B.4: RS, VIX and their ratio
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This figure displays Q-Q plots of the quantiles of the intraday innovations (X axis), versus the theoretical

quantiles of the student t distribution with the ν̂D degrees of freedom (Y axis), with one panel for each

stock.

Figure B.5: QQ plot of the intraday innovations
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This figure displays Q-Q plots of the quantiles of the overnight innovations (X axis), versus the theoretical

quantiles of the student t distribution with the ν̂D degrees of freedom (Y axis), with one panel for each

stock.

Figure B.6: QQ plot of the overnight innovations
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The upper panel plots the eigenvalues of the covariance matrices, and the lower panel plots the eigenvalues

divided by the sum of eigenvalues. The five dashed vertical lines from left to right indicate the dates:

10 March 2000 (dot-com bubble), 17 September 2001 (after the September 11 attacks), 16 September

2008 (financial crisis), 6 May 2010 (flash crash) and 1 August 2011 (August 2011 stock markets fall),

respectively.

Figure B.7: Eigenvalues of covariance matrices

9



Left (right) panel plots the largest eigenvalue proportion of the estimated intraday (overnight) covariance

matrix, with red (black) lines indicating the use of the non-robust (robust) correlation in the initial step.

Solid (dashed) lines are further used to indicate the use of initial (updated) estimators,

Figure B.8: comparison of robust and non-robust initial correlation estimator
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Each panel presents the 27 time series of long run intraday correlations between the idiosyncratic shocks

of that individual stock and the remaining stocks. That is, the mean equation is specified as a CAPM

model. The five dashed vertical lines from left to right indicate the dates: 10 March 2000(dot-com

bubble), 17 September 2001 (after the September 11 attacks), 16 September 2008(financial crisis), 6 May

2010 (flash crash) and 1 August 2011 (August 2011 stock markets fall), respectively.

Figure B.9: Long run intraday correlations
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Each panel presents the 27 time series of long run intraday correlations between the idiosyncratic shocks

of that individual stock and the remaining stocks. That is, the mean equation is specified as a CAPM

model. The five dashed vertical lines from left to right indicate the dates: 10 March 2000 (dot-com

bubble), 17 September 2001 (after the September 11 attacks), 16 September 2008(financial crisis), 6 May

2010 (flash crash) and 1 August 2011 (August 2011 stock markets fall), respectively.

Figure B.10: Long run overnight correlations
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intraday overnight

mean std.dev. skew kurt mean std.dev. skew kurt

MMM 0.0003 0.0127 0.0040 7.1842 0.0000 0.0073 -0.6030 20.3340

AXP 0.0003 0.0192 -0.0473 9.7455 0.0001 0.0109 -1.3220 30.8063

AAPL -0.0004 0.0242 0.1903 6.3090 0.0010 0.0180 -7.2410 288.9583

BA 0.0002 0.0159 -0.0091 6.3725 0.0001 0.0103 -2.4955 59.8270

CAT -0.0001 0.0174 0.0190 5.7938 0.0005 0.0110 -0.8610 18.7038

CVX 0.0001 0.0137 0.0810 10.6472 0.0002 0.0074 -0.9206 13.1831

CSCO -0.0001 0.0229 0.0227 10.6339 0.0008 0.0141 -0.6753 22.9465

KO 0.0006 0.0126 0.0474 8.3962 -0.0003 0.0071 -0.3592 12.6505

DD 0.0003 0.0157 0.0273 7.1028 -0.0002 0.0091 -0.3597 16.1463

XOM 0.0004 0.0131 0.0861 10.8546 -0.0002 0.0071 -0.9341 14.7103

GE -0.0001 0.0157 -0.0019 11.2698 0.0004 0.0101 0.1864 30.3115

HD 0.0001 0.0172 0.2999 6.9232 0.0004 0.0108 -3.0134 81.4299

IBM 0.0003 0.0150 0.0487 7.3880 -0.0001 0.0100 -0.7826 39.9142

INTC 0.0001 0.0204 0.1913 7.2270 0.0005 0.0141 -2.6159 51.1115

JNJ 0.0003 0.0120 0.0789 6.4480 0.0000 0.0071 -3.0637 79.0347

JPM 0.0000 0.0210 0.4353 14.1952 0.0003 0.0124 0.1249 19.7644

MCD 0.0005 0.0137 -0.0941 8.1253 -0.0001 0.0083 -0.4635 15.1683

MRK 0.0004 0.0149 -0.0381 7.6085 -0.0002 0.0096 -6.2306 172.5119

MSFT 0.0003 0.0171 0.1528 5.6204 0.0003 0.0109 -0.5826 32.3796

NKE 0.0006 0.0177 0.1389 9.5287 -0.0001 0.0104 -2.0513 50.5907

PFE -0.0001 0.0152 -0.0349 5.6494 0.0004 0.0097 -2.0215 40.9346

PG 0.0009 0.0124 -0.0109 9.0587 -0.0006 0.0085 -18.5373 884.7702

TRV 0.0002 0.0163 -0.1116 16.1477 0.0001 0.0087 -1.7067 65.3085

UNH 0.0003 0.0203 -0.1451 13.8989 0.0004 0.0117 -2.9957 64.2616

UTX 0.0001 0.0145 -0.2758 9.4068 0.0004 0.0084 -1.6782 38.7102

VZ 0.0001 0.0142 0.4456 7.6871 0.0000 0.0079 -0.4672 15.4566

WMT -0.0000 0.0147 0.1238 7.9677 0.0003 0.0084 -0.7025 16.3198

DIS 0.0004 0.0161 0.1634 7.1087 0.0000 0.0110 -1.0887 47.8462

This table gives the summary statistics for the intraday and overnight returns.

Table B.1: Summary statistics for intraday and overnight returns
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δ µD µN Π11 Π12 Π21 Π22

MMM -0.0094 0.0304 0.0035 -0.0201 -0.0079 -0.0245 -0.0186

(0.0331) (0.0163) (0.0093) (0.0180) (0.0297) (0.0108) (0.0201)

AXP -0.0482 0.0302 0.0112 -0.0530 0.0055 -0.0112 -0.0463

(0.0449) (0.0245) (0.0139) (0.0218) (0.0444) (0.0141) (0.0259)

AAPL 0.0473 -0.0468 0.1009 -0.0609 0.0794 -0.0137 0.0113

(0.0433) (0.0310) (0.0233) (0.0172) (0.0262) (0.0188) (0.0220)

BA -0.0284 0.0149 0.0120 -0.0048 0.0162 -0.0100 0.0239

(0.0313) (0.0203) (0.0132) (0.0197) (0.0413) (0.0144) (0.0184)

CAT 0.0142 -0.0095 0.0531 -0.0013 -0.0159 0.0155 -0.0132

(0.0342) (0.0223) (0.0140) (0.0185) (0.0260) (0.0113) (0.0179)

CVX -0.0847 0.0130 0.0163 -0.0515 -0.0449 -0.0059 -0.0316

(0.0435) (0.0176) (0.0095) (0.0211) (0.0452) (0.0137) (0.0226)

CSCO 0.0319 -0.0120 0.0832 -0.0615 0.0081 0.0268 -0.0205

(0.0322) (0.0294) (0.0181) (0.0203) (0.0303) (0.0105) (0.0181)

KO 0.0516 0.0571 -0.0250 -0.0188 0.0354 -0.0134 0.0537

(0.0372) (0.0162) (0.0091) (0.0193) (0.0353) (0.0123) (0.0171)

DD 0.0627 0.0343 -0.0174 0.0025 -0.0230 -0.0094 -0.0083

(0.0370) (0.0201) (0.0117) (0.0204) (0.0315) (0.0114) (0.0172)

XOM -0.0482 0.0475 -0.0148 -0.0898 -0.0144 -0.0287 -0.0222

(0.0465) (0.0166) (0.0090) (0.0220) (0.0447) (0.0147) (0.0236)

GE 0.1066 -0.0125 0.0382 -0.0276 0.0234 -0.0020 0.0159

(0.0493) (0.0201) (0.0130) (0.0283) (0.0429) (0.0173) (0.0289)

HD 0.0306 0.0143 0.0362 0.0217 -0.0563 0.0208 -0.0054

(0.0414) (0.0220) (0.0139) (0.0191) (0.0288) (0.0120) (0.0197)

IBM -0.0067 0.0365 -0.0061 -0.0375 0.0609 0.0070 -0.0477

(0.0297) (0.0191) (0.0127) (0.0177) (0.0254) (0.0112) (0.0190)

INTC 0.0335 0.0034 0.0475 -0.0542 0.0742 0.0061 -0.0515

(0.0277) (0.0260) (0.0180) (0.0180) (0.0307) (0.0121) (0.0192)

JNJ 0.0866 0.0346 0.0013 -0.0327 0.0016 0.0254 0.0271

(0.0309) (0.0154) (0.0092) (0.0181) (0.0334) (0.0122) (0.0200)

JPM -0.0020 0.0037 0.0308 -0.0701 0.0065 0.0195 -0.0601

(0.0493) (0.0268) (0.0158) (0.0288) (0.0462) (0.0161) (0.0237)

MCD 0.1500 0.0546 -0.0089 -0.0169 0.0221 -0.0216 0.0235

(0.0329) (0.0175) (0.0106) (0.0200) (0.0305) (0.0112) (0.0177)

MRK 0.0032 0.0352 -0.0202 -0.0084 -0.0151 0.0165 -0.0022

(0.0292) (0.0190) (0.0123) (0.0197) (0.0271) (0.0114) (0.0187)

MSFT -0.0200 0.0268 0.0277 -0.0536 0.0461 0.0033 -0.0247

(0.0322) (0.0218) (0.0139) (0.0182) (0.0265) (0.0107) (0.0153)

NKE 0.0226 0.0616 -0.0059 0.0153 -0.0228 -0.0081 -0.0132

(0.0339) (0.0227) (0.0133) (0.0197) (0.0287) (0.0127) (0.0160)

PFE 0.1283 -0.0078 0.0355 0.0014 -0.0094 -0.0024 0.0222

(0.0285) (0.0195) (0.0124) (0.0168) (0.0283) (0.0114) (0.0187)

PG 0.0929 0.0986 -0.0530 -0.0612 0.0729 -0.0268 -0.0029

(0.0275) (0.0160) (0.0112) (0.0216) (0.0289) (0.0134) (0.0121)

TRV 0.1594 0.0264 0.0070 -0.0423 -0.0529 -0.0194 -0.0312

(0.0686) (0.0208) (0.0111) (0.0299) (0.0460) (0.0191) (0.0220)

UNH -0.0305 0.0332 0.0353 0.0229 -0.0370 0.0058 -0.0084

(0.0593) (0.0261) (0.0150) (0.0205) (0.0400) (0.0145) (0.0214)

UTX -0.0565 0.0096 0.0395 -0.0216 -0.0386 0.0032 -0.0458

(0.0698) (0.0186) (0.0107) (0.0197) (0.0323) (0.0105) (0.0181)

VZ 0.0621 0.0143 0.0012 -0.0405 -0.0316 -0.0129 0.0012

(0.0429) (0.0181) (0.0101) (0.0202) (0.0376) (0.0119) (0.0188)

WMT 0.0852 -0.0054 0.0310 -0.0436 0.0315 -0.0053 0.0361

(0.0347) (0.0188) (0.0107) (0.0185) (0.0341) (0.0100) (0.0175)

DIS 0.0376 0.0373 0.0024 -0.0236 0.0026 -0.0155 -0.0019

(0.0290) (0.0205) (0.0140) (0.0197) (0.0369) (0.0132) (0.0234)

DJI -0.0549 0.0328 -0.0020 -0.0615 0.1050 0.0034 -0.0282

(0.0393) (0.0208) (0.0128) (0.0205) (0.0342) (0.0130) (0.0198)

average 0.0311 0.0223 0.0165 -0.0297 0.0042 -0.0029 -0.0086

pool est. 0.0299 0.0223 0.0162 -0.0313 0.0121 -0.0011 -0.0103

pool s.e. (0.0034) (0.0023) (0.0015) (0.0018) (0.0032) (0.0012) (0.0019)

num of + 18 22 20 5 15 11 9

num of − 10 6 8 23 13 17 19

num of signi + 7 6 11 0 4 2 2

num of signi − 0 0 2 12 0 2 4

This table gives the estimates of the mean equations in the univariate coupled component models, with

their asymptotic standard errors in parenthesis; ’pool est.’ and ’pool s.e.’ represent the MLE pool

estimates and their standard errors.

Table B.2: Estimates of the mean equations
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βD γD ρD γ∗D ρ∗D νD ωD

MMM 0.9716 0.0213 0.0273 -0.0189 -0.0107 6.8817 -0.0611

(0.0055) (0.0036) (0.0042) (0.0025) (0.0025) (0.5291) (0.0266)

AXP 0.9710 0.0348 0.0298 -0.0162 -0.0112 9.6898 0.3035

(0.0052) (0.0040) (0.0041) (0.0025) (0.0027) (1.0451) (0.0336)

AAPL 0.9177 0.0394 0.0381 -0.0157 -0.0109 8.9059 0.6216

(0.0166) (0.0056) (0.0068) (0.0032) (0.0035) (0.8917) (0.0213)

BA 0.9587 0.0340 0.0261 -0.0110 -0.0116 8.6091 0.2315

(0.0087) (0.0045) (0.0050) (0.0026) (0.0027) (0.8269) (0.0263)

CAT 0.9752 0.0236 0.0239 -0.0157 -0.0105 8.1879 0.3253

(0.0050) (0.0038) (0.0042) (0.0021) (0.0022) (0.7801) (0.0298)

CVX 0.9626 0.0309 0.0256 -0.0177 -0.0137 14.2545 0.1014

(0.0066) (0.0039) (0.0040) (0.0025) (0.0027) (2.1566) (0.0268)

CSCO 0.9527 0.0305 0.0314 -0.0187 -0.0183 11.8282 0.5052

(0.0080) (0.0041) (0.0046) (0.0029) (0.0028) (1.4338) (0.0239)

KO 0.9616 0.0279 0.0262 -0.0163 -0.0143 8.9666 -0.0507

(0.0082) (0.0041) (0.0048) (0.0027) (0.0026) (0.9389) (0.0258)

DD 0.9541 0.0351 0.0302 -0.0130 -0.0144 8.8106 0.1858

(0.0102) (0.0050) (0.0053) (0.0028) (0.0029) (0.8545) (0.0258)

XOM 0.9605 0.0382 0.0263 -0.0095 -0.0157 12.8135 0.0350

(0.0068) (0.0043) (0.0040) (0.0026) (0.0028) (1.6619) (0.0287)

GE 0.9590 0.0351 0.0351 -0.0182 -0.0152 11.7415 0.1273

(0.0065) (0.0041) (0.0045) (0.0025) (0.0027) (1.4348) (0.0284)

HD 0.9559 0.0326 0.0345 -0.0245 -0.0176 8.7982 0.2666

(0.0071) (0.0041) (0.0049) (0.0030) (0.0030) (0.8661) (0.0260)

IBM 0.9614 0.0331 0.0311 -0.0195 -0.0096 8.0274 0.1107

(0.0076) (0.0046) (0.0051) (0.0028) (0.0027) (0.7189) (0.0276)

INTC 0.9638 0.0263 0.0221 -0.0116 -0.0125 13.8716 0.4828

(0.0072) (0.0034) (0.0043) (0.0023) (0.0027) (1.9630) (0.0250)

JNJ 0.9440 0.0399 0.0394 -0.0226 -0.0131 9.2874 -0.1001

(0.0084) (0.0045) (0.0051) (0.0032) (0.0032) (0.9551) (0.0255)

JPM 0.9739 0.0386 0.0370 -0.0187 -0.0102 8.9114 0.3347

(0.0042) (0.0042) (0.0043) (0.0025) (0.0026) (0.8937) (0.0394)

MCD 0.7771 0.0677 0.0622 0.0017 0.0017 9.0474 0.2359

(0.1108) (0.0393) (0.0097) (0.0111) (0.0102) (1.0475) (0.0945)

MRK 0.9391 0.0397 0.0400 -0.0153 -0.0105 7.6928 0.1438

(0.0132) (0.0054) (0.0066) (0.0032) (0.0032) (0.6331) (0.0239)

MSFT 0.9366 0.0437 0.0495 -0.0111 -0.0073 11.3473 0.2991

(0.0108) (0.0047) (0.0063) (0.0030) (0.0034) (1.3919) (0.0253)

NKE 0.9670 0.0315 0.0290 -0.0171 -0.0067 6.9838 0.2606

(0.0069) (0.0044) (0.0051) (0.0028) (0.0026) (0.5738) (0.0292)

PFE 0.9640 0.0275 0.0322 -0.0144 -0.0077 11.3019 0.2051

(0.0071) (0.0038) (0.0046) (0.0025) (0.0025) (1.3785) (0.0270)

PG 0.9480 0.0356 0.0332 -0.0163 -0.0108 8.7109 -0.0845

(0.0096) (0.0045) (0.0051) (0.0030) (0.0032) (0.8227) (0.0246)

TRV 0.9660 0.0413 0.0333 -0.0119 -0.0101 8.2381 0.1086

(0.0067) (0.0050) (0.0050) (0.0028) (0.0028) (0.7880) (0.0331)

UNH 0.9470 0.0405 0.0344 -0.0210 -0.0110 7.4073 0.3985

(0.0099) (0.0048) (0.0058) (0.0033) (0.0033) (0.6330) (0.0254)

UTX 0.9596 0.0288 0.0336 -0.0182 -0.0163 9.3467 0.0982

(0.0075) (0.0044) (0.0048) (0.0027) (0.0028) (1.0045) (0.0261)

VZ 0.9676 0.0278 0.0279 -0.0070 -0.0146 11.3300 0.0931

(0.0062) (0.0037) (0.0042) (0.0023) (0.0026) (1.3386) (0.0280)

WMT 0.9742 0.0270 0.0238 -0.0097 -0.0085 8.0639 0.0663

(0.0062) (0.0037) (0.0042) (0.0023) (0.0025) (0.7403) (0.0308)

DIS 0.9516 0.0344 0.0329 -0.0151 -0.0115 9.6181 0.1953

(0.0116) (0.0056) (0.0051) (0.0030) (0.0031) (1.0518) (0.0298)

average 0.9515 0.0345 0.0327 -0.0151 -0.0115 9.5955 0.1943

pool est. 0.9861 0.0316 0.0314 -0.0059 -0.0022 8.0103 -0.8937

pool s.e. (0.0004) (0.0009) (0.0006) (0.0003) (0.0003) (0.1339) (0.0374)

Continued on the next page.

Table B.3: Estimates of the dynamic parameters in the univariate coupled component models
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βN γN ρN γ∗N ρ∗N νN ωN

MMM 0.9683 0.0344 0.0322 -0.0127 -0.0235 2.9893 -0.9498

(0.0063) (0.0054) (0.0049) (0.0033) (0.0032) (0.1333) (0.0325)

AXP 0.9722 0.0387 0.0379 -0.0188 -0.0229 3.7613 -0.5535

(0.0046) (0.0055) (0.0042) (0.0032) (0.0029) (0.1895) (0.0385)

AAPL 0.9234 0.0619 0.0629 -0.0154 -0.0146 2.6745 -0.3351

(0.0117) (0.0081) (0.0064) (0.0045) (0.0040) (0.0977) (0.0278)

BA 0.9710 0.0206 0.0327 -0.0120 -0.0168 3.0865 -0.6114

(0.0062) (0.0051) (0.0043) (0.0026) (0.0026) (0.1367) (0.0298)

CAT 0.9708 0.0305 0.0393 -0.0103 -0.0197 2.8998 -0.5496

(0.0057) (0.0058) (0.0049) (0.0030) (0.0029) (0.1229) (0.0350)

CVX 0.9778 0.0197 0.0264 -0.0110 -0.0157 4.1452 -0.7624

(0.0039) (0.0039) (0.0031) (0.0023) (0.0024) (0.2379) (0.0324)

CSCO 0.9631 0.0368 0.0344 -0.0140 -0.0212 3.5092 -0.3252

(0.0065) (0.0058) (0.0044) (0.0029) (0.0030) (0.1532) (0.0306)

KO 0.9658 0.0409 0.0275 -0.0189 -0.0201 3.7388 -0.8462

(0.0058) (0.0053) (0.0042) (0.0031) (0.0029) (0.1821) (0.0319)

DD 0.9566 0.0337 0.0425 -0.0175 -0.0159 3.5630 -0.6296

(0.0084) (0.0060) (0.0050) (0.0035) (0.0030) (0.1734) (0.0290)

XOM 0.9729 0.0258 0.0310 -0.0122 -0.0140 5.0318 -0.7701

(0.0052) (0.0043) (0.0037) (0.0026) (0.0025) (0.3115) (0.0322)

GE 0.9614 0.0401 0.0463 -0.0204 -0.0221 4.7818 -0.6118

(0.0062) (0.0056) (0.0046) (0.0031) (0.0030) (0.2773) (0.0340)

HD 0.9537 0.0452 0.0373 -0.0220 -0.0259 3.1685 -0.6014

(0.0076) (0.0062) (0.0048) (0.0039) (0.0036) (0.1418) (0.0299)

IBM 0.9632 0.0414 0.0389 -0.0121 -0.0218 2.7722 -0.7656

(0.0064) (0.0062) (0.0048) (0.0033) (0.0030) (0.1088) (0.0330)

INTC 0.9662 0.0300 0.0305 -0.0131 -0.0155 2.8768 -0.4046

(0.0083) (0.0064) (0.0047) (0.0033) (0.0027) (0.1116) (0.0295)

JNJ 0.9596 0.0323 0.0348 -0.0166 -0.0262 4.0828 -0.8547

(0.0063) (0.0050) (0.0043) (0.0030) (0.0030) (0.2189) (0.0281)

JPM 0.9754 0.0350 0.0366 -0.0198 -0.0226 4.0152 -0.4103

(0.0038) (0.0046) (0.0040) (0.0027) (0.0026) (0.2098) (0.0397)

MCD 0.8012 0.0488 0.0800 -0.0018 -0.0000 4.0211 -0.2824

(0.0159) (0.0477) (0.0787) (0.0082) (0.0069) (0.1751) (0.0458)

MRK 0.9458 0.0398 0.0435 -0.0135 -0.0209 3.2409 -0.6822

(0.0111) (0.0064) (0.0062) (0.0036) (0.0035) (0.1456) (0.0271)

MSFT 0.9433 0.0543 0.0452 -0.0098 -0.0115 2.8706 -0.6569

(0.0102) (0.0076) (0.0053) (0.0038) (0.0035) (0.1101) (0.0293)

NKE 0.9543 0.0396 0.0456 -0.0147 -0.0177 2.3998 -0.8391

(0.0095) (0.0068) (0.0061) (0.0037) (0.0038) (0.0876) (0.0301)

PFE 0.9619 0.0424 0.0364 -0.0112 -0.0118 3.4040 -0.6243

(0.0074) (0.0058) (0.0045) (0.0032) (0.0031) (0.1577) (0.0324)

PG 0.9445 0.0292 0.0370 -0.0206 -0.0235 3.6016 -0.9050

(0.0097) (0.0058) (0.0050) (0.0035) (0.0033) (0.1717) (0.0240)

TRV 0.9740 0.0398 0.0347 -0.0125 -0.0170 2.9686 -0.9225

(0.0049) (0.0060) (0.0044) (0.0031) (0.0029) (0.1268) (0.0393)

UNH 0.9354 0.0521 0.0547 -0.0076 -0.0202 2.2533 -0.7491

(0.0109) (0.0077) (0.0066) (0.0045) (0.0042) (0.0836) (0.0293)

UTX 0.9708 0.0303 0.0324 -0.0202 -0.0195 3.3906 -0.7534

(0.0048) (0.0048) (0.0041) (0.0030) (0.0027) (0.1623) (0.0332)

VZ 0.9661 0.0302 0.0325 -0.0224 -0.0138 3.7265 -0.7555

(0.0057) (0.0052) (0.0040) (0.0031) (0.0028) (0.1886) (0.0300)

WMT 0.9756 0.0240 0.0302 -0.0111 -0.0126 3.4965 -0.7485

(0.0052) (0.0047) (0.0038) (0.0026) (0.0026) (0.1641) (0.0328)

DIS 0.9552 0.0369 0.0396 -0.0147 -0.0183 3.4211 -0.6600

(0.0074) (0.0073) (0.0074) (0.0034) (0.0032) (0.1618) (0.0320)

Average 0.9553 0.0369 0.0394 -0.0145 -0.0180 3.4247 -0.6629

pool est. 0.9823 0.0426 0.0307 -0.0086 -0.0130 3.2019 -1.5104

pool s.e. (0.0006) (0.0010) (0.0009) (0.0005) (0.0005) (0.0265) (0.0322)

This table presents the estimates of the dynamic parameters in the univariate coupled component models,

and their asymptotic standard errors in parenthesis; ’pool est.’ and ’pool s.e.’ represent the MLE pool

estimates and their standard errors.

Table B.3: Estimates of the dynamic parameters in the univariate coupled component models (cont.)

16



(βD, γD, ρD, γ
∗
D, ρ

∗
D)

βD = βN γD = γN ρD = ρN γ∗D = γ∗N ρ∗D = ρ∗N νD = νN ωD = ωN γN = ρD = (βN , γN , ρN , γ
∗
N , ρ

∗
N )

MMM 0.4463 0.0404 0.4074 0.1300 0.0015 0.0000 0.0000 0.1158 0.0015

AXP 0.7387 0.5529 0.1337 0.5090 0.0031 0.0000 0.0000 0.0587 0.0004

AAPL 0.6655 0.0175 0.0047 0.9604 0.5031 0.0000 0.0000 0.0016 0.0000

BA 0.0412 0.0357 0.2624 0.7881 0.1553 0.0000 0.0000 0.2269 0.0222

CAT 0.2142 0.2870 0.0058 0.1250 0.0090 0.0000 0.0000 0.1444 0.0015

CVX 0.0010 0.0332 0.8557 0.0381 0.5759 0.0000 0.0000 0.1356 0.0106

CSCO 0.0811 0.3699 0.6042 0.2516 0.4850 0.0000 0.0000 0.3166 0.0169

KO 0.5108 0.0408 0.8287 0.5255 0.1401 0.0000 0.0000 0.0035 0.0122

DD 0.7178 0.8493 0.0533 0.2979 0.7134 0.0000 0.0000 0.5036 0.0953

XOM 0.0113 0.0358 0.3672 0.4597 0.6693 0.0000 0.0000 0.9082 0.0377

GE 0.5704 0.4586 0.0643 0.5741 0.0904 0.0000 0.0000 0.2692 0.0004

HD 0.7339 0.0834 0.6725 0.6071 0.0790 0.0000 0.0000 0.0616 0.1236

IBM 0.7507 0.2660 0.2244 0.0799 0.0027 0.0000 0.0000 0.0597 0.0032

INTC 0.7053 0.6005 0.1628 0.7053 0.4233 0.0000 0.0000 0.1713 0.1426

JNJ 0.0149 0.2568 0.4710 0.1707 0.0027 0.0000 0.0000 0.1627 0.0049

JPM 0.5514 0.5603 0.9484 0.7509 0.0008 0.0000 0.0000 0.6026 0.0012

MCD 0.8264 0.8265 0.8190 0.8200 0.8627 0.0000 0.0001 0.7875 0.9999

MRK 0.4594 0.9906 0.6508 0.7012 0.0283 0.0000 0.0000 0.9729 0.1458

MSFT 0.4468 0.2405 0.5895 0.7901 0.3990 0.0000 0.0000 0.5058 0.3634

NKE 0.0625 0.2967 0.0206 0.5988 0.0159 0.0000 0.0000 0.0646 0.0362

PFE 0.7098 0.0303 0.4915 0.4023 0.2893 0.0000 0.0000 0.0508 0.0377

PG 0.6715 0.3739 0.5645 0.3481 0.0069 0.0000 0.0000 0.4775 0.0481

TRV 0.0957 0.8364 0.8171 0.8814 0.0976 0.0000 0.0000 0.2369 0.0499

UNH 0.2059 0.1949 0.0139 0.0167 0.0901 0.0000 0.0000 0.0113 0.0028

UTX 0.0310 0.8085 0.8380 0.6094 0.4181 0.0000 0.0000 0.4670 0.0098

VZ 0.7429 0.6957 0.3921 0.0001 0.8273 0.0000 0.0000 0.6222 0.0015

WMT 0.7214 0.5910 0.2347 0.6712 0.2528 0.0000 0.0000 0.9611 0.4234

DIS 0.5415 0.7408 0.2892 0.9213 0.1324 0.0000 0.0000 0.4689 0.0731

This table presents the p-values of the Wald tests for several sets of null hypothesis: H0 : βD = βN ,

H0 : γD = γN , H0 : ρD = ρN , H0 : γ∗D = γ∗N , H0 : ρ∗D = ρ∗N , H0 : νD = νN , H0 : ωD = ωN ,

H0 : γN = ρD, and H0 : (βD, γD, ρD, γ
∗
D, ρ

∗
D) = (βN , γN , ρN , γ

∗
N , ρ

∗
N ).

Table B.4: Wald tests
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student t log-likelihood quasi Gaussian log-likelihood

lcogarch lgarch GW stat. p-val. lcogarch lgarch GW stat. p-val.

MMM 1.1832 1.1963 6.3242 0.0119 1.1901 1.2092 6.2041 0.0127

AXP 1.3335 1.3473 2.7307 0.0984 1.3727 1.3974 2.2438 0.1342

AAPL 1.6569 1.6701 2.5099 0.1131 1.6642 1.6854 2.0921 0.1481

BA 1.4584 1.4715 4.7922 0.0286 1.4830 1.5048 5.5787 0.0182

CAT 1.5693 1.5761 1.9846 0.1589 1.5834 1.5915 1.4751 0.2245

CVX 1.6026 1.6058 0.2129 0.6445 1.6135 1.6178 0.2728 0.6015

CSCO 1.3807 1.3936 3.5761 0.0586 1.3832 1.4027 3.4340 0.0639

KO 1.1211 1.1347 2.3200 0.1277 1.1281 1.1483 2.6316 0.1048

DD 1.4821 1.4956 2.8619 0.0907 1.4996 1.5218 3.2895 0.0697

XOM 1.4198 1.4284 1.9184 0.1660 1.4304 1.4448 3.1887 0.0742

GE 1.3125 1.3328 1.8666 0.1719 1.3371 1.3638 0.7425 0.3889

HD 1.4018 1.4148 3.1614 0.0754 1.4179 1.4408 2.4230 0.1196

IBM 1.3442 1.3538 3.0191 0.0823 1.3586 1.3730 2.1378 0.1437

INTC 1.5674 1.5736 0.6431 0.4226 1.5913 1.6025 1.4440 0.2295

JNJ 1.1759 1.1807 0.2140 0.6436 1.1863 1.2141 1.0331 0.3094

JPM 1.3844 1.3902 0.4479 0.5033 1.3933 1.4047 0.5767 0.4476

MCD 1.1675 1.1772 0.6391 0.4240 1.2151 1.2332 0.6079 0.4356

MRK 1.4255 1.4298 0.4247 0.5146 1.4483 1.4694 1.0146 0.3138

MSFT 1.5373 1.5511 3.8529 0.0497 1.5612 1.5889 4.4249 0.0354

NKE 1.4760 1.4811 0.6902 0.4061 1.4872 1.5010 1.2014 0.2730

PFE 1.3581 1.3701 1.4091 0.2352 1.3698 1.3924 1.0637 0.3024

PG 1.0967 1.0992 0.1259 0.7227 1.1153 1.1345 1.0687 0.3012

TRV 1.1117 1.1185 0.5408 0.4621 1.1186 1.1280 0.8314 0.3619

UNH 1.6005 1.6018 0.1291 0.7193 1.5949 1.5961 0.0506 0.8219

UTX 1.3216 1.3336 2.1103 0.1463 1.3437 1.3566 0.7855 0.3755

VZ 1.1679 1.1791 3.5395 0.0599 1.1797 1.2149 1.9419 0.1635

WMT 1.2735 1.2720 0.0452 0.8316 1.4252 1.4429 1.3135 0.2518

DIS 1.3163 1.3222 0.4560 0.4995 1.3300 1.3439 0.9672 0.3254

The table presents the GW test of the null that the one-component and the coupled component model have equal

expected loss, with minus the out-of-sample t log-likelihood or quasi Gaussian log-likelihood as the loss function.

lcogarch represents the average loss value of the coupled component model, and lgarch represents the average loss value

of the one component BETA-T-EGARCH model with open-close returns.

Table B.5: GW tests: univariate model
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|εd| |εn| |rd| |rn| ε2d ε2n r2d r2n
MMM 0.7102 0.2692 0.0000 0.0000 0.9611 0.9923 0.0000 0.0000

AXP 0.3953 0.1358 0.0000 0.0000 0.1828 0.9900 0.0000 0.0000

AAPL 0.7447 0.4793 0.0000 0.0000 0.0757 0.9997 0.0000 0.9558

BA 0.1846 0.2596 0.0000 0.0000 0.2914 0.9962 0.0000 0.0000

CAT 0.9292 0.2899 0.0000 0.0000 0.7909 0.9988 0.0000 0.0000

CVX 0.3064 0.5760 0.0000 0.0000 0.0637 0.5412 0.0000 0.0000

CSCO 0.0739 0.7701 0.0000 0.0000 0.0170 1.0000 0.0000 0.0000

KO 0.5040 0.7539 0.0000 0.0000 0.5222 0.9752 0.0000 0.0000

DD 0.6311 0.7901 0.0000 0.0000 0.0710 0.2432 0.0000 0.0000

XOM 0.4986 0.1337 0.0000 0.0000 0.3109 0.7145 0.0000 0.0000

GE 0.1884 0.8045 0.0000 0.0000 0.0138 0.9978 0.0000 0.0000

HD 0.3390 0.4095 0.0000 0.0000 0.1141 0.9977 0.0000 0.0120

IBM 0.4555 0.2208 0.0000 0.0000 0.7846 0.9603 0.0000 0.0000

INTC 0.3869 0.0606 0.0000 0.0000 0.8838 0.9853 0.0000 0.0003

JNJ 0.2579 0.4742 0.0000 0.0000 0.5205 0.9366 0.0000 0.0286

JPM 0.2962 0.4567 0.0000 0.0000 0.3807 1.0000 0.0000 0.0000

MCD 0.1996 0.3503 0.0000 0.0000 0.3556 0.9685 0.0000 0.0000

MRK 0.2003 0.7233 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000

MSFT 0.5201 0.8494 0.0000 0.0000 0.7620 1.0000 0.0000 0.0000

NKE 0.0407 0.8972 0.0000 0.0000 0.0924 0.9980 0.0000 0.9857

PFE 0.1066 0.6689 0.0000 0.0000 0.0957 1.0000 0.0000 0.0025

PG 0.8185 0.8830 0.0000 0.0000 0.9378 1.0000 0.0000 1.0000

TRV 0.4188 0.3676 0.0000 0.0000 0.1089 0.9992 0.0000 0.0000

UNH 0.0045 0.4844 0.0000 0.0000 0.2356 0.9829 0.0000 0.0000

UTX 0.0096 0.1683 0.0000 0.0000 0.0018 0.9999 0.0000 0.0017

VZ 0.1302 0.2894 0.0000 0.0000 0.5510 0.0343 0.0000 0.0000

WMT 0.1704 0.5944 0.0000 0.0000 0.9867 0.9023 0.0000 0.0000

DIS 0.9257 0.1840 0.0000 0.0000 0.7475 1.0000 0.0000 0.0000

This table gives the p-values of the Ljung-Box Q-tests for absolute(squared) residuals and returns.

Table B.6: Diagnostic checking for GARCH effects
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βD γD ρD γ∗D ρ∗D νD ωD

MMM 0.8504 0.0350 0.0788 -0.0094 0.0001 5.1024 -0.1047

(0.0811) (0.0097) (0.0226) (0.0053) (0.0047) (0.3138) (0.0196)

AXP 0.9332 0.0442 0.0466 -0.0138 -0.0082 8.5370 -0.0540

(0.0132) (0.0054) (0.0066) (0.0033) (0.0035) (0.8093) (0.0247)

AAPL 0.8056 0.0587 0.0646 -0.0169 0.0026 7.4693 -0.0421

(0.0419) (0.0080) (0.0100) (0.0047) (0.0049) (-0.6579) (0.0190)

BA 0.7165 0.0636 0.0721 0.0000 0.0089 7.8943 -0.0268

(0.0519) (0.0079) (0.0098) (0.0050) (0.0059) (0.7117) (0.0176)

CAT 0.9447 0.0271 0.0311 -0.0098 -0.0004 7.3387 -0.0276

(0.0158) (0.0047) (0.0072) (0.0026) (0.0028) (0.6330) (0.0221)

CVX 0.9475 0.0331 0.0285 -0.0116 -0.0038 9.7347 -0.0069

(0.0139) (0.0050) (0.0056) (0.0029) (0.0030) (1.1058) (0.0238)

CSCO 0.9282 0.0412 0.0412 -0.0152 -0.0134 8.3211 -0.0515

(0.0154) (0.0057) (0.0067) (0.0035) (0.0031) (0.7676) (0.0229)

KO 0.8383 0.0477 0.0567 -0.0139 0.0001 8.9520 -0.0161

(0.0471) (0.0078) (0.0101) (0.0042) (0.0049) (0.9210) (0.0189)

DD 0.7722 0.0523 0.0792 -0.0018 -0.0009 7.0406 -0.0625

(0.0409) (0.0072) (0.0093) (0.0049) (0.0050) (0.5741) (0.0180)

XOM 0.9316 0.0417 0.0334 0.0029 -0.0031 11.2320 0.0081

(0.0188) (0.0063) (0.0065) (0.0032) (0.0033) (1.3386) (0.0229)

GE 0.9905 0.0307 0.0366 -0.0093 -0.0065 7.4505 -0.1456

(0.0015) (0.0029) (0.0048) (0.0023) (0.0021) (1.0314) (0.0300)

HD 0.8657 0.0573 0.0591 -0.0155 -0.0081 7.8864 -0.0342

(0.0430) (0.0098) (0.0114) (0.0042) (0.0044) (0.7215) (0.0208)

IBM 0.9459 0.0324 0.0186 -0.0097 -0.0066 6.3196 -0.0476

(0.0279) (0.0046) (0.0049) (0.0021) (0.0023) (0.4762) (0.0903)

INTC 0.9108 0.0322 0.0294 -0.0062 -0.0046 8.7912 -0.0289

(0.0264) (0.0059) (0.0077) (0.0032) (0.0033) (0.8483) (0.0192)

JNJ 0.7695 0.0648 0.0760 -0.0137 0.0043 7.3108 -0.0319

(0.0555) (0.0087) (0.0109) (0.0051) (0.0063) (0.6096) (0.0185)

JPM 0.9661 0.0407 0.0367 -0.0108 -0.0026 7.1034 -0.0644

(0.0065) (0.0047) (0.0051) (0.0027) (0.0027) (0.5958) (0.0333)

MCD 0.7385 0.0545 0.0691 -0.0059 0.0033 7.1915 -0.0341

(0.0757) (0.0089) (0.0121) (0.0054) (0.0057) (0.5940) (0.0174)

MRK 0.7964 0.0649 0.0799 -0.0090 -0.0066 6.8163 -0.0495

(0.0443) (0.0082) (0.0110) (0.0051) (0.0052) (0.5228) (0.0190)

MSFT 0.8637 0.0554 0.0675 0.0003 0.0042 8.8889 -0.0320

(0.0247) (0.0063) (0.0085) (0.0040) (0.0044) (0.8994) (0.0205)

NKE 0.9706 0.0200 0.0187 -0.0062 0.0005 5.8409 -0.0863

(0.0069) (0.0023) (0.0037) (0.0021) (0.0016) (-0.3850) (0.0303)

PFE 0.9422 0.0316 0.0375 -0.0049 0.0014 8.5675 -0.0273

(0.0147) (0.0049) (0.0064) (0.0030) (0.0032) (0.8417) (0.0230)

PG 0.7537 0.0369 0.0639 -0.0130 -0.0092 10.1869 0.0162

(0.0910) (0.0037) (0.0080) (0.0026) (0.0025) (1.4107) (0.0305)

TRV 0.9248 0.0517 0.0502 -0.0078 -0.0002 7.3641 -0.0564

(0.0154) (0.0060) (0.0075) (0.0035) (0.0035) (0.6169) (0.0248)

UNH 0.9465 0.0178 -0.0073 -0.0275 -0.0209 13.3228 0.2249

(0.0098) (0.0071) (0.0091) (0.0032) (0.0036) (3.6346) (0.0761)

UTX 0.8583 0.0511 0.0591 -0.0072 -0.0071 8.4000 -0.0176

(0.0331) (0.0070) (0.0092) (0.0041) (0.0042) (0.8074) (0.0201)

VZ 0.9098 0.0350 0.0528 0.0000 -0.0085 8.9866 -0.0281

(0.0222) (0.0059) (0.0077) (0.0034) (0.0035) (0.8905) (0.0206)

WMT 0.9397 0.0355 0.0291 -0.0031 -0.0034 7.1862 -0.0342

(0.0222) (0.0063) (0.0081) (0.0031) (0.0032) (0.5837) (0.0227)

DIS 0.8600 0.0279 0.0593 -0.0066 -0.0017 7.2250 -0.0372

(0.0350) (0.0050) (0.0087) (0.0040) (0.0039) (0.5754) (0.0175)

Average 0.8793 0.0423 0.0489 -0.0088 -0.0032 8.0879 -0.0321

Continued on the next page.

Table B.7: Estimates of the dynamic parameters in the multivariate coupled component model
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βN γN ρN γ∗N ρ∗N νN ωN

MMM 0.8804 0.0483 0.0383 0.0039 -0.0076 2.9933 -1.0124

(0.0339) (0.0076) (0.0073) (0.0046) (0.0050) (0.1300) (0.0228)

AXP 0.9295 0.0595 0.0444 -0.0066 -0.0102 3.2091 -0.9629

(0.0138) (0.0081) (0.0060) (0.0042) (0.0039) (0.1363) (0.0271)

AAPL 0.8619 0.0800 0.0798 -0.0005 -0.0141 2.3334 -1.2202

(0.0196) (0.0098) (0.0081) (0.0055) (0.0051) (0.0781) (0.0241)

BA 0.7390 0.0558 0.0706 -0.0001 -0.0039 2.5584 -1.0268

(0.0478) (0.0111) (0.0095) (0.0064) (0.0063) (0.0950) (0.0194)

CAT 0.9330 0.0449 0.0496 0.0055 -0.0104 2.4952 -1.0838

(0.0157) (0.0084) (0.0071) (0.0041) (0.0039) (0.0918) (0.0267)

CVX 0.9692 0.0139 0.0232 -0.0016 -0.0069 3.4551 -0.8353

(0.0080) (0.0043) (0.0038) (0.0024) (0.0024) (0.1676) (0.0244)

CSCO 0.9394 0.0547 0.0444 0.0003 -0.0138 2.7603 -1.1515

(0.0137) (0.0086) (0.0062) (0.0037) (0.0039) (0.1023) (0.0283)

KO 0.8793 0.0422 0.0404 -0.0074 -0.0141 3.1641 -0.9414

(0.0330) (0.0077) (0.0079) (0.0045) (0.0047) (0.1354) (0.0205)

DD 0.8112 0.0585 0.0546 -0.0072 0.0021 3.0657 -0.9734

(0.0406) (0.0098) (0.0083) (0.0055) (0.0055) (0.1278) (0.0199)

XOM 0.9375 0.0329 0.0330 -0.0023 0.0007 4.0204 -0.8168

(0.0158) (0.0065) (0.0051) (0.0034) (0.0034) (0.2057) (0.0228)

GE 0.9930 0.0345 0.0393 -0.0055 -0.0079 3.4604 -1.0347

(0.0009) (0.0046) (0.0032) (0.0023) (0.0022) (0.1365) (0.0408)

HD 0.9001 0.0420 0.0540 -0.0070 -0.0183 2.7342 -1.0060

(0.0231) (0.0080) (0.0080) (0.0044) (0.0045) (0.1052) (0.0225)

IBM 0.8994 0.0474 0.0490 -0.0028 -0.0150 2.3921 -1.1149

(0.0642) (0.0089) (0.0067) (0.0037) (0.0038) (0.0844) (0.0833)

INTC 0.8185 0.0799 0.0611 0.0005 -0.0028 2.2863 -1.1842

(0.0341) (0.0112) (0.0089) (0.0061) (0.0055) (0.0772) (0.0219)

JNJ 0.9383 0.0284 0.0334 -0.0031 -0.0172 3.3619 -0.8759

(0.0158) (0.0072) (0.0066) (0.0034) (0.0035) (0.1521) (0.0226)

JPM 0.9683 0.0387 0.0391 -0.0103 -0.0093 3.3407 -0.9096

(0.0063) (0.0059) (0.0048) (0.0029) (0.0028) (0.1506) (0.0350)

MCD 0.8857 0.0353 0.0441 -0.0046 -0.0117 2.9313 -0.9419

(0.0349) (0.0093) (0.0088) (0.0043) (0.0043) (0.1162) (0.0201)

MRK 0.9148 0.0484 0.0430 -0.0056 -0.0100 2.7916 -1.0097

(0.0205) (0.0094) (0.0081) (0.0042) (0.0042) (0.1113) (0.0240)

MSFT 0.8783 0.0725 0.0494 0.0040 -0.0022 2.4788 -1.1938

(0.0251) (0.0100) (0.0075) (0.0049) (0.0047) (0.0850) (0.0233)

NKE 0.8054 0.0584 0.0628 -0.0084 -0.0159 2.2388 -1.1941

(0.0842) (0.0122) (0.0128) (0.0046) (0.0062) (0.0766) (0.0240)

PFE 0.9505 0.0434 0.0375 -0.0001 0.0008 2.9088 -0.9905

(0.0113) (0.0068) (0.0053) (0.0036) (0.0034) (0.1175) (0.0285)

PG 0.7464 0.0492 0.0486 -0.0188 -0.0070 3.1622 -0.9233

(0.0823) (0.0066) (0.0060) (0.0037) (0.0032) (0.1351) (0.0259)

TRV 0.9478 0.0548 0.0408 -0.0060 -0.0065 2.7246 -0.9799

(0.0105) (0.0072) (0.0060) (0.0036) (0.0037) (0.1042) (0.0300)

UNH 0.8028 0.0429 0.0800 0.0013 -0.0132 3.4955 -0.5698

(0.0158) (0.0480) (0.0489) (0.0079) (0.0067) (0.1653) (0.0722)

UTX 0.9419 0.0323 0.0361 -0.0080 -0.0104 2.9737 -0.9300

(0.0131) (0.0058) (0.0058) (0.0033) (0.0035) (0.1238) (0.0246)

VZ 0.9333 0.0429 0.0364 -0.0104 -0.0027 3.1833 -0.8965

(0.0133) (0.0071) (0.0055) (0.0035) (0.0035) (0.1345) (0.0244)

WMT 0.9604 0.0249 0.0294 -0.0005 -0.0061 2.9159 -0.9766

(0.0127) (0.0054) (0.0055) (0.0028) (0.0029) (0.1159) (0.0254)

DIS 0.8282 0.0800 0.0708 0.0010 0.0010 2.8703 -1.0500

(0.0322) (0.0108) (0.0094) (0.0056) (0.0056) (0.1147) (0.0223)

Average 0.8926 0.0481 0.0476 -0.0036 -0.0083 2.9395 -0.9931

This table gives the estimates of the dynamic parameters in the multivariate coupled component model,

and their asymptotic standard errors in parenthesis. The last row shows the average estimated values.

Table B.7: Estimates of the dynamic parameters in the multivariate coupled component model(cont.)
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αD βDD βDN αN βNN BβDN

MMM 0.0078 0.7605 0.0902 -0.0140 0.7149 -0.0294

(0.0137) (0.0195) (0.0339) (0.0078) (0.0215) (0.0115)

AXP -0.0036 1.3586 0.1044 -0.0227 1.3036 -0.0380

(0.0183) (0.0307) (0.0451) (0.0101) (0.0388) (0.0145)

AAPL -0.0495 1.2499 -0.4008 0.0692 1.2795 -0.0129

(0.0275) (0.0367) (0.0519) (0.0214) (0.0410) (0.0345)

BA 0.0032 0.8752 0.0260 -0.0173 0.9944 -0.0018

(0.0175) (0.0259) (0.0395) (0.0112) (0.0437) (0.0204)

CAT -0.0381 1.1038 -0.0173 0.0225 1.1490 0.0200

(0.0180) (0.0251) (0.0446) (0.0111) (0.0260) (0.0144)

CVX -0.0084 0.7938 0.1060 -0.0040 0.7782 -0.0308

(0.0146) (0.0279) (0.0411) (0.0075) (0.0254) (0.0106)

CSCO -0.0362 1.4340 -0.2393 0.0353 1.5125 0.0271

(0.0239) (0.0364) (0.0518) (0.0143) (0.0398) (0.0186)

KO 0.0439 0.6008 -0.1229 -0.0450 0.6220 -0.0273

(0.0144) (0.0246) (0.0363) (0.0080) (0.0199) (0.0116)

DD 0.0087 0.9774 0.0814 -0.0401 0.9410 0.0016

(0.0164) (0.0255) (0.0410) (0.0094) (0.0236) (0.0138)

XOM 0.0259 0.7638 0.0563 -0.0360 0.7708 -0.0412

(0.0141) (0.0278) (0.0383) (0.0070) (0.0237) (0.0102)

GE -0.0359 1.1506 -0.1242 0.0069 1.2827 0.0132

(0.0146) (0.0272) (0.0568) (0.0086) (0.0397) (0.0192)

HD -0.0042 1.1193 -0.1750 0.0046 1.0824 -0.0066

(0.0175) (0.0273) (0.0421) (0.0114) (0.0320) (0.0156)

IBM 0.0199 0.9031 -0.0778 -0.0340 1.0056 0.0031

(0.0160) (0.0221) (0.0320) (0.0105) (0.0325) (0.0150)

INTC -0.0166 1.3354 -0.1999 0.0093 1.4196 -0.0262

(0.0206) (0.0324) (0.0436) (0.0151) (0.0435) (0.0180)

JNJ 0.0232 0.5839 -0.1028 -0.0119 0.6256 -0.0006

(0.0137) (0.0208) (0.0289) (0.0081) (0.0240) (0.0121)

JPM -0.0285 1.5187 -0.1691 -0.0121 1.5754 -0.0152

(0.0196) (0.0431) (0.0719) (0.0105) (0.0423) (0.0193)

MCD 0.0401 0.6222 -0.1375 -0.0288 0.6937 0.0166

(0.0159) (0.0230) (0.0354) (0.0094) (0.0205) (0.0113)

MRK 0.0188 0.7569 -0.0463 -0.0392 0.7590 -0.0313

(0.0169) (0.0255) (0.0360) (0.0113) (0.0270) (0.0130)

MSFT 0.0081 1.1223 -0.0564 -0.0053 1.1081 -0.0329

(0.0171) (0.0242) (0.0376) (0.0112) (0.0287) (0.0131)

NKE 0.0502 0.8567 -0.0060 -0.0301 0.8211 -0.0162

(0.0202) (0.0280) (0.0476) (0.0120) (0.0273) (0.0138)

PFE -0.0216 0.7967 -0.1187 0.0153 0.8099 0.0023

(0.0170) (0.0239) (0.0356) (0.0111) (0.0307) (0.0131)

PG 0.0773 0.5619 -0.0952 -0.0706 0.5988 -0.0227

(0.0145) (0.0244) (0.0335) (0.0103) (0.0187) (0.0133)

TRV 0.0044 0.9263 0.0345 -0.0163 0.8511 -0.0340

(0.0183) (0.0382) (0.0655) (0.0096) (0.0454) (0.0167)

UNH 0.0131 0.8234 0.0093 0.0126 0.7748 0.0031

(0.0240) (0.0448) (0.0769) (0.0142) (0.0378) (0.0229)

UTX -0.0194 0.8836 0.1891 0.0175 0.9107 -0.0117

(0.0154) (0.0217) (0.0485) (0.0085) (0.0344) (0.0125)

VZ 0.0001 0.7322 -0.1011 -0.0185 0.7536 0.0019

(0.0163) (0.0239) (0.0375) (0.0086) (0.0227) (0.0129)

WMT -0.0202 0.7811 -0.1636 0.0144 0.7311 -0.0169

(0.0164) (0.0240) (0.0339) (0.0094) (0.0238) (0.0116)

DIS 0.0103 1.0073 0.0580 -0.0250 1.0557 0.0070

(0.0167) (0.0241) (0.0395) (0.0120) (0.0464) (0.0190)

Estimates of the CAPM structure in the mean equations. rDit = aDi + βDD
i rDmt + βDN

i rNmt + uDit and

rNit = aNi + βNN
i rNmt + βND

i rDmt−1 + uNit .

Table B.8: Estimates of the mean equations
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