

(日)

# Extensive and Intensive Margins of Labour Supply: Working Hours in the US, UK and France

Richard Blundell Antoine Bozio Guy Laroque

UCL and IFS IFS INSEE-CREST, UCL and IFS

March 2011



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

#### Americans work more than Europeans

This was not the case forty years ago



#### Americans work more than Europeans

This was not the case forty years ago

#### Taxes can explain all the divergence (Prescott 2004)

- · High taxes lead to reduction in market hours
- Correlation between changes in hours worked and changes in tax levels
- Implicit conclusion: labour supply elasticity is high



#### Americans work more than Europeans

This was not the case forty years ago

#### Taxes can explain all the divergence (Prescott 2004)

- · High taxes lead to reduction in market hours
- Correlation between changes in hours worked and changes in tax levels
- · Implicit conclusion: labour supply elasticity is high

#### Micro studies: significant but small labour supply elasticity

- · Implicit conclusion: taxes can't explain so large changes
- Preference for leisure? (Blanchard 2004)
- · Regulations? (Alesina, Glaeser and Sacerdote 2005)



(ロ) (同) (三) (三) (三) (○) (○)

#### Americans work more than Europeans

This was not the case forty years ago

#### Taxes can explain all the divergence (Prescott 2004)

- · High taxes lead to reduction in market hours
- Correlation between changes in hours worked and changes in tax levels
- · Implicit conclusion: labour supply elasticity is high

#### Micro studies: significant but small labour supply elasticity

- Implicit conclusion: taxes can't explain so large changes
- Preference for leisure? (Blanchard 2004)
- · Regulations? (Alesina, Glaeser and Sacerdote 2005)

#### Micro vs macro elasticities

- · Large vs small variations (Chetty 2009)
- Short-term vs long-term elasticities
- · Extensive vs intensive elasticity (Rogerson and Wallenius 2009)

#### Microeconometric studies

 Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)

Institute for Fiscal Studies

· Older workers: Gruber and Wise (2004)

#### Microeconometric studies

- Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)
- · Older workers: Gruber and Wise (2004)

#### Public economics

- Labour earnings tax design
- Diamond (1980), Saez (2002), Laroque (2005)
- This paper makes three contributions:

Institute for Fiscal Studies

#### Microeconometric studies

 Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)

Institute for Fiscal Studies

(ロ) (同) (三) (三) (三) (○) (○)

· Older workers: Gruber and Wise (2004)

#### Public economics

- Labour earnings tax design
- Diamond (1980), Saez (2002), Laroque (2005)
- This paper makes three contributions:
  - develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years

#### Microeconometric studies

 Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)

Institute for Fiscal Studies

· Older workers: Gruber and Wise (2004)

#### Public economics

- Labour earnings tax design
- Diamond (1980), Saez (2002), Laroque (2005)
- This paper makes three contributions:
  - develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years
  - Provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin

#### Microeconometric studies

- Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)
- · Older workers: Gruber and Wise (2004)

#### Public economics

- Labour earnings tax design
- Diamond (1980), Saez (2002), Laroque (2005)
- This paper makes three contributions:
  - develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years
  - Provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin
  - provide a first attempt at consistently estimating micro and macro elasticities on UK data

Institute for Fiscal Studies



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

#### Labour Force surveys

- UK: Labour Force Survey 1975-2008; EFS/FES 1968-2008
- FR: Enquête Emploi 1968-2008
- US: Current Population Survey 1968-2008



(日)

#### Labour Force surveys

- UK: Labour Force Survey 1975-2008; EFS/FES 1968-2008
- FR: Enquête Emploi 1968-2008
- US: Current Population Survey 1968-2008

#### Extensive vs intensive measures

- · Extensive: fraction of the reference period in employment
- Intensive: number of actual hours worked divided by the extensive margin



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

#### Labour Force surveys

- UK: Labour Force Survey 1975-2008; EFS/FES 1968-2008
- FR: Enquête Emploi 1968-2008
- US: Current Population Survey 1968-2008

#### Extensive vs intensive measures

- · Extensive: fraction of the reference period in employment
- Intensive: number of actual hours worked divided by the extensive margin

#### Measurement issues

- Annual vs continuous surveys
- Usual vs actual hours



#### Labour Force surveys

- UK: Labour Force Survey 1975-2008; EFS/FES 1968-2008
- FR: Enquête Emploi 1968-2008
- US: Current Population Survey 1968-2008

#### Extensive vs intensive measures

- · Extensive: fraction of the reference period in employment
- Intensive: number of actual hours worked divided by the extensive margin

#### Measurement issues

- Annual vs continuous surveys
- Usual vs actual hours

#### Our estimation

- Extensive: employment rate from the reference week
- Intensive: actual hours from the reference week in continuous surveys; usual hours adjusted for annual surveys for France; actual hours adjusted for UK and US for annual surveys

### **Total hours**



#### Figure 1: Mean annual hours per individual aged 16 to 74

・ロト・日本・日本・日本・日本・日本



# Extensive margin



#### Figure 2: Employment rate (per population) aged 16 to 74

Institute for Fiscal Studies



Figure 3: Mean annual hours per worker aged 16 to 74



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

## Total hours by age



Figure 4: Male total hours by age 1977



### Total hours by age



#### Figure 5: Male total hours by age 2007



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

# Employment by age



Figure 6: Male employment by age 1977



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ▲○

# Employment by age



Figure 7: Male employment by age 2007







Figure 8: Female total hours by age 1977



# Total hours by age



Figure 9: Female total hours by age 2007







#### Figure 10: Female employment by age 1977



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

# Employment by age



Figure 11: Female employment by age 2007



# Variations within the year



#### Table 1: Weekly hours and weeks worked (2007)

|                    |      | Men   |       | Women |       |       |  |
|--------------------|------|-------|-------|-------|-------|-------|--|
|                    | FR   | UK    | US    | FR    | UK    | US    |  |
| Annual hours (all) | 1800 | 1919  | 2107  | 1445  | 1389  | 1792  |  |
| Share part-time    | 5.0% | 10.5% | 10.1% | 29.4% | 41.9% | 23.9% |  |
| Full-time workers  |      |       |       |       |       |       |  |
| Annual hours       | 1839 | 2044  | 2229  | 1631  | 1777  | 2041  |  |
| Weekly hours       | 42.1 | 46.8  | 44.6  | 39.0  | 43.5  | 42.0  |  |
| Weeks worked       | 43.7 | 43.7  | 50.0  | 41.8  | 40.9  | 48.5  |  |
| Part-time workers  |      |       |       |       |       |       |  |
| Annual hours       | 995  | 857   | 1030  | 1008  | 851   | 1021  |  |
| Weekly hours       | 22.5 | 22.2  | 21.3  | 23.7  | 22.9  | 21.5  |  |
| Weeks worked       | 44.2 | 38.6  | 48.4  | 42.5  | 37.1  | 47.5  |  |

# Variations within the year



Figure 12: Actual weekly hours by month of the year (2002-2008)



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



• Suppose there are j = 1, ..., J broad types





- Suppose there are j = 1, ..., J broad types
- *H<sub>t</sub>* is computed in any year *t* as an average of hours *H<sub>jt</sub>* with weights equal to the population shares *q<sub>jt</sub>*

$$H_t = \sum_{j=1}^J q_{jt} H_{jt}$$



*H<sub>t</sub>* is computed in any year *t* as an average of hours *H<sub>jt</sub>* with weights equal to the population shares *q<sub>jt</sub>*

$$H_t = \sum_{j=1}^J q_{jt} H_{jt}$$

Institute for Fiscal Studies

 where each H<sub>jt</sub> can be expressed as the product of hours per worker h<sub>jt</sub> and participation in the labour market p<sub>jt</sub>

$$H_{jt} = p_{jt}h_{jt}$$
.

• We measure the change due to the behavior of category j, holding the population structure constant as in date t - 1, as in a Laspeyres index

Institute for

(日)

$$\Delta_{jt}=q_{j,t-1}[H_{jt}-H_{j,t-1}].$$

• We measure the change due to the behavior of category j, holding the population structure constant as in date t - 1, as in a Laspeyres index

Institute for

$$\Delta_{jt}=q_{j,t-1}[H_{jt}-H_{j,t-1}].$$

• The total change across all J categories of workers is then

$$\Delta_t = \sum_{j=1}^J \Delta_{jt}$$

• We measure the change due to the behavior of category j, holding the population structure constant as in date t - 1, as in a Laspeyres index

Institute for

$$\Delta_{jt}=q_{j,t-1}[H_{jt}-H_{j,t-1}].$$

• The total change across all J categories of workers is then

$$\Delta_t = \sum_{j=1}^J \Delta_{jt}$$

- and, by construction, we have

$$H_t - H_{t-1} = S_t + \Delta_t$$

• We measure the change due to the behavior of category j, holding the population structure constant as in date t - 1, as in a Laspeyres index

$$\Delta_{jt}=q_{j,t-1}[H_{jt}-H_{j,t-1}].$$

• The total change across all J categories of workers is then

$$\Delta_t = \sum_{j=1}^J \Delta_{jt}$$

- and, by construction, we have

$$H_t - H_{t-1} = S_t + \Delta_t$$

where S<sub>t</sub> measures the change in the composition of the population:

$$S_t = \sum_{j=1}^J H_{jt}[q_{jt} - q_{j,t-1}].$$

・ロト・西ト・ヨト・ヨト・ 日・ つへぐ

Institute for



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Table 2: Decomposing the change in total hours, 1977-2007

|    | Year       | Youth (16-29) |       | Prime | aged (30-54) | Old (55-74) |       |
|----|------------|---------------|-------|-------|--------------|-------------|-------|
|    |            | Men           | Women | Men   | Women        | Men         | Women |
| FR | 1977       | 1402          | 871   | 2010  | 951          | 827         | 367   |
|    | 2007       | 858           | 627   | 1639  | 1116         | 508         | 344   |
|    | $\Delta_j$ | -82           | -38   | -82   | 36           | -36         | -3    |
| UK | 1977       | 1707          | 938   | 2117  | 873          | 1107        | 323   |
|    | 2007       | 1219          | 876   | 1786  | 1055         | 790         | 385   |
|    | $\Delta_j$ | -71           | -9    | -70   | 39           | -42         | 10    |
| US | 1977       | 1344          | 835   | 2018  | 947          | 1025        | 447   |
|    | 2007       | 1236          | 956   | 1922  | 1373         | 1084        | 754   |
|    | $\Delta_j$ | -19           | 22    | -19   | 90           | 6           | 38    |

SOURCES: Enquête Emploi, Labour Force Survey, Current Population Survey.

• evolution of total  $\Delta$  differs: -195 for FR, -118 for UK, +165 for US.



Table 2: Decomposing the change in total hours, 1977-2007

|    | Year       | Youth (16-29) |       | Prime | aged (30-54) | Old (55-74) |       |
|----|------------|---------------|-------|-------|--------------|-------------|-------|
|    |            | Men           | Women | Men   | Women        | Men         | Women |
| FR | 1977       | 1402          | 871   | 2010  | 951          | 827         | 367   |
|    | 2007       | 858           | 627   | 1639  | 1116         | 508         | 344   |
|    | $\Delta_j$ | -82           | -38   | -82   | 36           | -36         | -3    |
| UK | 1977       | 1707          | 938   | 2117  | 873          | 1107        | 323   |
|    | 2007       | 1219          | 876   | 1786  | 1055         | 790         | 385   |
|    | $\Delta_j$ | -71           | -9    | -70   | 39           | -42         | 10    |
| US | 1977       | 1344          | 835   | 2018  | 947          | 1025        | 447   |
|    | 2007       | 1236          | 956   | 1922  | 1373         | 1084        | 754   |
|    | $\Delta_j$ | -19           | 22    | -19   | 90           | 6           | 38    |

SOURCES: Enquête Emploi, Labour Force Survey, Current Population Survey.

- evolution of total  $\Delta$  differs: -195 for FR, -118 for UK, +165 for US.
- composition S: +10 for FR, +25 for UK, +46 for US



Figure 13: Decomposing the change in total hours (1977-2007)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Intensive vs extensive margins

- We decompose the change in total hours for the *j* type  $\Delta_j$  into:
  - an intensive component  $I_j = p_{lj} \Delta h_j$
  - an extensive component  $E_j = h_{Ej} \Delta p_j$

$$\Delta_{jt} = I_j + E_j$$

Institute for Fiscal Studies

### Intensive vs extensive margins

- We decompose the change in total hours for the *j* type  $\Delta_j$  into:
  - an intensive component  $I_j = p_{lj} \Delta h_j$
  - an extensive component  $E_j = h_{Ej} \Delta p_j$

$$\Delta_{jt} = I_j + E_j$$

Institute for Fiscal Studies

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

We get intensive bounds

Assuming 
$$p_{lj} \in [p_{j,t-1}, p_{jt}]$$
  
 $I_j \in [p_{j,t-1}(h_{jt} - h_{j,t-1}), p_{j,t}(h_{jt} - h_{j,t-1})]$   
 $I_j \in [I - Laspeyres, I - Paasche]$ 

### Intensive vs extensive margins

- We decompose the change in total hours for the *j* type  $\Delta_j$  into:
  - an intensive component  $I_j = p_{lj} \Delta h_j$
  - an extensive component  $E_j = h_{Ej} \Delta p_j$

$$\Delta_{jt} = I_j + E_j$$

Institute for Fiscal Studies

)]

We get intensive bounds

Assuming 
$$p_{lj} \in [p_{j,t-1}, p_{jt}]$$
  
 $I_j \in [p_{j,t-1}(h_{jt} - h_{j,t-1}), p_{j,t}(h_{jt} - h_{j,t-1})]$   
 $I_j \in [I - Laspeyres, I - Paasche]$ 

We get extensive bounds

From the identity 
$$\Delta_{jt} = I_j + E_j$$
  
 $E_j \in [h_{j,t-1}(p_{jt} - p_{j,t-1}), h_{j,t}(p_{jt} - p_{j,t-1})$   
 $E_j \in [E - Laspeyres, E - Paasche]$ 



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

• At the limits, the change in total hours for any type *j* satisfies two polar exact statistical decompositions:

$$\Delta_{jt} = q_{j,t-1} \left\{ [h_{jt} - h_{jt-1}] p_{jt} + [p_{jt} - p_{jt-1}] h_{j_{t-1}} \right\}$$
(1)

$$\Delta_{jt} = q_{j,t-1} \{ I - Paasche + E - Laspeyres \}$$

# **Bounding Changes**



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

• At the limits, the change in total hours for any type *j* satisfies two polar exact statistical decompositions:

$$\Delta_{jt} = q_{j,t-1} \{ [h_{jt} - h_{jt-1}] p_{jt} + [p_{jt} - p_{jt-1}] h_{j_{t-1}} \}$$
(1)  
$$\Delta_{jt} = q_{j,t-1} \{ I - Paasche + E - Laspeyres \}$$

or

$$\Delta_{jt} = q_{j,t-1} \{ [h_{jt} - h_{jt-1}] p_{jt-1} + [p_{jt} - p_{jt-1}] h_{jt} \}$$
(2)  
$$\Delta_{jt} = q_{j,t-1} \{ I - Laspeyres + E - Paasche \}$$

# Bounding changes

- Institute for Fiscal Studies

Figure 14: Decomposing the changes at the extensive and intensive margins by age and gender (1977-2007)

|    | Year     | Men<br>16-29 | Women<br>16-29 | Men<br>30-54 | Women<br>30-54 | Men<br>55-74 | Women<br>55-74 |
|----|----------|--------------|----------------|--------------|----------------|--------------|----------------|
| FR | I-P, I-L | [-37,-28]    | [-23, -19]     | [-59, -56]   | [-49, -35]     | [-11, -8]    | [-10, -9]      |
|    | E-L, E-P | [-54, -45]   | [-19, -16]     | [-27, -23]   | [71, 85]       | [-28, -25]   | [6, 7]         |
|    | Δ        | -82          | -38            | -82          | 36             | -36          | -3             |
| UK | I-P, I-L | [-42, -36]   | [-26, -23]     | [-48, -45]   | [-3, -2]       | [-22, -19]   | [-8, -6]       |
|    | E-L, E-P | [-35, -29]   | [14, 17]       | [-25, -22]   | [41, 41]       | [-23, -20]   | [15, 17]       |
|    | Δ        | -71          | -9             | -70          | 39             | -42          | 10             |
| US | I-P, I-L | [-6, -6]     | [1, 1]         | [-5, -5]     | [14, 19]       | [3, 3]       | [3, 5]         |
|    | E-L, E-P | [-13, -13]   | [21, 21]       | [-14, -14]   | [72, 77]       | [3, 3]       | [33, 35]       |
|    | Δ        | -19          | 22             | -19          | 90             | 6            | 38             |





Figure 15: Share of the 16-29 population in work



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □









< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □









・ロッ ・雪 ・ ・ ヨ ・ ・ ー 3

### **Older workers**



Figure 18: Male employment rate from 50 to 74 (1977)



SAC

### **Older workers**



Figure 19: Male employment rate from 50 to 74 (2007)



うくで

## **Recovering elasticities**



#### Objectives

- Link up these changes at the extensive and intensive margins to movements in the distribution of taxes, relative wages, demographics and other incomes.
- Draw implication for extensive and intensive elasticities
- Draw implications for the aggregate hours elasticity.

# **Recovering elasticities**



#### Objectives

- Link up these changes at the extensive and intensive margins to movements in the distribution of taxes, relative wages, demographics and other incomes.
- · Draw implication for extensive and intensive elasticities
- · Draw implications for the aggregate hours elasticity.

### Aggregation issues

 How is the aggregate labour supply elasticity related to various micro elasticities?

# **Recovering elasticities**



#### Objectives

- Link up these changes at the extensive and intensive margins to movements in the distribution of taxes, relative wages, demographics and other incomes.
- Draw implication for extensive and intensive elasticities
- · Draw implications for the aggregate hours elasticity.

### Aggregation issues

 How is the aggregate labour supply elasticity related to various micro elasticities?

#### Empirical issues (forthcoming)

- Use IFS microsimulation model TAXBEN
- Estimation extensive and intensive elasticities
- Similar approach for France and the US



Consider preferences

$$U = \begin{cases} \lambda R(h) + \frac{(T-h)^{1-1/\alpha}}{1-1/\alpha} - \beta & \text{if } h > 0\\ \lambda s & \text{if } h = 0 \end{cases}$$





◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Consider preferences

$$U = \begin{cases} \lambda R(h) + \frac{(T-h)^{1-1/\alpha}}{1-1/\alpha} - \beta & \text{if } h > 0\\ \lambda s & \text{if } h = 0 \end{cases}$$

• where *R*(*h*) is the disposable income of someone who works *h* hours, *s* is income when unemployed

Institute for Fiscal Studies

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Consider preferences

$$U = \begin{cases} \lambda R(h) + \frac{(T-h)^{1-1/\alpha}}{1-1/\alpha} - \beta & \text{if } h > 0\\ \lambda s & \text{if } h = 0 \end{cases}$$

- where R(h) is the disposable income of someone who works h hours, s is income when unemployed
- +  $\lambda$  is the marginal utility of income,  $\alpha$  (T-h)/h is the Frisch elasticity

Institute for Fiscal Studies

Consider preferences

$$U = \begin{cases} \lambda R(h) + \frac{(T-h)^{1-1/\alpha}}{1-1/\alpha} - \beta & \text{if } h > 0\\ \lambda s & \text{if } h = 0 \end{cases}$$

- where R(h) is the disposable income of someone who works h hours, s is income when unemployed
- $\lambda$  is the marginal utility of income,  $\alpha$  (T-h)/h is the Frisch elasticity
- $\beta$  (unobserved heterogeneity in) fixed costs of work.

Institute for Fiscal Studies

Consider preferences

$$U = \begin{cases} \lambda R(h) + \frac{(T-h)^{1-1/\alpha}}{1-1/\alpha} - \beta & \text{if } h > 0\\ \lambda s & \text{if } h = 0 \end{cases}$$

- where R(h) is the disposable income of someone who works h hours, s is income when unemployed
- $\lambda$  is the marginal utility of income,  $\alpha$  (T-h)/h is the Frisch elasticity
- $\beta$  (unobserved heterogeneity in) fixed costs of work.
- · The 'aggregate' hours elasticity is given by

 $\varepsilon = \frac{1}{\tilde{H}} \int_{w} \int_{\alpha} \int_{\lambda} p(h) [\varepsilon_{I}(\alpha, \lambda, w) + \varepsilon_{E}(\alpha, \lambda, w)] g(\alpha, \lambda, w) d\alpha d\lambda dw.$ 

Institute for Fiscal Studies

Consider preferences

$$U = \begin{cases} \lambda R(h) + \frac{(T-h)^{1-1/\alpha}}{1-1/\alpha} - \beta & \text{if } h > 0\\ \lambda s & \text{if } h = 0 \end{cases}$$

- where R(h) is the disposable income of someone who works h hours, s is income when unemployed
- $\lambda$  is the marginal utility of income,  $\alpha$  (T-h)/h is the Frisch elasticity
- $\beta$  (unobserved heterogeneity in) fixed costs of work.
- The 'aggregate' hours elasticity is given by

$$\varepsilon = \frac{1}{\tilde{H}} \int_{w} \int_{\alpha} \int_{\lambda} p(h()[\varepsilon_{I}(\alpha, \lambda, w) + \varepsilon_{E}(\alpha, \lambda, w)] g(\alpha, \lambda, w) d\alpha d\lambda dw.$$

-  $h(\alpha, \lambda, w)$  hours,  $p(\alpha, \lambda, w)$  proportion of type  $(\alpha, \lambda, w)$  workers



(日)

• We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.



(日)

- We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.
- We have shown how informative bounds can be developed on each of these margins.

Institute for Fiscal Studies

(日)

- We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.
- We have shown how informative bounds can be developed on each of these margins.
- We have applied this analysis to the evolution of hours of work in the US, the UK and France over the past 30+ years.

• We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.

Institute for Fiscal Studies

- We have shown how informative bounds can be developed on each of these margins.
- We have applied this analysis to the evolution of hours of work in the US, the UK and France over the past 30+ years.
- We have shown that the aggregate evolution cannot be ascribed to a single cause but covers very diverse movements at the extensive and extensive margins by age and gender.

- We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.
- We have shown how informative bounds can be developed on each of these margins.
- We have applied this analysis to the evolution of hours of work in the US, the UK and France over the past 30+ years.
- We have shown that the aggregate evolution cannot be ascribed to a single cause but covers very diverse movements at the extensive and extensive margins by age and gender.
- We have developed an approach to estimating the total hours elasticity from the distribution of micro elasticities at the extensive and intensive margins.

Institute for Fiscal Studies