Extensive and Intensive Margins of Labour Supply: Working Hours in the US, UK and France

Richard Blundell Antoine Bozio Guy Laroque UCL and IFS

IFS
INSEE-CREST, UCL and IFS
March 2011

Motivations

- Americans work more than Europeans
- This was not the case forty years ago

Motivations

- Americans work more than Europeans
- This was not the case forty years ago
- Taxes can explain all the divergence (Prescott 2004)
- High taxes lead to reduction in market hours
- Correlation between changes in hours worked and changes in tax levels
- Implicit conclusion: labour supply elasticity is high

Motivations

- Americans work more than Europeans
- This was not the case forty years ago
- Taxes can explain all the divergence (Prescott 2004)
- High taxes lead to reduction in market hours
- Correlation between changes in hours worked and changes in tax levels
- Implicit conclusion: labour supply elasticity is high
- Micro studies: significant but small labour supply elasticity
- Implicit conclusion: taxes can’t explain so large changes
- Preference for leisure? (Blanchard 2004)
- Regulations? (Alesina, Glaeser and Sacerdote 2005)

Motivations

- Americans work more than Europeans
- This was not the case forty years ago
- Taxes can explain all the divergence (Prescott 2004)
- High taxes lead to reduction in market hours
- Correlation between changes in hours worked and changes in tax levels
- Implicit conclusion: labour supply elasticity is high
- Micro studies: significant but small labour supply elasticity
- Implicit conclusion: taxes can’t explain so large changes
- Preference for leisure? (Blanchard 2004)
- Regulations? (Alesina, Glaeser and Sacerdote 2005)
- Micro vs macro elasticities
- Large vs small variations (Chetty 2009)
- Short-term vs long-term elasticities
- Extensive vs intensive elasticity (Rogerson and Wallenius 2009)

Extensive vs Intensive Margins

- Microeconometric studies
- Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)
- Older workers: Gruber and Wise (2004)

Extensive vs Intensive Margins

- Microeconometric studies
- Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)
- Older workers: Gruber and Wise (2004)
- Public economics
- Labour earnings tax design
- Diamond (1980), Saez (2002), Laroque (2005)
- This paper makes three contributions:

Extensive vs Intensive Margins

- Microeconometric studies
- Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)
- Older workers: Gruber and Wise (2004)
- Public economics
- Labour earnings tax design
- Diamond (1980), Saez (2002), Laroque (2005)
- This paper makes three contributions:
(1) develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years

Extensive vs Intensive Margins

- Microeconometric studies
- Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)
- Older workers: Gruber and Wise (2004)
- Public economics
- Labour earnings tax design
- Diamond (1980), Saez (2002), Laroque (2005)
- This paper makes three contributions:
(1) develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years
(2) provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin

Extensive vs Intensive Margins

- Microeconometric studies
- Women with children: Gronau (1974), Heckman (1974,1979), Cogan(1981), Blundell and MaCurdy (1999)
- Older workers: Gruber and Wise (2004)
- Public economics
- Labour earnings tax design
- Diamond (1980), Saez (2002), Laroque (2005)
- This paper makes three contributions:
(1) develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years
(2) provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin
(3) provide a first attempt at consistently estimating micro and macro elasticities on UK data

- Labour Force surveys

- UK: Labour Force Survey 1975-2008; EFS/FES 1968-2008
- FR: Enquête Emploi 1968-2008
- US: Current Population Survey 1968-2008
- Labour Force surveys
- UK: Labour Force Survey 1975-2008; EFS/FES 1968-2008
- FR: Enquête Emploi 1968-2008
- US: Current Population Survey 1968-2008
- Extensive vs intensive measures
- Extensive: fraction of the reference period in employment
- Intensive: number of actual hours worked divided by the extensive margin
- Labour Force surveys
- UK: Labour Force Survey 1975-2008; EFS/FES 1968-2008
- FR: Enquête Emploi 1968-2008
- US: Current Population Survey 1968-2008
- Extensive vs intensive measures
- Extensive: fraction of the reference period in employment
- Intensive: number of actual hours worked divided by the extensive margin
- Measurement issues
- Annual vs continuous surveys
- Usual vs actual hours
- Labour Force surveys
- UK: Labour Force Survey 1975-2008; EFS/FES 1968-2008
- FR: Enquête Emploi 1968-2008
- US: Current Population Survey 1968-2008
- Extensive vs intensive measures
- Extensive: fraction of the reference period in employment
- Intensive: number of actual hours worked divided by the extensive margin
- Measurement issues
- Annual vs continuous surveys
- Usual vs actual hours
- Our estimation
- Extensive: employment rate from the reference week
- Intensive: actual hours from the reference week in continuous surveys; usual hours adjusted for annual surveys for France; actual hours adjusted for UK and US for annual surveys

Total hours

Figure 1: Mean annual hours per individual aged 16 to 74

Extensive margin

Figure 2: Employment rate (per population) aged 16 to 74

Intensive margin

Figure 3: Mean annual hours per worker aged 16 to 74

Total hours by age

Figure 4: Male total hours by age 1977

Total hours by age

Figure 5: Male total hours by age 2007

Employment by age

Institute for
Fiscal Studies

Figure 6: Male employment by age 1977

Employment by age

Institute for Fiscal Studies

Figure 7: Male employment by age 2007

Total hours by age

Figure 8: Female total hours by age 1977

Total hours by age

Figure 9: Female total hours by age 2007

Employment by age

Institute for
Fiscal Studies

Figure 10: Female employment by age 1977

Employment by age

Figure 11: Female employment by age 2007

Variations within the year

Table 1: Weekly hours and weeks worked (2007)

	Men			Women		
	FR	UK	US	FR	UK	US
Annual hours (all)	1800	1919	2107	1445	1389	1792
Share part-time	5.0%	10.5%	10.1%	29.4%	41.9%	23.9%
Full-time workers						
Annual hours	1839	2044	2229	1631	1777	2041
Weekly hours	42.1	46.8	44.6	39.0	43.5	42.0
Weeks worked	43.7	43.7	50.0	41.8	40.9	48.5
Part-time workers						
Annual hours	995	857	1030	1008	851	1021
Weekly hours	22.5	22.2	21.3	23.7	22.9	21.5
Weeks worked	44.2	38.6	48.4	42.5	37.1	47.5

Variations within the year

Figure 12: Actual weekly hours by month of the year (2002-2008)

Decomposing Changes in Hours

- Suppose there are $j=1, \ldots, J$ broad types

Decomposing Changes in Hours

- Suppose there are $j=1, \ldots, J$ broad types
- H_{t} is computed in any year t as an average of hours $H_{j t}$ with weights equal to the population shares $q_{j t}$

$$
H_{t}=\sum_{j=1}^{J} q_{j t} H_{j t}
$$

Decomposing Changes in Hours

- Suppose there are $j=1, \ldots, J$ broad types
- H_{t} is computed in any year t as an average of hours $H_{j t}$ with weights equal to the population shares $q_{j t}$

$$
H_{t}=\sum_{j=1}^{J} q_{j t} H_{j t}
$$

- where each $H_{j t}$ can be expressed as the product of hours per worker $h_{j t}$ and participation in the labour market $p_{j t}$

$$
H_{j t}=p_{j t} h_{j t} .
$$

Decomposing Changes in Hours

- We measure the change due to the behavior of category j, holding the population structure constant as in date $t-1$, as in a Laspeyres index

$$
\Delta_{j t}=q_{j, t-1}\left[H_{j t}-H_{j, t-1}\right] .
$$

Decomposing Changes in Hours

 Fiscal Studies- We measure the change due to the behavior of category j, holding the population structure constant as in date $t-1$, as in a Laspeyres index

$$
\Delta_{j t}=q_{j, t-1}\left[H_{j t}-H_{j, t-1}\right] .
$$

- The total change across all J categories of workers is then

$$
\Delta_{t}=\sum_{j=1}^{J} \Delta_{j t}
$$

Decomposing Changes in Hours

 Fiscal Studies- We measure the change due to the behavior of category j, holding the population structure constant as in date $t-1$, as in a Laspeyres index

$$
\Delta_{j t}=q_{j, t-1}\left[H_{j t}-H_{j, t-1}\right] .
$$

- The total change across all J categories of workers is then

$$
\Delta_{t}=\sum_{j=1}^{J} \Delta_{j t}
$$

- and, by construction, we have

$$
H_{t}-H_{t-1}=S_{t}+\Delta_{t}
$$

Decomposing Changes in Hours

 Fiscal Studies- We measure the change due to the behavior of category j, holding the population structure constant as in date $t-1$, as in a Laspeyres index

$$
\Delta_{j t}=q_{j, t-1}\left[H_{j t}-H_{j, t-1}\right] .
$$

- The total change across all J categories of workers is then

$$
\Delta_{t}=\sum_{j=1}^{J} \Delta_{j t}
$$

- and, by construction, we have

$$
H_{t}-H_{t-1}=S_{t}+\Delta_{t}
$$

- where S_{t} measures the change in the composition of the population:

$$
S_{t}=\sum_{j=1}^{J} H_{j t}\left[q_{j t}-q_{j, t-1}\right] .
$$

Table 2: Decomposing the change in total hours, 1977-2007

	Year	Youth (16-29)					
Wemen	Prime aged (30-54)		Old (55-74)				
Wen	Women	Men	Women				
FR	1977	1402	871	2010	951	827	367
	2007	858	627	1639	1116	508	344
	Δ_{j}	-82	-38	-82	36	-36	-3
UK	1977	1707	938	2117	873	1107	323
	2007	1219	876	1786	1055	790	385
	Δ_{j}	-71	-9	-70	39	-42	10
US	1977	1344	835	2018	947	1025	447
	2007	1236	956	1922	1373	1084	754
	Δ_{j}	-19	22	-19	90	6	38

Sources: Enquête Emploi, Labour Force Survey, Current Population Survey.

- evolution of total Δ differs: - 195 for FR, -118 for UK, +165 for US.

Table 2: Decomposing the change in total hours, 1977-2007

	Year	Youth (16-29)		Prime aged (30-54)		Old (55-74)	
		Men	Women	Men	Women	Men	Women
FR	1977	1402	871	2010	951	827	367
	2007	858	627	1639	1116	508	344
	Δ_{j}	-82	-38	-82	36	-36	-3
UK	1977	1707	938	2117	873	1107	323
	2007	1219	876	1786	1055	790	385
	Δ_{j}	-71	-9	-70	39	-42	10
US	1977	1344	835	2018	947	1025	447
	2007	1236	956	1922	1373	1084	754
	Δ_{j}	-19	22	-19	90	6	38

Sources: Enquête Emploi, Labour Force Survey, Current Population Survey.

- evolution of total Δ differs: - 195 for FR, -118 for UK, +165 for US.
- composition S: +10 for FR, +25 for UK, +46 for US

Figure 13: Decomposing the change in total hours (1977-2007)

Intensive vs extensive margins

- We decompose the change in total hours for the j type Δ_{j} into:
- an intensive component $l_{j}=p_{l j} \Delta h_{j}$
- an extensive component $E_{j}=h_{E j} \Delta p_{j}$

$$
\Delta_{j t}=I_{j}+E_{j}
$$

Intensive vs extensive margins

- We decompose the change in total hours for the j type Δ_{j} into:
- an intensive component $l_{j}=p_{l j} \Delta h_{j}$
- an extensive component $E_{j}=h_{E j} \Delta p_{j}$

$$
\Delta_{j t}=I_{j}+E_{j}
$$

- We get intensive bounds
- Assuming $p_{l j} \in\left[p_{j, t-1}, p_{j t}\right]$

$$
\begin{gathered}
I_{j} \in\left[p_{j, t-1}\left(h_{j t}-h_{j, t-1}\right), p_{j, t}\left(h_{j t}-h_{j, t-1}\right)\right] \\
I_{j} \in[I-\text { Laspeyres, } I-\text { Paasche }]
\end{gathered}
$$

Intensive vs extensive margins

- We decompose the change in total hours for the j type Δ_{j} into:
- an intensive component $l_{j}=p_{l j} \Delta h_{j}$
- an extensive component $E_{j}=h_{E j} \Delta p_{j}$

$$
\Delta_{j t}=I_{j}+E_{j}
$$

- We get intensive bounds
- Assuming $p_{l j} \in\left[p_{j, t-1}, p_{j t}\right]$

$$
\begin{gathered}
I_{j} \in\left[p_{j, t-1}\left(h_{j t}-h_{j, t-1}\right), p_{j, t}\left(h_{j t}-h_{j, t-1}\right)\right] \\
I_{j} \in[I-\text { Laspeyres, } I-\text { Paasche }]
\end{gathered}
$$

- We get extensive bounds
- From the identity $\Delta_{j t}=I_{j}+E_{j}$

$$
\begin{gathered}
E_{j} \in\left[h_{j, t-1}\left(p_{j t}-p_{j, t-1}\right), h_{j, t}\left(p_{j t}-p_{j, t-1}\right)\right] \\
E_{j} \in[E-\text { Laspeyres, } E-\text { Paasche }]
\end{gathered}
$$

Bounding Changes

- At the limits, the change in total hours for any type j satisfies two polar exact statistical decompositions:

$$
\begin{align*}
\Delta_{j t} & =q_{j, t-1}\left\{\left[h_{j t}-h_{j t-1}\right] p_{j t}+\left[p_{j t}-p_{j t-1}\right] h_{j t-1}\right\} \tag{1}\\
\Delta_{j t} & =q_{j, t-1}\{I-\text { Paasche }+E-\text { Laspeyres }\}
\end{align*}
$$

Bounding Changes

- At the limits, the change in total hours for any type j satisfies two polar exact statistical decompositions:

$$
\begin{align*}
\Delta_{j t} & =q_{j, t-1}\left\{\left[h_{j t}-h_{j t-1}\right] p_{j t}+\left[p_{j t}-p_{j t-1}\right] h_{j_{t-1}}\right\} \tag{1}\\
\Delta_{j t} & =q_{j, t-1}\{I-\text { Paasche }+E-\text { Laspeyres }\}
\end{align*}
$$

or

$$
\begin{gather*}
\Delta_{j t}=q_{j, t-1}\left\{\left[h_{j t}-h_{j t-1}\right] p_{j t-1}+\left[p_{j t}-p_{j t-1}\right] h_{j t}\right\} \tag{2}\\
\Delta_{j t}=q_{j, t-1}\{I-\text { Laspeyres }+E-\text { Paasche }\}
\end{gather*}
$$

Bounding changes

Figure 14: Decomposing the changes at the extensive and intensive margins by age and gender (1977-2007)

	Year	Men $16-29$	Women $16-29$	Men $30-54$	Women $30-54$	Men $55-74$	Women $55-74$
FR	I-P, I-L	$[-37,-28]$	$[-23,-19]$	$[-59,-56]$	$[-49,-35]$	$[-11,-8]$	$[-10,-9]$
	E-L, E-P	$[-54,-45]$	$[-19,-16]$	$[-27,-23]$	$[71,85]$	$[-28,-25]$	$[6,7]$

The young

Figure 15: Share of the 16-29 population in work

The young

Figure 16: Share of the 16-29 population looking for work

The young

Figure 17: Share of the 16-29 population in school and not in work

Older workers

Figure 18: Male employment rate from 50 to 74 (1977)

Older workers

Figure 19: Male employment rate from 50 to 74 (2007)

Recovering elasticities

- Objectives

- Link up these changes at the extensive and intensive margins to movements in the distribution of taxes, relative wages, demographics and other incomes.
- Draw implication for extensive and intensive elasticities
- Draw implications for the aggregate hours elasticity.

Recovering elasticities

- Objectives
- Link up these changes at the extensive and intensive margins to movements in the distribution of taxes, relative wages, demographics and other incomes.
- Draw implication for extensive and intensive elasticities
- Draw implications for the aggregate hours elasticity.
- Aggregation issues
- How is the aggregate labour supply elasticity related to various micro elasticities?

Recovering elasticities

- Objectives
- Link up these changes at the extensive and intensive margins to movements in the distribution of taxes, relative wages, demographics and other incomes.
- Draw implication for extensive and intensive elasticities
- Draw implications for the aggregate hours elasticity.
- Aggregation issues
- How is the aggregate labour supply elasticity related to various micro elasticities?
- Empirical issues (forthcoming)
- Use IFS microsimulation model TAXBEN
- Estimation extensive and intensive elasticities
- Similar approach for France and the US

Aggregation

- Consider preferences

$$
U= \begin{cases}\lambda R(h)+\frac{(T-h)^{1-1 / \alpha}}{1-1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

Aggregation

- Consider preferences

$$
U= \begin{cases}\lambda R(h)+\frac{(T-h)^{1-1 / \alpha}}{1-1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

- where $R(h)$ is the disposable income of someone who works h hours, s is income when unemployed

Aggregation

- Consider preferences

$$
U= \begin{cases}\lambda R(h)+\frac{(T-h)^{1-1 / \alpha}}{1-1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

- where $R(h)$ is the disposable income of someone who works h hours, s is income when unemployed
- λ is the marginal utility of income, α (T-h)/h is the Frisch elasticity

Aggregation

- Consider preferences

$$
U= \begin{cases}\lambda R(h)+\frac{(T-h)^{1-1 / \alpha}}{1-1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

- where $R(h)$ is the disposable income of someone who works h hours, s is income when unemployed
- λ is the marginal utility of income, α (T-h)/h is the Frisch elasticity
- β (unobserved heterogeneity in) fixed costs of work.

Aggregation

- Consider preferences

$$
U= \begin{cases}\lambda R(h)+\frac{(T-h)^{1-1 / \alpha}}{1-1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

- where $R(h)$ is the disposable income of someone who works h hours, s is income when unemployed
- λ is the marginal utility of income, α (T-h)/h is the Frisch elasticity
- β (unobserved heterogeneity in) fixed costs of work.
- The 'aggregate' hours elasticity is given by
$\varepsilon=\frac{1}{\tilde{H}} \int_{w} \int_{\alpha} \int_{\lambda} p() h()\left[\varepsilon_{l}(\alpha, \lambda, w)+\varepsilon_{E}(\alpha, \lambda, w)\right] g(\alpha, \lambda, w) d \alpha d \lambda d w$.

Aggregation

- Consider preferences

$$
U= \begin{cases}\lambda R(h)+\frac{(T-h)^{1-1 / \alpha}}{1-1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

- where $R(h)$ is the disposable income of someone who works h hours, s is income when unemployed
- λ is the marginal utility of income, α (T-h)/h is the Frisch elasticity
- β (unobserved heterogeneity in) fixed costs of work.
- The 'aggregate' hours elasticity is given by
$\varepsilon=\frac{1}{\tilde{H}} \int_{w} \int_{\alpha} \int_{\lambda} p() h()\left[\varepsilon_{l}(\alpha, \lambda, w)+\varepsilon_{E}(\alpha, \lambda, w)\right] g(\alpha, \lambda, w) d \alpha d \lambda d w$.
- $h(\alpha, \lambda, w)$ hours, $p(\alpha, \lambda, w)$ proportion of type (α, λ, w) workers

Summary

- We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.

Summary

- We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.
- We have shown how informative bounds can be developed on each of these margins.

Summary

- We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.
- We have shown how informative bounds can be developed on each of these margins.
- We have applied this analysis to the evolution of hours of work in the US, the UK and France over the past 30+ years.

Summary

- We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.
- We have shown how informative bounds can be developed on each of these margins.
- We have applied this analysis to the evolution of hours of work in the US, the UK and France over the past 30+ years.
- We have shown that the aggregate evolution cannot be ascribed to a single cause but covers very diverse movements at the extensive and extensive margins by age and gender.

Summary

- We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.
- We have shown how informative bounds can be developed on each of these margins.
- We have applied this analysis to the evolution of hours of work in the US, the UK and France over the past 30+ years.
- We have shown that the aggregate evolution cannot be ascribed to a single cause but covers very diverse movements at the extensive and extensive margins by age and gender.
- We have developed an approach to estimating the total hours elasticity from the distribution of micro elasticities at the extensive and intensive margins.

