# An empirical study of supermarket demand and equilibrium pricing

#### Martin O'Connell

Institute for Fiscal Studies and University College London

December 2012

## Outline of presentation



- From Griffith, O'Connell and Smith (2011)
- Outline a model of grocery demand and supermarket pricing
- Show some very preliminary results

Background

## Recent large increase in UK food price



Background

## Recent large increase in UK food price



O'Connell (IFS/UCL)

Background

## Large change in relative prices of different foods

Change in price of food types relative to change in price of all food: 2006 - 2010



## Possible drives of changes in retail food prices

Changes in costs?

- Large depreciation of sterling and global food commodity price boom
- Would expect an increase in retailer costs

Changes in demand?

- Concurrently there's been large shocks to consumers' incomes
- Crossley et al (2011) report 6.6% decline in consumer expenditure on food over recession
- Would expect resultant reallocation of expenditures across different foods

A D b 4 B b 4

## Objective of this work

- Specify and estimate a model that allows for separation of impact of changes in costs and changes in demand conditions on equilibrium food prices
- In common with many empirical IO papers:
  - Estimate demand facing firms
  - Use equilibrium pricing condition to pin down marginal costs
- But in contrast to much of this literature:
  - Model demand for a large class of goods
  - Allow for complementarities between goods
  - Allow for income effects
- Use model to simulate counterfactual market equilibria
  - e.g. Path of retail prices in absence of increases in costs

## Overview of demand model

- Focus on modelling the consumer's main weekly supermarket trip
  - Which supermarket they choose
  - How they allocate their main trip grocery expenditure across 9 grocery goods
- Assume one stop shop model purchase decisions made on main trip are independent of purchase decisions on smaller top up trips
- Consumer makes discrete decision over which retailer to shop with based on:
  - Anticipated utility from optimal shopping within retailer
  - Their valuation of other retailer characteristics
- And a continuous decision over how to allocate expenditure across grocery goods available in chosen retailer
- Model allows for estimation of demand faced by retailers; e.g. demand for meat in retailer Tesco

## Utility conditional on retailer choice

Consumer *i* in week *t* gets utility from shopping with retailer *s* given by:

$$\overline{V}_{ist} = \zeta_i \phi(p_{st}, x_{it}, \xi_{it}) + \kappa_i z_{is} + \lambda_i \mu_s + \varepsilon_{ist}$$

where:

- $p_{st} = (p_{s1t}, ..., p_{sJt})'$  are prices for *J* goods within the retailer
- x<sub>it</sub> is weekly main shop budget
- $\xi_{it} = (\xi_{i1t}, ..., \xi_{iJt})'$  captures household specific and time specific factors influencing within retailer demand
- *z<sub>is</sub>* are observable consumer-retailer characteristics
- $\mu_s$  are retailer fixed effects
- $(\zeta_i, \kappa_i, \lambda_i)$  are consumer specific (random) coefficients
- ε<sub>ist</sub> is an idiosyncratic shock

## Within retailer behaviour

- Assume within retailer preferences can be represented by AIDS with consumer specific heterogeneity
- Portion of indirect utility realised from within retailer behaviour is:

$$\phi(p_{st}, x_{it}, \xi_{it}) = \frac{1}{B(p_{st})} [\ln x_{it} - \ln A(p_{st}, \xi_{it})]$$

where

$$\ln A(p_{st}, \xi_{it}) = \alpha_o + \sum_j \alpha_j(\xi_{ijt}) \ln p_{sjt} + \frac{1}{2} \sum_j \sum_k \widetilde{\gamma}_{jk} \ln p_{sjt} \ln p_{skt}$$
$$\ln B(p_{st}) = \sum_j \beta_j \ln p_{sjt}$$

## Within retailer behaviour

- Assuming
- Roy's Identity implies (anticipated) share of trip expenditure allocated to good *j* is:

$$w_{isjt} = \overline{\alpha}_j + \tau_{jt} + c_{ij} + \sum_k \gamma_{jk} \ln p_{skt} + \beta_j \ln \left(\frac{x_{it}}{A(p_{st}, \xi_{it})}\right)$$

- *τ<sub>jt</sub>* captures unobserved common time factors affecting intercept of budget share demands
- c<sub>ij</sub> captures unobserved household specific factors affecting intercept of budget share demands

## Within retailer behaviour

- Assuming
- Roy's Identity implies (anticipated) share of trip expenditure allocated to good j is:

$$w_{isjt} = \overline{\alpha}_j + \tau_{jt} + c_{ij} + \sum_k \gamma_{jk} \ln \rho_{skt} + \beta_j \ln \left(\frac{x_{it}}{\mathcal{A}(\rho_{st}, \xi_{it})}\right)$$

- Consumer makes retailer choice decisions based on expected behaviour captured by w<sub>isjt</sub>
- Within retailer realised demand,  $\widetilde{w}_{isjt}$ , may differ; I assume

$$w_{isjt} = E(\widetilde{w}_{isjt} | \tau_{jt}, c_{ij}, p_{st}, x_{it})$$

## Choice of supermarket

Consumer chooses retailer that provides her with most utility

$$V_{it} = \max_{s} [\overline{V}_{i0t}, ..., \overline{V}_{iSt}]$$

- Assume ε<sub>ist</sub> is distributed iid extreme value and (ζ<sub>i</sub>, κ<sub>i</sub>, λ<sub>i</sub>) are drawn from a multivariate normal distribution F
- Then probability consumer *i* in week *t* visits retailer *s* is:

$$\pi_{ist} = \int \frac{\exp(\zeta_i \phi(p_{st}, x_{it}, \xi_{it}) + \kappa_i z_{is} + \lambda_i \mu_s)}{\sum_r \exp(\zeta_i \phi(p_{rt}, x_{it}, \xi_{it}) + \kappa_i z_{ir} + \lambda_i \mu_r)} dF$$

O'Connell (IFS/UCL)

## Substitution patterns

• Consumer *i*'s week *t* expected demand for good *j* in retailer *s* is:

$$q_{isjt} = \pi_{ist} \overline{q}_{isjt}$$

where  $\overline{q}_{isit}$  is demand conditional on retailer choice

 Ignoring *i* and *t* subscripts, price elasticities of demand between goods within a retailer are:

$$\delta_{(sj)(sk)} = \frac{\partial \ln \pi_s}{\partial \ln \phi_s} \frac{\partial \ln \phi_s}{\partial \ln \rho_{sk}} + \frac{\partial \ln \overline{q}_{sj}}{\partial \ln \rho_{sk}}$$

 Price elasticities of demand between goods in different retailers are:

$$\delta_{(sj)(rk)} = \frac{\partial \ln \pi_s}{\partial \ln \phi_r} \frac{\partial \ln \phi_r}{\partial \ln \rho_{rk}}$$

## Choice of total grocery expenditure

- Current version of the model conditions on main trip grocery expenditure
- Consumer chooses supermarket based on utility she will get from optimally spending that budget on grocery goods, given prices she'll face in the retailer
- But budget is assume to be fixed across retailers
  - Roughly, consistent with demand for aggregate grocery good having unit price elasticity with respect to total grocery price index
  - Means variation in consumer's grocery expenditure through time is driven by changes in her total non-durable expenditure/income

Consumer's problem

## Choice of total grocery expenditure

- Aim is to relax this assumption
- Difficulty is market research data has
  - Very detailed information on consumer's within supermarket expenditures
  - But little information on their non-grocery expenditure or income
- One idea is to:
  - Assume weak separability between grocery and non-grocery demand
  - Use market research data to estimate preference parameters determining grocery demand
  - Use additional data source to estimate preference parameters determining choice of grocery expenditure

## Retailer behaviour

- Assume retailers compete in a Nash-Bertrand game
- Retailer s in market t chooses the prices of J goods to maximise profits:

$$\max_{p_{st}} \sum_{j \in \{1,...,J\}} (p_{sjt} - c_{sjt}) Q_{sjt}(p_{01},...,p_{St}) - C_{sjt}$$

- where:
  - c<sub>sjt</sub> is market t marginal cost of good j in retailer s
  - C<sub>sit</sub> is market t fixed cost of good j in retailer s
  - $Q_{sjt} \equiv \sum_{i \in \Omega_t} q_{isjt}$  is market *t* demand for good *j* in retailer *s*

Supply side

#### Retailer behaviour

- Assume retailers compete in a Nash-Bertrand game
- Retailer s in market t chooses the prices of J goods to maximise profits:

$$\max_{p_{st}} \sum_{j \in \{1,...,J\}} (p_{sjt} - c_{sjt}) Q_{sjt}(p_{01},...,p_{St}) - C_{sjt}$$

• First order condition is:

$$Q_{sjt} + \sum_{k \in \{1, \dots, J\}} (p_{skt} - c_{skt}) \frac{\partial Q_{skt}}{\partial p_{sjt}} = 0$$

 Inverting system yields implied marginal cost of each good in each retailer and market

#### Data

- Rolling panel of households, containing
  - All grocery shopping trips households make
  - Including the retailer they visit
  - And within retailer expenditures and transaction prices on very disaggregate products
- Data cover period 2002-2010; 466 weeks/markets
- Households in data for 120 weeks on average
- Weekly main shopping trip is defined as weekly trip on which household spends most
- Small number of weeks where a household's grocery expenditure is less than 50% of its median are dropped
- On average 82% of households' weekly grocery supermarket expenditure is made on main trips

Data

| Good       | Expenditure share | Main compenents                                                                |
|------------|-------------------|--------------------------------------------------------------------------------|
| Fruit      | 8.05%             | Fresh fruits, canned and dried fruits, frozen fruit and fruit juices           |
| Vegetables | 5.08%             | Fresh vegetables, canned vegetables<br>and frozen vegetables                   |
| Grains     | 7.95%             | Flour, cereals, pasta, rice, breads and potatoes                               |
| Dairy      | 10.73%            | Milk, cream, cheese, butter, margarine and yogurt                              |
| Meats      | 14.88%            | Beef, pork, lamb, poultry, bacon, ham, sausages, eggs, seafood, seeds and nuts |
| Drinks     | 5.52%             | Non fruit juice, water, tea and coffee                                         |
| Sweet      | 8.23%             | Sugar, sweeteners, cakes, biscuit and desserts                                 |
| Savoury    | 18.24%            | Ready meals and prepared snacks                                                |
| Non food   | 21.31%            | Alcohol, toiletries, pet foods and cleaning produce                            |

Prices

2

| Retailer    | Market share |
|-------------|--------------|
| Asda        | 20.1%        |
| Morrisons   | 14.8%        |
| Sainsbury's | 17.9%        |
| Tesco       | 35.9%        |
| Other       | 11.3%        |
|             |              |

3

| Variables           | Fruit                 | Vegetables         | Grain      | Dairy                  | Meat                   |
|---------------------|-----------------------|--------------------|------------|------------------------|------------------------|
| Expenditure         | -0.0202***            | -0.0132***         | -0.0230*** | -0.0331***             | 0.0016***              |
|                     | (0.0001)              | (0.0001)           | (0.0001)   | (0.0001)               | (0.0002)               |
| PriceFruit          | 0.0180***<br>(0.0007) | 0.0004<br>(0.0004) | -0.0006    | -0.0032***<br>(0.0007) | -0.0252***             |
| PriceVegetables     | 0.0004                | 0.0277***          | 0.0021***  | 0.0026***              | (0.0009)<br>-0.0207*** |
| PriceGrain          | (0.0004)              | (0.0006)           | (0.0006)   | (0.0007)               | (0.0008)               |
|                     | -0.0006               | 0.0021***          | 0.0057***  | -0.0148***             | -0.0158***             |
| PriceDairy          | (0.0006)              | (0.0006)           | (0.0011)   | (0.0010)               | (0.0010)               |
|                     | -0.0032***            | 0.0026***          | -0.0148*** | 0.0220***              | -0.0287***             |
| PriceMeat           | (0.0007)              | (0.0007)           | (0.0010)   | (0.0016)               | (0.0013)               |
|                     | -0.0252***            | -0.0207***         | -0.0158*** | -0.0287***             | 0.1321***              |
| PriceDrink          | (0.0009)              | (0.0008)           | (0.0010)   | (0.0013)               | (0.0022)               |
|                     | 0.0035***             | -0.0003            | 0.0142***  | 0.0174***              | -0.0189***             |
| PriceSweet          | (0.0005)              | (0.0004)           | (0.0005)   | (0.0007)               | (0.0008)               |
|                     | -0.0213***            | -0.0046***         | -0.0185*** | -0.0236***             | 0.0213***              |
|                     | (0.0005)              | (0.0004)           | (0.0005)   | (0.0006)               | (0.0008)               |
| PriceSavoury        | -0.0141***            | -0.0128***         | -0.0052*** | -0.0110***             | 0.0449***              |
|                     | (0.0008)              | (0.0006)           | (0.0008)   | (0.0010)               | (0.0014)               |
| Time effects        | Yes                   | Yes                | Yes        | Yes                    | Yes                    |
| Fixed effects       | Yes                   | Yes                | Yes        | Yes                    | Yes                    |
| No. of observations | 2287160               | 2287160            | 2287160    | 2287160                | 2287160                |

Notes: \*\*\* p<0.01, \*\*p<0.05, \* p<0.1

-

9/27

| Variables           | Drink            | Sweet                  | Savoury                | Non Food               |
|---------------------|------------------|------------------------|------------------------|------------------------|
| Expenditure         | -0.0025***       | -0.0108***             | -0.0214***             | 0.1225***              |
|                     | (0.0001)         | (0.0001)               | (0.0002)               | (0.0002)               |
| PriceFruit          | 0.0035***        | -0.0213 <sup>***</sup> | -0.0141 <sup>***</sup> | 0.0424***              |
|                     | (0.0005)         | (0.0005)               | (0.0008)               | (0.0008)               |
| PriceVegetables     | -0.0003 (0.0004) | -0.0046***<br>(0.0004) | -0.0128***<br>(0.0006) | 0.0056***<br>(0.0007)  |
| PriceGrain          | 0.0142***        | -0.0185 <sup>***</sup> | -0.0052 <sup>***</sup> | ò.0330* <sup>*</sup> * |
| PriceDairy          | (0.0005)         | (0.0005)               | (0.0008)               | (0.0009)               |
|                     | 0.0174***        | -0.0236***             | -0.0110***             | 0.0392***              |
| PriceMeat           | (0.0007)         | (0.0006)               | (0.0010)               | (0.0011)               |
|                     | -0.0189***       | 0.0213***              | 0.0449***              | -0.0890***             |
| PriceDrink          | (0.0008)         | (0.0008)               | (0.0014)               | (0.0015)               |
|                     | -0.0010          | -0.0075***             | -0.0088***             | 0.0014*                |
| PriceSweet          | (0.0006)         | (0.0004)               | (0.0007)               | (0.0008)               |
|                     | -0.0075***       | 0.0448***              | 0.0140***              | -0.0046***             |
| PriceSavoury        | (0.0004)         | (0.0006)               | (0.0007)               | (0.0008)               |
|                     | -0.0088***       | 0.0140***              | 0.0151***              | -0.0221***             |
| Time effects        | (0.0007)         | (0.0007)               | (0.0016)               | (0.0013)               |
|                     | Yes              | Yes                    | Yes                    | Yes                    |
| Fixed effects       | Yes              | Yes                    | Yes                    | Yes                    |
| No. of observations | 2287160          | 2287160                | 2287160                | 2287160                |

Notes: \*\*\* p<0.01, \*\*p<0.05, \* p<0.1

-

20 / 27

Conditional elasticities in Tesco

|             | Fruit | Vegetables | Grain | Dairy | Meat  | Drink | Sweet | Savoury | Non Food |
|-------------|-------|------------|-------|-------|-------|-------|-------|---------|----------|
| Fruit       | -0.74 | 0.05       | 0.04  | 0.02  | -0.17 | 0.07  | -0.25 | -0.06   | 0.10     |
| Vegetables  | 0.03  | -0.44      | 0.05  | 0.06  | -0.14 | 0.00  | -0.04 | -0.06   | -0.03    |
| Grain       | 0.03  | 0.08       | -0.88 | -0.09 | -0.11 | 0.26  | -0.21 | -0.01   | 0.06     |
| Dairy       | 0.01  | 0.10       | -0.13 | -0.72 | -0.20 | 0.32  | -0.27 | -0.04   | 0.06     |
| Meat        | -0.27 | -0.37      | -0.16 | -0.23 | -0.09 | -0.33 | 0.29  | 0.28    | -0.46    |
| Drink       | 0.06  | 0.01       | 0.20  | 0.19  | -0.13 | -1.02 | -0.09 | -0.04   | -0.03    |
| Sweet       | -0.23 | -0.06      | -0.20 | -0.19 | 0.15  | -0.13 | -0.42 | 0.10    | -0.08    |
| Savoury     | -0.11 | -0.19      | 0.01  | -0.03 | 0.31  | -0.15 | 0.21  | -0.88   | -0.23    |
| Non Food    | 0.47  | 0.06       | 0.37  | 0.32  | -0.61 | 0.02  | -0.08 | -0.15   | -0.93    |
| Expenditure | 0.76  | 0.74       | 0.71  | 0.70  | 1.01  | 0.95  | 0.86  | 0.88    | 1.55     |

Notes: Number (i, j) gives percent change in demand for product j with respect to a 1 percent increase in price for product i

O'Connell (IFS/UCL)

**Toulouse Workshop** 

Conditional elasticities in Tesco

|             | Fruit | Vegetables | Grain | Dairy | Meat  | Drink | Sweet | Savoury | Non Food |
|-------------|-------|------------|-------|-------|-------|-------|-------|---------|----------|
| Fruit       | -0.74 | 0.05       | 0.04  | 0.02  | -0.17 | 0.07  | -0.25 | -0.06   | 0.10     |
| Vegetables  | 0.03  | -0.44      | 0.05  | 0.06  | -0.14 | 0.00  | -0.04 | -0.06   | -0.03    |
| Grain       | 0.03  | 0.08       | -0.88 | -0.09 | -0.11 | 0.26  | -0.21 | -0.01   | 0.06     |
| Dairy       | 0.01  | 0.10       | -0.13 | -0.72 | -0.20 | 0.32  | -0.27 | -0.04   | 0.06     |
| Meat        | -0.27 | -0.37      | -0.16 | -0.23 | -0.09 | -0.33 | 0.29  | 0.28    | -0.46    |
| Drink       | 0.06  | 0.01       | 0.20  | 0.19  | -0.13 | -1.02 | -0.09 | -0.04   | -0.03    |
| Sweet       | -0.23 | -0.06      | -0.20 | -0.19 | 0.15  | -0.13 | -0.42 | 0.10    | -0.08    |
| Savoury     | -0.11 | -0.19      | 0.01  | -0.03 | 0.31  | -0.15 | 0.21  | -0.88   | -0.23    |
| Non Food    | 0.47  | 0.06       | 0.37  | 0.32  | -0.61 | 0.02  | -0.08 | -0.15   | -0.93    |
| Expenditure | 0.76  | 0.74       | 0.71  | 0.70  | 1.01  | 0.95  | 0.86  | 0.88    | 1.55     |

Notes: Number (i, j) gives percent change in demand for product j with respect to a 1 percent increase in price for product i

O'Connell (IFS/UCL)

**Toulouse Workshop** 

Conditional elasticities in Tesco

|             | Fruit | Vegetables | Grain | Dairy | Meat  | Drink | Sweet | Savoury | Non Food |
|-------------|-------|------------|-------|-------|-------|-------|-------|---------|----------|
| Fruit       | -0.74 | 0.05       | 0.04  | 0.02  | -0.17 | 0.07  | -0.25 | -0.06   | 0.10     |
| Vegetables  | 0.03  | -0.44      | 0.05  | 0.06  | -0.14 | 0.00  | -0.04 | -0.06   | -0.03    |
| Grain       | 0.03  | 0.08       | -0.88 | -0.09 | -0.11 | 0.26  | -0.21 | -0.01   | 0.06     |
| Dairy       | 0.01  | 0.10       | -0.13 | -0.72 | -0.20 | 0.32  | -0.27 | -0.04   | 0.06     |
| Meat        | -0.27 | -0.37      | -0.16 | -0.23 | -0.09 | -0.33 | 0.29  | 0.28    | -0.46    |
| Drink       | 0.06  | 0.01       | 0.20  | 0.19  | -0.13 | -1.02 | -0.09 | -0.04   | -0.03    |
| Sweet       | -0.23 | -0.06      | -0.20 | -0.19 | 0.15  | -0.13 | -0.42 | 0.10    | -0.08    |
| Savoury     | -0.11 | -0.19      | 0.01  | -0.03 | 0.31  | -0.15 | 0.21  | -0.88   | -0.23    |
| Non Food    | 0.47  | 0.06       | 0.37  | 0.32  | -0.61 | 0.02  | -0.08 | -0.15   | -0.93    |
| Expenditure | 0.76  | 0.74       | 0.71  | 0.70  | 1.01  | 0.95  | 0.86  | 0.88    | 1.55     |

Notes: Number (i, j) gives percent change in demand for product j with respect to a 1 percent increase in price for product i

O'Connell (IFS/UCL)

**Toulouse Workshop** 

#### Retailer demand Unconditional elasticities in Tesco

|            | Fruit | Vegetables | Grain | Dairy | Meat  | Drink | Sweet | Savoury | Non Food |
|------------|-------|------------|-------|-------|-------|-------|-------|---------|----------|
| Fruit      | -0.93 | -0.13      | -0.12 | -0.14 | -0.33 | -0.07 | -0.40 | -0.21   | -0.03    |
| Vegetables | -0.08 | -0.55      | -0.04 | -0.04 | -0.24 | -0.09 | -0.14 | -0.16   | -0.12    |
| Grain      | -0.12 | -0.07      | -1.05 | -0.26 | -0.25 | 0.12  | -0.36 | -0.16   | -0.06    |
| Dairy      | -0.19 | -0.09      | -0.34 | -0.95 | -0.38 | 0.14  | -0.46 | -0.23   | -0.10    |
| Meat       | -0.54 | -0.65      | -0.43 | -0.49 | -0.40 | -0.61 | 0.02  | 0.02    | -0.74    |
| Drink      | -0.04 | -0.09      | 0.10  | 0.09  | -0.23 | -1.14 | -0.20 | -0.15   | -0.13    |
| Sweet      | -0.37 | -0.20      | -0.35 | -0.34 | 0.00  | -0.29 | -0.60 | -0.05   | -0.22    |
| Savoury    | -0.42 | -0.50      | -0.33 | -0.36 | 0.01  | -0.47 | -0.11 | -1.25   | -0.51    |
| Non Food   | 0.09  | -0.34      | 0.00  | -0.04 | -1.06 | -0.42 | -0.50 | -0.54   | -1.46    |

Notes: Number (i, j) gives percent change in demand for product j with respect to a 1 percent increase in price for product i

3

・ロト ・ 四ト ・ ヨト ・ ヨト

## Firm own price elasticity

- There are strong complementarities across goods within a supermarket
  - Increasing price of one good, creates a reduction in demand for most goods sold in supermarket
- Can measure strength of this effect through "firm own price elasticity"
  - Percent change in demand for all of a retailer's produce in response to 1% increase in all prices in that retailer

## Firm own price elasticity

- There are strong complementarities across goods within a supermarket
  - Increasing price of one good, creates a reduction in demand for most goods sold in supermarket
- Can measure strength of this effect through "firm own price elasticity"
  - Percent change in demand for all of a retailer's produce in response to 1% increase in all prices in that retailer

| Retailer    | Firm own price elasticity |
|-------------|---------------------------|
| Asda        | -3.13                     |
| Morrisons   | -3.42                     |
| Sainsbury's | -3.27                     |
| Tesco       | -2.80                     |
|             |                           |

# **Retailer demand**

Unconditional meat elasticities

|            | Asda  | Morrisons | Sainsbury's | Tesco |
|------------|-------|-----------|-------------|-------|
| Asda       | -0.48 | 0.09      | 0.07        | 0.07  |
| Morrisons  | 0.07  | -0.54     | 0.06        | 0.06  |
| Sainsburys | 0.07  | 0.07      | -0.61       | 0.08  |
| Tesco      | 0.12  | 0.13      | 0.14        | -0.40 |

Notes: Number (i, j) gives percent change in demand for product j with respect to a 1 percent increase in price for product i

## **Retailer-good margins**

-

|            | Asda | Morrisons | Sainsbury's | Tesco |
|------------|------|-----------|-------------|-------|
| Fruit      | 0.31 | 0.30      | 0.33        | 0.35  |
| Vegetables | 0.31 | 0.30      | 0.31        | 0.33  |
| Grains     | 0.34 | 0.30      | 0.32        | 0.35  |
| Dairy      | 0.34 | 0.31      | 0.31        | 0.36  |
| Meat       | 0.32 | 0.29      | 0.33        | 0.36  |
| Drinks     | 0.34 | 0.30      | 0.31        | 0.35  |
| Sweet      | 0.31 | 0.29      | 0.29        | 0.36  |
| Savoury    | 0.34 | 0.29      | 0.32        | 0.36  |
| Non food   | 0.32 | 0.29      | 0.31        | 0.36  |
| Profit     | 0.32 | 0.29      | 0.31        | 0.36  |

2

Preliminary results

#### Marginal costs and producer prices over time





O'Connell (IFS/UCL)

**Toulouse Workshop** 

## Summary

- Aim is to model consumer demand and supermarket pricing in UK food market
- And to use model to gauge relative importance of changes in
  - retailers' costs
  - demand conditions faced by retailers

on recent large changes in UK food prices

- Next steps include
  - Modelling choice over total grocery expenditure
  - Possibly using producer price information in estimation
  - Conduct counterfactuals

・ 同 ト ・ ヨ ト ・ ヨ

## Consumer's problem conditional on retailer choice

Conditional on choosing supermarket s, consumer i in week t solves

 $\max_{(q_{ist}, n_{ist})} U_i(u_i(q_{ist}), n_{ist})$ 

s.t.  $p_{st}q_{ist} + n_{ist} = X_{it}$ 

Where

- $q_{its} = (q_{is1t}, ..., q_{isJt})$  are quantities of supermarket goods
- *n<sub>its</sub>* is total quantity of non-supermarket non-durable (numeraire)
- $p_{st} = (p_{s1t}, ..., p_{sJt})'$  are prices for *J* goods within the supermarket
- X<sub>it</sub> is weekly non-durable expenditure

## Consumer's problem conditional on retailer choice

Conditional on choosing supermarket s, consumer i in week t solves

 $\max_{\substack{(q_{ist}, n_{ist})}} U_i(u_i(q_{ist}), n_{ist})$ s.t.  $p_{st}q_{ist} + n_{ist} = X_{it}$ 

Which implies

Conditional demands for supermarket goods

$$w_{isjt} \equiv \frac{p_{sjt}q_{isjt}}{x_{ist}} = f_{ij}(p_{st}, x_{ist}) \forall j$$

where  $x_{ist} \equiv p_{st}q_{ist}$  is total supermarket expenditure

• A total supermarket expenditure rule

$$x_{ist} = F_i(p_{st}, X_{it})$$

And indirect utility

$$\phi_i(p_{st}, X_{it})$$

▲ □ ▷ ▲ □ ▷ ▲ 글 ▷ Back: Expenditure

#### **Prices**

- From transaction level prices for 100,000s of different products, need to compute prices for 9 broad goods in each retailer
- Define 43 sub-goods and define market *t* retailer *s* price as volume weighted mean transaction price
  - Where weights are time and retailer varying
  - Captures retailer price of narrowingly defined good e.g. poultry in Tesco
- Aggregate up to market t retailer s price for good j by computing an expenditure weighted mean over relevant sub-goods
  - Where weights are constant across markets and retailers
  - Captures price offering for, e.g. meat in Tesco, allowing for weighting of meat components based on long run average behaviour

Back: Goods