# An empirical study of supermarket demand and equilibrium pricing 

Martin O'Connell

Institute for Fiscal Studies and University College London
December 2012

## Outline of presentation

(1) Background/motivation

- From Griffith, O'Connell and Smith (2011)
(2) Outline a model of grocery demand and supermarket pricing
(3) Show some very preliminary results


## Recent large increase in UK food price



## Recent large increase in UK food price



## Large change in relative prices of different foods

Change in price of food types relative to change in price of all food: 2006-2010


## Possible drives of changes in retail food prices

Changes in costs?

- Large depreciation of sterling and global food commodity price boom
- Would expect an increase in retailer costs

Changes in demand?

- Concurrently there's been large shocks to consumers' incomes
- Crossley et al (2011) report 6.6\% decline in consumer expenditure on food over recession
- Would expect resultant reallocation of expenditures across different foods


## Objective of this work

- Specify and estimate a model that allows for separation of impact of changes in costs and changes in demand conditions on equilibrium food prices
- In common with many empirical IO papers:
- Estimate demand facing firms
- Use equilibrium pricing condition to pin down marginal costs
- But in contrast to much of this literature:
- Model demand for a large class of goods
- Allow for complementarities between goods
- Allow for income effects
- Use model to simulate counterfactual market equilibria
- e.g. Path of retail prices in absence of increases in costs


## Overview of demand model

- Focus on modelling the consumer's main weekly supermarket trip
- Which supermarket they choose
- How they allocate their main trip grocery expenditure across 9 grocery goods
- Assume one stop shop model - purchase decisions made on main trip are independent of purchase decisions on smaller top up trips
- Consumer makes discrete decision over which retailer to shop with based on:
- Anticipated utility from optimal shopping within retailer
- Their valuation of other retailer characteristics
- And a continuous decision over how to allocate expenditure across grocery goods available in chosen retailer
- Model allows for estimation of demand faced by retailers; e.g. demand for meat in retailer Tesco


## Utility conditional on retailer choice

Consumer $i$ in week $t$ gets utility from shopping with retailer $s$ given by:

$$
\bar{V}_{i s t}=\zeta_{i} \phi\left(p_{s t}, x_{i t}, \xi_{i t}\right)+\kappa_{i} z_{i s}+\lambda_{i} \mu_{s}+\varepsilon_{i s t}
$$

where:

- $p_{s t}=\left(p_{s 1 t}, \ldots, p_{s J t}\right)^{\prime}$ are prices for $J$ goods within the retailer
- $x_{i t}$ is weekly main shop budget
- $\xi_{i t}=\left(\xi_{i 1 t}, \ldots, \xi_{i J t}\right)^{\prime}$ captures household specific and time specific factors influencing within retailer demand
- $z_{i s}$ are observable consumer-retailer characteristics
- $\mu_{s}$ are retailer fixed effects
- $\left(\zeta_{i}, \kappa_{i}, \lambda_{i}\right)$ are consumer specific (random) coefficients
- $\varepsilon_{\text {ist }}$ is an idiosyncratic shock


## Within retailer behaviour

- Assume within retailer preferences can be represented by AIDS with consumer specific heterogeneity
- Portion of indirect utility realised from within retailer behaviour is:

$$
\phi\left(p_{s t}, x_{i t}, \xi_{i t}\right)=\frac{1}{B\left(p_{s t}\right)}\left[\ln x_{i t}-\ln A\left(p_{s t}, \xi_{i t}\right)\right]
$$

where

$$
\begin{aligned}
\ln A\left(p_{s t}, \xi_{i t}\right) & =\alpha_{o}+\sum_{j} \alpha_{j}\left(\xi_{i j t}\right) \ln p_{s j t}+\frac{1}{2} \sum_{j} \sum_{k} \widetilde{\gamma}_{j k} \ln p_{s j t} \ln p_{s k t} \\
\ln B\left(p_{s t}\right) & =\sum_{j} \beta_{j} \ln p_{s j t}
\end{aligned}
$$

## Within retailer behaviour

- Assuming
(1) $\alpha_{j}\left(\xi_{i j t}\right)=\bar{\alpha}_{j}+\xi_{i j t}$
(2) $\xi_{i j t}=\tau_{j t}+c_{i j}$
- Roy's Identity implies (anticipated) share of trip expenditure allocated to good $j$ is:

$$
w_{i s j t}=\bar{\alpha}_{j}+\tau_{j t}+c_{i j}+\sum_{k} \gamma_{j k} \ln p_{s k t}+\beta_{j} \ln \left(\frac{x_{i t}}{A\left(p_{s t}, \xi_{i t}\right)}\right)
$$

- $\tau_{j t}$ captures unobserved common time factors affecting intercept of budget share demands
- $c_{i j}$ captures unobserved household specific factors affecting intercept of budget share demands


## Within retailer behaviour

- Assuming
(1) $\alpha_{j}\left(\xi_{i j t}\right)=\bar{\alpha}_{j}+\xi_{i j t}$
(2) $\xi_{i j t}=\tau_{j t}+c_{i j}$
- Roy's Identity implies (anticipated) share of trip expenditure allocated to $\operatorname{good} j$ is:

$$
w_{i s j t}=\bar{\alpha}_{j}+\tau_{j t}+c_{i j}+\sum_{k} \gamma_{j k} \ln p_{s k t}+\beta_{j} \ln \left(\frac{x_{i t}}{A\left(p_{s t}, \xi_{i t}\right)}\right)
$$

- Consumer makes retailer choice decisions based on expected behaviour captured by $w_{\text {isjt }}$
- Within retailer realised demand, $\widetilde{w}_{i s j t}$, may differ; I assume

$$
w_{i s j t}=E\left(\widetilde{w}_{i s j t} \mid \tau_{j t}, c_{i j}, p_{s t}, x_{i t}\right)
$$

## Choice of supermarket

- Consumer chooses retailer that provides her with most utility

$$
V_{i t}=\max _{s}\left[\bar{V}_{i 0 t}, \ldots, \bar{V}_{i S t}\right]
$$

- Assume $\varepsilon_{i s t}$ is distributed iid extreme value and $\left(\zeta_{i}, \kappa_{i}, \lambda_{i}\right)$ are drawn from a multivariate normal distribution $F$
- Then probability consumer $i$ in week $t$ visits retailer $s$ is:

$$
\pi_{i s t}=\int \frac{\exp \left(\zeta_{i} \phi\left(p_{s t}, x_{i t}, \xi_{i t}\right)+\kappa_{i} z_{i s}+\lambda_{i} \mu_{s}\right)}{\sum_{r} \exp \left(\zeta_{i} \phi\left(p_{r t}, x_{i t}, \xi_{i t}\right)+\kappa_{i} z_{i r}+\lambda_{i} \mu_{r}\right)} d F
$$

## Substitution patterns

- Consumer i's week $t$ expected demand for good $j$ in retailer $s$ is:

$$
q_{i s j t}=\pi_{i s t} \bar{q}_{i s j t}
$$

where $\bar{q}_{i s j t}$ is demand conditional on retailer choice

- Ignoring $i$ and $t$ subscripts, price elasticities of demand between goods within a retailer are:

$$
\delta_{(s j)(s k)}=\frac{\partial \ln \pi_{s}}{\partial \ln \phi_{s}} \frac{\partial \ln \phi_{s}}{\partial \ln p_{s k}}+\frac{\partial \ln \bar{q}_{s j}}{\partial \ln p_{s k}}
$$

- Price elasticities of demand between goods in different retailers are:

$$
\delta_{(s j)(r k)}=\frac{\partial \ln \pi_{s}}{\partial \ln \phi_{r}} \frac{\partial \ln \phi_{r}}{\partial \ln p_{r k}}
$$

## Choice of total grocery expenditure

- Current version of the model conditions on main trip grocery expenditure
- Consumer chooses supermarket based on utility she will get from optimally spending that budget on grocery goods, given prices she'll face in the retailer
- But budget is assume to be fixed across retailers
- Roughly, consistent with demand for aggregate grocery good having unit price elasticity with respect to total grocery price index
- Means variation in consumer's grocery expenditure through time is driven by changes in her total non-durable expenditure/income

Consumer's problem

## Choice of total grocery expenditure

- Aim is to relax this assumption
- Difficulty is market research data has
- Very detailed information on consumer's within supermarket expenditures
- But little information on their non-grocery expenditure or income
- One idea is to:
- Assume weak separability between grocery and non-grocery demand
- Use market research data to estimate preference parameters determining grocery demand
- Use additional data source to estimate preference parameters determining choice of grocery expenditure


## Retailer behaviour

- Assume retailers compete in a Nash-Bertrand game
- Retailer $s$ in market $t$ chooses the prices of $J$ goods to maximise profits:

$$
\max _{p_{s t}} \sum_{j \in\{1, \ldots, J\}}\left(p_{s j t}-c_{s j t}\right) Q_{s j t}\left(p_{01}, \ldots, p_{S t}\right)-C_{s j t}
$$

- where:
- $c_{s j t}$ is market $t$ marginal cost of good $j$ in retailer $s$
- $C_{s j t}$ is market $t$ fixed cost of good $j$ in retailer $s$
- $Q_{s j t} \equiv \sum_{i \in \Omega_{t}} q_{i s j t}$ is market $t$ demand for good $j$ in retailer $s$


## Retailer behaviour

- Assume retailers compete in a Nash-Bertrand game
- Retailer $s$ in market $t$ chooses the prices of $J$ goods to maximise profits:

$$
\max _{p_{s t}} \sum_{j \in\{1, \ldots, J\}}\left(p_{s j t}-c_{s j t}\right) Q_{s j t}\left(p_{01}, \ldots, p_{s t}\right)-C_{s j t}
$$

- First order condition is:

$$
Q_{s j t}+\sum_{k \in\{1, \ldots, J\}}\left(p_{s k t}-c_{s k t}\right) \frac{\partial Q_{s k t}}{\partial p_{s j t}}=0
$$

- Inverting system yields implied marginal cost of each good in each retailer and market


## Data

- Rolling panel of households, containing
- All grocery shopping trips households make
- Including the retailer they visit
- And within retailer expenditures and transaction prices on very disaggregate products
- Data cover period 2002-2010; 466 weeks/markets
- Households in data for 120 weeks on average
- Weekly main shopping trip is defined as weekly trip on which household spends most
- Small number of weeks where a household's grocery expenditure is less than $50 \%$ of its median are dropped
- On average $82 \%$ of households' weekly grocery supermarket expenditure is made on main trips


## Goods

| Good | Expenditure share | Main compenents |
| :---: | :---: | :---: |
| Fruit | 8.05\% | Fresh fruits, canned and dried fruits, frozen fruit and fruit juices |
| Vegetables | 5.08\% | Fresh vegetables, canned vegetables and frozen vegetables |
| Grains | 7.95\% | Flour, cereals, pasta, rice, breads and potatoes |
| Dairy | 10.73\% | Milk, cream, cheese, butter, margarine and yogurt |
| Meats | 14.88\% | Beef, pork, lamb, poultry, bacon, ham, sausages, eggs, seafood, seeds and nuts |
| Drinks | 5.52\% | Non fruit juice, water, tea and coffee |
| Sweet | 8.23\% | Sugar, sweeteners, cakes, biscuit and desserts |
| Savoury | 18.24\% | Ready meals and prepared snacks |
| Non food | 21.31\% | Alcohol, toiletries, pet foods and cleaning produce |

## Retailers

| Retailer | Market share |
| :--- | ---: |
| Asda | $20.1 \%$ |
| Morrisons | $14.8 \%$ |
| Sainsbury's | $17.9 \%$ |
| Tesco | $35.9 \%$ |
| Other | $11.3 \%$ |

## Demand conditional on retailer choice

| Variables | Fruit | Vegetables | Grain | Dairy | Meat |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Expenditure | $-0.0202^{* * *}$ | $-0.0132^{* * *}$ | $-0.0230^{* * *}$ | $-0.0331^{* * *}$ | $0.0016^{* * *}$ |
| PriceFruit | $(0.0001)$ | $(0.0001)$ | $(0.0001)$ | $(0.0001)$ | $(0.0002)$ |
|  | $0.0180^{* * *}$ | 0.0004 | -0.0006 | $-0.0032^{* * *}$ | $-0.0252^{* * *}$ |
| PriceVegetables | $(0.0007)$ | $(0.0004)$ | $(0.0006)$ | $(0.0007)$ | $(0.0009)$ |
|  | 0.0004 | $0.0277^{* * *}$ | $0.0021^{* * *}$ | $0.0026^{* * *}$ | $-0.0200^{* * *}$ |
| PriceGrain | $(0.0004)$ | $(0.0006)$ | $(0.0006)$ | $(0.0007)$ | $(0.0008)$ |
|  | -0.0006 | $0.0021^{* * *}$ | $0.0057^{* * *}$ | $-0.0148^{* * *}$ | $-0.0158^{* * *}$ |
| PriceDairy | $(0.0006)$ | $(0.0006)$ | $(0.0011)$ | $(0.0010)$ | $(0.0010)$ |
|  | $-0.0032^{* * *}$ | $0.0026^{* * *}$ | $-0.0148^{* * *}$ | $0.0220^{* * *}$ | $-0.0287^{* * *}$ |
| PriceMeat | $(0.0007)^{* * *}$ | $(0.0007)$ | $(0.0010)$ | $(0.0016)$ | $(0.0013)$ |
|  | $-0.0252^{* * *}$ | $-0.0207^{* * *}$ | $-0.0158^{* * *}$ | $-0.0287^{* * *}$ | $0.1321^{* * *}$ |
| PriceDrink | $(0.0009)$ | $(0.0008)$ | $(0.0010)$ | $(0.0013)$ | $(0.0022)$ |
|  | $0.0005^{* * *}$ | -0.0003 | $0.0142^{* * *}$ | $0.014^{* * *}$ | $-0.0199^{* * *}$ |
| PriceSweet | $(0.0005)$ | $(0.0004)$ | $(0.0005)$ | $(0.0007)$ | $(0.0008)$ |
|  | $-0.0213^{* * *}$ | $-0.0046^{* * *}$ | $-0.0185^{* * *}$ | $-0.0236^{* * *}$ | $0.0213^{* * *}$ |
| PriceSavoury | $(0.0005)$ | $(0.0004)$ | $(0.0005)$ | $(0.0006)$ | $(0.0008)$ |
| Time effects | $-0.0141^{* * *}$ | $-0.0128^{* * *}$ | $-0.0052^{* * *}$ | $-0.0110^{* * *}$ | $0.0449^{* * *}$ |
| Fixed effects | $(0.0008)$ | $(0.0006)$ | $(0.0008)$ | $(0.0010)$ | $(0.0014)$ |
| No. of observations | 2287160 | Yes | Yes | Yes | Yes |

Notes: ${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$

## Demand conditional on retailer choice

| Variables | Drink | Sweet | Savoury | Non Food |
| :--- | :--- | :--- | :--- | :--- |
| Expenditure | $-0.0025^{* * *}$ | $-0.0108^{* * *}$ | $-0.0214^{* * *}$ | $0.1225^{* * *}$ |
| PriceFruit | $(0.0001)$ | $(0.0001)$ | $(0.0002)$ | $(0.0002)$ |
|  | $0.0035^{* * *}$ | $-0.0213^{* * *}$ | $-0.0141^{* * *}$ | $0.0424^{* * *}$ |
| PriceVegetables | $(0.0005)$ | $(0.0005)$ | $(0.0008)$ | $(0.0008)$ |
|  | -0.0003 | $-0.0046^{* * *}$ | $-0.0128^{* * *}$ | $0.0056^{* * *}$ |
| PriceGrain | $(0.0004)$ | $(0.0004)$ | $(0.0006)$ | $(0.0007)$ |
|  | $0.0142^{* * *}$ | $-0.0185^{* * *}$ | $-0.0052^{* * *}$ | $0.0330^{* * *}$ |
| PriceDairy | $(0.0005)$ | $(0.0005)$ | $(0.0008)$ | $(0.0009)$ |
|  | $0.0174^{* * *}$ | $-0.0236^{* * *}$ | $-0.0110^{* * *}$ | $0.0392^{* * *}$ |
| PriceMeat | $(0.0007)$ | $(0.0006)$ | $(0.0010)$ | $(0.00111)$ |
|  | $-0.0189^{* * *}$ | $0.0213^{* * *}$ | $0.0449^{* * *}$ | $-0.0890^{* * *}$ |
| PriceDrink | $(0.0008)$ | $(0.0008)$ | $(0.0014)$ | $(0.0015)$ |
|  | -0.0010 | $-0.0075^{* * *}$ | $-0.0088^{* * *}$ | $0.0014^{*}$ |
| PriceSweet | $(0.0006)$ | $(0.0004)$ | $(0.0007)$ | $(0.0008)$ |
|  | $-0.0075^{* * *}$ | $0.0448^{* * *}$ | $0.0140^{* * *}$ | $-0.0046^{* * *}$ |
| PriceSavoury | $(0.0004)$ | $(0.0006)$ | $(0.0007)$ | $(0.0008)$ |
| Time effects | $-0.0088^{* * *}$ | $0.0140^{* * *}$ | $0.0151^{* * *}$ | $-0.0221^{* * *}$ |
| Fixed effects | $(0.0007)$ | $(0.0007)$ | $(0.0016)$ | $(0.0013)$ |
| No. of observations | Yes | Yes | Yes | Yes |

Notes: ${ }^{* * *} p<0.01,{ }^{* *} p<0.05,{ }^{*} p<0.1$

## Demand conditional on retailer choice

## Conditional elasticities in Tesco

|  | 产 |  |  | $\frac{\backslash}{\bar{n}}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{N}} \\ & \stackrel{\perp}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { Y } \\ & \stackrel{y}{\bar{E}} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{D}} \\ & \sum_{\infty}^{\mathbf{0}} \end{aligned}$ | 訁 O－ 心 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fruit | －0．74 | 0.05 | 0.04 | 0.02 | －0．17 | 0.07 | －0．25 | －0．06 | 0.10 |
| Vegetables | 0.03 | －0．44 | 0.05 | 0.06 | －0．14 | 0.00 | －0．04 | －0．06 | －0．03 |
| Grain | 0.03 | 0.08 | －0．88 | －0．09 | －0．11 | 0.26 | －0．21 | －0．01 | 0.06 |
| Dairy | 0.01 | 0.10 | －0．13 | －0．72 | －0．20 | 0.32 | －0．27 | －0．04 | 0.06 |
| Meat | －0．27 | －0．37 | －0．16 | －0．23 | －0．09 | －0．33 | 0.29 | 0.28 | －0．46 |
| Drink | 0.06 | 0.01 | 0.20 | 0.19 | －0．13 | －1．02 | －0．09 | －0．04 | －0．03 |
| Sweet | －0．23 | －0．06 | －0．20 | －0．19 | 0.15 | －0．13 | －0．42 | 0.10 | －0．08 |
| Savoury | －0．11 | －0．19 | 0.01 | －0．03 | 0.31 | －0．15 | 0.21 | －0．88 | －0．23 |
| Non Food | 0.47 | 0.06 | 0.37 | 0.32 | －0．61 | 0.02 | －0．08 | －0．15 | －0．93 |
| Expenditure | 0.76 | 0.74 | 0.71 | 0.70 | 1.01 | 0.95 | 0.86 | 0.88 | 1.55 |

Notes：Number $(i, j)$ gives percent change in demand for product $j$ with respect to a 1 percent increase in price for product $i$

## Demand conditional on retailer choice

## Conditional elasticities in Tesco

|  | 产 |  |  | \} | $\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{N}} \\ & \stackrel{\perp}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { Y } \\ & \stackrel{y}{\bar{E}} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{D}} \\ & \sum_{\infty}^{\mathbf{0}} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fruit | -0.74 | 0.05 | 0.04 | 0.02 | -0.17 | 0.07 | -0.25 | -0.06 | 0.10 |
| Vegetables | 0.03 | -0.44 | 0.05 | 0.06 | -0.14 | 0.00 | -0.04 | -0.06 | -0.03 |
| Grain | 0.03 | 0.08 | -0.88 | -0.09 | -0.11 | 0.26 | -0.21 | -0.01 | 0.06 |
| Dairy | 0.01 | 0.10 | -0.13 | -0.72 | -0.20 | 0.32 | -0.27 | -0.04 | 0.06 |
| Meat | -0.27 | -0.37 | -0.16 | -0.23 | -0.09 | -0.33 | 0.29 | 0.28 | -0.46 |
| Drink | 0.06 | 0.01 | 0.20 | 0.19 | -0.13 | -1.02 | -0.09 | -0.04 | -0.03 |
| Sweet | -0.23 | -0.06 | -0.20 | -0.19 | 0.15 | -0.13 | -0.42 | 0.10 | -0.08 |
| Savoury | -0.11 | -0.19 | 0.01 | -0.03 | 0.31 | -0.15 | 0.21 | -0.88 | -0.23 |
| Non Food | 0.47 | 0.06 | 0.37 | 0.32 | -0.61 | 0.02 | -0.08 | -0.15 | -0.93 |
| Expenditure | 0.76 | 0.74 | 0.71 | 0.70 | 1.01 | 0.95 | 0.86 | 0.88 | 1.55 |

Notes: Number $(i, j)$ gives percent change in demand for product $j$ with respect to a 1 percent increase in price for product $i$

## Demand conditional on retailer choice

## Conditional elasticities in Tesco

|  | 产 |  |  |  | $\begin{aligned} & \stackrel{\rightharpoonup}{\pi} \\ & \stackrel{N}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { y } \\ & \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \sum_{\infty}^{\infty} \\ & \hline \end{aligned}$ | 訁 O－ 心 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fruit | －0．74 | 0.05 | 0.04 | 0.02 | －0．17 | 0.07 | －0．25 | －0．06 | 0.10 |
| Vegetables | 0.03 | －0．44 | 0.05 | 0.06 | －0．14 | 0.00 | －0．04 | －0．06 | －0．03 |
| Grain | 0.03 | 0.08 | －0．88 | －0．09 | －0．11 | 0.26 | －0．21 | －0．01 | 0.06 |
| Dairy | 0.01 | 0.10 | －0．13 | －0．72 | －0．20 | 0.32 | －0．27 | －0．04 | 0.06 |
| Meat | －0．27 | －0．37 | －0．16 | －0．23 | －0．09 | －0．33 | 0.29 | 0.28 | －0．46 |
| Drink | 0.06 | 0.01 | 0.20 | 0.19 | －0．13 | －1．02 | －0．09 | －0．04 | －0．03 |
| Sweet | －0．23 | －0．06 | －0．20 | －0．19 | 0.15 | －0．13 | －0．42 | 0.10 | －0．08 |
| Savoury | －0．11 | －0．19 | 0.01 | －0．03 | 0.31 | －0．15 | 0.21 | －0．88 | －0．23 |
| Non Food | 0.47 | 0.06 | 0.37 | 0.32 | －0．61 | 0.02 | －0．08 | －0．15 | －0．93 |
| Expenditure | 0.76 | 0.74 | 0.71 | 0.70 | 1.01 | 0.95 | 0.86 | 0.88 | 1.55 |

Notes：Number $(i, j)$ gives percent change in demand for product $j$ with respect to a 1 percent increase in price for product $i$

## Retailer demand

Unconditional elasticities in Tesco

|  | 产 |  | $\begin{aligned} & \stackrel{\bar{N}}{\bar{N}} \\ & \stackrel{N}{\tilde{N}} \end{aligned}$ | 訔 | $\begin{aligned} & \stackrel{\widetilde{\pi}}{\otimes} \\ & \stackrel{y}{\Sigma} \end{aligned}$ |  | $\begin{aligned} & \stackrel{\rightharpoonup}{\Phi} \\ & \sum_{\omega}^{\stackrel{0}{0}} \end{aligned}$ | $\begin{aligned} & \text { Z } \\ & \text { O} \\ & \text { O} \\ & \text { 心 } \end{aligned}$ | O <br>  <br>  <br> ¢ <br> ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fruit | －0．93 | －0．13 | －0．12 | －0．14 | －0．33 | －0．07 | －0．40 | －0．21 | －0．03 |
| Vegetables | －0．08 | －0．55 | －0．04 | －0．04 | －0．24 | －0．09 | －0．14 | －0．16 | －0．12 |
| Grain | －0．12 | －0．07 | －1．05 | －0．26 | －0．25 | 0.12 | －0．36 | －0．16 | －0．06 |
| Dairy | －0．19 | －0．09 | －0．34 | －0．95 | －0．38 | 0.14 | －0．46 | －0．23 | －0．10 |
| Meat | －0．54 | －0．65 | －0．43 | －0．49 | －0．40 | －0．61 | 0.02 | 0.02 | －0．74 |
| Drink | －0．04 | －0．09 | 0.10 | 0.09 | －0．23 | －1．14 | －0．20 | －0．15 | －0．13 |
| Sweet | －0．37 | －0．20 | －0．35 | －0．34 | 0.00 | －0．29 | －0．60 | －0．05 | －0．22 |
| Savoury | －0．42 | －0．50 | －0．33 | －0．36 | 0.01 | －0．47 | －0．11 | －1．25 | －0．51 |
| Non Food | 0.09 | －0．34 | 0.00 | －0．04 | －1．06 | －0．42 | －0．50 | －0．54 | －1．46 |

Notes：Number $(i, j)$ gives percent change in demand for product $j$ with respect to a 1 percent increase in price for product $i$

## Firm own price elasticity

- There are strong complementarities across goods within a supermarket
- Increasing price of one good, creates a reduction in demand for most goods sold in supermarket
- Can measure strength of this effect through "firm own price elasticity"
- Percent change in demand for all of a retailer's produce in response to $1 \%$ increase in all prices in that retailer


## Firm own price elasticity

- There are strong complementarities across goods within a supermarket
- Increasing price of one good, creates a reduction in demand for most goods sold in supermarket
- Can measure strength of this effect through "firm own price elasticity"
- Percent change in demand for all of a retailer's produce in response to $1 \%$ increase in all prices in that retailer

| Retailer | Firm own price elasticity |
| :--- | ---: |
| Asda | -3.13 |
| Morrisons | -3.42 |
| Sainsbury's | -3.27 |
| Tesco | -2.80 |

## Retailer demand

## Unconditional meat elasticities

|  | \% |  |  | O ¢ - |
| :---: | :---: | :---: | :---: | :---: |
| Asda | -0.48 | 0.09 | 0.07 | 0.07 |
| Morrisons | 0.07 | -0.54 | 0.06 | 0.06 |
| Sainsburys | 0.07 | 0.07 | -0.61 | 0.08 |
| Tesco | 0.12 | 0.13 | 0.14 | -0.40 |

Notes: Number $(i, j)$ gives percent change in demand for product $j$ with respect to a 1 percent increase in price for product $i$

## Retailer-good margins

Asda Morrisons Sainsbury's Tesco

| Fruit | 0.31 | 0.30 | 0.33 | 0.35 |
| :--- | :--- | :--- | :--- | :--- |
| Vegetables | 0.31 | 0.30 | 0.31 | 0.33 |
| Grains | 0.34 | 0.30 | 0.32 | 0.35 |
| Dairy | 0.34 | 0.31 | 0.31 | 0.36 |
| Meat | 0.32 | 0.29 | 0.33 | 0.36 |
| Drinks | 0.34 | 0.30 | 0.31 | 0.35 |
| Sweet | 0.31 | 0.29 | 0.29 | 0.36 |
| Savoury | 0.34 | 0.29 | 0.32 | 0.36 |
| Non food | 0.32 | 0.29 | 0.31 | 0.36 |
| Profit | 0.32 | 0.29 | 0.31 | 0.36 |

## Marginal costs and producer prices over time



## Summary

- Aim is to model consumer demand and supermarket pricing in UK food market
- And to use model to gauge relative importance of changes in
- retailers' costs
- demand conditions faced by retailers on recent large changes in UK food prices
- Next steps include
- Modelling choice over total grocery expenditure
- Possibly using producer price information in estimation
- Conduct counterfactuals


## Consumer's problem conditional on retailer choice

Conditional on choosing supermarket $s$, consumer $i$ in week $t$ solves

$$
\begin{aligned}
& \max _{\left(q_{i s t}, n_{i s t}\right)} U_{i}\left(u_{i}\left(q_{i s t}\right), n_{i s t}\right) \\
& \text { s.t. } p_{s t} q_{i s t}+n_{i s t}=X_{i t}
\end{aligned}
$$

Where

- $q_{i t s}=\left(q_{i s 1 t}, \ldots, q_{i s J t}\right)$ are quantities of supermarket goods
- $n_{\text {its }}$ is total quantity of non-supermarket non-durable (numeraire)
- $p_{s t}=\left(p_{s 1 t}, \ldots, p_{s J t}\right)^{\prime}$ are prices for $J$ goods within the supermarket
- $X_{i t}$ is weekly non-durable expenditure


## Consumer's problem conditional on retailer choice

Conditional on choosing supermarket $s$, consumer $i$ in week $t$ solves

$$
\begin{aligned}
& \max _{\left(q_{i s t}, n_{i s t}\right)} U_{i}\left(u_{i}\left(q_{i s t}\right), n_{i s t}\right) \\
& \text { s.t. } p_{s t} q_{i s t}+n_{i s t}=X_{i t}
\end{aligned}
$$

Which implies

- Conditional demands for supermarket goods

$$
w_{i s j t} \equiv \frac{p_{s j t} q_{i s j t}}{x_{i s t}}=f_{i j}\left(p_{s t}, x_{i s t}\right) \forall j
$$

where $x_{\text {ist }} \equiv p_{s t} q_{\text {ist }}$ is total supermarket expenditure

- A total supermarket expenditure rule

$$
x_{i s t}=F_{i}\left(p_{s t}, X_{i t}\right)
$$

- And indirect utility

$$
\phi_{i}\left(p_{s t}, X_{i t}\right)
$$

## Prices

- From transaction level prices for 100,000 s of different products, need to compute prices for 9 broad goods in each retailer
- Define 43 sub-goods and define market $t$ retailer $s$ price as volume weighted mean transaction price
- Where weights are time and retailer varying
- Captures retailer price of narrowingly defined good-e.g. poultry in Tesco
- Aggregate up to market $t$ retailer $s$ price for good $j$ by computing an expenditure weighted mean over relevant sub-goods
- Where weights are constant across markets and retailers
- Captures price offering for, e.g. meat in Tesco, allowing for weighting of meat components based on long run average behaviour

