

# Adjustment costs and labour supply: evidence from bunching at tax thresholds in the UK

Barra Roantree, Stuart Adam, James Browne, David Phillips

IIPF 2015, Dublin

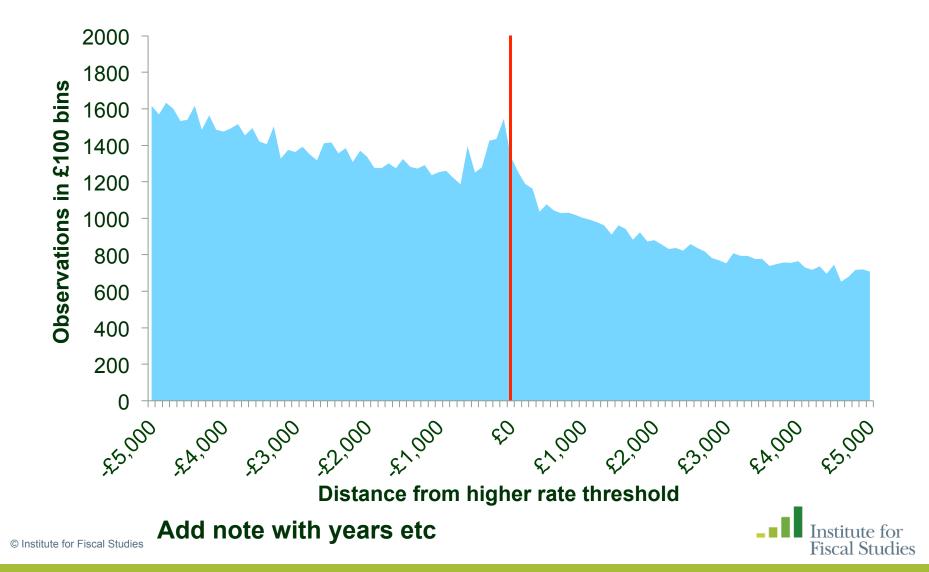
## Introduction

- Elasticity of taxable income crucial and controversial parameter
- Recent work has highlighted importance of optimising frictions
  - Chetty (2012): adjustment costs, inattention, and status quo biases can all drive wedge between estimated and true 'structural' parameter
  - Structural preference parameter what matters for long-term welfare and evaluating effects of a tax change in a different setting to that estimated
- This paper estimates ETI & provides evidence on frictions in the UK
  - Part of growing literature using bunching methods developed by Saez (2010), Chetty et al. (2011), and Kleven and Waseem (2013)
  - Exploits cross-sectional variation created by tax thresholds in the UK between 1978-2011



## Thresholds in the UK tax system: 1978-2011

- Look at several kink points in income tax schedule
  - Higher-rate threshold (HRT): rate increases from 20% to 40% at ~£35k pa
  - Additional-rate threshold: rate increases from 40% to 50% at £150k pa
  - Withdrawal of tax-free personal allowance: 60% band at £100k pa
- Earnings also subject to National Insurance contributions (NICs)
  - Nominally paid by both employees and employers
  - Little link to benefit entitlement
  - 1978-85: notch at Lower Earnings Limit (LEL)
  - 1986-1999: small notch at LEL and three notches above
  - System simplified in 1999, with single kink at the LEL replacing all notches

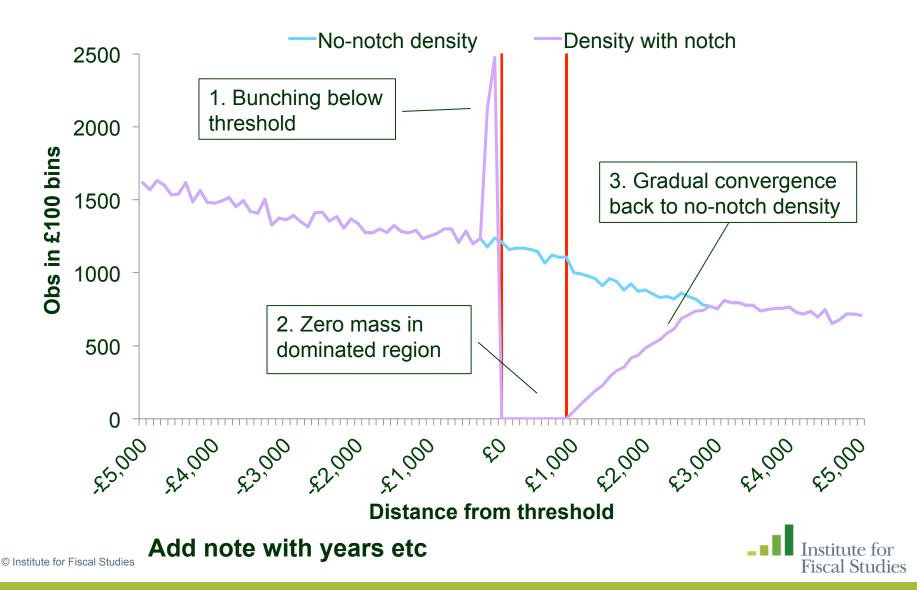



## Bunching at kink points in the tax system

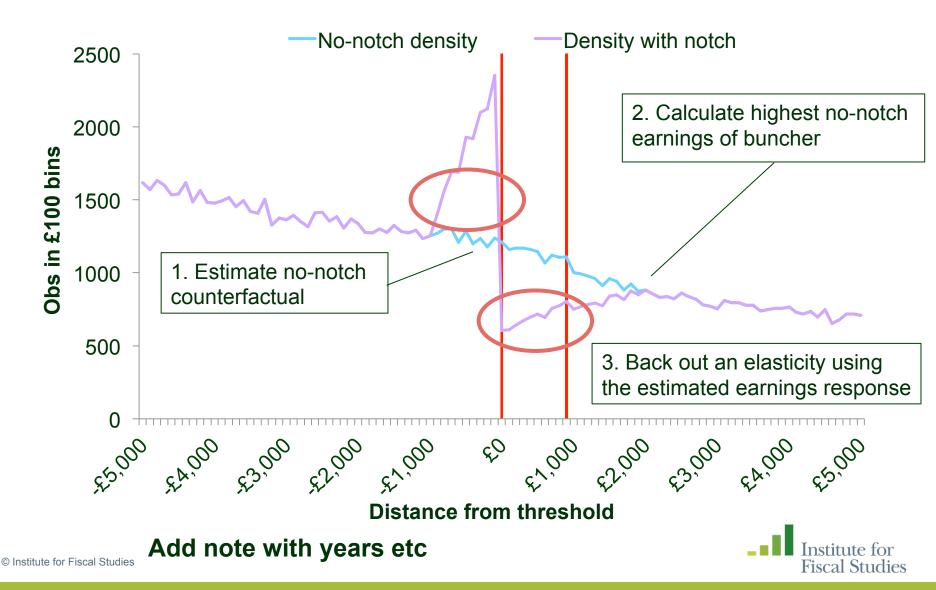
• With smooth distribution of convex preferences, individuals should bunch sharply at (convex) kink points in the tax system



## See some bunching at UK higher-rate threshold




## Bunching at kink points in the tax system


- With smooth distribution of convex preferences, individuals should bunch sharply at (convex) kink points in the tax system
  - Amount of bunching proportional to size of compensated elasticity
- Saez (2010) derives method to estimate the excess mass (bunching) at a kink point and use this to compute the ETI
- But adjustment costs and optimisation frictions mean some individuals don't bunch
  - Attenuate any estimate of the ETI obtained from bunching
  - Can't distinguish low ETI from high adjustment costs
- Bunching at notches allows us to say more...



## Creates dominated region no one should locate in



## And allows us to estimate unattenuated elasticity



# Estimate ETI using large UK admin datasets

- Survey of Personal Incomes (SPI): 2003-2011
  - Sample of income tax administrative records (~700,000 observations)
- New Earnings Survey (NES): 1978-2008
  - Large mandatory employer survey (psuedo-admin data) targeting 1% random sample of civilian employees
  - Gives earnings in relevant period for NICs, but some issues:
  - 1. Incomplete sample below LEL: we might understate bunching
  - 2. Earnings reported for period around turn of fiscal year: not sure whether response is short/long-run, and which year's threshold applies



## Bunching at HRT mostly company owner-managers



## ... and implies very small elasticities

## Table 3, Panel B

| Kink                     | All taxpayers | Self-employed | Company<br>owner-<br>managers | Other<br>taxpayers |
|--------------------------|---------------|---------------|-------------------------------|--------------------|
| Higher rate<br>threshold | 0.032***      | 0.058***      | 0.246***                      | 0.015***           |
| £100,000                 |               |               |                               |                    |
| £150,000                 |               |               |                               |                    |

Note: \*\* = statistically significant at 5%, \*\*\* = statistically significant at 1% level. Source: Author's calculations using 2003–04 to 2007–08 Survey of Personal Incomes.



## ... and implies very small elasticities

## Table 3, Panel B

| Kink                     | All taxpayers | Self-employed | Company<br>owner-<br>managers | Other<br>taxpayers |
|--------------------------|---------------|---------------|-------------------------------|--------------------|
| Higher rate<br>threshold | 0.032***      | 0.058***      | 0.246***                      | 0.015***           |
| £100,000                 | 0.014***      | 0.020***      | 0.039***                      | 0.007**            |
| £150,000                 |               |               |                               |                    |

Note: \*\* = statistically significant at 5%, \*\*\* = statistically significant at 1% level. Source: Author's calculations using 2003–04 to 2007–08 Survey of Personal Incomes.



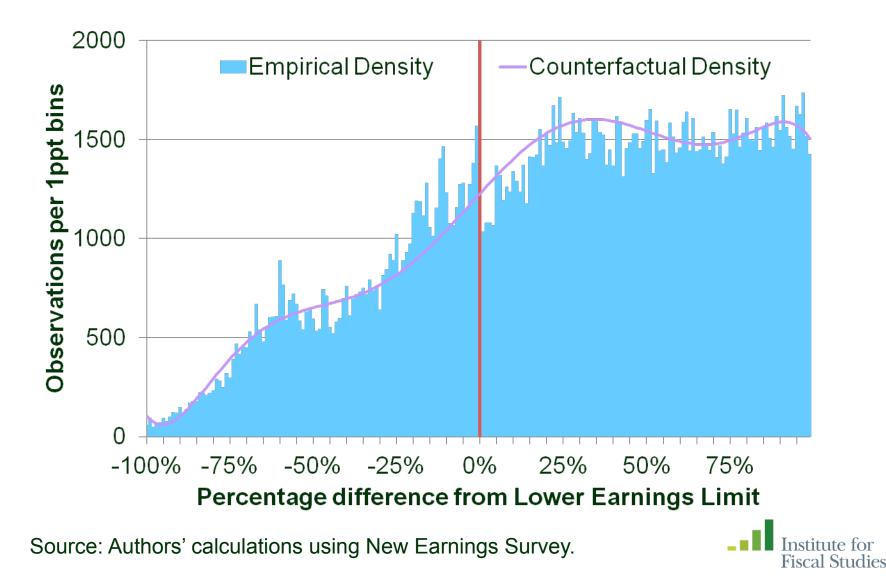
## ... and implies very small elasticities

## Table 3, Panel B

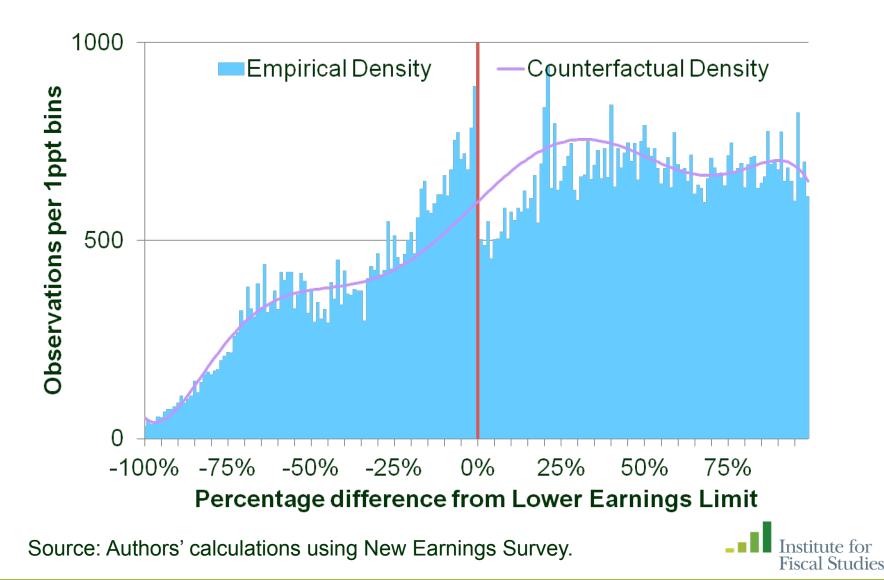
| Kink                     | All taxpayers | Self-employed | Company<br>owner-<br>managers | Other<br>taxpayers |
|--------------------------|---------------|---------------|-------------------------------|--------------------|
| Higher rate<br>threshold | 0.032***      | 0.058***      | 0.246***                      | 0.015***           |
| £100,000                 | 0.014***      | 0.020***      | 0.039***                      | 0.007**            |
| £150,000                 | 0.022***      | 0.011         | 0.070***                      | 0.015***           |

Note: \*\* = statistically significant at 5%, \*\*\* = statistically significant at 1% level. Source: Author's calculations using 2003–04 to 2007–08 Survey of Personal Incomes.

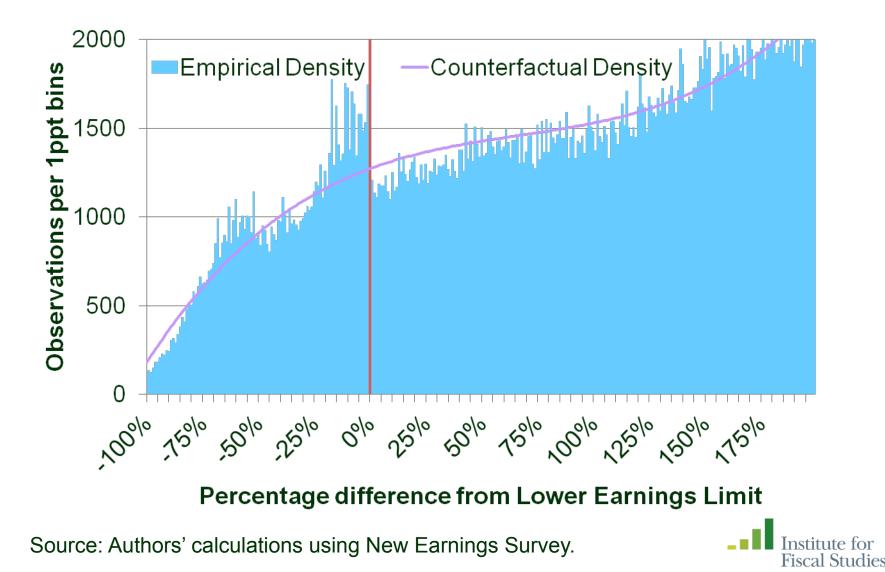



## Though adjustment costs could explain this

- Estimates consistent with much larger elasticities if we allow for adjustment costs/optimisation frictions
  - Using Chetty (2012) approach, 'all taxpayers' estimate of 0.03 consistent with a ETI of up to 0.54 if adjustment costs = 1% income


- See no bunching at all at kink points in NICs schedule post-99
  - Smaller kink points so less incentive to bunch than at HRT




## Do see bunching at the LEL over period 1978-85 Figure 8a



## ... which gets sharper between 1986-89 Figure 8b



# ... and remains strong from 1990-99 Figure 8c



## Can estimate unattenuated elasticity at this notch

### Table 2, Panel A

| Time    | Structural approach   |                          | Reduced-form approach |                          |
|---------|-----------------------|--------------------------|-----------------------|--------------------------|
|         | Convergence<br>method | Bunching-<br>hole method | Convergence<br>method | Bunching-<br>hole method |
| 1978-85 | 0.3214<br>(0.0030)    | 0.4633<br>(0.0067)       | 0.1600<br>(0.0027)    | 0.2918<br>(0.0081)       |
| 1986-89 |                       |                          |                       |                          |
| 1990-99 |                       |                          |                       |                          |

Note: Bootstraped standard errors in italics calculated drawing with-replacement from the observed distribution. Source: Author's calculations using New Earnings Survey, 1978-1999



© Institute for Fiscal Studies

## Can estimate unattenuated elasticity at this notch

### Table 2, Panel A

| Time    | Structural approach   |                          | Reduced-form approach |                          |
|---------|-----------------------|--------------------------|-----------------------|--------------------------|
|         | Convergence<br>method | Bunching-<br>hole method | Convergence<br>method | Bunching-<br>hole method |
| 1978-85 | 0.3214<br>(0.0030)    | 0.4633<br>(0.0067)       | 0.1600<br>(0.0027)    | 0.2918<br>(0.0081)       |
| 1986-89 | 0.5498<br>(0.0046)    | 0.5988<br>(0.0079)       | 0.4108<br>(0.0042)    | 0.4580<br>(0.0065)       |
| 1990-99 |                       |                          |                       |                          |

Note: Bootstraped standard errors in italics calculated drawing with-replacement from the observed distribution. Source: Author's calculations using New Earnings Survey, 1978-1999



## Can estimate unattenuated elasticity at this notch

### Table 2, Panel A

| Time    | Structural approach   |                          | Reduced-form approach |                          |
|---------|-----------------------|--------------------------|-----------------------|--------------------------|
|         | Convergence<br>method | Bunching-<br>hole method | Convergence<br>method | Bunching-<br>hole method |
| 1978-85 | 0.3214                | 0.4633                   | 0.1600                | 0.2918                   |
|         | (0.0030)              | (0.0067)                 | (0.0027)              | (0.0081)                 |
| 1986-89 | 0.5498                | 0.5988                   | 0.4108                | 0.4580                   |
|         | (0.0046)              | (0.0079)                 | (0.0042)              | (0.0065)                 |
| 1990-99 | 1.5683                | 2.3906                   | 1.3200                | 2.1387                   |
|         | (0.0121)              | (0.0742)                 | (0.0117)              | (0.0781)                 |

Note: Bootstraped standard errors in italics calculated drawing with-replacement from the observed distribution. Source: Author's calculations using New Earnings Survey, 1978-1999



## But interpret these estimates with caution...

- Some estimates sensitive to way in which counterfactual drawn
- Data issues mean understate bunching
- Combination of methods gives wide range of estimates (not bounds)
- Local estimate for particular group from quite some time ago



# Sub-groups

- Women (especially part-time) much more responsive than men
- Longer-tenured employees somewhat more responsive
- Bunching concentrated in certain sectors e.g. retail, hospitality



## Don't see any bunching at notches above LEL

- Suggests that adjustment costs could be substantial
  - Locating in dominated region => losses of 2-4% of total gross earnings for both employees and employers
- ... that these notches are less salient than LEL notch
- Or maybe jump in admin costs lower than at LEL



# Conclusions (1)

- See some bunching at the HRT, but implied elasticities very small
  - ... except for company owner-managers (0.25) who drive the bunching
  - Probably attenuated by adjustment costs or frictions
- No real evidence of bunching at other kinks
- Some bunching at notch where NICs become payable
  - Allows us to estimate non-attenuated elasticities of order 0.20-0.60
  - ... though method in places sensitive to particular specification + data
- No bunching at notches above LEL
  - Adjustment costs substantial for most employees (and firms)
  - Consistent with models that incorporate hour constraints?



# Conclusions (2)

- Owner managers & part-time women most responsive
  - Owner-managers can easily change timing of dividend income
  - Part-time employees more easily able to adjust hours
  - Heterogeneous adjustment costs may help explain pattern of results in literature e.g. larger estimates of ETI for women?
- More bunching at post-85 despite smaller notch
  - Salience effect?
- Little bunching at 100k or 150k thresholds:
  - 60% rate less salient?
  - Both new: takes time for taxpayers to learn how to game the system?





# Adjustment costs and labour supply: evidence from bunching at tax thresholds in the UK

Barra Roantree, Stuart Adam, James Browne, David Phillips

IIPF 2015, Dublin