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Introduction

We focus on evaluation methods in microeconomic policy analysis.

such as welfare, training, wage subsidy, and tax-credit programmes.

Our goal in this talk is to give an overview of some of these methods,
in particular those based on randomized trials and IV methods.

No single method is universally “best”.

We will highlight

the assumptions needed to justify each method.

the interpretation of resulting estimates.
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The Setup

We model a population of individuals each of whom either does or
does not receive treatment.

If individual i receives treatment di = 1.

If individual i does not receive treatment di = 0.

Each individual has outcome yi , e.g. income, employment status,
measure of health, ...

Individuals may also have other characteristics, xi . We omit these
from the model to simplify notation, but all statement could be made
conditional on observable xi .
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The Goal

We observe a random sample of observations (yi , xi , di ), i = 1, ..., n.

From this data we want to learn “the effect”of treatment di .

There are many different way we could think about measuring this
effect.

In practice we may also wish to consider how treatment affects people
with different xi differently.

Here I will draw primarily on material from Manski (1989, 1995).
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The Challenge: A Missing Data Problem

The main challenge is that for each individual we only observe their
outcome for the treatment they received.

If individual i receives treatment, we observe the corresponding
outcome, but not the outcome s/he would have had without
treatment.

We thus use y0i and y
1
i to denote individual i’s potential outcomes

from non-receipt and receipt of treatment, respectively.

The realized outcome yi corresponds to treatment received, di :

yi = diy1i + (1− di ) y0i .

The other potential outcome is unobserved, and is referred to as the
counterfactual outcome.
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The Challenge: A Missing Data Problem

The individual treatment effect is the difference in potential outcomes
αi = y1i − y0i .
Since we only observe either y1i or y

0
i , we don’t know αi .

Typically we seek to learn certain features of the joint distribution of
αi in the population, such as:

The Average Treatment Effect (ATE): E
[
y1i − y0i

]
.

The Average Treatment Effect on the Treated: E
[
y1i − y0i |di = 1

]
.

The Average Treatment Effect on the Non-Treated:
E
[
y1i − y0i |di = 0

]
.

and others...
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The Average Treatment Effect

Consider first the conditional ATE.

E
[
y1i − y0i

]
= E

[
y1i
]
− E

[
y0i
]

Using the Law of Iterated Expectations E
[
y1i
]
, E
[
y0i
]
can be

decomposed as

E
[
y1i
]
= E

[
y1i |di = 1

]
× p + E

[
y1i |di = 0

]
× (1− p) ,

E
[
y0i
]
= E

[
y0i |di = 1

]
× p + E

[
y0i |di = 0

]
× (1− p) .

Consider first E
[
y1i
]
. When di = 1, the observed outcome yi = y1i .
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The Average Treatment Effect

Therefore E
[
y1i |di = 1

]
= E [yi |di = 1].

Similarly E
[
y0i |di = 0

]
= E [yi |di = 0].

Each can thus be consistently estimated by sample counterparts.

However, E
[
y1i |di = 0

]
and E

[
y0i |di = 1

]
are means of

counterfactual outcomes.

To recover credible estimates for these, we need to bring in additional
information.

Such information can be used to justify approaches such as matching,
diff-in-diffs, and instrumental variable methods.
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“Worst-Case”Bounds

First, let’s see what we get without addition further
information/assumptions.

Consider again
E
[
y1i
]
= E

[
y1i |di = 1

]
× p + E

[
y1i |di = 0

]
× (1− p).

Suppose that outcomes can only take values in the unit interval [0, 1].

Then E
[
y1i |di = 0

]
must also lie in [0, 1].

We can use this to bound E
[
y1i
]
:

E [yi |di = 1]× p ≤ E
[
y1i
]
≤ E [yi |di = 1]× p + (1− p) .
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“Worst-Case”Bounds

The same reasoning can be used to bound E
[
y0i
]
.

This in turn leads to bounds on the ATE:

LB ≤ E
[
y1i − y0i

]
≤ UB

Where

LB = E [yi |di = 1]× p − (E [yi |di = 0]× (1− p) + p) ,
UB = E [yi |di = 1]× p + (1− p)− E [yi |di = 0]× (1− p) .

The bounds are easy to estimate given estimates for E [yi |di = 1],
E [yi |di = 0], p.
The worst-case bounds provide a useful starting point but will always
cross zero. That is, they can never distinguish the sign of the ATE..
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“Worst-Case”Bound Estimates

Bound estimates L̂B and ÛB can be constructed using the previous
formulas with

p̂ = n−1
n

∑
i=1
di ,

Ên [yi |di = 1] = (p̂n)−1
n

∑
i=1
yidi ,

Ên [yi |di = 0] = ((1− p̂) n)−1
n

∑
i=1
yi (1− di ) .
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Random Assignment

When treatment is randomly assigned the problem is easily solved.

Random assignment typically means potential outcomes
(
y1i , y

0
i

)
are

independent of treatment assignment di .

This implies E [y ti |di = 1] = E [y ti |di = 0] for either t = 0, 1, which
is all that is required for the ATE.

This may be credible in experimental setups, for example in clinical
trials or certain experimental cash transfer programmes.

It is a very powerful assumption, and thus very useful when credible,
but rarely holds with data in economics.

There can for example be problems such as selection or attrition.
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Random Assignment

Suppose indeed that assignment is random so that
E [y ti |di = 1] = E [y ti |di = 0].
Consider again E

[
y1i
]
:

E
[
y1i
]
= E [yi |di = 1]× p + E

[
y1i |di = 0

]
× (1− p) .

Under random assignment E
[
y1i |di = 0

]
= E

[
y1i |di = 1

]
, so that

E
[
y1i
]
= E [yi |di = 1]× p + E

[
y1i |di = 1

]
× (1− p)

= E [yi |di = 1]× p + E [yi |di = 1]× (1− p)
= E [yi |di = 1]

Thus under this assumption Ên [yi |di = 1] provides a consistent
estimator for E

[
y1i
]
.

Likewise Ên [yi |di = 0] now provides a consistent estimator for E
[
y0i
]

and we can use

ÂTE = Ên [yi |di = 1]− Ên [yi |di = 0] .
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Introduction of Instruments

As previously mentioned random assignment does not hold in most
settings.

An alternative way to improve upon the worst-case analysis is to use
instumental variables (IVs).

There are in fact many different IV assumptions that can be made.

The general idea is that the instrument

1 must be correlated with treatment assignment, but
2 must not otherwise have an effect on outcomes (perhaps conditional on
some covariates).

The IV thus induces exogenous variation in assignment.

IVs are useful, but are sometimes challenging to find.
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Introduction of Instruments

Again, there are many types of IVs.

To begin suppose we have an instrument zi such that for any two
possible values z∗, z∗∗.
Thus potential outcomes are mean independent of the realization of
zi .

Recall the bounds on E
[
y1i
]
. Applying the same approach we can

bound E
[
y1i |zi = z

]
for any value of z :

E [yi |di = 1, zi = z ]× p ≤ E
[
y1i |zi = z

]
≤ E [yi |di = 1, zi = z ]× p + (1− p) .

By (*) above we know E
[
y1i |zi = z

]
= E

[
y1i
]
, hence

E [yi |di = 1, zi = z ]×p ≤ E
[
y1i
]
≤ E [yi |di = 1, zi = z ]×p+(1− p) .
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Introduction of Instruments

E [yi |di = 1, zi = z ]× p ≤ E
[
y1i
]
≤ E [yi |di = 1, zi = z ]× p + (1− p) .

The above holds for all possible values of z .
Each value of z delivers a lower bound and an upper bound for E

[
y1i
]

as above:
LB1 (z) = E [yi |di = 1, zi = z ]× p,

UB1 (z) = E [yi |di = 1, zi = z ]× p + (1− p) .
Since LB1 (z) ≤ E

[
y1i
]
≤ UB1 (z) for all z it follows that E

[
y1i
]

obeys the intersection bounds

max
z
LB1 (z) ≤ E

[
y1i
]
≤ min

z
UB1 (z) .

Similar reasoning yields intersection bounds for E
[
y0i
]
:

max
z
LB0 (z) ≤ E

[
y0i
]
≤ min

z
UB0 (z) .
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Introduction of Instruments

The intersection bounds above can be combined to yield tighter
bounds on the ATE than the worst-case bounds.

How tight the bounds are will depend on how much treatment
assignment varies with z , consequently how much z affects
LB1 (z) , LB0 (z) ,UB1 (z) ,UB0 (z).

In general, without somehow strengthening the IV assumption, this
will not yield identification, i.e. there will not be a point estimator,
though the bounds can be quite tight.

It is even possible that they in fact cross, which indicates that the IV
assumption is incorrect!
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