An Overview of Programme Evaluation Methods 2012 ESRC Research Methods Festival

Adam M. Rosen
UCL, CeMMAP, and IFS
July 4th 2012

Introduction

- We focus on evaluation methods in microeconomic policy analysis.
- such as welfare, training, wage subsidy, and tax-credit programmes.
- Our goal in this talk is to give an overview of some of these methods, in particular those based on randomized trials and IV methods.
- No single method is universally "best".
- We will highlight
- the assumptions needed to justify each method.
- the interpretation of resulting estimates.

The Setup

- We model a population of individuals each of whom either does or does not receive treatment.
- If individual i receives treatment $d_{i}=1$.
- If individual i does not receive treatment $d_{i}=0$.
- Each individual has outcome y_{i}, e.g. income, employment status, measure of health, ...
- Individuals may also have other characteristics, x_{i}. We omit these from the model to simplify notation, but all statement could be made conditional on observable x_{i}.

The Goal

- We observe a random sample of observations $\left(y_{i}, x_{i}, d_{i}\right), i=1, \ldots, n$.
- From this data we want to learn "the effect" of treatment d_{i}.
- There are many different way we could think about measuring this effect.
- In practice we may also wish to consider how treatment affects people with different x_{i} differently.
- Here I will draw primarily on material from Manski $(1989,1995)$.

The Challenge: A Missing Data Problem

- The main challenge is that for each individual we only observe their outcome for the treatment they received.
- If individual i receives treatment, we observe the corresponding outcome, but not the outcome s/he would have had without treatment.
- We thus use y_{i}^{0} and y_{i}^{1} to denote individual i's potential outcomes from non-receipt and receipt of treatment, respectively.
- The realized outcome y_{i} corresponds to treatment received, d_{i} :

$$
y_{i}=d_{i} y_{i}^{1}+\left(1-d_{i}\right) y_{i}^{0}
$$

- The other potential outcome is unobserved, and is referred to as the counterfactual outcome.

The Challenge: A Missing Data Problem

- The individual treatment effect is the difference in potential outcomes $\alpha_{i}=y_{i}^{1}-y_{i}^{0}$.
- Since we only observe either y_{i}^{1} or y_{i}^{0}, we don't know α_{i}.
- Typically we seek to learn certain features of the joint distribution of α_{i} in the population, such as:
- The Average Treatment Effect (ATE): $E\left[y_{i}^{1}-y_{i}^{0}\right]$.
- The Average Treatment Effect on the Treated: $E\left[y_{i}^{1}-y_{i}^{0} \mid d_{i}=1\right]$.
- The Average Treatment Effect on the Non-Treated:

$$
E\left[y_{i}^{1}-y_{i}^{0} \mid d_{i}=0\right] .
$$

- and others...

The Average Treatment Effect

- Consider first the conditional ATE.

$$
E\left[y_{i}^{1}-y_{i}^{0}\right]=E\left[y_{i}^{1}\right]-E\left[y_{i}^{0}\right]
$$

- Using the Law of Iterated Expectations $E\left[y_{i}^{1}\right], E\left[y_{i}^{0}\right]$ can be decomposed as

$$
\begin{aligned}
& E\left[y_{i}^{1}\right]=E\left[y_{i}^{1} \mid d_{i}=1\right] \times p+E\left[y_{i}^{1} \mid d_{i}=0\right] \times(1-p), \\
& E\left[y_{i}^{0}\right]=E\left[y_{i}^{0} \mid d_{i}=1\right] \times p+E\left[y_{i}^{0} \mid d_{i}=0\right] \times(1-p) .
\end{aligned}
$$

- Consider first $E\left[y_{i}^{1}\right]$. When $d_{i}=1$, the observed outcome $y_{i}=y_{i}^{1}$.

The Average Treatment Effect

- Therefore $E\left[y_{i}^{1} \mid d_{i}=1\right]=E\left[y_{i} \mid d_{i}=1\right]$.
- Similarly $E\left[y_{i}^{0} \mid d_{i}=0\right]=E\left[y_{i} \mid d_{i}=0\right]$.
- Each can thus be consistently estimated by sample counterparts.
- However, $E\left[y_{i}^{1} \mid d_{i}=0\right]$ and $E\left[y_{i}^{0} \mid d_{i}=1\right]$ are means of counterfactual outcomes.
- To recover credible estimates for these, we need to bring in additional information.
- Such information can be used to justify approaches such as matching, diff-in-diffs, and instrumental variable methods.

"Worst-Case" Bounds

- First, let's see what we get without addition further information/assumptions.
- Consider again

$$
E\left[y_{i}^{1}\right]=E\left[y_{i}^{1} \mid d_{i}=1\right] \times p+E\left[y_{i}^{1} \mid d_{i}=0\right] \times(1-p)
$$

- Suppose that outcomes can only take values in the unit interval $[0,1]$.
- Then $E\left[y_{i}^{1} \mid d_{i}=0\right]$ must also lie in $[0,1]$.
- We can use this to bound $E\left[y_{i}^{1}\right]$:

$$
E\left[y_{i} \mid d_{i}=1\right] \times p \leq E\left[y_{i}^{1}\right] \leq E\left[y_{i} \mid d_{i}=1\right] \times p+(1-p)
$$

"Worst-Case" Bounds

- The same reasoning can be used to bound $E\left[y_{i}^{0}\right]$.
- This in turn leads to bounds on the ATE:

$$
L B \leq E\left[y_{i}^{1}-y_{i}^{0}\right] \leq U B
$$

- Where

$$
\begin{aligned}
L B & =E\left[y_{i} \mid d_{i}=1\right] \times p-\left(E\left[y_{i} \mid d_{i}=0\right] \times(1-p)+p\right) \\
U B & =E\left[y_{i} \mid d_{i}=1\right] \times p+(1-p)-E\left[y_{i} \mid d_{i}=0\right] \times(1-p)
\end{aligned}
$$

- The bounds are easy to estimate given estimates for $E\left[y_{i} \mid d_{i}=1\right]$, $E\left[y_{i} \mid d_{i}=0\right], p$.
- The worst-case bounds provide a useful starting point but will always cross zero. That is, they can never distinguish the sign of the ATE..

"Worst-Case" Bound Estimates

- Bound estimates $\widehat{L B}$ and $\widehat{U B}$ can be constructed using the previous formulas with

$$
\begin{gathered}
\hat{p}=n^{-1} \sum_{i=1}^{n} d_{i} \\
\hat{E}_{n}\left[y_{i} \mid d_{i}=1\right]=(\hat{p} n)^{-1} \sum_{i=1}^{n} y_{i} d_{i} \\
\hat{E}_{n}\left[y_{i} \mid d_{i}=0\right]=((1-\hat{p}) n)^{-1} \sum_{i=1}^{n} y_{i}\left(1-d_{i}\right) .
\end{gathered}
$$

Random Assignment

- When treatment is randomly assigned the problem is easily solved.
- Random assignment typically means potential outcomes $\left(y_{i}^{1}, y_{i}^{0}\right)$ are independent of treatment assignment d_{i}.
- This implies $E\left[y_{i}^{t} \mid d_{i}=1\right]=E\left[y_{i}^{t} \mid d_{i}=0\right]$ for either $t=0,1$, which is all that is required for the ATE.
- This may be credible in experimental setups, for example in clinical trials or certain experimental cash transfer programmes.
- It is a very powerful assumption, and thus very useful when credible, but rarely holds with data in economics.
- There can for example be problems such as selection or attrition.

Random Assignment

- Suppose indeed that assignment is random so that

$$
E\left[y_{i}^{t} \mid d_{i}=1\right]=E\left[y_{i}^{t} \mid d_{i}=0\right]
$$

- Consider again $E\left[y_{i}^{1}\right]$:

$$
E\left[y_{i}^{1}\right]=E\left[y_{i} \mid d_{i}=1\right] \times p+E\left[y_{i}^{1} \mid d_{i}=0\right] \times(1-p) .
$$

- Under random assignment $E\left[y_{i}^{1} \mid d_{i}=0\right]=E\left[y_{i}^{1} \mid d_{i}=1\right]$, so that

$$
\begin{aligned}
E\left[y_{i}^{1}\right] & =E\left[y_{i} \mid d_{i}=1\right] \times p+E\left[y_{i}^{1} \mid d_{i}=1\right] \times(1-p) \\
& =E\left[y_{i} \mid d_{i}=1\right] \times p+E\left[y_{i} \mid d_{i}=1\right] \times(1-p) \\
& =E\left[y_{i} \mid d_{i}=1\right]
\end{aligned}
$$

- Thus under this assumption $\hat{E}_{n}\left[y_{i} \mid d_{i}=1\right]$ provides a consistent estimator for $E\left[y_{i}^{1}\right]$.
- Likewise $\hat{E}_{n}\left[y_{i} \mid d_{i}=0\right]$ now provides a consistent estimator for $E\left[y_{i}^{0}\right]$ and we can use

$$
\widehat{A T E}=\hat{E}_{n}\left[y_{i} \mid d_{i}=1\right]-\hat{E}_{n}\left[y_{i} \mid d_{i}=0\right]
$$

Introduction of Instruments

- As previously mentioned random assignment does not hold in most settings.
- An alternative way to improve upon the worst-case analysis is to use instumental variables (IVs).
- There are in fact many different IV assumptions that can be made.
- The general idea is that the instrument
(1) must be correlated with treatment assignment, but
(2) must not otherwise have an effect on outcomes (perhaps conditional on some covariates).
- The IV thus induces exogenous variation in assignment.
- IVs are useful, but are sometimes challenging to find.

Introduction of Instruments

- Again, there are many types of IVs.
- To begin suppose we have an instrument z_{i} such that for any two possible values $z^{*}, z^{* *}$.
- Thus potential outcomes are mean independent of the realization of z_{i}.
- Recall the bounds on $E\left[y_{i}^{1}\right]$. Applying the same approach we can bound $E\left[y_{i}^{1} \mid z_{i}=z\right]$ for any value of z :

$$
\begin{aligned}
E\left[y_{i} \mid d_{i}=1, z_{i}=z\right] \times p & \leq E\left[y_{i}^{1} \mid z_{i}=z\right] \\
& \leq E\left[y_{i} \mid d_{i}=1, z_{i}=z\right] \times p+(1-p)
\end{aligned}
$$

- By $\left({ }^{*}\right)$ above we know $E\left[y_{i}^{1} \mid z_{i}=z\right]=E\left[y_{i}^{1}\right]$, hence

$$
E\left[y_{i} \mid d_{i}=1, z_{i}=z\right] \times p \leq E\left[y_{i}^{1}\right] \leq E\left[y_{i} \mid d_{i}=1, z_{i}=z\right] \times p+(1-p)
$$

Introduction of Instruments

$$
E\left[y_{i} \mid d_{i}=1, z_{i}=z\right] \times p \leq E\left[y_{i}^{1}\right] \leq E\left[y_{i} \mid d_{i}=1, z_{i}=z\right] \times p+(1-p) .
$$

- The above holds for all possible values of z.
- Each value of z delivers a lower bound and an upper bound for $E\left[y_{i}^{1}\right]$ as above:

$$
\begin{gathered}
L B^{1}(z)=E\left[y_{i} \mid d_{i}=1, z_{i}=z\right] \times p, \\
U B^{1}(z)=E\left[y_{i} \mid d_{i}=1, z_{i}=z\right] \times p+(1-p) .
\end{gathered}
$$

- Since $L B^{1}(z) \leq E\left[y_{i}^{1}\right] \leq U B^{1}(z)$ for all z it follows that $E\left[y_{i}^{1}\right]$ obeys the intersection bounds

$$
\max _{z} L B^{1}(z) \leq E\left[y_{i}^{1}\right] \leq \min _{z} U B^{1}(z)
$$

- Similar reasoning yields intersection bounds for $E\left[y_{i}^{0}\right]$:

$$
\max _{z} L B^{0}(z) \leq E\left[y_{i}^{0}\right] \leq \min _{z} U B^{0}(z) .
$$

Introduction of Instruments

- The intersection bounds above can be combined to yield tighter bounds on the ATE than the worst-case bounds.
- How tight the bounds are will depend on how much treatment assignment varies with z, consequently how much z affects $L B^{1}(z), L B^{0}(z), U B^{1}(z), U B^{0}(z)$.
- In general, without somehow strengthening the IV assumption, this will not yield identification, i.e. there will not be a point estimator, though the bounds can be quite tight.
- It is even possible that they in fact cross, which indicates that the IV assumption is incorrect!

