Matching, Sorting and Wages Preliminary

Thibaut Lamadon* Jeremy Lise[†] Costas Meghir[‡] Jean-Marc Robin[§]

Barcelona, June 2014

*University College London and IFS [†]University College London and IFS [‡]IFS and Yale [§]Science-Po and University College London

Introduction

What we want to learn about:

- are better workers employed at more productive firms?
- what is the production function?
- is the allocation efficient, what prevents efficiency?
- can policies improve total output?

What we observe:

- matched employer-employee data
- a panel data with employment status, wage, firm identifier $\{e_{it}, w_{it}, j_{it}\}_{it}$

The difficulties:

- firm and worker productivities are not directly observed
- allocation is endogenous, sorting on unobservables?
- wage might depend on employment history

Literature on assignment models

- Labor market as an assignment model
 - mass of workers (x) and mass of jobs (y)
 - production function f(x, y)
- Becker (1974): friction-less
 - assignment is one-to-one
 - do not observe mismatch, can't differentiate firm/worker effect
 - Choo and Siow (2006); Galichon and Salanié (2011) add preference heterogeneity
- Shimer and Smith (2003): derives condition for sorting in the presence of search frictions www.searchivec.com

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- agents settle for sub-optimal matches
- still complementarities in production lead to PAM

Literature on identification in the presence of frictions

- Eeckhout and Kircher (2011)
 - wages are not monotonic in *y*, linear decomposition cannot identify the sorting pattern AKM
 - without discounting, only strength of sorting can be estimated
- Hagedorn, Law, and Manovskii (2014)
 - uses property that wages rank workers within firms
 - provides a non-parametric estimation technique
 - demonstrates that full production function and sign of sorting can be recovered in practice even with small discounting
- Bagger and Lentz (2014)
 - model with endogenous search effort, no capacity constraint
 - shows identification, estimates the model on Danish data
- This paper:
 - introduces OTJ search in a model with capacity constraint
 - wages do not directly rank workers within firms, we need to work with present values

This paper

- present an equilibrium search model that includes:
 - two sided heterogeneity
 - on the job search with Bertrand Competition

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- job creation and job filling
- **sorting** due to capacity constraint and complementarity in production
- e develop constructive identification
- 3 simulation and preview of data

Model

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Environment

• measure 1 of workers indexed by fixed ability $x \in [0, 1]$

- risk neutral, discount at rate r
- u(x) workers are unemployed
- 1 u(x) workers are employed in a firm
- measure 1 of firms indexed by fixed technology and job creation cost $(y,\epsilon)\in [0,1]^2$

• each firm employs measures $h(x|y,\epsilon)$ of workers

$$\mathsf{output} := \int f(x, y) h(x|y, \epsilon) \, \mathrm{d}y$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- and owns masses v(y) of open vacancies
- the measure $\int h(x|y) \, dx + v(y)$ is endogenous

Environment

- measure 1 of workers indexed by fixed ability $x \in [0, 1]$
 - risk neutral, discount at rate r
 - u(x) workers are unemployed
 - 1 u(x) workers are employed in a firm
- measure 1 of firms indexed by fixed technology and job creation cost $(y,\epsilon)\in [0,1]^2$
 - each firm employs measures $h(x|y,\epsilon)$ of workers

$$\mathsf{output} := \int f(x,y) h(x|y,\epsilon) \,\mathrm{d}y$$

- and owns masses v(y) of open vacancies
- the measure $\int h(x|y) \, dx + v(y)$ is endogenous

Job/Vacancy creation

- firms can create a per period flow n of vacant jobs at convex cost $c(n,y,\epsilon)$
- define $\mathcal{V}(y)$ as the present value of a vacancy
- firm (y, ϵ) optimally sets n:

$$\sup_{n} n \cdot \mathcal{V}(y) - c(n, y, \epsilon)$$

- cost is independent of current size
- once created vacancies are added to the firm vacancy stock

Timing and meeting probabilities for un-matched agents

timing for unemployed worker \boldsymbol{x}

- 1 receives flow value of unemployment b(x)
- 2 with pr. $\lambda g(z)v(y)$ finds an offer from firm y with training cost z

timing for vacancy y

- 1) with pr. $\mu g(z)u(x)$ meets an unemployed worker x with training cost z
- 2 with pr. κμg(z)h(x|y') meets a worker x employed at y' with training cost z

Timing and meeting probabilities for un-matched agents

timing for unemployed worker \boldsymbol{x}

- 1 receives flow value of unemployment b(x)
- 2 with pr. $\lambda g(z)v(y)$ finds an offer from firm y with training cost z

timing for vacancy y

- () with pr. $\mu g(z)u(x)$ meets an unemployed worker x with training cost z
- 2 with pr. $\kappa \mu g(z)h(x|y')$ meets a worker x employed at y' with training cost z

Timing and meetings within match

timing for match (x, y) at wage w:

- 1 collects output f(x, y) pays wage w to the worker
- **2** with pr. δ job is destroyed, firm **does not** retain the vacancy

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3 with pr. $\lambda \kappa g(z')v(y')$ worker meets another firm (y', z')

Notations: Values, Surplus

• The firm and the worker sequentially agree on a wage w

$$\begin{split} \mathcal{U}(x) : \text{life time utility when unemployed} \\ \mathcal{V}(y) : \text{present value of a vacancy} \\ \mathcal{W}(x,y,w) : \text{worker lifetime utility when employed at } (y,w) \\ \mathcal{P}(x,y) : \text{present value of a match} \end{split}$$

and the surplus of a match

$$\mathcal{S}(x,y) := \mathcal{P}(x,y) - \mathcal{U}(x) - \mathcal{V}(y)$$

• S is not a function of w because utility is transferable

Matching outcomes

when unemployed meets an offer:

- worker x meets firm y an draws training cost z
- the match is created if $\mathcal{S}(x,y) z \ge 0$
- wage w is set by generalized Nash bargaining:

$$\mathcal{W}(x, y, w) = \beta \left(\mathcal{S}(x, y) - z \right) + \mathcal{U}(x)$$

when employed worker receives outside offer:

- worker x employed by y at w meets firm (y^\prime,z^\prime)
- y and (y', z') enter Bertrand competition
- poaching if $\mathcal{S}(x,y')-z'\geq \mathcal{S}(x,y)$, worker gets full (x,y) surplus

$$\mathcal{W}(x, y', \omega) = \mathcal{S}(x, y) + \mathcal{U}(x)$$

• wage raise if $\mathcal{S}(x,y')-z'\geq \mathcal{W}(x,y',\omega)-\mathcal{U}(x)$

$$\mathcal{W}(x, y, \omega) = \mathcal{S}(x, y') - z'$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Equilibrium

Given primitives f(x, y), G(z), $c(n, y, \epsilon)$, $r, \beta, \mu, \lambda, \kappa, b, \delta$, a Stationary Search Equilibrium is characterized by distributions $h(x|y, \epsilon), u(x), v(y, \epsilon)$, firm job creating $n(y, \epsilon)$ and values U(x), V(y) and S(x, y) such that:

- $\mathcal{V}(y),\,\mathcal{U}(x),\,\mathcal{S}(x,y)$ are the present values of a vacancies, unemployed worker and match surplus
- $n(y,\epsilon)$ solves optimal vacancy creation given $\mathcal{V}(y)$
- v(y), u(y) and h(x|y) are implied by meeting rates, transition probabilities, S(x,y) and $n(y,\epsilon)$

(日)((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))

Equilibrium properties

1 If $f_x > 0$ then $\mathcal{U}(x) \nearrow$ in x

2 If $f_y > 0$ then $\mathcal{V}(y) \nearrow$ in y

3 Bertrand competition gives:

$$(\mathbf{r} + \boldsymbol{\delta})\mathcal{S}(x, y) = \mathbf{f}(x, y) - r\mathcal{U}(x) - (\mathbf{r} + \boldsymbol{\delta})\mathcal{V}(y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Identification

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Identification

- Consider random process $\Gamma_t = (X, E_t, R_t, J_t, Y_t), t \ge 1$ generated by the model
 - (X, Y_t) are unobserved worker and firm types
 - E_t is the employment status
 - (R_t, J_t) are wages and firm ID whenever $E_t = 1$
- The econometrician is given \mathbb{E}_t and \mathbb{P} for any observables
 - for ex: $\mathbb{E}[R_t|J]$, $\mathbb{E}_t[R_t|E_t > E_{t-1}]$ or $\mathbb{P}\{E_t < E_{t-1}\}$

Identification

Assume that

- f(x, y) is differentiable and $f_x > 0, f_y > 0$
- $c(n, y, \epsilon)$ is differentiable, convex in n and $c(0, y, \epsilon) = 0$
- G(z) has full support on $[0,\infty)$ and is parametrized
- r is given
- \mathbb{E}_t and \mathbb{P} are known for observables $(E_{\tau}, R_{\tau}, J_{\tau})_{\tau > t}$
- the total number of vacancies is known
- Then $f(x,y), G(z), c(n,\epsilon), \beta, \mu, \lambda, \kappa, b, \delta$ are identified

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overview

Constructive Identification:

- 1 get a measure of x for each worker \mathbf{P} details
- 2 get $\mathcal{U}(x)$ details β, κ, δ details and G(z) details
- **3** get a measure of y for each firm and $v(y), \mu$ details

- 4 identify $\mathcal{S}(x,y)$ details
- **5** construct $\mathcal{V}(y)$ and identify f(x,y) \bigcirc details
- 6 identify $c(n, y, \epsilon)$ details

Estimation strategy in practice

Two important limitations:

- in practice the time dimension is short (10 to 20 years)
- using S(x, J) requires a lot of x workers in each firm J

We use a simplified algorithm for the estimation as an auxiliary model

- parametrize production function
- drop the second term in $\mathcal{V}(y)$ (value of poaching)

• use \mathcal{S} , \mathcal{U} and $\mathcal{Q}(l|y)$ as a moments

Simulation for small sample performance

• $\sim 40,000$ workers, 10 years quarterly, 50 worker and firm types

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $f(x, y) = (.5\Phi^{-1}(x)^{\sigma} + .5\Phi^{-1}(y)^{\sigma})^{1/\sigma}$ with 2 parametrization $\sigma = \{\text{pam:} -1, \text{ nam: } 2\}$ pic
- \hat{x} and \hat{y} **(SNR**: x:0.96, y:0.95)
- $\hat{\mathcal{U}}(x)$ and $\hat{\mathcal{S}}(x,y)$ () pic () pam () nam
- estimating complementarity :

Auxiliary model on the data

Matched employer-employee data from Sweden

• today: only male, college graduates under 50

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 10 years, 424k individuals, 19k firms,
- 265k j2j transitions, 158k u2e transitions
- Applying simplified procedure:

Conclusion

- developed a model with 2 sided heterogeneity,
 - rich wage dynamics with OTJ
 - both job creation and job filling
- provided a constructive identification proof and preliminary simulation results
- direct non-parametric estimation seems difficult with 10 years of data
 - use rank aggregation (Hagedorn, Law, and Manovskii, 2014) to get more precise measurement

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• use NP as auxiliary OR use simulated method of moments

Parametrization Surplus

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Estimated x versus true

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Estimated x versus true

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Estimated $\mathcal{U}(x)$

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

Estimated $\mathcal{S}(x,y) + \mathcal{U}(x)$ using $\bar{w}(x,y)$

Estimated $\mathcal{S}(x,y) + \mathcal{U}(x)$ using $\bar{w}(x,y)$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Lessons from linear wage equation

• Abowd, Kramarz, and Margolis (1999); De Melo (2009)

$$\log w_{it} = \beta X_{it} + \theta_i + \psi_{J(i,t)} + \epsilon_{i,t}$$

• within 10 years panel, explains $\sim 85\%$ of earnings dispersion \bullet details

• Firm share:
$$\frac{var(\psi_j)}{var(\psi_j)+var(\theta_i)} \simeq 20\%$$

• Allocation to firms appears to be random $Cov(\theta_i, \psi) \simeq 0$

• Workers cluster together $Cov(\theta_i, \bar{\theta}_{J(i,\cdot)}) > 0$

Estimation for different countries

Country	US $1^{(a)}$	US 2	FR	GE	IT	$DE^{(b)}$	BR
$Var(x\beta)$	0.03	0.14	0.02	—	0.01	—	0.02
$Var(\theta)$	0.29	0.23	0.21	0.05	0.05	0.08	0.40
$Var(\psi)$	0.08	0.053	0.08	0.013	0.01	0.00	0.18
$\frac{Var(\psi)}{Var(\theta+\psi)}$	0.22	0.19	0.32	0.22	0.23	0.03	0.31
$Corr(\theta, \psi)$	-0.01	-0.03	-0.28	-0.19	0.04	0.00	$0.04^{(f)}$
$Corr\left(heta, \widetilde{ heta} ight)$	_	_	_	_	$0.17^{(c)}$	$0.40^{(d)}$	0.52
R^2	0.89	0.9	0.84	—	—	0.85	0.93
Sample Statistics							
Years	90-99	84-93	76-87	93-97	81-97	94-03	95-05
Nobs	37.7M	4.3M	5.3M	4.8M	—	6.9M	16.0M
Nworkers	5.2M	293K	1.2M	1.8M	1.7M	563K	2.0M
Nfirms	476K	80K	500K	1821	421K	53.6K	137K
% 1st Group ^(e)	—	99.1%	88.3%	94.9%	99.5%	—	98.6%

back

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ⊇ ○ の Q @

Becker friction-less assignment

Becker friction-less assignment

- agents settle for lower than optimal match
- wages are not monotonic in y
- linear wage equation is mis-specified Dack

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Identifying worker type

- $\frac{\partial f}{\partial x}(x,y) \ge 0$ implies that $\mathcal{U}(x)$ is increasing in x
- when the experienced worker extracts full surplus, the wage satisfies

$$(r+\delta)\mathcal{S}(x,y) = \overline{w}(x,y) - (r+\rho)\mathcal{U}(x) + 0$$
$$\overline{w}(x,y) = f(x,y) - (r+\delta)\mathcal{V}(y) - 0 \nearrow \text{ in } x$$
efine $\overline{R} := \max_t \{R_t : E_t = 1\}$ for each ω then

$$\forall \omega, \ X = Q_{\overline{R}}(\overline{R})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

🕨 back

• d

Identifying $\mathcal{U}(x)$

• provided that $z \sim G(z)$ support is large enough, lowest accepted wage will happen for 0 surplus:

$$\mathcal{W}(x, y, \underline{\mathsf{w}}_{u2e}(x, y)) - \mathcal{U}(x) = \beta \left(\mathcal{S}(x, y) - z^* \right) = 0$$

and so

$$\mathcal{U}(x) = \mathbb{E}_J \mathbb{E}_t \left[W_t \mid X = x, E_t > E_{t-1}, J_t = J, R_t = R_{min}(x, J_t) \right]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• where
$$W_t := \sum_{\tau=t}^{\infty} \frac{R_{\tau}}{(1+\tau)^{\tau}}$$

and $R_{min}(x, J) := \min_{\omega \in \Omega, t \in T} \{R_t : E_t > E_{t-1}, J_t = J, X = x\}$

• раск

identifying β

• when worker x leaves firm J to another firm, he gets the full surplus:

$$\mathcal{W} = \mathcal{S}(x, J) + \mathcal{U}(x) = \mathbb{E}\left[W_t | J_t \neq J_{t-1} = J, X\right]$$

• and when hired from unemployment and z = 0

$$\mathcal{W} = \beta \mathcal{S}(x, J) + \mathcal{U}(x)$$

• combining gives:

$$\beta = \mathbb{E}_{Jx} \left[\frac{\mathbb{E}_t \left[W_t | E_t > E_{t-1}, X = x, R_t = R_{max}(X, J_t), J_t = J \right] - \mathcal{U}(x)}{\mathbb{E}_t \left[W_t | J_t \neq J_{t-1} = J \right] - \mathcal{U}(x)} \right].$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Identifying δ and κ

• separation rate is exogenous so

$$\delta = \frac{\mathbb{P}\{E_t < E_{t+1}\}}{\mathbb{P}\{E_t = 1\}}$$

• and when collecting $\mathcal{U}(x)$ all meetings will a change:

$$\kappa = \frac{\mathbb{P}\{R_t > R_{t-1} \cup J_t \neq J_{t-1} | X, R_{t-1} = R_{min}(J, X)\}}{\mathbb{P}\{E_t > E_{t-1} | X\}},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▶ back

G(z)

• We use the variation in the value out of unemployment

$$\mathcal{W} = \beta(S(x, J) - z) + \mathcal{U}(x), \quad z \sim G(z)$$

• for $z \in [0, \max_{x,J} S(x, J)]$ we get:

$$G(z) = \mathbb{E}_{X,J} \mathbb{P} \left\{ \frac{\mathbb{E}_t \left[W_t | X, E_t > E_{t-1}, J_t = J, R_t = w \right] - \mathcal{U}(X)}{\beta} - S(X,J) > z \left| X, J \right\} \right\}$$

- but assuming that G(z) is parametrized "globally" it is enough $\begin{tabular}{c} \bullet \begin{tabular}{c} \bullet \be$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Identifying firm type

• we know that $\mathcal{V}(y)$ is increasing in y, we compute the following:

$$\hat{\mathcal{V}}(J) = (1 - \beta) \int \mathcal{G} \left[\mathcal{S}(x, J) \right] u(x) \, \mathrm{d}x \\ + \kappa \iint \mathcal{G} \left[\mathcal{S}(x, J) - S \right] f_{Sx}(S, x) \, \mathrm{d}x \, \mathrm{d}S.$$

• and F_{Sx} is joint distribution of (S, x) in the population

$$F(S, x) = \mathbb{P}\{X \le x \cup \mathcal{S}(X, J) \le S\}.$$

• the rank of $\mathcal{V}(J)$ gives the rank among active jobs, we finish by measuring the vacancy distribution

$$v(y) \propto \mathbb{P}\{E_t > E_{t-1} | X = x, J_t = J\} / G\left[\mathcal{S}(x, y)\right],$$

total number of vacancies identifies µ.
 → back
 <li

Identifying $\mathcal{S}(x,y)$ and

• we now know x and y we can average over j2j transitions

$$S(x, y) = \mathbb{E}\left[W_t | J_t \neq J_{t-1}, Y_{t-1} = y, X = x\right] - \mathcal{U}(x)$$

(ロ)、(型)、(E)、(E)、 E) の(()

Identifying $\mathcal{V}(y)$ and f(x,y)

• we can reconstruct $\mathcal{V}(y)$ fully from definition

$$r\mathcal{V}(y) = (1-\beta) \int \mathcal{G}\left[\mathcal{S}(x,y)\right] \mu u(x) \,\mathrm{d}x + s_1 \iint \mathcal{G}\left[\mathcal{S}(x,y) - \mathcal{S}(x,y')\right] \mu h(x,y') \,\mathrm{d}x \,\mathrm{d}y'.$$
(1)

• and get f(x, y) from the surplus definition

$$(r+\delta)\mathcal{S}(x,y) = f(x,y) - r\mathcal{U}(x) - (r+\delta)\mathcal{V}(y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

back

Identifying $c(n, y, \epsilon)$

- since δ destroys the vacancy, when firm size is stable we have

$$\delta l(y,\epsilon) = n(y,\epsilon)$$

- where $l(\boldsymbol{y},\boldsymbol{\epsilon})$ is the stationary size, then the FOC gives

$$\frac{\partial c}{\partial n}(n,\epsilon) = \mathcal{V}(y)$$

- normalize $\epsilon \in [0,1]$ and $c(n,y,\epsilon)$ decreasing in ϵ
- given convexity of $c, \, \epsilon$ is the rank is the size distribution conditional on y

$$\frac{\partial c}{\partial n}(\delta \mathcal{Q}_{l|y}(\epsilon),\epsilon) = \mathcal{V}(y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

${\mathcal S}$ in the data

→ back

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

h in the data

シック 単 (中本) (中本) (日)

\boldsymbol{h} in the data

▶ back

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

recovering σ

- Abowd, J., F. Kramarz, and D. Margolis (1999): "High wage workers and high wage firms," *Econometrica*, 67(2), 251–333.
- Bagger, J., and R. Lentz (2014): "An empirical model of wage dispersion with sorting," *University of Wisconsin mimeo*.
- Becker, G. S. (1974): "A theory of marriage," *Journal of Political Economy*, pp. 299–351.
- Choo, E., and A. Siow (2006): "Who marries whom and why," *Journal of Political Economy*, 114(1), 175–201.
- De Melo, R. L. (2009): "Sorting in the labor market: Theory and measurement," *Working Paper*.
- Eeckhout, J., and P. Kircher (2011): "Identifying sorting in theory," *The Review of Economic Studies*, 78(3), 872–906.
- Galichon, A., and B. Salanié (2011): "Cupid's invisible hand: social surplus and identification in matching models," *Available at SSRN 1804623*.
- Hagedorn, M., T. H. Law, and I. Manovskii (2014): "Identifying Equilibrium Models of Labor Market Sorting," *Working Paper*.

Shimer, R., and L. Smith (2003): "Assortative matching and search," *Econometrica*, 68(2), 343–369.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ