Matching, Sorting and Wages

Preliminary

Thibaut Lamadon* Jeremy Lise ${ }^{\dagger}$ Costas Meghir ${ }^{\ddagger}$ Jean-Marc Robin ${ }^{\S}$

Barcelona, June 2014

[^0]
Introduction

What we want to learn about:

- are better workers employed at more productive firms?
- what is the production function?
- is the allocation efficient, what prevents efficiency?
- can policies improve total output?

What we observe:

- matched employer-employee data
- a panel data with employment status, wage, firm identifier $\left\{e_{i t}, w_{i t}, j_{i t}\right\}_{i t}$

The difficulties:

- firm and worker productivities are not directly observed
- allocation is endogenous, sorting on unobservables?
- wage might depend on employment history

Literature on assignment models

- Labor market as an assignment model
- mass of workers (x) and mass of jobs (y)
- production function $f(x, y)$
- Becker (1974): friction-less
- assignment is one-to-one
- do not observe mismatch, can't differentiate firm/worker effect
- Choo and Siow (2006); Galichon and Salanié (2011) add preference heterogeneity
- Shimer and Smith (2003): derives condition for sorting in the presence of search frictions
- agents settle for sub-optimal matches
- still complementarities in production lead to PAM

Literature on identification in the presence of frictions

- Eeckhout and Kircher (2011)
- wages are not monotonic in y, linear decomposition cannot identify the sorting pattern \triangle AKM
- without discounting, only strength of sorting can be estimated
- Hagedorn, Law, and Manovskii (2014)
- uses property that wages rank workers within firms
- provides a non-parametric estimation technique
- demonstrates that full production function and sign of sorting can be recovered in practice even with small discounting
- Bagger and Lentz (2014)
- model with endogenous search effort, no capacity constraint
- shows identification, estimates the model on Danish data
- This paper:
- introduces OTJ search in a model with capacity constraint
- wages do not directly rank workers within firms, we need to work with present values

This paper

(1) present an equilibrium search model that includes:

- two sided heterogeneity
- on the job search with Bertrand Competition
- job creation and job filling
- sorting due to capacity constraint and complementarity in production
(2) develop constructive identification
(3) simulation and preview of data

Model

Environment

- measure 1 of workers indexed by fixed ability $x \in[0,1]$
- risk neutral, discount at rate r
- $u(x)$ workers are unemployed
- $1-u(x)$ workers are employed in a firm
- measure 1 of firms indexed by fixed technology and job creation $\operatorname{cost}(y, \epsilon) \in[0,1]^{2}$
- each firm employs measures $h(x \mid y, \epsilon)$ of workers
output $:=\int f(x, y) h(x \mid y, \epsilon) \mathrm{d} y$
- and owns masses $v(y)$ of open vacancies
- the measure $\int h(x \mid y) \mathrm{d} x+v(y)$ is endogenous

Environment

- measure 1 of workers indexed by fixed ability $x \in[0,1]$
- risk neutral, discount at rate r
- $u(x)$ workers are unemployed
- $1-u(x)$ workers are employed in a firm
- measure 1 of firms indexed by fixed technology and job creation cost $(y, \epsilon) \in[0,1]^{2}$
- each firm employs measures $h(x \mid y, \epsilon)$ of workers

$$
\text { output }:=\int f(x, y) h(x \mid y, \epsilon) \mathrm{d} y
$$

- and owns masses $v(y)$ of open vacancies
- the measure $\int h(x \mid y) \mathrm{d} x+v(y)$ is endogenous

Job/Vacancy creation

- firms can create a per period flow n of vacant jobs at convex cost $c(n, y, \epsilon)$
- define $\mathcal{V}(y)$ as the present value of a vacancy
- firm (y, ϵ) optimally sets n :

$$
\sup _{n} n \cdot \mathcal{V}(y)-c(n, y, \epsilon)
$$

- cost is independent of current size
- once created vacancies are added to the firm vacancy stock

Timing and meeting probabilities for un-matched agents

timing for unemployed worker x

(1) receives flow value of unemployment $b(x)$
(2) with pr. $\lambda g(z) v(y)$ finds an offer from firm y with training cost z
timing for vacancy y
(1) with pr. $\mu g(z) u(x)$ meets an unemployed worker x with training cost z
(2) with pr. $\kappa \mu g(z) h\left(x \mid y^{\prime}\right)$ meets a worker x employed at y^{\prime} with training cost z

Timing and meeting probabilities for un-matched agents

timing for unemployed worker x
(1) receives flow value of unemployment $b(x)$
(2) with pr. $\lambda g(z) v(y)$ finds an offer from firm y with training cost z

timing for vacancy y

(1) with pr. $\mu g(z) u(x)$ meets an unemployed worker x with training cost z
(2) with pr. $\kappa \mu g(z) h\left(x \mid y^{\prime}\right)$ meets a worker x employed at y^{\prime} with training cost z

Timing and meetings within match

timing for match (x, y) at wage w :
(1) collects output $f(x, y)$ pays wage w to the worker
(2) with pr. δ job is destroyed, firm does not retain the vacancy

3 with pr. $\lambda \kappa g\left(z^{\prime}\right) v\left(y^{\prime}\right)$ worker meets another firm $\left(y^{\prime}, z^{\prime}\right)$

Notations: Values, Surplus

- The firm and the worker sequentially agree on a wage w

$$
\begin{aligned}
\mathcal{U}(x) & : \text { life time utility when unemployed } \\
\mathcal{V}(y) & : \text { present value of a vacancy } \\
\mathcal{W}(x, y, w) & : \text { worker lifetime utility when employed at }(y, w) \\
\mathcal{P}(x, y) & : \text { present value of a match }
\end{aligned}
$$

- and the surplus of a match

$$
\mathcal{S}(x, y):=\mathcal{P}(x, y)-\mathcal{U}(x)-\mathcal{V}(y)
$$

- \mathcal{S} is not a function of w because utility is transferable

Matching outcomes

when unemployed meets an offer:

- worker x meets firm y an draws training cost z
- the match is created if $\mathcal{S}(x, y)-z \geq 0$
- wage w is set by generalized Nash bargaining:

$$
\mathcal{W}(x, y, w)=\beta(\mathcal{S}(x, y)-z)+\mathcal{U}(x)
$$

when employed worker receives outside offer:

- worker x employed by y at w meets firm $\left(y^{\prime}, z^{\prime}\right)$
- y and $\left(y^{\prime}, z^{\prime}\right)$ enter Bertrand competition
- poaching if $\mathcal{S}\left(x, y^{\prime}\right)-z^{\prime} \geq \mathcal{S}(x, y)$, worker gets full (x, y) surplus

$$
\mathcal{W}\left(x, y^{\prime}, \omega\right)=\mathcal{S}(x, y)+\mathcal{U}(x)
$$

- wage raise if $\mathcal{S}\left(x, y^{\prime}\right)-z^{\prime} \geq \mathcal{W}\left(x, y^{\prime}, \omega\right)-\mathcal{U}(x)$

$$
\mathcal{W}(x, y, \omega)=\mathcal{S}\left(x, y^{\prime}\right)-z^{\prime}
$$

Equilibrium

Given primitives $f(x, y), G(z), c(n, y, \epsilon), r, \beta, \mu, \lambda, \kappa, b, \delta$, a Stationary Search Equilibrium is characterized by distributions $h(x \mid y, \epsilon), u(x), v(y, \epsilon)$, firm job creating $n(y, \epsilon)$ and values $\mathcal{U}(x), \mathcal{V}(y)$ and $\mathcal{S}(x, y)$ such that:

- $\mathcal{V}(y), \mathcal{U}(x), \mathcal{S}(x, y)$ are the present values of a vacancies, unemployed worker and match surplus
- $n(y, \epsilon)$ solves optimal vacancy creation given $\mathcal{V}(y)$
- $v(y), u(y)$ and $h(x \mid y)$ are implied by meeting rates, transition probabilities, $\mathcal{S}(x, y)$ and $n(y, \epsilon)$

Equilibrium properties

(1) If $f_{x}>0$ then $\mathcal{U}(x) \nearrow$ in x
(2) If $f_{y}>0$ then $\mathcal{V}(y) \nearrow$ in y
(3) Bertrand competition gives:

$$
(r+\delta) \mathcal{S}(x, y)=f(x, y)-r \mathcal{U}(x)-(r+\delta) \mathcal{V}(y)
$$

Identification

Identification

- Consider random process $\Gamma_{t}=\left(X, E_{t}, R_{t}, J_{t}, Y_{t}\right), t \geq 1$ generated by the model
- $\left(X, Y_{t}\right)$ are unobserved worker and firm types
- E_{t} is the employment status
- $\left(R_{t}, J_{t}\right)$ are wages and firm ID whenever $E_{t}=1$
- The econometrician is given \mathbb{E}_{t} and \mathbb{P} for any observables
- for ex: $\mathbb{E}\left[R_{t} \mid J\right], \mathbb{E}_{t}\left[R_{t} \mid E_{t}>E_{t-1}\right]$ or $\mathbb{P}\left\{E_{t}<E_{t-1}\right\}$

Identification

- Assume that
- $f(x, y)$ is differentiable and $f_{x}>0, f_{y}>0$
- $c(n, y, \epsilon)$ is differentiable, convex in n and $c(0, y, \epsilon)=0$
- $G(z)$ has full support on $[0, \infty)$ and is parametrized
- r is given
- \mathbb{E}_{t} and \mathbb{P} are known for observables $\left(E_{\tau}, R_{\tau}, J_{\tau}\right)_{\tau>t}$
- the total number of vacancies is known
- Then $f(x, y), G(z), c(n, \epsilon), \beta, \mu, \lambda, \kappa, b, \delta$ are identified

Overview

Constructive Identification:
(1) get a measure of x for each worker details
(2) get $\mathcal{U}(x)$ details β, κ, δ details and $G(z)$
(3) get a measure of y for each firm and $v(y), \mu$ details
(4) identify $\mathcal{S}(x, y)$
(5) construct $\mathcal{V}(y)$ and identify $f(x, y)$ details
(6) identify $c(n, y, \epsilon)$

Estimation strategy in practice

Two important limitations:

- in practice the time dimension is short (10 to 20 years)
- using $S(x, J)$ requires a lot of x workers in each firm J

We use a simplified algorithm for the estimation as an auxiliary model

- parametrize production function
- drop the second term in $\mathcal{V}(y)$ (value of poaching)
- use \mathcal{S}, \mathcal{U} and $\mathcal{Q}(l \mid y)$ as a moments

Simulation for small sample performance

- $\sim 40,000$ workers, 10 years quarterly, 50 worker and firm types
- $f(x, y)=\left(.5 \Phi^{-1}(x)^{\sigma}+.5 \Phi^{-1}(y)^{\sigma}\right)^{1 / \sigma}$ with 2 parametrization $\sigma=\{$ pam: -1 , nam: 2$\}$
- \hat{x} and \hat{y} (SNR: $\mathrm{x}: 0.96, \mathrm{y}: 0.95)$
- $\hat{\mathcal{U}}(x)$ and $\hat{\mathcal{S}}(x, y)$
- estimating complementarity :

Auxiliary model on the data

- Matched employer-employee data from Sweden
- today: only male, college graduates under 50
- 10 years, 424 k individuals, 19 k firms,
- 265 k j2j transitions, 158 k u2e transitions
- Applying simplified procedure:
- $\mathcal{U}(x)$
- $\mathcal{S}(x, y)$
- $h(x, y)$ heat -3 D

Conclusion

- developed a model with 2 sided heterogeneity,
- rich wage dynamics with OTJ
- both job creation and job filling
- provided a constructive identification proof and preliminary simulation results
- direct non-parametric estimation seems difficult with 10 years of data
- use rank aggregation (Hagedorn, Law, and Manovskii, 2014) to get more precise measurement
- use NP as auxiliary OR use simulated method of moments

Parametrization Surplus

Estimated x versus true

Estimated x versus true

Estimated $\mathcal{U}(x)$

Estimated $\mathcal{S}(x, y)+\mathcal{U}(x)$ using $\bar{w}(x, y)$

Estimated $\mathcal{S}(x, y)+\mathcal{U}(x)$ using $\bar{w}(x, y)$

Lessons from linear wage equation

- Abowd, Kramarz, and Margolis (1999); De Melo (2009)

$$
\log w_{i t}=\beta X_{i t}+\theta_{i}+\psi_{J(i, t)}+\epsilon_{i, t}
$$

- within 10 years panel, explains $\sim 85 \%$ of earnings dispersion
- Firm share: $\frac{\operatorname{var}\left(\psi_{j}\right)}{\operatorname{var}\left(\psi_{j}\right)+\operatorname{var}\left(\theta_{i}\right)} \simeq 20 \%$
- Allocation to firms appears to be random $\operatorname{Cov}\left(\theta_{i}, \psi\right) \simeq 0$
- Workers cluster together $\operatorname{Cov}\left(\theta_{i}, \bar{\theta}_{J(i, \cdot)}\right)>0$ back

Estimation for different countries

Country	US 1 $^{(a)}$	US 2	FR	GE	IT	DE $^{(b)}$	BR
$\operatorname{Var}(x \beta)$	0.03	0.14	0.02	-	0.01	-	0.02
$\operatorname{Var}(\theta)$	0.29	0.23	0.21	0.05	0.05	0.08	0.40
$\operatorname{Var}(\psi)$	0.08	0.053	0.08	0.013	0.01	0.00	0.18
$\frac{\operatorname{Var}(\psi)}{\operatorname{Var}(\theta+\psi)}$	0.22	0.19	0.32	0.22	0.23	0.03	0.31
$\operatorname{Corr}(\theta, \psi)$	-0.01	-0.03	-0.28	-0.19	0.04	0.00	$0.04^{(f)}$
$\operatorname{Corr}(\theta, \widetilde{\theta})$	-	-	-	-	$0.17^{(c)}$	$0.40^{(d)}$	0.52
R^{2}	0.89	0.9	0.84	-	-	0.85	0.93

Sample Statistics								
Years	$90-99$	$84-93$	$76-87$	$93-97$	$81-97$	$94-03$	$95-05$	
Nobs	$37.7 M$	$4.3 M$	$5.3 M$	$4.8 M$	-	$6.9 M$	$16.0 M$	
Nworkers	$5.2 M$	$293 K$	$1.2 M$	$1.8 M$	$1.7 M$	$563 K$	$2.0 M$	
Nfirms	$476 K$	$80 K$	$500 K$	1821	$421 K$	$53.6 K$	$137 K$	
$\%$ 1st Group ${ }^{(e)}$	-	99.1%	88.3%	94.9%	99.5%	-	98.6%	

Becker friction-less assignment

$\partial^{2} f(x, y)$
$\partial x \partial y$

no frictions: one to one mapping

>0

Becker friction-less assignment

- agents settle for lower than optimal match
- wages are not monotonic in y
- linear wage equation is mis-specified

Identifying worker type

- $\frac{\partial f}{\partial x}(x, y) \geq 0$ implies that $\mathcal{U}(x)$ is increasing in x
- when the experienced worker extracts full surplus, the wage satisfies

$$
\begin{gathered}
(r+\delta) \mathcal{S}(x, y)=\overline{\mathrm{w}}(x, y)-(r+\rho) \mathcal{U}(x)+0 \\
\overline{\mathrm{w}}(x, y)=f(x, y)-(r+\delta) \mathcal{V}(y)-0 \quad \nearrow \text { in } x
\end{gathered}
$$

- define $\bar{R}:=\max _{t}\left\{R_{t}: E_{t}=1\right\}$ for each ω then

$$
\forall \omega, X=Q_{\bar{R}}(\bar{R})
$$

Identifying $\mathcal{U}(x)$

- provided that $z \sim G(z)$ support is large enough, lowest accepted wage will happen for 0 surplus:

$$
\mathcal{W}\left(x, y, \underline{\mathrm{w}}_{u 2 e}(x, y)\right)-\mathcal{U}(x)=\beta\left(\mathcal{S}(x, y)-z^{*}\right)=0
$$

- and so

$$
\mathcal{U}(x)=\mathbb{E}_{J} \mathbb{E}_{t}\left[W_{t} \mid X=x, E_{t}>E_{t-1}, J_{t}=J, R_{t}=R_{\min }\left(x, J_{t}\right)\right]
$$

- where $W_{t}:=\sum_{\tau=t}^{\infty} \frac{R_{\tau}}{(1+r)^{\tau}}$
and $R_{\min }(x, J):=\min _{\omega \in \Omega, t \in T}\left\{R_{t}: E_{t}>E_{t-1}, J_{t}=J, X=x\right\}$

identifying β

- when worker x leaves firm J to another firm, he gets the full surplus:

$$
\mathcal{W}=\mathcal{S}(x, J)+\mathcal{U}(x)=\mathbb{E}\left[W_{t} \mid J_{t} \neq J_{t-1}=J, X\right]
$$

- and when hired from unemployment and $z=0$

$$
\mathcal{W}=\beta \mathcal{S}(x, J)+\mathcal{U}(x)
$$

- combining gives:

$$
\beta=\mathbb{E}_{J x}\left[\frac{\mathbb{E}_{t}\left[W_{t} \mid E_{t}>E_{t-1}, X=x, R_{t}=R_{\max }\left(X, J_{t}\right), J_{t}=J\right]-\mathcal{U}(x)}{\mathbb{E}_{t}\left[W_{t} \mid J_{t} \neq J_{t-1}=J\right]-\mathcal{U}(x)}\right]
$$

Identifying δ and κ

- separation rate is exogenous so

$$
\delta=\frac{\mathbb{P}\left\{E_{t}<E_{t+1}\right\}}{\mathbb{P}\left\{E_{t}=1\right\}}
$$

- and when collecting $\mathcal{U}(x)$ all meetings will a change:

$$
\kappa=\frac{\mathbb{P}\left\{R_{t}>R_{t-1} \cup J_{t} \neq J_{t-1} \mid X, R_{t-1}=R_{\min }(J, X)\right\}}{\mathbb{P}\left\{E_{t}>E_{t-1} \mid X\right\}}
$$

- We use the variation in the value out of unemployment

$$
\mathcal{W}=\beta(S(x, J)-z)+\mathcal{U}(x), \quad z \sim G(z)
$$

- for $z \in\left[0, \max _{x, J} S(x, J)\right]$ we get:

$$
\begin{aligned}
G(z)=\mathbb{E}_{X, J} \mathbb{P}\left\{\begin{array}{r}
\frac{\mathbb{E}_{t}\left[W_{t} \mid X, E_{t}>E_{t-1}, J_{t}=J, R_{t}=w\right]-\mathcal{U}(X)}{\beta} \\
-S(X, J)>z \mid X, J\}
\end{array}\right.
\end{aligned}
$$

- but assuming that $G(z)$ is parametrized "globally" it is enough

Identifying firm type

- we know that $\mathcal{V}(y)$ is increasing in y, we compute the following:

$$
\begin{aligned}
\hat{\mathcal{V}}(J)=(1-\beta) \int & \mathcal{G}[\mathcal{S}(x, J)] u(x) \mathrm{d} x \\
& +\kappa \iint \mathcal{G}[\mathcal{S}(x, J)-S] f_{S x}(S, x) \mathrm{d} x \mathrm{~d} S
\end{aligned}
$$

- and $F_{S x}$ is joint distribution of (S, x) in the population

$$
F(S, x)=\mathbb{P}\{X \leq x \cup \mathcal{S}(X, J) \leq S\}
$$

- the rank of $\mathcal{V}(J)$ gives the rank among active jobs, we finish by measuring the vacancy distribution

$$
v(y) \propto \mathbb{P}\left\{E_{t}>E_{t-1} \mid X=x, J_{t}=J\right\} / G[\mathcal{S}(x, y)]
$$

- total number of vacancies identifies μ.

Identifying $\mathcal{S}(x, y)$ and

- we now know x and y we can average over j 2 j transitions

$$
S(x, y)=\mathbb{E}\left[W_{t} \mid J_{t} \neq J_{t-1}, Y_{t-1}=y, X=x\right]-\mathcal{U}(x)
$$

Identifying $\mathcal{V}(y)$ and $f(x, y)$

- we can reconstruct $\mathcal{V}(y)$ fully from definition

$$
\begin{align*}
r \mathcal{V}(y) & =(1-\beta) \int \mathcal{G}[\mathcal{S}(x, y)] \mu u(x) \mathrm{d} x \\
& +s_{1} \iint \mathcal{G}\left[\mathcal{S}(x, y)-\mathcal{S}\left(x, y^{\prime}\right)\right] \mu h\left(x, y^{\prime}\right) \mathrm{d} x \mathrm{~d} y^{\prime} \tag{1}
\end{align*}
$$

- and get $f(x, y)$ from the surplus definition

$$
(r+\delta) \mathcal{S}(x, y)=f(x, y)-r \mathcal{U}(x)-(r+\delta) \mathcal{V}(y)
$$

Identifying $c(n, y, \epsilon)$

- since δ destroys the vacancy, when firm size is stable we have

$$
\delta l(y, \epsilon)=n(y, \epsilon)
$$

- where $l(y, \epsilon)$ is the stationary size, then the FOC gives

$$
\frac{\partial c}{\partial n}(n, \epsilon)=\mathcal{V}(y)
$$

- normalize $\epsilon \in[0,1]$ and $c(n, y, \epsilon)$ decreasing in ϵ
- given convexity of c, ϵ is the rank is the size distribution conditional on y

$$
\frac{\partial c}{\partial n}\left(\delta \mathcal{Q}_{l \mid y}(\epsilon), \epsilon\right)=\mathcal{V}(y)
$$

W_{0} in the data

\mathcal{S} in the data

h in the data

h in the data

recovering σ

Abowd, J., F. Kramarz, and D. Margolis (1999): "High wage workers and high wage firms," Econometrica, 67(2), 251-333.
Bagger, J., and R. Lentz (2014): "An empirical model of wage dispersion with sorting," University of Wisconsin mimeo.
Becker, G. S. (1974): "A theory of marriage," Journal of Political Economy, pp. 299-351.
Choo, E., and A. Siow (2006): "Who marries whom and why," Journal of Political Economy, 114(1), 175-201.
De Melo, R. L. (2009): "Sorting in the labor market: Theory and measurement," Working Paper.
Eeckhout, J., and P. Kircher (2011): "Identifying sorting in theory," The Review of Economic Studies, 78(3), 872-906.
Galichon, A., and B. Salanié (2011): "Cupid's invisible hand: social surplus and identification in matching models," Available at SSRN 1804623.

Hagedorn, M., T. H. Law, and I. Manovskii (2014): "Identifying
Equilibrium Models of Labor Market Sorting," Working Paper.

Shimer, R., and L. Smith (2003): "Assortative matching and search," Econometrica, 68(2), 343-369.

[^0]: *University College London and IFS
 ${ }^{\dagger}$ University College London and IFS
 ${ }^{\ddagger}$ IFS and Yale
 ${ }^{\S}$ Science-Po and University College London

