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Introduction 

• Emerging literature on inference in common DiD designs 

 

 

• Difficult to get test size right when 

 

– Treatment status varies at a group-time level 

– Grouped (clustered) error terms 

– Few groups 

– Serial correlation in group-time shocks 
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Main points 

 

• With Monte Carlo simulations we make 3 points 

 

1. Can get test size right with simple tweaks to standard methods, 

even with few groups 

 

2. Problem is low power to detect real effects 

 

3. FGLS combined with robust inference can help a lot 
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Outline 

• Background/review 

– What is the problem? 

– What solutions have been proposed? 

 

• Our simulation evidence  

– Methods  

– Results 

 

• Summary and conclusions 
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Setup 

• Model: 

 

 

 

• Computation of         equivalent to first running this regression... 

 

• ...and then this, with error term   

 

 

• True precision of         depends almost entirely on # of group-time 

cells, not # of observations (if cell sizes are large) 

– Severe version of standard clustering problem (Moulton, 1990) 
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Accounting for variance of group-time shocks 

1. Cluster-robust standard errors (Liang and Zeger, 1986) 

• Consistent, and t-stat ~ N(0,1), as # of clusters goes to infinity 

 

 

2. Make assumptions about distribution of        

• E.G. something enabling finite sample inference with few clusters (Donald 
and Lang, 2007) 

 

 

3. Bootstrap to estimate distribution of t-stat (Cameron et al, 2008) 

 

 

 

 

gt
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“Cluster-robust” standard errors with few clusters (1) 

• Bias-reducing adjustments proposed (see Bell and McCaffrey, 2002; 

Imbens and Kolesar, 2012) 

 

• Scale residuals in CRSE formula by sqrt(G/(G-1)). Stata does this (approx.) 

• BM propose more complex scaling (invalid in setup here) 

 

• But t-stat ~N(0,1) also depends on # of clusters going to infinity 

 

• With few clusters, CRSEs (inc. bias-adjusted ones) and standard 

normal critical values deliver double the correct test size (Bertrand 
et al, 2004; Cameron et al, 2008) 
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• But don’t have to use N(0,1) critical values 

• Typical few-clusters approach uses t distribution: Stata uses tG-1 

 

• Bester et al (2011) showed that using tG-1 critical values and 
sqrt(G/(G-1))-scaled CRSEs (i.e. ~= Stata’s approach) can lead to tests 

of correct size with G fixed 

 

• Asymptotics apply as group size tends to infinity 

• Requires homogeneity condition that won’t normally  hold in DiD 

– But we find its performance in practice looks very promising... 

 

“Cluster-robust” standard errors with few clusters (2) 
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Serial correlation 

• Group-time shocks typically serially correlated too 

• Can lead to huge over-rejection of nulls if ignored (Bertrand et al, 2004) 

 

• Cluster-robust SEs should therefore cluster at group level 

 

• Hansen (2007) models process as AR(k) and uses FGLS estimation 

• Derives bias correction for AR(k) parameters, consistent as  

 

• FGLS should be more efficient, but inference still tricky 

• FGLS SEs are wrong if AR(k) parameterisation is wrong 

• Can combine with cluster-robust SEs to control test size... 

• ...but that doesn’t work well with few groups (...or does it?) 

 

 

G
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MONTE CARLO SIMULATIONS 
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Monte Carlo simulations (1) 

• Use women’s log-earnings from CPS (N ~=750k), as in Bertrand et al 

(2004), Cameron et al (2008), Hansen (2007) 

 

• Collapse to state-year level using covariate-adjusted means 

– As in other papers, we find test size can’t be controlled in micro-data 

 

• Repeat the following 5000 times, varying G from 6 to 50: 

– Sample G states at random with replacement 

– Randomly choose G/2 states to be ‘treated’ 

– Randomly choose a year from which treated states will be treated 

– Estimate treatment ‘effect’ 

– Test (true) null of no effect using nominal 5%-level test 
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Monte Carlo simulations (2) 
 

• Model: 

 

1. Collapse to state-time level by estimating  

 

 

2. Monte Carlos look at inference based on following regression 

 

 

• 1 accounts for grouping of errors at state-time level 

• Issue then is dealing with finite number of states, and serial 

correlation in state-time shocks 
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Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.422* 0.420* 0.404* 0.412* 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.422* 0.420* 0.404* 0.412* 

CRSE, N(0,1) critical vals 0.048 0.061* 0.079* 0.107* 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 
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‘placebo treatments’ with 30 years of CPS earnings data 
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Inference method 50 20 10 6 

Assume iid 0.422* 0.420* 0.404* 0.412* 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 
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Notes:  

 

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05. 

 

Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and 

Mullainathan, except we use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in 

row 4 of Table 2 of that paper. 



Checking robustness to the data generating process 
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• CPS provided one dgp to test methods on - perhaps we got lucky 

 

• To check robustness we simulate our own state-time shocks  

 

 

 

 

 

• White noise drawn from t distribution with d degrees of freedom 

 

• In paper we also run simulations using CPS employment outcomes, 

and all conclusions carry over to that case 
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Rejection rates under various error processes with 6 
groups, using CRSE*sqrt(G/G-1) and tG-1 critical values  
 

AR(1) parameter 

d (controls 

non-

normality in 

white noise) 0 0.2 0.4 0.6 0.8 

Varies by 

group 

2 0.055* 0.058* 0.058* 0.058* 0.052 0.051 

4 0.055* 0.058* 0.056* 0.056* 0.051 0.054* 

20 0.053 0.059* 0.057* 0.057* 0.051 0.054* 

60 0.056* 0.061* 0.058* 0.057* 0.053 0.053 

120 0.056* 0.060* 0.057* 0.057* 0.052 0.052 
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But what about power? Minimum detectable effects on 
log(earnings) using 5% level hypothesis tests 
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Rising to 16% with 6 

states 

 

Need 5% effect on 

earnings for 80% power 

 



Increasing power, whilst controlling test size using 
CRSE*sqrt(G/G-1) and tG-1 critical values 
 

G=50 G=20 G=6 

No effect 

Effect of 

+0.02 log-

points No effect 

Effect of 

+0.02 log-

points No effect 

Effect of 

+0.02 log-

points 

OLS, robust 0.042 0.220 0.046 0.118 0.049 0.073 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 



Increasing power, whilst controlling test size using 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 



Increasing power, whilst controlling test size using 
CRSE*sqrt(G/G-1) and tG-1 critical values 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 



Increasing power, whilst controlling test size using 
CRSE*sqrt(G/G-1) and tG-1 critical values 
 

G=50 G=20 G=6 

No effect 

Effect of 

+0.02 log-

points No effect 

Effect of 

+0.02 log-

points No effect 

Effect of 

+0.02 log-

points 

OLS, robust 0.042 0.220 0.046 0.118 0.049 0.073 

 FGLS 0.100 0.460 0.106 0.275 0.126 0.191 

 FGLS, robust 0.047 0.348 0.053 0.175 0.061 0.096 

BC-FGLS 0.068 0.395 0.077 0.224 0.099 0.150 

 BC-FGLS, robust 0.049 0.365 0.057 0.187 0.064 0.103 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS 

procedure, see Hansen (2007). 



Minimum detectable effects on log(earnings) using 5% 
level hypothesis tests: OLS vs BC-FGLS estimation 
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Summary and conclusions 

• Literature is right that DiD designs can pose problems for inference 

 

• But we find that correct test size can be achieved, even with few 

groups, using very straightforward methods 

 

• Key problem is low power 

 

• We therefore recommend that researchers think seriously about the 
efficiency of DiD estimation (not just consistency and test size) 

 

• We have shown how FGLS combined with robust inference can help 

significantly, without compromising test size, even with few groups 

 

 


