

Inference in difference-in-differences revisited

Robert Joyce (Institute for Fiscal Studies)

Joint work with Mike Brewer (Essex, IFS) and Thomas Crossley (Koc, IFS)

PEPA is based at the IFS and CEMMAP

© Institute for Fiscal Studies

Introduction

• Emerging literature on inference in common DiD designs

- Difficult to get test size right when
 - Treatment status varies at a group-time level
 - Grouped (clustered) error terms
 - Few groups
 - Serial correlation in group-time shocks

Main points

- With Monte Carlo simulations we make 3 points
- 1. Can get test size right with simple tweaks to standard methods, even with few groups
- 2. Problem is low power to detect real effects
- 3. FGLS combined with robust inference can help a lot

Outline

- Background/review
 - What is the problem?
 - What solutions have been proposed?
- Our simulation evidence
 - Methods
 - Results
- Summary and conclusions

Setup

• Model:
$$Y_{igt} = \alpha + \beta T_{gt} + \delta X_{igt} + \mu_g + \xi_t + u_{igt}$$

 $E(u_{igt} | T_{gt}, X_{igt}, \mu_g, \xi_t) = 0$
 $u_{igt} = \eta_{gt} + \varepsilon_{igt}$

- Computation of $\hat{\beta}_{OLS}$ equivalent to first running this regression... $Y_{igt} = \lambda_{gt} + \delta X_{igt} + u_{igt}$
- ...and then this, with error term $\omega_{gt} \equiv \eta_{gt} + (\hat{\lambda}_{gt} \lambda_{gt})$

$$\hat{\lambda}_{gt} = \alpha + \beta T_{gt} + \mu_g + \xi_t + \omega_{gt}$$

- True precision of $\hat{\beta}_{OLS}$ depends almost entirely on # of group-time cells, not # of observations (if cell sizes are large)
 - Severe version of standard clustering problem (Moulton, 1990)

Accounting for variance of group-time shocks

- 1. Cluster-robust standard errors (Liang and Zeger, 1986)
 - Consistent, and t-stat ~ N(0,1), as # of clusters goes to infinity

- 2. Make assumptions about distribution of η_{gt}
 - E.G. something enabling finite sample inference with few clusters (Donald and Lang, 2007)

3. Bootstrap to estimate distribution of t-stat (Cameron et al, 2008)

"Cluster-robust" standard errors with few clusters (1)

- Bias-reducing adjustments proposed (see Bell and McCaffrey, 2002; Imbens and Kolesar, 2012)
 - Scale residuals in CRSE formula by sqrt(G/(G-1)). Stata does this (approx.)
 - BM propose more complex scaling (invalid in setup here)
- But t-stat ~N(0,1) also depends on # of clusters going to infinity
- With few clusters, CRSEs (inc. bias-adjusted ones) *and standard normal critical values* deliver double the correct test size (Bertrand et al, 2004; Cameron et al, 2008)

"Cluster-robust" standard errors with few clusters (2)

- But don't have to use N(0,1) critical values
- Typical few-clusters approach uses t distribution: Stata uses t_{G-1}
- Bester et al (2011) showed that using t_{G-1} critical values and sqrt(G/(G-1))-scaled CRSEs (i.e. ~= Stata's approach) can lead to tests of correct size *with G fixed*
 - Asymptotics apply as group size tends to infinity
 - Requires homogeneity condition that won't normally hold in DiD
 - But we find its performance in practice looks very promising...

Serial correlation

- Group-time shocks typically serially correlated too
 - Can lead to huge over-rejection of nulls if ignored (Bertrand et al, 2004)
- Cluster-robust SEs should therefore cluster at group level
- Hansen (2007) models process as AR(k) and uses FGLS estimation
 - Derives bias correction for AR(k) parameters, consistent as $G \rightarrow \infty$
- FGLS should be more efficient, but inference still tricky
 - FGLS SEs are wrong if AR(k) parameterisation is wrong
 - Can combine with cluster-robust SEs to control test size...
 - ...but that doesn't work well with few groups (...or does it?)

MONTE CARLO SIMULATIONS

Monte Carlo simulations (1)

- Use women's log-earnings from CPS (N ~=750k), as in Bertrand et al (2004), Cameron et al (2008), Hansen (2007)
- Collapse to state-year level using covariate-adjusted means
 - As in other papers, we find test size can't be controlled in micro-data
- Repeat the following 5000 times, varying G from 6 to 50:
 - Sample G states at random with replacement
 - Randomly choose G/2 states to be 'treated'
 - Randomly choose a year from which treated states will be treated
 - Estimate treatment 'effect'
 - Test (true) null of no effect using nominal 5%-level test

Monte Carlo simulations (2)

- Model: $Y_{ict} = \alpha + \beta T_{ct} + \delta X_{ict} + \mu_c + \xi_t + \eta_{ct} + \varepsilon_{ict}$
- 1. Collapse to state-time level by estimating λ_{ct}

$$Y_{ict} = \lambda_{ct} + \delta X_{ict} + \mathcal{E}_{ict}$$

2. Monte Carlos look at inference based on following regression

$$\hat{\lambda}_{ct} = \alpha + \mu_c + \xi_t + \beta T_{ct} + \omega_{ct}$$

- 1 accounts for grouping of errors at state-time level
- Issue then is dealing with finite number of states, and serial correlation in state-time shocks

	Number of groups (US states), half of which are treated						
Inference method	50	20	10	6			
Assume iid	0.422*	0.420*	0.404*	0.412*			

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.422*	0.420*	0.404*	0.412*		
CRSE, N(0,1) critical vals	0.048	0.061*	0.079*	0.107*		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.422*	0.420*	0.404*	0.412*		
CRSE, N(0,1) critical vals	0.048	0.061*	0.079*	0.107*		
CRSE*sqrt(G/(G-1)), N(0,1)	0.044	0.056	0.075*	0.104*		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.422*	0.420*	0.404*	0.412*		
CRSE, N(0,1) critical vals	0.048	0.061*	0.079*	0.107*		
CRSE*sqrt(G/(G-1)), N(0,1)	0.044	0.056	0.075*	0.104*		
CRSE*sqrt(G/G-1), t _{G-1}	0.042*	0.046	0.050	0.049		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated						
Inference method	50	20	10	6			
Assume iid	0.422*	0.420*	0.404*	0.412*			
CRSE, N(0,1) critical vals	0.048	0.061*	0.079*	0.107*			
CRSE*sqrt(G/(G-1)), N(0,1)	0.044	0.056	0.075*	0.104*			
CRSE*sqrt(G/G-1), t _{G-1}	0.042*	0.046	0.050	0.049			
Wild cluster bootstrap-t	0.054	0.055	0.059*	0.062*			

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.422*	0.420*	0.404*	0.412*		
CRSE, N(0,1) critical vals	0.048	0.061*	0.079*	0.107*		
CRSE*sqrt(G/(G-1)), N(0,1)	0.044	0.056	0.075*	0.104*		
CRSE*sqrt(G/(G-1)), t _{G-1}	0.042*	0.046	0.050	0.049		
Wild cluster bootstrap-t	0.054	0.055	0.059*	0.062*		

Notes:

* Indicates that rejection rate from 5000 Monte Carlo replications is statistically significantly different from 0.05.

Checking robustness to the data generating process

- CPS provided one dgp to test methods on perhaps we got lucky
- To check robustness we simulate our own state-time shocks

$$\lambda_{ct}^{sim} = \hat{\mu}_c + \hat{\xi}_t + \omega_{ct}^{sim}$$
$$\omega_{ct}^{sim} = \rho \omega_{c,t-1}^{sim} + \upsilon_{ct} \quad t = 2,...,30$$
$$\omega_{c1}^{sim} = (1 - \rho^2)^{-\frac{1}{2}} \upsilon_{c1}$$

- White noise drawn from t distribution with d degrees of freedom
- In paper we also run simulations using CPS employment outcomes, and all conclusions carry over to that case

National Cent

Research Methods

Rejection rates under various error processes with 6 groups, using CRSE*sqrt(G/G-1) and t_{G-1} critical values

			AR(1) parameter					
d (controls non- normality in white noise)	0	0.2	0.4	0.6	0.8	Varies by group		
2	0.055*	0.058*	0.058*	0.058*	0.052	0.051		
4	0.055*	0.058*	0.056*	0.056*	0.051	0.054*		
20	0.053	0.059*	0.057*	0.057*	0.051	0.054*		
60	0.056*	0.061*	0.058*	0.057*	0.053	0.053		
120	0.056*	0.060*	0.057*	0.057*	0.052	0.052		

But what about power? Minimum detectable effects on log(earnings) using 5% level hypothesis tests

	G=50		G=20		G=6	
	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points
OLS, robust	0.042	0.220	0.046	0.118	0.049	0.073

	G=50		G=20		G=6	
	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points
OLS, robust	0.042	0.220	0.046	0.118	0.049	0.073
FGLS	0.100	0.460	0.106	0.275	0.126	0.191

	G=50		G=20		G=6	
	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points
OLS, robust	0.042	0.220	0.046	0.118	0.049	0.073
FGLS	0.100	0.460	0.106	0.275	0.126	0.191
FGLS, robust	0.047	0.348	0.053	0.175	0.061	0.096

	G=50		G=20		G=6	
	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points
OLS, robust	0.042	0.220	0.046	0.118	0.049	0.073
FGLS	0.100	0.460	0.106	0.275	0.126	0.191
FGLS, robust	0.047	0.348	0.053	0.175	0.061	0.096
BC-FGLS	0.068	0.395	0.077	0.224	0.099	0.150

	G=50		G=50 G=20		G=6	
	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points	No effect	Effect of +0.02 log- points
OLS, robust	0.042	0.220	0.046	0.118	0.049	0.073
FGLS	0.100	0.460	0.106	0.275	0.126	0.191
FGLS, robust	0.047	0.348	0.053	0.175	0.061	0.096
BC-FGLS	0.068	0.395	0.077	0.224	0.099	0.150
BC-FGLS, robust	0.049	0.365	0.057	0.187	0.064	0.103

Minimum detectable effects on log(earnings) using 5% level hypothesis tests: OLS vs BC-FGLS estimation

National Centre for

Research Methods

Summary and conclusions

- Literature is right that DiD designs can pose problems for inference
- But we find that correct test size can be achieved, even with few groups, using very straightforward methods
- Key problem is low power
- We therefore recommend that researchers think seriously about the efficiency of DiD estimation (not just consistency and test size)
- We have shown how FGLS combined with robust inference can help significantly, *without* compromising test size, even with *few groups*

