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Abstract. This paper considers identification and estimation in models imposing condi-

tional independence restrictions and featuring a scalar disturbance. It is shown that for this

class of models the disturbance is endowed with a specific structure that is highlighted and

exploited to obtain full knowledge of the structural function. Structural effects of a policy

or treatment are allowed to vary across subpopulations that can be located on the joint dis-

tribution of unobservables of the model. In nonseparable triangular models with continuous

endogenous variables this approach delivers identification of structural functions conditional

on values of the control variable. These results are obtained after a reanalysis of local iden-

tification in nonseparable triangular models, where the connection between Chesher (2003)

and Imbens and Newey (2009) is made explicit. It is also shown that in the presence of

nonmonotone continuous instruments, nonseparable triangular models are always overiden-

tifying. A generic estimation framework is described, and an analog estimator based on a

new regression method (“dual regression”) is proposed. An empirical application illustrates

the methodology by estimating gasoline demand functions in the United States.
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1. Introduction

Knowledge of the ceteris paribus effect of an explanatory variable X on each point of the

distribution of an outcome variable Y provides valuable information for policy analysis. It

accounts for heterogeneity in microeconomic data and provides a very accurate understanding

of the policy or treatment under study. When X is endogenous, however, full recovery of the

underlying structural relationship betweenX and Y often requires imposing strong restrictions

on the support of observables, or on the stochastic properties of the model, or even directly

on the form of the relationship of interest. For instance, it is known that single-equation

instrumental variables (SE-IV) models fail to point-identify the structural function relating X

to Y when Y is discrete (Chesher (2010)). This paper provides weak conditions under which

models imposing conditional independence restrictions and featuring a scalar disturbance

preserve their point-identifying power.

Suppose a continuously distributed outcome variable Y admits the structural representation

(1.1) Y = H(X, ε),

where the structural function H is strictly increasing in a scalar source of stochastic variations

ε. Models featuring these properties are said to be nonseparable and allow for flexible mod-

elling of the heterogeneity inherent to most populations of interest in applied work. Then, for

this class of models, this paper shows that if a random variable V such that X is independent

of ε conditional on V is available, all features of the structural relationship between X and Y

can be recovered. In particular, the random variable V is exploited as an additional source

of heterogeneity in order to obtain structural effects that vary across the joint distribution of

ε and V . This is achieved without any parametric assumption on the structure of the model

or the joint distribution of the data.

The main contribution of the paper is to highlight and exploit the specific structure of the

disturbance stemming from the conditional independence restriction. A core feature of the

methodology is the focus on the properties of the disturbance instead of on the structural

function itself. This approach differs from existing identification strategies in nonseparable

models which focus on identification of the structural function H. Here, the proposed con-

struction can be characterized as dual in the sense that the structural function is a byproduct

of the construction of a stochastic element satisfying specified properties. Incorporating all

the information provided by knowledge of the structure of the disturbance reveals that the

model preserves its point-identifying power under weak conditions.
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The second contribution of this paper is to highlight that the construction of the structural

function in conditional independence models can be decomposed into two distinct levels of

analysis. Locally, at some specified points, values of the joint distribution of observables

identify values of the joint distribution of Y , X and V . Globally, the structural function

and the conditional quantile function of ε given V are constructed as functionals of the joint

distribution of Y , X and V . The construction is said to be global when knowledge of the

functions of interest is achieved at all points. An implication is that the global analysis of

structural functions can be entirely formulated in terms of Y , X and V . This insight forms

the basis of the dual construction that ensues and allows for incorporating information not

used at the local level: strict monotonicity, the functional form of the disturbance and full

conditional independence.

Three further contributions follow from the conducted local analysis. First, local identi-

fication of the structural function in nonseparable triangular models, as first considered in

Chesher (2001, 2003), is revisited, describing how bi-dimensional unobserved heterogeneity

inherent to these models can be exploited. Second, a fruitful connection with the global

approach developed in Imbens and Newey (2009) is made explicit and the relationship be-

tween these two important papers is established. Therefore, this paper also contributes to

the literature on nonseparable models by relating two approaches that have remained largely

disconnected. Third, nonseparable triangular models with a continuous endogenous regressor

are shown to be always overidentifying in the presence of a nonmonotone continuous instru-

ment. This observation holds regardless of the dimensionality of the structural disturbance.

In particular, the so-called Quantile Structural Function (QSF)1 of Imbens and Newey (2009)

is overidentified in that case, a fact that does not follow from any currently available result.

Finally, since the main identification result is constructive, estimation is not tied to a

specific method and a generic estimation framework is described. The methodology is applied

to a semiparametric triangular location-scale model and an estimator is introduced in order

to illustrate the benefits of the dual construction advocated in this paper. The estimator

builds on the dual regression methodology introduced in Spady and Stouli (2012). This

regression framework constitutes an alternative to the quantile regression process for the

global estimation of conditional distribution functions. Thus, identification and estimation

are integrated, and all information available from the restrictions of the model is incorporated

by the estimator.

1The QSF is a structural object that characterizes how the endogenous regressor affects the distribution of
outcomes when the disturbance of the model is a random vector. See the discussion in Section 3.2.

3



Nonseparable models and control variable methods in economic applications.

From an applied perspective, models incorporating nonseparability in the disturbances

strongly weaken the a priori restrictions imposed by practitioneers and significantly reduce

the risk of misspecification in models with endogenous regressors. In addition, models allow-

ing for heterogenous effects across treatment levels (nonlinearity) and across the whole of the

outcome variable distribution (nonseparability) allow applied researchers to characterize the

effect of the policy or treatment under study across individuals in the population. This type

of knowledge is essential for policymakers to learn about which part of the population may

be harmed by a given policy and which part may actually benefit from it.

In this respect, control variable methods, as considered in this paper, can also be interpreted

as including an additional dimension of heterogeneity to the analysis that can be exploited

in order to model multiple sources of heterogeneity. Returns to schooling is the traditional

example that serves to motivate nonseparable triangular models (Chesher (2003); Florens,

Heckman, Meghir, and Vytlacil (2008); Jun (2009)). Beyond the standard use of control

function methods, since the main result of this paper applies to any control variable, it is

of direct interest to recent applied work estimating latent variables, for instance in labor

economics and in the work of Heckman and coauthors (see Heckman, Stixrud, and Urzua

(2006); Cunha, Heckman, and Schennach (2010)), or in item response theory (see Spady

(2006, 2007)). Latent variables such as cognitive and noncognitive skills in the study of

childhood development and adult outcomes could be used as control variables.

Control variable methods like the one introduced in this paper are also, more traditionally,

of direct practical interest as a way of addressing endogeneity. They constitute a powerful yet

simple methodology allowing for the recovery of structural effects and have been recently ap-

plied to address a variety of empirical questions such as welfare analysis and consumer demand

(see Hoderlein and Vanhems (2011) and Hausman and Newey (2012)). Since endogeneity is

a core issue in numerous fields of economics such as labor, health or development economics,

applicability of control variable methods is broad and a general motivation is given in Imbens

(2007) and Imbens and Newey (2009), who also illustrate their method with an analysis of

Engel curves.

Related literature. This work takes as a starting point two important papers studying

identification in nonseparable triangular models. The local analysis originates in Chesher

(2003) who introduced a quantile-based identification methodology to show local identification

of derivatives of structural functions in nonseparable triangular models. Second, that the
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structural function be treated as a functional of the conditional distribution function of Y given

X and V is an insight put forward by Imbens and Newey (2009) in order to show that in the

absence of a scalar disturbance, the QSF is identified. The dual construction proposed in this

paper highlights the identifying power of the model when a scalar disturbance is considered

instead, and builds on the framework of Spady and Stouli (2012) for the construction of

conditional distribution functions.

A seminal paper in this literature is Blundell and Powell (2003) who introduced the Average

Structural Function. Florens, Heckman, Meghir, and Vytlacil (2008) consider a nonseparable

triangular framework, imposing polynomial restrictions on the structural equation. Recent

work on identification in nonseparable triangular models with a scalar disturbance includes

d’Haultfoeuille and Fevrier (2011) and Torgovitsky (2011). They obtained results on point

identification of the structural function in the presence of discrete instruments.

Previous work on quantile-based estimation of triangular models includes Amemiya (1982)

who first introduced a class of two-stage median regression estimators. More recently, Lee

(2007) considered a semiparametric quantile regression version of a triangular model where the

control function enters additively. Removing the separability intrinsic to location models, Ma

and Koenker (2006) developed two general classes of estimators for a location-scale form of a

parametric triangular model. Building on Chesher (2003), they construct an estimator which

allows for a description of the entire stochastic relationship between the endogenous variable

and the outcome. Following their approach Jun (2009) suggested a semiparametric estimator

based on a random coefficients model. He considers a linear triangular model while allowing

for nonseparability in the unobservables. Chernozhukov, Fernandez-Val, and Kowalski (2011)

also consider a nonseparable triangular model and use a control function method to address

endogeneity in quantile regression models with censoring.

An alternative approach to identification and estimation of nonseparable models in the

presence of endogeneity is the SE-IV model, where the source of endogeneity is not specified

and is left unrestricted. Although this model is more general, its estimation is also notoriously

difficult due to ill-posedness of the associated inverse problem. For SE-IV models with a con-

tinuous outcome, see Chernozhukov and Hansen (2005); Horowitz and Lee (2007); Gagliardini

and Scaillet (2012); Chen and Pouzo (2012) for developments based on conditional quantile

restriction, and Spady and Stouli (2012) for a distributional approach via dual regression.

The case of discrete outcomes is considered in Chesher (2010); Chesher, Rosen, and Smolinski

(2011); Chesher and Smolinski (2012).
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Organization of the paper. In the next section the model is described and structural

features of interest are discussed. In Section 3, a local analysis, at some specified point, of

the structural function is conducted. Section 4 considers global identification of the structural

function both conditional on a specified value of V and unconditionally. Section 5 describes a

generic estimation procedure and an analog estimator based on dual regression is introduced

for a semiparametric triangular location-scale model. Section 6 illustrates the methodology

with an application to gasoline demand in the United States.

2. A Nonseparable Conditional Independence Model

2.1. The Framework. Let Y be a scalar random variable with continuous support Y and X

a scalar random variable with support X . The model of interest features an outcome equation

Y = H(X, ε),(2.1)

where X is said to be endogenous and is not assumed to be independent of the scalar distur-

bance ε, and the structural function H(x, e) is restricted to be strictly increasing in e.2 This

setup corresponds to a traditional concern in econometrics when one is interested in discov-

ering the structural relationship between an observed choice or treatment and a subsequent

outcome of interest. Observational units may choose a value of X based on motives known

only to them that are not independent of the disturbance ε determining the realized outcome;

these motives effectively being the source of endogeneity of X.

In order to achieve knowledge of the structural relationship between Y and X, it is assumed

that there exists a random variable V , typically unobserved, such that X and ε are indepen-

dent once V has been conditioned on. Thus, conditional independence is a key identifying

restriction of the model. This restriction specifies the source of endogeneity and requires the

econometrician to have at her or his disposal an observed source of exogenous variations in

X, for instance provided by an instrumental variable, in order to isolate and control for en-

dogenous variations coming from V . Alternatively, the researcher may have an interpretation

or some a priori knowledge about the source of endogeneity in the model allowing full recov-

ery of V from this information. An example of which is given by the availability of repeated

measurements of a latent variable believed to be causing the endogeneity of X.

2For notational simplicity, X is taken to be scalar and a random vector W , say, of observed discretely or
continuously distributed characteristics can be included in the structural function H without altering the
analysis. All results extend to vector X and additional covariates W .
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In addition to conditional independence, the structural function is restricted to be strictly

monotonic in a scalar source of stochastic variations ε.3 This is the rank invariance assump-

tion common in the literature on nonseparable models (Chernozhukov and Hansen (2005);

Torgovitsky (2011))4. It can be interpreted as describing a world in which the ranking of

observational units in the distribution of Y is invariant to the chosen value of X. That is to

say, observational units faring well under a given policy or treatment value x, would also fare

well would X be set to a different value.

2.2. Structural features of interest. As a starting point, it is identification of a value of

the structural function at a specified value x∗ of X for the subpopulation with value v∗ of

V , that is sought. In Equation (2.1), consider taking the conditional τ -quantile of Y given

X = x∗ and V = v∗, denoted QY |XV (τ |x∗, v∗). The equivariance property of quantiles under

monotone transformation and local application of independence of X and ε conditional on V

gives:

(2.2) QY |XV (τ |x∗, v∗) = H(x∗, Qε|V (τ |v∗)).

Knowledge of the structural function H evaluated at fixed values x∗ and Qε|V (τ |v∗) of X and

ε thus requires knowledge of QY |XV (τ |x∗, v∗), and is the value of the structural function at

different levels of two sources of heterogeneity, for a given value x∗ of X. Indeed, Qε|V (τ |v∗)
is the τ -quantile of ε for the subpopulation defined by V = v∗. Therefore, H(x∗, Qε|V (τ |v∗))
ought to be interpreted as the value of the structural function for the subpopulation defined

by X = x∗, ε = Qε|V (τ |v∗) and V = v∗.

Although unusual, this feature of the model is of interest in itself since it provides useful

information on the value of the outcome Y for subpopulations defined by their location on the

joint distribution of ε and V . In the classical Returns-to-Schooling example, one may actually

be interested in the structural relationship between education (X) and earnings (Y ) across

ability levels (V )5. Besides, H(x∗, Qε|V (τ |v∗)) is a structural feature of the model, since for

the subpopulation defined by V = v∗, variations in X are independent of variations in ε.

3Hoderlein and Mammen (2007) consider the case of multivariate ε and exogenous X and discuss the implica-
tions of relaxing the strict monotonicity restriction.
4This assumption differs from the formalism adopted in the potential outcomes literature in which rankings
across treatment values can be unrelated (see Imbens and Angrist (1994), Heckman and Vytlacil (2007), for
instance).
5See Chesher (2003) and Jun (2009) for a detailed discussion of returns-to-schooling in the context of nonsep-
arable models.
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Three additional reasons motivate a detailed analysis of H(x∗, Qε|V (τ |v∗)). First, all struc-

tural features of conditional independence models with a scalar disturbance can be expressed

as functionals of H(x,Qε|V (τ |v)). Therefore, a thorough understanding of H(x∗, Qε|V (τ |v∗))
paves the way to a global construction of the structural function, at all points. Second, a

careful analysis will demonstrate that, in nonseparable triangular models, for a fixed value v∗

of V , nonmonotonicity of the relationship between X and the instrument leads to overiden-

tification of H(x∗, Qε|V (τ |v∗)). Last, one may sometimes want to restrict attention to local

features of the model, for instance when full conditional independence seems too strong a

restriction for the particular problem at hand.

The next step in the construction considers identification of the structural relationship

between Y and X for a subpopulation of interest defined by a specified value v∗ of V . That is,

knowledge of H(x,Qε|V (τ |v∗)) for all x in X and τ in (0, 1) will be sought next. This approach

differs from the identification literature on nonseparable models that considers V to be a device

in order to recover structural effects and seeks knowledge of H(x, e) at unconditional values e

of ε (with the exception of Chesher (2003)). On the other hand, the fact that V may itself be

an explanatory variable of interest motivates the particular attention devoted in this paper

to structural features of the model that depend on V .

2.3. Main Conditions. Let Xv = supp(X|V = v). The model is fully described by the

following conditions and normalization.

Condition 1. (DGP) The data generating process for Y is given by Y = H(X, ε), where Y

and ε are continuously distributed scalar random variables and H(x, e) is a function strictly

increasing in e for all x ∈ X .

Condition 2. (Control variable) There exists a known continuously distributed random vari-

able V with bounded support V = [v, v̄], such that X and ε are independent conditional on

V .

Normalization 1. For some v∗ ∈ V, let ε∗ = Fε|V (ε|v∗). Then Y admits the structural

representation Y = H∗(X, ε∗), where for all x ∈ X the function H∗(x, τ) is strictly increasing

in τ , and ε∗ is normalized to be uniformly distributed on [0, 1] conditional on V = v∗.

Condition 3. (Support conditions) (i) For all v ∈ V, there is a value x(v) of X in Xv, such

that supp(Y |X = x(v), V = v) = Y. (ii) For v∗ ∈ V specified in Normalization 1, Xv∗ = X .

Condition 2 requires that the random variable V be known, that is V must either be directly

observable or identified from data. In the leading example of nonseparable triangular models,
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it is well known that Condition 2 is satisfied by the availability of an instrumental variable

Z such that the DGP of X is given by X = G(Z, η), where G(z, η) is a function strictly

increasing in η, a scalar random variable independent of Z, for Z⊥⊥ (ε, η) (see Theorem 1 of

Imbens and Newey (2009) or Kasy (2011)). Then the DGP admits a corresponding quantile

regression representation

(2.3) X = QX|Z(V |Z),

characterized by independence of the regression rank variable V and the regressor Z, and

V = FX|Z(X|Z) serves as the control variable in that model.

Normalization 1 defines a scalar random variable ε∗ as a strictly monotone transformation

of ε and gives an equivalent structural representation for Y . ε∗ satisfies Fε∗|V (τ |v∗) = τ since

by definition of ε∗ and strict monotonicity of Fε|V (τ |v∗) in τ there is:

(2.4) P [Fε|V (ε|v∗) ≤ τ |V = v∗] = P [ε ≤ Qε|V (τ |v∗)|V = v∗] = τ.

Therefore, ε∗ is normalized to be uniformly distributed on the unit interval conditional on

V = v∗, and the structural representation follows from the definition of ε∗:

(2.5) Y = H(X, ε) = H(X,Qε|V (ε∗|v∗)) ≡ H∗(X, ε∗),

where (H,Fε) and (H∗, Fε∗) are observationally equivalent.

The normalization adopted is specific to the setup considered in this paper and differs from

the distributional normalization suggested in Matzkin (2003) or used in Chernozhukov and

Hansen (2005) and Torgovitsky (2011) where the marginal distribution of ε∗ is normalized

instead. Under Normalization 1 H∗(x, τ) is the τ -quantile of the counterfactual random

variable Yx ≡ H(x, ε) conditional on V = v∗. Since the QSF introduced by Imbens and

Newey (2009) is defined as the τ -quantile of Yx, H∗(x, τ) can be interpreted as a local (to v∗)

QSF.

Condition 3(i) is a common support assumption on the support of Y which is necessary for

identification of Qε∗|V . Condition 3(i) effectively imposes that ε∗ has full support conditional

on V . Condition 3(ii) ensures that H∗(x, τ) is identified for all values of X. In the context

of a triangular model, for X continuously distributed, Condition 3(ii) is satisfied if a con-

tinuously distributed instrumental variable is available. This condition imposes that for the

subpopulation defined by V = v∗ the instrumental variable varies sufficiently for QX|Z(v∗|Z)

to have range the full support of X.
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3. Local Analysis of Structural Functions

In this Section, identification of the value H(x∗, Qε|V (τ |v∗)) of the structural function in

nonseparable triangular models is revisited. This local analysis illustrates the methodological

point that global construction of structural functions can be distinguished from local identi-

fication of H(x∗, Qε|V (τ |v∗)). This value of the structural function is shown to be potentially

locally overidentified by the distribution of observables, i.e FY |XZ(Y |X,Z) in triangular mod-

els. Once known from data, H(x∗, Qε|V (τ |v∗)) serves to achieve global knowledge of the

structural function; this is illustrated by the construction of the QSF of Imbens and Newey

(2009).

3.1. Local Identification Under Instrumental Variable Availaibility. In the context

of triangular models, although implicitly understood from results given in Chesher (2003) and

in Imbens and Newey (2009), the value H(x∗, Qε|V (τ |v∗)) has not received a direct treatment

in the literature. Instead, for specified values z∗ and v∗ of Z and V , under the local conditional

independence assumption Qε|V Z(τ |v∗, z∗) = Qε|V (τ |v∗), from Chesher (2003) it is known that

(3.1) QY |XZ(τ |QX|Z(v∗|z∗), z∗) = H(QX|Z(v∗|z∗), Qε|V (τ |v∗)),

where the value H(QX|Z(v∗|z∗), Qε|V (τ |v∗)) of the structural function is directly identified

from data byQY |XZ(τ |QX|Z(v∗|z∗), z∗), the conditional τ -quantile of Y givenX = QX|Z(v∗|z∗)
and Z = z∗. Two related difficulties with expression (3.1) are its interpretability and the con-

struction of analog estimators6. The following discussion suggests a change of perspective

in order to facilitate both interpretation and analog estimation by reformulating the local

identification analysis in terms of specified values of X and V instead of values of X and V

induced by values of Z and V , as in Equation (3.1).

A useful observation is that Equation (3.1) can be used to obtain knowledge of

H(x∗, Qε|V (τ |v∗)) instead. Indeed, from (3.1) it follows that for a value z of Z such that

x∗ = QX|Z(v∗|z), the valueH(x∗, Qε|V (τ |v∗)) is actually identified byQY |XZ(τ |QX|Z(v∗|z), z).
However, in the absence of further restrictions, there may not be a unique value of Z such that

x∗ = QX|Z(v∗|z), and therefore the value of interest of the structural function is potentially

over identified in that context.

6These difficulties partly explain why several different proposals have been made in order to carry estimation
based on (3.1) or the formula for the structural derivative of H with respect to x at a fixed value of V given
in Chesher (2003) - see Ma and Koenker (2006); Lee (2007); Jun (2009).
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In order to give a unified treatment of just- and over- identification of H(x∗, Qε|V (τ |v∗))
accounting for a set of instrumental values such that x∗ = QX|Z(v∗|z) of arbitrary cardinality,

the concept of instrumental set is now introduced. Consider the set of values of Z correspond-

ing to a given value x of X for a given value v of V . Then, the instrumental set Z∗(x, v) is

defined as follows:

(3.2) Z∗(x, v) = {z ∈ Z : QX|Z(v|z) = x}.

This is the set of instrumental values such that observational units choose a value x of X, con-

ditional on V = v. For |Z∗(x, v)| the number of elements of Z∗(x, v) and j = 1, . . . , |Z∗(x, v)|,
denote by zj(x, v) the elements of that set. For X = x∗ and V = v∗, the abbreviated notation

zj(x
∗, v∗) ≡ z∗j and Z∗(x∗, v∗) ≡ Z∗ is used. Then whenever |Z∗| is greater than one, this is

an instance of local overidentification.

The case of a scalar instrument Z is of particular interest in practice. In that case, when

QX|Z(v∗|z) is nonconstant in z, the set Z∗ has at most countably many elements. Note that

if in addition Z has bounded support, then Z∗ contains at most finitely many elements, a fact

that guarantees that the instrumental set can easily be constructed. On the other hand, Z∗

is a singleton when Z is scalar and QX|Z(v∗|z) is strictly monotone in z.7

Figure 1a illustrates the construction of the instrumental set for a particular nonmonotone

median function of X conditional on Z and for the pair of values x∗ = 2.5 and v∗ = .5. The

elements of the instrumental set are given by the roots of the equation QX|Z(.5|z) = 2.5. The

fact that there may be multiple relevant values of Z for x∗ = 2.5 is apparent from Fig.1a that

shows the three roots of the equation QX|Z(.5|z) = 2.5.

Formally, the set of instrumental values Z∗ is the image of the inverse functions ofQX|Z(v∗|z)
with respect to z. For all v ∈ V, define the map qv : Z → Xv, the conditional v-quantile func-

tion of X conditional on Z, denoted qv(z), with range Xv. By construction, the function qv(z)

is a surjective function and thus is right invertible8. Also, the right inverse of qv may only

be piecewise monotone in x. To account for piecewise monotonicity, let Z1, . . . ,Z|Z∗(x,v)| be

a partition of Z such that for each j = 1, . . . , |Z∗(x, v)| the function gjv : Xv → Zj is a right

inverse of qv and each gjv is one-to-one. Then {zj(x, v)}|Z
∗(x,v)|

j=1 is the collection of instrumental

7Local overidentification arising in the presence of multiple instrumental values is discussed in Chesher (2003,
2007) whereas the focus is here on highlighting nonmonotonicity of QX|Z(v∗|z) in z (nonmonotone instruments)
as a particular instance of local overidentification.
8Right invertibility of qv means that there exists a function gv : Xv → Z such that qv(gv(x)) = x for every x.
Note that when qv is not monotone, a unique inverse function does not exist because qv does not have a unique
right inverse. Moreover, any right inverse gv is not surjective. There exists z ∈ Z such that gv(qv(z)) 6= z.
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Figure 1. A conditional median function (A), and its piecewise monotone

right inverses gjv(x), j = 1, . . . , 3 (green, red and blue solid lines) (B), with

x∗ = 2.5 and {zj(2.5, .5)}3j=1 = {0.21, .49, .81}.12



values delivered by {gjv(x)}|Z
∗(x,v)|

j=1 , the elements of Z∗(x, v). Fig.1b shows the right inverses

of the conditional median function shown in Fig.1a.

In order for H(x∗, Qε|V (τ |v∗)) to be identified, the set Z∗ must contain at least one element.

Under this condition and local application of the conditional independence assumption in

Condition 2, the value of the structural function H(x∗, Qε|V (τ |v∗)) is then identified from

data by the conditional quantile function QY |XZ(τ |x∗, z∗j ), for j ∈ {1, . . . , |Z∗|}. This result

is stated in Proposition 1.

Proposition 1. Suppose that the instrumental set Z∗(x∗, v∗) is nonempty and Conditions 1

and 2 hold. Then for all τ ∈ (0, 1), there is

(3.3) H(x∗, Qε|V (τ |v∗)) = QY |XZ(τ |x∗, z∗j ) ∀j ∈ {1, . . . , |Z∗(x∗, v∗)|}.

When |Z∗(x∗, v∗)| > 1, H(x∗, Qε|V (τ |v∗)) is overidentified.

Equation (3.3) follows from Equation (2.2) and since by definition of Z∗, for all j ∈
{1, . . . , |Z∗|}, conditioning on (x∗, z∗j ) is equivalent to conditioning on (x∗, v∗). Proposition 1

provides an expression for a value of the structural function that can be computed directly,

thus it is constructive and is easily interpreted. Second, note that Proposition 1 implies that

(3.4) QY |XZ(τ |x∗, z∗j ) = QY |XZ(τ |x∗, z∗j′) ∀(j, j′)/j 6= j′,

since the value of the conditional τ -quantile of Y does not change for two different pairs of

values (z∗j , v
∗) and (z∗j′ , v

∗) of Z and V - which is the essence of the exclusion restriction. This

implication of Proposition 1 gives a basis for specification testing in nonseparable triangular

models. Last, since for each j, QY |XZ(τ |x∗, z∗j ) = QY |XV (τ |x∗, v∗), Proposition 1 provides a

bridge to the Imbens and Newey (2009) methodology.

3.2. Connection to the Quantile Structural Function. Proposition 1 is a key step

towards establishing the connection between the local identification approach developed in

Chesher (2003) and the global approach of Imbens and Newey (2009). For scalar ε, V uni-

formly distributed on [0, 1] and p ∈ (0, 1), the QSF is defined as H(x,Qε(p)), the p-quantile

of H(x, ε), and is shown by Imbens and Newey (2009) to be given by

(3.5) H(x,Qε(p)) = inf

{
y :

ˆ
FY |XV (y|x, v)dv ≥ p

}
,

13



where by Proposition 1 and definition of FY |XZ(y|x, z), FY |XV (y|x, v) can be expressed as

FY |XV (y|x, v) =

ˆ
1
(
QY |XZ(τ |x, zj(x, v)) ≤ y

)
dτ ∀j ∈ {1, . . . , |Z∗(x, v)|}.(3.6)

Thus, for scalar ε the QSF is the structural function and is constructed as a functional of

QY |XZ . The main condition for identification of the QSF is that V has full support conditional

on X (Assumption 2 of Imbens and Newey (2009)). This condition is clearly satisfied if

Z∗(x, v) is nonempty for all v in V and all x in X . The next Proposition states this result.

Proposition 2. Suppose that Conditions 1 and 2 hold. If, for all x ∈ X and all v in V,

Z∗(x, v) is nonempty, then, for all x ∈ X and p ∈ (0, 1), H(x,Qε(p)) is given by

H(x,Qε(p)) = inf

{
y :

ˆ ˆ
1
(
QY |XZ(τ |x, zj(x, v)) ≤ y

)
dτdv ≥ p

}
,(3.7)

for j ∈ {1, . . . , |Z∗(x, v)|}.

Proposition 2 has two main implications. First, upon using Proposition 1, this result

relates the local-based identification methodology of Chesher (2003) and the global approach

of Imbens and Newey (2009). The key observation in order to establish the link between the

two methodologies was Proposition 1. Second, the right-hand side of (3.7) does not depend

on the dimensionality of ε and corresponds to the QSF when ε is not scalar, instead of the

structural function H. Since for each x in X and each v in V when |Z∗(x, v)| is greater

than one QY |XV (τ |x, v) is overidentified, Proposition 2 demonstrates that in the presence of

nonmonotone continuous instruments, the QSF is always overidentified, independently of the

dimensionality of ε.

3.3. Discussion. The main motivation for the perspective adopted in this Section is to de-

sign a local identification strategy that is both constructive and exhaustive, in the sense of

incorporating all local information contained in the data. The methodology introduced via

the instrumental set is a device allowing for a unified treatment of both the just- and over-

identified cases. Since for a pair of values (x∗, v∗) of X and V there potentially correspond

multiple pairs of values
{

(z∗j , v
∗)
}|Z∗|
j=1

of Z and V , nonmonotonicity is a source of local overi-

dentification in triangular models and it is desirable that the identification analysis accounts

for the information provided by potential nonmonotonicity in the first stage, suggesting that

H(x∗, Qε|V (τ |v∗)) should be constructed locally when nonmonotone instruments are available.

The local anaysis conducted in this Section raises new questions regarding the analysis of

nonseparable triangular models. Of particular interest will be the design of estimators that
14



optimally combine additional information arising from local overidentification. Indeed, since

H(x∗, Qε|V (τ |v∗)) is identified by any element of the collection of values
{
QY |XZ(τ |x∗, z∗j )

}|Z∗|
j=1

,

H(x∗, Qε|V (τ |v∗)) could be computed as any weighted combination of these values, or from

either one of them.

Last, Proposition 1 and 2 together show that the structural function can be constructed

globally as a functional of H(x,Qε|V (u|v)). However, the QSF construction is designed to

allow for ε to have arbitrary dimensionality, suggesting that for ε known to be scalar an

alternative construction exploiting this information is possible. In addition, the QSF does not

describe the structural relationship between Y and X locally to a specified value of V . On the

other hand, the quantile attack on the problem based on Proposition 1 requires constructing

H(x,Qε|V (τ |v∗)) one quantile index τ at a time, not exploiting the strict monotonicity and

full conditional independence restrictions of the model9. The object of the next Section

is to describe how to construct H(x,Qε|V (τ |v∗)) for all quantile indices and values of X

simultaneously, while exploiting knowledge of the dimensionality of ε.

4. Dual Construction of Structural Functions

Recalling that under Normalization 1 H(x,Qε|V (ε∗|v∗)) ≡ H∗(x, ε∗), knowledge of H∗

provides complete knowledge of the structural relationship between Y and X for the subpop-

ulation defined by V = v∗, which was only considered at some specified point in the previous

Section. Locally the analysis could be conducted in terms of the structural function H. Glob-

ally, imposing Normalization 1 is necessary in order to be able to separately identify H∗ and

Qε∗|V . This Section turns to identification of H∗ and the conditional quantile function Qε∗|V

after having highlighted the particular structure of the disturbance ε∗. Once identification of

H∗ and Qε∗|V is achieved, it is shown that knowledge of the QSF can also be recovered.

4.1. A Structured Representation for ε∗. For H∗(x, τ) strictly monotonic in τ , existence

of a random variable V such that ε∗⊥⊥ X|V leads to an equivalent representation for Y :

Y = H∗(X,Qε∗|V (FY |XV (Y |X,V )|V )).(4.1)

Representation (4.1) follows from the structural representation given in Normalization 1 upon

taking the conditional u-quantile of Y given X = x and V = v:

(4.2) QY |XV (u|x, v) = H∗(x,Qε∗|XV (u|x, v)),

9This is in contrast to Chesher (2003) where conditional quantile independence restrictions are central to the
argument.
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which for u = FY |XV (y|x, v) and by conditional independence yields

y = H∗(x,Qε∗|XV (FY |XV (y|x, v)|x, v)) = H∗(x,Qε∗|V (FY |XV (y|x, v)|v)),(4.3)

for all (y, x, v) ∈ Y×X×V. Thus, representation (4.1) provides ε∗ with a structure embedding

the conditional independence restriction. Knowledge of the structure of ε∗ is exploited in order

to construct the structural function H∗ and the conditional quantile function Qε∗|V .

4.2. Main Result. In order to proceed, first define the class Ψ∗ of admissible conditional

quantile functions ψ∗ to which Qε∗|V is assumed to belong.

Definition 1. For v∗ ∈ V specified in Normalization 1 and all τ ∈ (0, 1), each ψ∗ ∈ Ψ∗

satisfies ψ∗−1(τ, v∗) = τ .

Second, define the random variable εψ
∗
.

Definition 2. For ψ∗ ∈ Ψ∗, the scalar random variable εψ
∗

is defined by

(4.4) εψ
∗

= ψ∗(FY |XV (Y |X,V ), V ).

The main result of the paper is now stated.

Theorem 1. Let ψ∗ ∈ Ψ∗ and εψ
∗

be as in Definition 2, and suppose that Conditions 1-3

hold and Normalization 1 is imposed. Then εψ
∗⊥⊥ X|V if, and only if, there exists a function

h∗(x, τ) strictly increasing in τ such that for all (y, x, v) ∈ Y × X × V

(4.5) y = h∗(x, ψ∗(FY |XV (y|x, v), v)),

where ψ∗(u, v) = Qε∗|V (u|v) for all (u, v) ∈ (0, 1) × V and h∗(x, τ) = H∗(x, τ) for all x ∈ X
and τ ∈ (0, 1).

The intuition behind the result stated in Theorem 1 follows from the local analysis of the

previous Section: if for any subpopulation such that V is held fixed at a specified value, say

v∗, variations in X are independent of variations in ε, then a structural function H∗ that

depends on the chosen value of V can be constructed from this subpopulation only. Given

knowledge of H∗, the support condition in Condition 3(i) suffices for identification of Fε∗|V

at all values of ε∗ and V . Thus, knowledge of the structural function is obtained at all points

by imposing all restrictions of the model simultaneously - conditional independence, scalar

disturbance and strict monotonicity.
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The function H∗ describes the structural relationship between X and Y conditionally on

a value of V , allowing the researcher to focus on a subpopulation of interest or on regions

of the joint support of X and V where information from data is concentrated. In contrast

with the recent literature on nonseparable models (see d’Haultfoeuille and Fevrier (2011) and

Torgovitsky (2011)), the proposed methodology thus allows for conditioning on values of the

control variable and accounting for unobserved heterogeneity in the model. The result does

rely on global identifying restrictions that may not always hold in practice. Theorem 1 shows

that H∗ is point identified under a support condition local to v∗ allowing for choosing a value

of V such that Condition 3(ii) is satisfied, and if the support condition holds for all values of

V then the QSF can be recovered as well, as shown below.

Applicability of Theorem 1 extends beyond nonseparable triangular models since it holds

for any control variable. This suggests that fruitful connections can be established with the

literature onmeasurement error and latent variable modelling. Also, Blundell and Matzkin

(2010) show that under certain conditions simultaneous equations models admit an equivalent

triangular model representation so that results of this paper apply to that case as well.

The result obtained is also directly constructive. Theorem 1 suggests constructing a com-

posite function ψ∗(FY |XV (y|x, v), v) strictly increasing in y and satisfying ψ∗−1(τ, v∗) = τ for

all τ ∈ (0, 1) such that the random variable εψ
∗

is independent of X conditional on V and

such that Fεψ∗ |V (τ |v∗) = τ , for all τ ∈ (0, 1). Alternatively, the following corollary provides

Theorem 1 with a convenient interpretation, on which the estimation methodology in the next

Section is based.

Corollary 1. Let ψ∗ ∈ Ψ∗ and h∗(x, τ) be a function strictly increasing in τ for all x ∈ X ,

and suppose Conditions 1-3 hold and Normalization 1 is imposed. Then

(4.6) y = h∗(x, ψ∗(FY |XV (y|x, v), v))

for all (y, x, v) ∈ Y × X × V if, and only if, ψ∗(u, v) = Qε∗|V (u|v) for all (u, v) ∈ (0, 1) × V
and h∗(x, τ) = H∗(x, τ) for all x ∈ X and τ ∈ (0, 1).

This corollary shows that given knowledge of FY |XV and V , it is possible to recover H∗

and Qε∗|V from solving (4.6) for h∗ and ψ∗. Estimation in Section 5 builds on this result.
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4.3. Connection to the Quantile Structural Function, revisited. If Condition 3(ii)

holds for all values of V , then the QSF can be recovered as well. Let

(4.7) εv = Fε|V (ε|v),

and define the function h : X × [0, 1]× V → Y such that

(4.8) Y = H(X,Qε|V (εv|v)) ≡ h(X, εv, v).

h(x, τ, v) is the τ -quantile of H(x, ε) conditional on V = v. If Condition 3(ii) holds for

each v ∈ V, then h(·, ·, v) is identified for each v ∈ V by Theorem 1. From (4.7) and (4.8),

Fε|V (ε|v) = h−1(X,Y, v) so that

Fε(ε) =

ˆ
Fε|V (ε|v)fv(v)dv =

ˆ
h−1(X,Y, v)fv(v)dv.(4.9)

By definition of the QSF there is

(4.10) H(x,Qε(p)) = inf

{
y :

ˆ
h−1(x, y, v)fv(v)dv ≥ p

}
.

Thus, Theorem 1 also provides an alternative way of estimating the structural function that

could be compared to estimates of the QSF. It is conjectured that when the first stage is well

specified these estimates coincide if and only if the disturbance is scalar. This is an important

implication since there are no results on the testability of the dimensionality of error terms

in models with endogenous regressors, and the interpretation of the object estimated and its

derivatives depend of whether ε is a scalar or a vector.

The expression given in (4.10) for the QSF concludes the study of identification. The next

Section is devoted to estimation.

5. Estimation

This Section describes a generic framework for estimation of four different functions: FX|Z ,

QY |XV , H∗ and Qε∗|V . The method is generic in the sense that estimation of objects of

interest such as conditional distribution functions can be done using any available estimation

method. Estimation of the control variable V = FX|Z(X|Z) is of general interest and the

proposed estimator for QY |XV can be seen as an alternative to quantile regression based

methods for estimation of triangular models as in Ma and Koenker (2006), Jun (2009) and

Chernozhukov, Fernandez-Val, and Kowalski (2011). Second, estimation of H∗ and Qε∗|V is

considered building on Corollary 1. The estimation framework is illustrated by semiparametric

estimation of a triangular location-scale model, the simplest example of a nonseparable model,
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via dual regression (Spady and Stouli (2012)). Basic elements of the method are described

and its applicability to the problem at hand demonstrated.

5.1. Generic estimation. A generic framework for estimation of QY |XV , H∗ and Qε∗|V is

to implement the following two- or three- step estimation strategy:

(1) (First stage) Estimate the control variable V̂ . In a triangular model, take

(5.1) V̂ = F̂X|Z(X|Z).

(2) (Second Stage) Estimate the conditional distribution function F̂Y |XV (Y |X, V̂ ). Then

Q̂Y |XV (u|x, v) is directly available at all (u, x, v) ∈ (0, 1)×X × V.

(3) (Structural functions) Estimate simultaneously ĥ∗ and ψ̂∗ by solving

(5.2) min
(h∗,ψ∗)

∥∥∥Y − h∗(X,ψ∗(F̂Y |XV (Y |X, V̂ ), V̂ ))
∥∥∥ ,

for some norm ‖·‖, where, for v∗ ∈ V, ψ∗ satisfies

(5.3) ψ∗(F̂Y |XV (Y |X, v∗), v∗) = F̂Y |XV (Y |X, v∗).

In order to estimate the conditional distribution functions in both the first and second

steps kernel methods as described in Li and Racine (2011) are well-understood and easy

to implement. Also, rearrangement and quantile regression can be used for the first two

steps. Both linear and nonlinear quantile regression methods could be implemented. Detailed

discussions of these methods can be found in Belloni and Fernandez-Val (2011); Chernozhukov,

Fernandez-Val, and Melly (2009); Chernozhukov and Galichon (2010).

In the third step, a parametric specification can be adopted for h∗ and ψ∗. Series based

approximations constitute a nonparametric alternative which is no different than the para-

metric approach in terms of implementation. In order to exploit monotonicity of h∗(x, τ) in

τ and ψ∗(u, v) in u, shape-preserving splines could be used (see Chen (2007) for a review on

sieves and shape-preserving sieves).

In the following, this estimation framework is applied to a triangular location-scale model

and dual regression is used to estimate the conditional distribution functions in steps 1 and 2

above.

5.2. Application: A semiparametric triangular location-scale model. A convenient

and flexible specification is to consider a location-scale model. Such a model forms the basis

of the quantile regression representation since it allows for heterogenous slopes of the quantile

regression coefficients of all covariates, including the endogenous regressor. This model can be
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made very flexible by taking transformations of the covariates, such as splines or trigonometric

basis functions, an operation that does not alter the exposition below. Thus, the model

considered is given by

yi = β∗11xi + β∗12 · wi + (β∗21xi + β∗22 · wi)ε∗i(5.4)

xi = α1 · zi + (α2 · zi)ηi(5.5)

ε∗i = γ∗11 + γ∗12ηi + (γ∗21 + γ∗22ηi)bi,(5.6)

where, for observation i, xi is the endogenous regressor, wi is a vector of additional regressors

that includes an intercept and zi is a vector of instrumental variables also including an inter-

cept, and potentially additional covariates as well. ηi and bi are disturbances normalized to

have mean 0 and variance 1. Estimation of the structural function is considered for v∗ = .5

and, as in the foregoing, the “∗” notation indicates that a normalization is imposed. Thus,

β∗ = (β∗11, β
∗
12, β

∗
21, β

∗
22)
′ is the vector of structural parameters for the subpopulation defined

by V = v∗.

In this model Normalization 1 is imposed for v∗ = .5 by setting γ∗11 = 0 and γ∗21 = 1.

Combining these restrictions and the fact that b has mean 0 and variance 1 yields that ε∗

has mean 0 and variance 1 conditionally on η = 0, which is the median value of η. This is

equivalent to imposing that ε∗ is uniformly distributed conditional on V = v∗ in a nonpara-

metric framework but exploits the fact that the distribution of ε∗ is restricted to have only

nonzero first and second moments as follows from specifying a location-scale representation

for ε∗ given η in Equation (5.6) (see the discussion in Section 5.3.1). The correspondence

between V and η is given by v = Fη(η) and is discussed in detail in Section 5.3.1 below.

Appendix C discusses identification and the normalization condition for other values of v∗ in

this triangular location-scale model.

Implementation of the three-step estimation procedure described above is now discussed in

detail for model (5.4)-(5.6).

5.3. First- and Second- Stage Estimation via Dual Regression (Spady and Stouli

(2012)).

5.3.1. Control Variable Estimation. The first step of the proposed estimation strategy is to

estimate the control variable V = FX|Z(X|Z). Estimation of the control variable V can be

done by dual regression, a regression technique that reformulates estimation of conditional

distribution functions as the construction of a stochastic element V = FX|Z(X|Z) endowed
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with three properties: (i) V is uniformly distributed on the unit interval, (ii) V is independent

of Z, and (iii) FX|Z(x|z) is strictly increasing in x for any value z of Z.

Given a sample of n points {zi, xi}, estimation of the n values vi = FX|Z(xi|zi) using only

the three defining properties of V is formulated as a sequence of mathematical programming

problems that embodies these requirements and that generalizes the dual formulation of the

quantile regression problem. Because the entire conditional distribution function is estimated

simultaneously at all points, the resulting conditional quantile functions are largely free of

the so-called quantile crossing problem. Thus, dual regression offers a powerful alternative to

current methods available for estimation of the quantile regression process, while avoiding the

need for ex post rearrangement.

The basic dual regression optimization problem adds dim(Z) more constraints to the me-

dian dual quantile regression problem10 and is given by

(5.8) max
v
{x′v|

Z>(v − 1
2) = 0

Z>(v2 − 1
3) = 0

, v ∈ [0, 1]n},

where x is now an (n×1) vector of values of X and Z is an (n×dim(Z)) matrix of instrumental

variable values that includes an intercept (an (n × 1) vector of 1’s) and potentially some

additional explanatory variables. The set of dim(Z) constraints on sample moments of v2

would not appear in the dual quantile regression program, producing values of v that are

largely 0 and 1, with dim(Z) sample points being assigned v values that are neither 0 nor 1.

In order to satisfy program (5.8), the v’s have to be moved off {0}, {1}. Since Z contains an

intercept, the sample moments of v and v2 will be 1
2 and 1

3 , and v and v2 will be orthogonal

to the components of Z, relations that are necessary but not sufficient for uniformity and

independence.

It is equivalent to assign a value η ∈ R to each observation, where η obeys the independence

and monotonicity requirement, but where η is given by F−1η (v) for some distribution function

Fη taken without loss of generality to correspond to a distribution with zero mean and unit

variance. Such a η solution is transformed into a corresponding v solution by taking v = Fη(η).

10From Koenker (2005) p. 87, Equation (3.12), the dual problem of the (linear) .5 quantile regression of x on
Z is:

(5.7) max {x′v|Z>(v − 1

2
) = 0, v ∈ [0, 1]n},

where x is an (n × 1) vector of dependent variable values and Z is an (n × dim(Z)) matrix of explanatory
variable values that includes an intercept. This problem is dual to the more familiar problem of minimizing
the average absolute loss function and solving for quantile regression coefficients.
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Thus, the basic dual regression optimization problem is equivalently formulated as

(P.1) max
η
{x′η|

Z>η = 0

Z>(η2 − 1) = 0
,

where some simplification (particularly in computation) is obtained since η can take on any

real value (whereas v is restricted to [0, 1]).

The solution to problem (P.1) is found from the Lagrangian

(5.9) L =

n∑
i=1

xiηi − α1

n∑
i=1

ziηi −
1

2
α2

n∑
i=1

zi(η
2
i − 1),

where α = (α1, α2)
′ is the 2 × dim(Z) vector of Lagrange multipliers. Differentiating with

respect to ηi, one obtains n first-order conditions:

(5.10)
∂L

∂ηi
= xi − α1 · zi − (α2 · zi)ηi = 0,

which upon solving for ηi delivers ηi = xi−α1·zi
α2·zi , where α can be seen to be the parameters of

a data generating representation corresponding to (5.5):

xi = α1 · zi + (α2 · zi)ηi.(5.11)

These derivations make apparent the dual nature of the parameters α which are the La-

grange multipliers of an optimization problem whose n parameters are {ηi}ni=1. A key con-

tribution of the dual regression approach is to show that constraints on the construction of

the stochastic element η have ’shadow values’ that are parameters of a data generating repre-

sentation: a parameter of the DGP is the Lagrange multiplier of a specific constraint on the

construction of the stochastic element.

This approach has numerous advantages, in particular in terms of monotonicity. In order

to see this point, note that both the dual quantile regression and the basic dual regression

programs impose monotonicity by simply correlating x and v, a criterion that suffices to impose

monotonicity. However, the dual quantile regression program is dual to a linear program

well-known to have solutions at which dim(Z) observations are interpolated when dim(Z)

parameters are being estimated - i.e the hyperplanes obtained by regression quantiles must

interpolate dim(Z) observations. This is the source of finite-sample quantile crossing issues

in well-specified quantile regression models, and is illustrated in the next Section.
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Another difference between dual and quantile regression is made apparent by rewriting

(5.10) as

xi = α1 · zi + (α2 · zi)ηi(5.12)

= (α1 + α2F
−1
η (vi)) · zi(5.13)

≡ α(vi) · zi,(5.14)

a standard quantile regression representation, where the functional coefficient α(vi) is

parametrized by the finite-dimensional parameter α. This is in contrast with quantile re-

gression which is semiparametric by construction. Thus, a fundamental property of dual

regression is to approximate the functional coefficient α(vi) by a linear combination of fi-

nite dimensional parameters. Besides, dual regression can be fully generalized to account for

higher order moments (see Spady and Stouli (2012)), preserving the fact that α(vi) can be

parametrized by including additional terms.

5.3.2. Estimation of FY |XWV (Y |X,W, V ). Obtaining the vector of parameters η, respectively

α, corresponds to Step 1 of the generic procedure above, and obtaining the parameter vector

b, respectively λ, corresponds to Step 2. Given knowledge of η and proceding to the second

step of the estimation procedure, there is the following representation for the outcome variable

yi (see Appendix C for details):

yi = λ1 · di + (λ2 · di) bi,(5.15)

where di = (xi, wi, xiηi, wiηi). Representation (5.15) serves as a basis for estimation in the

second-stage. The outcome equation (5.15) also admits the following quantile regression

representation:

(5.16) yi = λ(ui) · di,

with λ(ui) = λ1 + λ2F
−1
nb (ui), where ui is given by

(5.17) ui = Fnb

(
yi − λ1 · di
λ2 · di

)
,

with Fnb denoting the empirical distribution of b. This is the conditional distribution function

of y given x,w and v (for v = Fη(η)), and may be of interest in itself. For instance, it delivers

the value of the conditional distribution of y given x,w and v = .5, by evaluating Fnb

(
y−λ1·d
λ2·d

)
at η = F−1nη (.5). The empirical distribution function given in (5.17) could be used to compute
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the QSF of Imbens and Newey (2009) which is a functional of u, although this is not pursued

here.

Similarly to representation (5.11) obtained for x as the FOC of problem (P.1), representation

(5.15) results from the first-order conditions of the following dual regression optimization

problem:

(P.2) maxb {y′b|

D>b = 0

D>(b2 − 1) = 0
,

where D is the (n × (2 × (1 + dim(W )))) matrix of values of covariates in Step 2 of the

estimation procedure.

An alternative to the two-step procedure is to add the FOCs of the lower level optimization

problem (P.1) as a constraint to program (P.2) and obtain the following MPEC formulation

(Su and Judd (2012)):

(P) max(b,α) {y′b|


D>b = 0

D>(b2 − 1) = 0

xi − α1 · zi − (α2 · zi)ηi = 0

.

5.3.3. Asymptotic properties. The asymptotic distribution of the vector of parameters

θ = (α, λ)
′

obtains upon substituting v(xi, zi;α) ≡ xi−α1·zi
α2·zi for ηi, letting dvi =

(xi, wi, xiv(xi, zi;α), wiv(xi, zi;α)) and noting that the following 2×(dim(D)+dim(Z)) vector

of moments is available

g(y, x, z, θ) =
(
g1(y, x, w, z, θ)

′, g2(y, x, w, z, θ)
′, g3(y, x, w, z, θ)

′, g4(y, x, w, z, θ)
′)′ ,

where

g1(y, x, w, z, θ) = dv

(
y − λ1 · dv
λ2 · dv

)
(5.18)

g2(y, x, w, z, θ) = dv

[(
y − λ1 · dv
λ2 · dv

)2

− 1

]
(5.19)

g3(y, x, w, z, θ) = z

(
x− α1 · z
α2 · z

)
(5.20)

g4(y, x, w, z, θ) = z

[(
x− α1 · z
α2 · z

)2

− 1

]
.(5.21)

Therefore, for the purpose of asymptotic analysis, the 2-step estimator of QY |XWV can be

equivalently viewed as a stacked Method of Moments estimator with moments g(y, x, w, z, θ),
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solving the system

(5.22)
1

n

n∑
i=1

g(yi, xi, wi, zi, θ̂) = 0.

Under the assumption that the model is well specified and data is i.i.d, define Go and So as

Go = E

[
∂g

∂θ′

∣∣∣∣
θo

]
and So = E

[
gg′
∣∣
θo

]
.(5.23)

Applying standard results for the Method of Moments (Newey and McFadden (1994)), there

is

(5.24)
√
n
(
θ̂ − θo

)
d→ N

(
0, G−1o So

(
G−1o

)′)
.

A detailed characterization of the asymptotic variance-covariance matrix is given in Appendix

D. This result shows that inference methods for dual regression estimates can be constructed

from standard methods available for Method of Moments estimators. In particular, bootstrap

methods can easily be applied to obtain standard errors.

5.4. Structural Function. Turning to the third step of the estimation procedure, for v∗ = .5,

plugging the expression for ε∗i given in (5.6) in (5.4), there is

yi = β∗10 + β∗11xi + β∗12 · wi + (β∗20 + β∗21xi + β∗22 · wi) [γ∗12ηi + (1 + γ∗22ηi)bi] .(5.25)

Given estimates of {η̂i, b̂i}ni=1 the 2× (dim(W ) + 1) + 2 vector of parameters (β∗, γ)′ obtains

by solving

(5.26) min
(β∗,γ∗)

n∑
i=1

{
yi −

(
β∗11xi + β∗12wi + (β∗21xi + β∗22wi)

[
γ∗12 + (1 + γ∗22η̂i)b̂i

])}2
.

Once the vector parameter β∗ has been recovered and after rearranging terms, for τ ∈ (0, 1)

the structural function is given by(
β∗11 + β∗21F

−1
nε∗(τ)

)
xi +

(
β∗12 + β∗22F

−1
nε∗(τ)

)
· wi = β∗(τ) · d∗i ,

where Fnε∗ denotes the empirical distribution of ε∗, d∗i = (xi, wi) and β∗(τ) = (β∗11 +

β∗21F
−1
nε∗(τ), (β∗12 + β∗22F

−1
nε∗(τ))′)′ is the vector of quantile regression coefficients for V = v∗.

Thus, β∗(τ) ·d∗ is the structural conditional τ -quantile function of Y given X, W and V = .5.

5.5. Local Quantile Structural Function Algorithm For Triangular Models. The

previous steps are summarized in the following algorithm for v∗ = .5.
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(1) Estimate the control variable {η̂i}ni=1 by solving the dual regression optimization prob-

lem (P.1).

(2) Estimate the conditional distribution function {b̂i}ni=1 by solving the dual regression

optimization problem (P.2), then for V̂ = Fnη(η̂), Q̂Y |XWV (u|x,w, V̂ ) is directly avail-

able.

(3) For v∗ = .5, estimate simultaneously β̂∗ and γ̂ by solving

(5.27) min
(β∗,γ∗)

n∑
i=1

{
yi −

(
β∗11xi + β∗12wi + (β∗21xi + β∗22wi)

[
γ∗12 + (1 + γ∗22η̂i)b̂i

])}2
.

An alternative is to solve directly the dual regression optimization problem (P) and proceed to

Step 2. Indeed, Program (P) provides a one-step estimation procedure for F̂Y |XWV (y|x,w, V̂ ).

It is possible to formulate a one-step optimization problem for the structural function as well,

which is left for future work. Also, note that taking transformations, such as splines or

trigonometric basis functions, of xi, wi and η̂i in (5.27) yields a very flexible yet particulary

simple implementation of the approximation step.

6. Empirical Application : Demand Estimation

This Section illustrates how the estimation methodology can be applied to estimation of

gasoline demand functions, where the price is treated as an endogenous regressor. This em-

pirical application has been studied in Blundell, Horowitz, and Parey (2012), where they

obtain well-behaved demand functions under appropriate shape constraints. They argue that

non-decreasing estimated demand functions are merely an artifact of inappropriate estima-

tion procedures and that, when imposing relevant constraints such as the Slutsky property,

well-behaved demand estimates obtain. This view is reconsidered in the light of correcting for

endogeneity.

All computational procedures are implemented in the software R (R-Development-Core-

Team (2007)). Dual regression is implemented using Ipopt (Interior Point Optimizer), an

open source software package for large-scale nonlinear optimization (Waechter and Biegler

(2006)), and its R interface (Ypma (2011)). The first-stage quantile regression estimates

shown in Figure 2 are obtained using the R package Quantreg (Koenker (2007)).

6.1. Data and Empirical Specification. The dataset is as in Blundell, Horowitz, and

Parey (2012), where a detailed description can be found. The data are taken from the 2001

National Household Travel Survey (NHTS), conducted between March 2001 and May 2002.
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The survey collects information on household characteristics, each household vehicle and on

trips made during this time period. The households are from all geographic areas in the US.

The total number of observations selected from the dataset is 4812 observations.

Here the main variables of interest are the outcome variable, Y , which will be annual gaso-

line consumption, gasoline prices per gallon, X, household income, R, and the instrumental

variable, Z, the distance to the gulf of Mexico. Gasoline consumption is derived from odome-

ter readings and estimates of the vehicle fuel economy (miles per gallon), and is aggregated

over different vehicles owned by the household. Recorded prices are a weighted average of

monthly prices, including taxes, in dollars per gallon, in the county where the household is

located.

Price differences across local markets reflect proximity of supply, short-run shocks to supply,

competition in the local market, and local differences in taxes and environmental programs. It

is assumed that these factors are summarized through a scalar index captured by the control

variable. Households report their annual income, before taxes, in 18 different ranges, and

households income is set to the midpoint of the respective interval and households reporting

an annual income over $100,000 are assigned an income of $120,000. The instrument is taken

to be a distance measure (in 1000 km) from the source of supply in the Gulf of Mexico to

the capital of the state in which the households is located. The starting point is a major oil

platform located in the Gulf of Mexico.

The following empirical specification is considered for the structural equation:

(6.1) yi = β∗11x̃i + β∗12ri + β∗13x̃iri + (β∗21x̃i + β∗22ri + β∗23x̃iri)ε
∗
i ,

where yi and ri denote log gasoline demand and log income and x̃i is a vector of transformations

of log prices, including an intercept. The transformations are taken to be cubic B-splines with

4 equally spaced knots. This augmented partially linear specification is flexible and allows

for interactions between prices and income. Blundell, Horowitz, and Parey (2012) find that

acccounting for dependence of the price elasticity on income matters in this dataset. The

estimated structural parameter vector β∗ is obtained conditionally on V = .5. Estimated

demand functions under an alternative specification including demographic characteristics are

shown in Appendix E. Following the description of the triangular location scale model given

in Section 5.2, in the second step of the local QSF algorithm specification (5.15) serves as a

basis for estimation, letting di = (x̃i, x̃iri, x̃iηi, riηi, x̃iriηi), for a total of 2× (4× dim(X̃) + 1)

Lagrange multipliers λ obtained from solving for the 4812 parameters {bi}ni=1 in problem (P2).
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Figure 2. First stage: Linear (top) and nonlinear (bottom) quantile (left)
and dual (right) regression of log prices on distance to the Gulf of Mexico.
Conditional median (red) and conditional {·10, ·15, . . . , ·90} quantile functions
(blue).
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Figure 3. Statistical and structural conditional median demand for gasoline
- Conditional on V = .5.

6.2. First stage. The distance measure is taken to be the distance to the respective state

capital. Thus, an interesting feature of the data, is that the support of the instrument is

effectively discrete with 15 points of support. In order to illustrate dual regression and its

strengths, it is informative to give a close look at the relationship between gasoline price

and the instrument. Fig. 2 shows estimates of conditional quantile functions of log prices

of gasoline given the instrument, with both linear and nonlinear specifications, obtained by

quantile and dual regression. It is striking that, given the nature of the data, the interpolative

property of quantile regression in finite-samples is a drawback in the uncovering of the rela-

tionship of interest. Indeed, conditional quantile functions are seen to cross at several points

in the quantile regression figures, whereas dual regression delivers well behaved estimates,

not subject to crossing. The choice of a regression method is especially important when the

control variable used in order to correct for endogeneity is the entire conditional distribution

function of X given Z and not simply the first stage residuals from a mean regression as in

more conventional control variable procedures.

6.3. Estimation of demand functions. Variations in price responsiveness of gasoline de-

mand is investigated across three dimensions: (1) Across the income distribution, where the
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focus is on three income levels: a middle-income group at $57,500, which corresponds to me-

dian income in the sample; a low-income group at $42,500, which corresponds to the first

quartile in the sample; a high-income group at $72,500, which corresponds to the 59.-63.3th

percentile in the sample11. (2) Across the price distribution, by using a flexible specification

for the price variable. (3) Across unobserved heterogeneity in demand elasticity.

Figure 3 shows statistical and structural (i.e corrected for endogeneity) median demand

curves conditional on V = .5. It is already apparent that correcting for endogeneity yields

a better behaved demand curve suggesting that the unconstrained non-downward-sloping

demand curves obtained by Blundell, Horowitz, and Parey (2012) are not merely an artefact

of inappropriate estimation procedures but may also be a consequence of misspecification and

bias originating in not accounting for endogeneity. Fig. 3 is in line with results obtained by

Hausman and Newey (2012) who also find that correcting for endogeneity delivers downward-

sloping demand estimates. These results raise questions about the virtue of imposing shape

constraints coming from economic theory on data.

Figure 4 illustrates the results and plots the estimated conditional quantile functions of log

demand given log prices. Fig. 4 plots the original and structural estimates of the quantile

demand surfaces. The figure summarizes the structural relationship between price and demand

for a grid of probability levels in the interval [.3, .7], conditionally on V = .5. Estimates

satisfy some basic smoothness requirements across the entire conditional quantile process.

It is important to note that this feature does not typically characterize estimates of the

conditional quantile process by quantile regression methods, as conditional quantile functions

are then estimated sequentially and independently of each other.

Figure 4 shows that in this example, dual regression delivers monotone and well-behaved

estimates, suggesting that imposing restrictions of the model and exploiting the specific struc-

ture of the stochastic element already delivers estimates that mostly do not exhibit upward

sloping areas. This is apparent from the structural demand curves obtained after correcting

for endogeneity which are largely free of upward sloping regions, without imposing further

shape constraints, except for upper quantiles demand curves for the middle- and low- income

groups. Again, this may rather be interpreted as a call for better specification of the model

than for shape constraints. Correcting for endogeneity also yields demand curves with steeper

slopes.

11The definition of income groups is as in Blundell, Horowitz, and Parey (2012).
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Figure 4. Statistical (Left) and structural (Right) demand functions by in-
come groups - Conditional on V = .5.
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7. Concluding Remarks

This paper proposes a new treatment of identification and estimation of structural func-

tions in conditional independence models featuring a scalar disturbance. It is shown that

information (i.e the identifying power of the model) is located at both a local level (infor-

mation specific to the relationship between instruments and the endogenous regressor) and

at the global level (where all restrictions of the model are exploited). After a reanalysis of

local identification in nonseparable triangular models, local overidentification in the presence

of nonmonotone instruments and the connection between Chesher (2003) and Imbens and

Newey (2009) are established. At the global level, identification of the structural function

conditional on a value of the control variable V as well as unconditionally are obtained by

constructing a disturbance endowed with a specific structure determined by restrictions of the

model, leading to global identification under very weak conditions.

A generic analog estimation strategy is proposed and an estimator for a semiparametric

triangular location-scale model based on a new regression method is introduced. The applica-

bility of the method and the estimator are illustrated by estimation of demand for gasoline in

the United States using the dataset of Blundell, Horowitz, and Parey (2012). The empirical

application shows that once corrected for endogeneity of prices estimated demand curves are

mostly downward-sloping.

Of particular interest for future work is the connection between results in this paper and

the latent variable modelling/measurement error literature. Also, revisiting identification in

nonseparable triangular models with discrete X (see Chesher (2005); Jun, Pinkse, and Xu

(2011) for recent work on this topic) in the light of the dual construction introduced appears

as a natural next step.

The relevance of this contribution is also related to the fact that several results can be

exploited to build specification tests in triangular models. The results in this paper also raise

several questions regarding inference and efficient estimation in nonseparable models with

endogenous regressors. Treatment of weakly identifying instrumental values constitutes an

interesting research avenue as well in order to optimally combine the relative power of various

instrumental values when the structural function is locally overidentified.

Appendix A. Proofs for Section 2

A.1. Proof of Proposition 1.

Proof. The result follows from the argument in the text. �
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A.2. Proof of Proposition 2.

Proof. The result follows from the argument in the text. �

Appendix B. Proofs for Section 3

B.1. Preliminaries. Before proceding to the proof of Theorem 1, there is the following useful

lemma.

Lemma 1. For v∗ ∈ V specified in Normalization 1 and εψ
∗

as in Definition 2, εψ
∗⊥⊥ X|V =

v∗ implies that εψ
∗

is uniformly distributed on [0, 1] conditional on V = v∗.

Proof. The result follows upon noting that for V = v∗ and for all τ ∈ (0, 1), εψ
∗⊥⊥ X|V = v∗

implies that

(B.1) Fεψ∗ |V (τ |v∗) = Fεψ∗ |XV (τ |x, v∗) = τ,

since replacing εψ
∗

by its definition Fεψ∗ |XV (τ |x, v∗) gives

P [ψ∗(FY |XV (Y |X, v∗), v∗) ≤ τ |X = x, V = v∗] = P [FY |XV (Y |X, v∗) ≤ ψ∗−1(τ, v∗)|X = x, V = v∗]

= P [FY |XV (Y |X, v∗) ≤ τ |X = x, V = v∗](B.2)

= P [Y ≤ QY |XV (τ |x, v∗)|X = x, V = v∗](B.3)

= τ,(B.4)

where the first equality is by strict monotonicity of ψ∗(τ, v∗) in τ , the second one by Definition

1 and the third by strict monotonicity of FY |XV (y|x, v∗) in y for all x ∈ X . �

B.2. Proof of Theorem 1.

Proof. Step 1: εψ
∗⊥⊥ X|V ⇒ (4.5) and ψ∗ = Qε∗|V and h∗ = H∗.

Step 1A: εψ
∗⊥⊥ X|V ⇒ h∗ = H∗.

Local application of the conditional independence condition εψ
∗ ⊥⊥ X|V and ψ∗ ∈ Ψ∗ imply

that conditional on V = v∗, εψ
∗

is endowed with the three properties of a random variable

generated by the conditional distribution function of Y given X and V = v∗: conditional on

V = v∗, εψ
∗

is (i) independent of X, (ii) uniformly distributed on [0, 1] by Lemma 1, and (iii)

the composite function y 7→ ψ∗(FY |XV (y|x, v∗), v∗) is strictly increasing in y for all x ∈ X ,

since the composition of strictly increasing functions is strictly increasing. Therefore, for all

(y, x) ∈ Y × X ,

(B.5) ψ∗(FY |XV (y|x, v∗), v∗) = FY |XV (y|x, v∗).
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Upon inverting FY |XV (y|x, v∗) with respect to y in (B.5), there is

y = QY |XV (ψ∗(FY |XV (y|x, v∗), v∗)|x, v∗) ≡ h∗(x, ψ∗(FY |XV (y|x, v∗), v∗)),(B.6)

and there exists a function h∗(x, τ) strictly increasing in τ such that (4.5) holds at V = v∗. For

Y∗ denoting the conditional support of Y given X and v∗, the function h∗(x, τ) is defined as

the restriction of the conditional quantile function of Y given X and V to [0, 1]×X ×{v∗}, i.e

h∗ ≡ QY |XV
∣∣
[0,1]×X×{v∗} : [0, 1]×X×{v∗} → Y∗ = Y by Condition 3(i). Since QY |XV (τ |x, v∗)

is strictly increasing in τ for all x ∈ X , h∗(x, τ) is strictly increasing in τ for all x ∈ X .

From (B.6), since h∗ is strictly increasing in τ , its inverse h∗−1(x, y) is well defined, and so

there is

(B.7) ψ∗(FY |XV (y|x, v∗), v∗) = h∗−1(x, y),

which by (B.5) yields

(B.8) FY |XV (y|x, v∗) = h∗−1(x, y).

By Condition 2 and Normalization 1 there also is

(B.9) FY |XV (y|x, v∗) = Fε∗|V (H∗−1(x, y)|v∗) = H∗−1(x, y).

Therefore, from (B.8) and (B.9) and Condition 3(ii), conclude that h∗−1(x, y) = H∗−1(x, y)

for all (y, x) ∈ Y × X .

Step 1B: εψ
∗⊥⊥ X|V and h∗ = H∗ ⇒ (4.5) and ψ∗ = Qε∗|V .

εψ
∗ ⊥⊥ X|V and ψ∗ ∈ Ψ∗ imply that the random variable Uψ

∗ ≡ Fεψ∗ |XV (H∗−1(X,Y )|X,V )

is endowed with the three properties of a random variable generated by the conditional distri-

bution function of Y given X and V : Uψ
∗

is (i) independent of X and V , (ii) uniformly dis-

tributed on [0, 1] by construction, and (iii) the composite function y 7→ Fεψ∗ |XV (H∗−1(x, y)|x, v)

is strictly increasing in y for all x ∈ X and v ∈ V, since the composition of strictly increasing

functions is strictly increasing. It follows that

(B.10) Fεψ∗ |XV (H∗−1(x, y)|x, v) = FY |XV (y|x, v) = Fε∗|V (H∗−1(x, y)|v),

where the second equality follows from Condition 2.

By Definition 2 of εψ
∗
, Fεψ∗ |XV (H∗−1(x, y)|x, v) is equal to

P [ψ∗(FY |XV (Y |X,V ), V ) ≤ H∗−1(x, y)|X = x, V = v] = P [FY |XV (Y |X,V ) ≤ ψ∗−1(H∗−1(x, y), v)|X = x, V = v]

= P [Y ≤ QY |XV (ψ∗−1(H∗−1(x, y), v)|x, v)|X = x, V = v](B.11)

= ψ∗−1(H∗−1(x, y), v),(B.12)
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where the first equality follows by the strict monotonicity property stated in Definition 1(i)

and the conditioning on V = v, the second one by strict monotonicity of FY |XV (y|x, v) in

y, and the third one by QY |XV (·|x, v) being the inverse function of FY |XV (·|x, v). Therefore,

combining (B.10) and (B.12),

(B.13) Fε∗|V (H∗−1(x, y)|v) = ψ∗−1(H∗−1(x, y), v),

for all (y, x, v) ∈ Y × X × V. By Condition 3(i), for each v ∈ V, there is a value x(v) of X

such that

(B.14) supp(H∗−1(x(v), Y )|X = x(v), V = v) = (0, 1),

since Y has full support conditional on X = x(v) and V = v. Therefore Fε∗|V (τ |v) =

ψ∗−1(τ, v) for all τ and v in (0, 1) × V, follows from (B.13) and (B.14), and ψ∗(u, v) =

Qε∗|V (u|v) for all u and v in (0, 1)× V as claimed.

Last, by Definition 2 of εψ
∗

and the structural representations of Y given in Normalization 1

and Equation (4.1), for ψ∗ = Qε∗|V and h∗ = H∗, there is

(B.15) εψ
∗

= ε∗ = H∗−1(X,Y ) = h∗−1(X,Y ).

Therefore y = h∗(x, ψ∗(FY |XV (y|x, v), v)) for all (y, x, v) ∈ Y × X × V and the result follows.

Step 2: (4.5) and ψ∗ = Qε∗|V and h∗ = H∗ ⇒ εψ
∗⊥⊥ X|V .

From the equivalent structural representation of Y given in (4.1) and Definition 2 of εψ
∗
, for

ψ∗ = Qε∗|V and h∗ = H∗, there is

(B.16) εψ
∗

= Qε∗|V (FY |XV (Y |X,V ), V ) = H∗−1(X,Y ) = ε∗,

and the result follows by Condition 2. �

B.3. Proof of Corollary 1.

Proof. Evaluating y = h∗(x, ψ∗(FY |XV (y|x, v), v)) at V = v∗, it follows from the steps in the

proof of Theorem 1 that ψ∗(u, v) = Qε∗|V (u|v) for all (u, v) ∈ (0, 1)×V and h∗(x, τ) = H∗(x, τ)

for all x ∈ X and τ ∈ (0, 1). The converse is obvious. �

Appendix C. Illustration: Identification in a semiparametric location scale model

C.1. The Model. The DGP considered is given by

yi = β11xi + β12 · wi + (β21xi + β22 · wi)εi(C.1)

xi = α1 · zi + (α2 · zi)ηi(C.2)

εi = γ11 + γ12ηi + (γ21 + γ22ηi)bi,(C.3)
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where xi is the endogenous regressor, wi is a vector of additional regressors that includes an

intercept and zi is a vector of instrumental variables including an intercept, and potentially

including additional covariates. η and b are disturbances normalized to have mean 0 and

variance 1.

In this model the control function is given by ηi = xi−α1·zi
α2·zi where the α1 and α2 are identified

from the moments conditions

Z>
{
x− α1 · z
α2 · z

}
= 0

Z>

[{
x− α1 · z
α2 · z

}2

− 1

]
= 0.(C.4)

Given knowledge of η, plugging the expression for εi given in (C.3) in (C.1), and rearranging

terms, there is the following representation of the model which serves as a basis for estimation

of FY |XWV (Y |X,W, V ):

yi = λ1 · di + (λ2 · di) bi(C.5)

xi = α1 · zi + (α2 · zi) ηi,(C.6)

where di = (xi, wi, xiηi, wiηi), and where the λ’s are identified from the moment conditions

D>
{
y − λ1 · d
λ2 · d

}
= 0

D∗>

[{
y − λ1 · d
λ2 · d

}2

− 1

]
= 0.(C.7)

C.2. Discussion of the normalization condition: v∗ = .5. In a location-scale model, for

v∗ = .5, ε∗ = εi−γ11
γ21

, i.e

ε∗i =
εi − γ11
γ21

(C.8)

=
γ12
γ21

ηi + (1 +
γ22
γ21

ηi)bi(C.9)

≡ γ∗11 + γ∗12ηi + (γ∗21 + γ∗22ηi)bi,(C.10)

with γ∗11 = 0, γ∗12 = γ12
γ21

, γ∗21 = 1, γ∗22 = γ22
γ21

. Since at η = 0

(C.11) ε∗i =
εi − γ11
γ21

= bi,

the distributional normalization is simply that ε has mean 0 and variance 1 conditional on

η = 0.
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C.3. Main steps. From (C.11), there is

(C.12) εi = γ11 + γ21ε
∗
i

Plugging the expression for εi given in (C.12) in (C.1), there is

yi = β11xi + β12 · wi + (β∗21xi + β22 · wi) [γ11 + γ21ε
∗
i ](C.13)

= (β11 + β21γ11)xi + (β12 + β22γ11) · wi + ((γ21β21)xi + (γ21β22) · wi)ε∗i(C.14)

= β∗11xi + β∗12 · wi + (β∗21xi + β∗22 · wi)ε∗i ,(C.15)

with

β∗11 = β11 + β21γ11(C.16)

β∗12 = β12 + β22γ11(C.17)

β∗21 = γ21β21(C.18)

β∗22 = γ21β22.(C.19)

Plugging the expression (C.10) for ε∗i in (C.20), there is

yi = β∗11xi + β∗12 · wi + (β∗21xi + β∗22 · wi) [γ∗12ηi + (1 + γ∗22ηi)bi] .(C.20)

Given knowledge of {(ηi, bi)}ni=1, the structural function is obtained by noting that one can

solve for the 2×(dim(W )+1)+2 vector of parameters (β∗, γ)′ from the system of n equations

yi − (β∗11xi + β∗12 · wi + (β∗21xi + β∗22 · wi) [γ∗12ηi + (1 + γ∗22ηi)bi]) = 0.(C.21)

For observations i such that ηi = 0, (C.21) reduces to

(C.22) ε∗i =
yi − (β∗11xi + β∗12 · wi)

β∗21xi + β∗22 · wi
= bi,

so ε∗ is known, and the 2× dim(W ) + 2 vector of structural parameters β∗ is identified from

the 2× dim(W ) + 2 moment conditions

D∗>
{
y − β∗1 · d∗

β∗2 · d∗

}
= 0

D∗>

[{
y − β∗1 · d∗

β∗2 · d∗

}2

− 1

]
= 0,(C.23)

where d∗i = (xi, wi).

From knowledge of the betas

β∗11xi + β∗12 · wi + (β∗21xi + β∗22 · wi)F−1nε∗(τ) ≡ β(τ) · d∗i ,

and β∗(τ)·d∗ is the structural conditional τ -quantile function of Y given X and W and V = .5.
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C.4. Discussion of the normalization condition: general case. ε∗ is given by:

ε∗i =
εi −

(
γ11 + γ12F

−1
nη (v∗)

)(
γ21 + γ22F

−1
nη (v∗)

)(C.24)

=
(γ11 + γ12ηi + (γ21 + γ22ηi)bi)−

(
γ11 + γ12F

−1
nη (v∗)

)(
γ21 + γ22F

−1
nη (v∗)

)(C.25)

=
γ12

γ21 + γ22F
−1
nη (v∗)

(ηi − F−1
nη (v∗)) +

{
γ21

γ21 + γ22F
−1
nη (v∗)

+
γ22

γ21 + γ22F
−1
nη (v∗)

ηi

}
bi(C.26)

≡ γ∗11 + γ∗12(ηi − F−1
nη (v∗)) + (γ∗21 + γ∗22ηi)bi,(C.27)

with γ∗11 = 0, γ∗12 = γ12
γ21+γ22F

−1
nη (v∗)

, γ∗21 = γ21
γ21+γ22F

−1
nη (v∗)

, γ∗22 = γ22
γ21+γ22F

−1
nη (v∗)

. Therefore,

Normalization 1 can be imposed in a location-scale model by setting γ∗11 = 0 and centering

appropriately the first occurence of ηi.

Appendix D. Asymptotics

The asymptotic distribution of the vector of parameters θ = (α, λ)
′

obtains upon substitut-

ing v(xi, zi;α) = xi−α1·zi
α2·zi for ηi, letting dvi = (xi, wi, xiv(xi, zi;α), wiv(xi, zi;α)) and noting

that the following 2× (dim(D) + dim(Z)) moment conditions are available

D>v

{
y − λ1 · dv
λ2 · dv

}
= 0(D.1)

D>v

[{
y − λ1 · dv
λ2 · dv

}2

− 1

]
= 0(D.2)

Z>
{
x− α1 · z
α2 · z

}
= 0(D.3)

Z>
[{

x− α1 · z
α2 · z

}
2 − 1

]
= 0,(D.4)

corresponding to the vector of moments defined in the main text:

g(y, x, z, θ) =
(
g1(y, x, w, z, θ)

′, g2(y, x, w, z, θ)
′, g3(y, x, w, z, θ)

′, g4(y, x, w, z, θ)
′)′ .

Therefore, the estimator in Step 2 of the estimation procedure can be viewed as a stacked

Method of Moments estimator with moments g(y, x, w, z, θ), solving the system

(D.5)
1

n

n∑
i=1

g(yi, xi, wi, zi, θ̂) = 0.

Under the assumption that the model is well specified and data is i.i.d, define Go and So as

Go = E

[
∂g

∂θ′

∣∣∣∣
θo

]
and So = E

[
gg′|θo

]
.(D.6)
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Applying standard results for the Method of Moments, there is

(D.7)
√
n
(
θ̂ − θo

)
d→ N

(
0, G−1o So

(
G−1o

)′)
.

Explicit characterization of the variance-covariance matrix follows from the following steps.

Partitioning Go, there is

Go = lim
1

n

n∑
i=1

E


∂g1(yi,xi,wi,zi,θ)

∂λ′1

∂g1(yi,xi,wi,zi,θ)
∂λ′2

∂g1(yi,xi,wi,zi,θ)
∂α′1

∂g1(yi,xi,wi,zi,θ)
∂α′2

∂g2(yi,xi,wi,zi,θ)
∂λ′1

∂g2(yi,xi,wi,zi,θ)
∂λ′2

∂g2(yi,xi,wi,zi,θ)
∂α′1

∂g2(yi,xi,wi,zi,θ)
∂α′2

∂g3(yi,xi,wi,zi,θ)
∂λ′1

∂g3(yi,xi,wi,zi,θ)
∂λ′2

∂g3(yi,xi,wi,zi,θ)
∂α′1

∂g3(yi,xi,wi,zi,θ)
∂α′2

∂g4(yi,xi,wi,zi,θ)
∂λ′1

∂g4(yi,xi,wi,zi,θ)
∂λ′2

∂g4(yi,xi,wi,zi,θ)
∂α′1

∂g4(yi,xi,wi,zi,θ)
∂α′2

(D.8)

≡


G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44

 .(D.9)

Some results needed.

∂bi
∂λ1

= − dvi
(λ2 · dvi)

(D.10)

∂bi
∂λ2

= − dvi
λ2 · dvi

(
yi − λ1 · dvi
λ2 · dvi

)
(D.11)

∂ηi
∂α1

= − zi
α2 · zi

(D.12)

∂ηi
∂α2

= − zi
α2 · zi

(
xi − α1 · zi
α2 · zi

)
(D.13)

Also, for j = 1, 2, let λ̃j the 1 + dim(W ) vector of components of λj corresponding to the

interaction terms xv(x, z;α) and wv(x, z;α). Then for j = 1, 2,

∂ (yi − λ1 · dvi)
∂αj

= −
(
λ̃1 · d̃vi

) ∂ηi
∂αj

(D.14)

∂ (λ2 · dvi)
∂αj

=
(
λ̃2 · d̃vi

) ∂ηi
∂αj

,(D.15)

so that

∂bi
∂αj

=

(
−
(
λ̃1 · d̃vi

)
∂ηi
∂αj

)
(λ2 · dvi)−

((
λ̃2 · d̃vi

)
∂ηi
∂αj

)
(yi − λ1 · dvi)

(λ2 · dvi)2
(D.16)

=
−
(
λ̃1 · d̃vi

)
∂ηi
∂αj
−
((
λ̃2 · d̃vi

)
∂ηi
∂αj

)
bi

(λ2 · dvi)
(D.17)

= −


(
λ̃1 + λ̃2bi

)
· d̃vi

λ2 · dvi

 ∂ηi
∂αj

.(D.18)
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Last, there is the vector of derivatives

(D.19)
∂dvi
∂αj

=

(
0, 0, xi

∂v(xi, zi;α)

∂αj
, wi

∂v(xi, zi;α)

∂αj

)′
Computing the four blocks. Lower-left block: A first observation is that G31, G32, G41, G42

are all zeros as λ does not enter g3(yi, xi, wi, zi, θ) and g4(yi, xi, wi, zi, θ).

Upper-left block:

(D.20)

[
∂g1(yi,xi,wi,zi,θ)

∂λ′1

∂g1(yi,xi,wi,zi,θ)
∂λ′2

∂g2(yi,xi,wi,zi,θ)
∂λ′1

∂g2(yi,xi,wi,zi,θ)
∂λ′2

]
=

 −dvid
′
vi

λ2·di −dvid
′
vi

λ2·dvi

(
yi−λ1·dvi
λ2·dvi

)
−2

dvid
′
vi

λ2·dvi

(
yi−λ1·dvi
λ2·dvi

)
−2

dvid
′
vi

λ2·dvi

(
yi−λ1·dvi
λ2·dvi

)2
 .

Upper-right block:

There is

∂g1(yi, xi, wi, zi, θ)

∂α′j
=

∂dvi
∂αj

bi + dvi
∂bi
∂αj

(D.21)

=
∂dvi
∂αj

bi −


(
λ̃1 + λ̃2bi

)
· d̃vi

λ2 · dvi

xvi ∂ηi
∂αj

(D.22)

∂g2(yi, xi, wi, zi, θ)

∂α′j
=

∂dvi
∂αj

(
b2i − 1

)
+ 2dvibi

∂bi
∂αj

(D.23)

=
∂di
∂αj

(
b2i − 1

)
− 2


(
λ̃1 + λ̃2bi

)
· d̃vi

λ2 · dvi

 dvi ∂v(xi, zi;α)

∂αj
bi(D.24)

so that

∂g1(yi, xi, wi, zi, θ)

∂α′1
=

∂dvi
∂α1

bi +


(
λ̃1 + λ̃2bi

)
· d̃vi

λ2 · dvi

 dviz
′
i

α2 · zi

∂g1(yi, xi, wi, zi, θ)

∂α′2
=

∂dvi
∂α2

bi +


(
λ̃1 + λ̃2bi

)
· d̃vi

λ2 · dvi

 diz
′
i

α2 · zi
ηi

∂g2(yi, xi, wi, zi, θ)

∂α′1
=

∂dvi
∂α1

(
b2i − 1

)
+ 2


(
λ̃1 + λ̃2bi

)
· d̃vi

λ2 · dvi

 dviz
′
i

α2 · zi
bi

∂g2(yi, x
e
i , wi, zi, θ)

∂α′2
=

∂dvi
∂α2

(
b2i − 1

)
+ 2


(
λ̃1 + λ̃2bi

)
· d̃vi

λ2 · dvi

 dviz
′
i

α2 · zi
v(xi, zi;α)bi.

Lower-right block:

(D.25)

[
∂g3(yi,xi,wi,zi,θ)

∂α′1

∂g3(yi,xi,wi,zi,θ)
∂α′2

∂g4(yi,xi,wi,zi,θ)
∂α′1

∂g4(yi,xi,wi,zi,θ)
∂α′2

]
=

 − ziz
′
i

α2·zi − ziz
′
i

α2·zi

(
xi−α1·zi
α2·zi

)
−2

ziz
′
i

α2·zi

(
xi−α1·zi
α2·zi

)
−2

ziz
′
i

α2·zi

(
xi−α1·zi
α2·zi

)2
 .
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Inverting Go. Putting things together, there is:

Go =


G11 G12 G13 G14

G21 G22 G23 G24

0 0 G33 G34

0 0 G43 G44

 ≡
[

A B

C D

]
.(D.26)

By application of the partitioned inverse formula, and since C =

[
0 0

0 0

]
, there is:

(D.27)

[
A B

C D

]−1
=

[
A−1 −A−1BD−1

0 D−1

]
.

Let’s compute diagonal elements, A−1 and D−1, first. A can be simplified by noting that the

off-diagonal element

(D.28) G12 = E

[
− dvid

′
vi

λ2 · dvi

(
yi − λ1 · dvi
λ2 · dvi

)]
= 0

since E[yi|dvi] = λ1 · dvi, and similarly for G21. Therefore A−1 is simply given by

(D.29) A−1 =

[
G−111 0

0 G−122

]
,

since A is diagonal. Similarly, D can be simplified by noting that the off-diagonal element

(D.30) G34 = E

[
− ziz

′
i

α2 · zi

(
xi − α1 · zi
α2 · zi

)]
= 0

since E[xi|zi] = α1 · zi, and similarly for G43. Therefore, D−1 is simply given by

(D.31) D−1 =

[
G−133 0

0 G−144

]
.

Therefore, the off-diagonal element −A−1BD−1 is given by

−A−1BD−1 = −

[
G−111 0

0 G−122

][
G13 G14

G23 G24

][
G−133 0

0 G−144

]

= −

[
G−111 G13G

−1
33 G−111 G14G

−1
44

G−122 G23G
−1
33 G−122 G24G

−1
44

]
.(D.32)
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Figure 5. Statistical (Left) and structural (Right) demand functions by in-
come groups - Conditional on V = .5.
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Appendix E. Additional Results for The Empirical Application

Figure 5 shows estimated demand functions when the following empirical specification is

considered for the structural equation:

(E.1) yi = β∗11x̃i + β∗12ri + β∗13x̃iri + β∗14wi + (β∗21x̃i + β∗22ri + β∗23x̃iri + β∗24wi)ε
∗
i ,

where, for observation i, ri and yi denote log income and log gasoline demand and x̃i is a

vector of transformations of log prices. wi is a vector of additional demographic characteristics

of the household including: age of the household respondent, household size, and the number

of drivers in the household (all measured in logs). wi also includes an intercept. Number of

employed household members is also included. As in the main text, transformations are taken

to be cubic B-splines with 4 equally spaced knots.
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