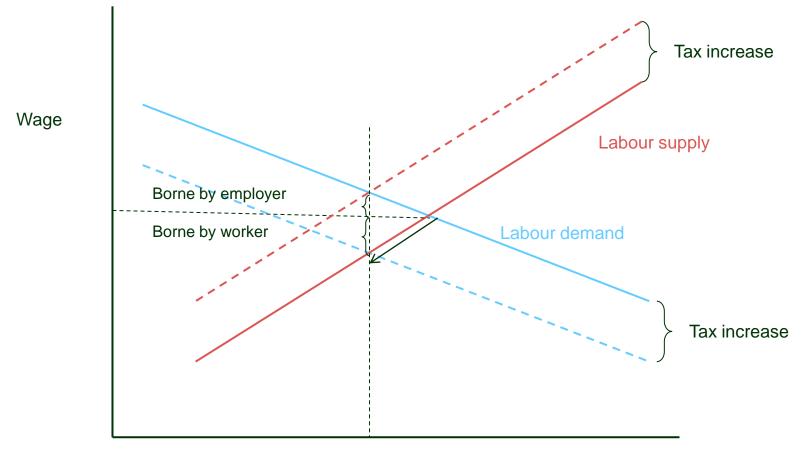


35 years of reforms: a panel analysis of the incidence of, and employee and employer responses to, social security contributions in the UK

Stuart Adam, David Phillips, and Barra Roantree

Paper summary

- Examine hours and earnings responses to changes in employee and employer SSCs in UK
 - Using data from 1978 2010 and panel estimation
 - Reforms affecting employee and employer SSCs differently
- Contributions of this paper
 - Careful consideration of behavioural response and incidence
 - More consistent approach to examining immediate and slightly longer run effects
 - Add to limited work on SSCs and in UK
- Key findings:
 - Moderate compensated hours responses to employee SSCs
 - Moderate income effects on hours of work
 - Economic incidence follows statutory incidence, with little shifting (in either direction) after 12-18 months


- Background and related literature
- UK policy context
- Data
- Conceptual framework
- Econometric methodology
- Results
- Summary and future directions

- Background and related literature
- UK policy context
- Data
- Conceptual framework
- Econometric methodology
- Results
- Summary and future directions

Behavioural response and incidence intertwined

Labour supply / demand

'New Tax Responsiveness' literature

- Implicit assumption of full incidence on workers
 - Reflect focus of NTR literature on income tax rather than SSCs?
- The incidence of a tax not affect its efficiency cost
 - But affects distributional, and potentially revenue, effects
 - Can also affect empirical estimation or interpretation
- E.g. increase in average income tax or employee SSCs rate is associated with an increase in earnings
 - Is that a standard income effect?
 - Or is that shifting of the tax on to employers?
- Some studies rule out income effects and exclude changes in average tax rates (or virtual income) from regressions
 - Also need to assume incidence on workers for this to be valid

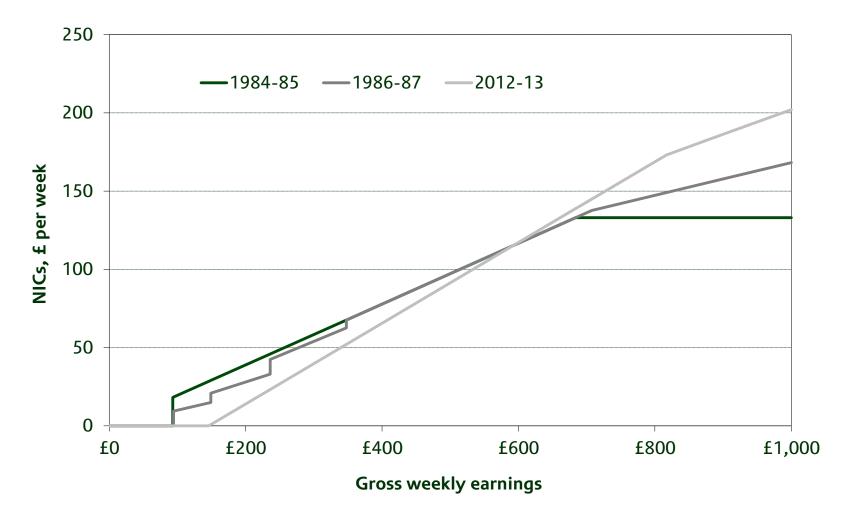
Tax incidence literature

- Focuses more on SSCs than NTR literature
 - Employment/hours as measure of behavioural response
 - Earnings/wages as incidence
- Lack of consensus on incidence:
 - Some studies (Gruber, 1997) find evidence of incidence on worker
 - Others find incidence at least partly on 'employer' (Kubic, 2004, Saez et al, 2012)
- Surprisingly few studies examine whether statutory splitting of incidence of SSCs between employees and employers matters
 - Sticky wages may mean it matters in short run?
 - But supply and demand mean not over longer term?

This paper's contribution

- Examines behavioural responses to and incidence of UK's SSCs: National Insurance contributions (NICs)
 - Set out assumptions required to interpret effects on earnings, hours and hourly earnings as behaviour or incidence
- Separately analyse effects of employee and employer NICs
- Examine very short term (0 6 month) and slightly longer term (12 – 18 month) effects
 - Use of lagged changes in NICs rates to examine longer run effects

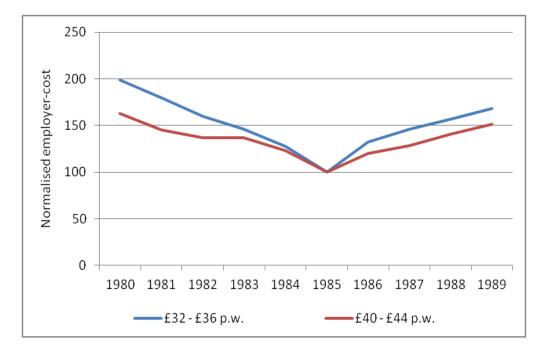
- Background and related literature
- UK policy context
- Data
- Conceptual framework
- Econometric methodology
- Results
- Summary and future directions



The UK's NICs system

- NICs paid by both employers and employees
 - Function of employees gross earnings (including employee but not employer pension contributions)
 - Limited and weakening link between contributions and benefits
- Big changes to rate structure during study period (1978 to 2010)

Changing structure of NICs, April 2012 prices


The UK's NICs system

- NICs paid by both employers and employees
 - Function of employees gross earnings (including employee but not employer pension contributions; including some benefits-in-kind)
 - Limited and weakening link between contributions and benefits
- Big changes to rate structure during study period (1978 to 2010)
 - Major reforms in 1985, 1989 and 1999, reforming and then removing a series of 'notches' in NICs liabilities
- These and other reforms affect average and marginal rates differently; and affect employee and employer NICs differently
 - Allow us to estimate effect of each tax rate on earnings, hours, etc.

Making use of 32 years of reforms

- Adopt a panel making use of all 32 years because no single reform allows us to identify effect of each of these parameters
- And 'mean reversion' of earnings, etc, particularly problematic when analysing these individual reforms

- Background and related literature
- UK policy context
- Data
- Conceptual framework
- Econometric methodology
- Results
- Summary and future directions

Data: the NESPD (I)

- New Earnings Survey Panel Dataset (NESPD)
 - Compulsory survey of employers payroll records
 - Report on earnings & hours of employees with NI no. ending in '14'
 - In principle random 1% sample, but achieves circa 0.7%
- Non-random non-response could mean estimated effects not representative of overall labour market
 - But better than other available data in UK
- Further restrict our estimation sample
 - Panel method, use of lags and instrumenting means need to be in NESPD for 3 – 5 consecutive years
 - Drop those around lowest NICs threshold significant bunching
 - Final sample: 33-40% of overall sample (around 1.5–2 million in total)

Data: the NESPD (II)

- Calculate NICs rates based on reported earnings and rate structure
 - Very good (but not perfect) measure of NICable earnings
- Do not observe which employees paying lower 'married women's rate' (available to those who started claiming it before 1977), or lower rate for those 'contracting out' from part of state pension
 - Ignore both and apply standard NICs rates
 - Reforms we use for identification affect 'contracting out' the same
- Survey is conducted in April, typically just after NICs reforms
 - But major reforms in 1985 and 1989 in October, and reforms announced at least a few months prior to implementation
- Immediate incidence likely to be close to statutory incidence
 - Examine incidence (and behaviour) in subsequent year, 12 18 months after reform

- Background and related literature
- UK policy context
- Data
- Conceptual framework
- Econometric methodology
- Results
- Summary and future directions

Conceptual framework: employer cost (I)

• Build on work of Lehmann et al (2013), who show that earnings responses to changes in tax/NICs rates satisfy:

$$\frac{\Delta Z}{Z} = \beta_{Z,\tau}^{R} \frac{\Delta \tau^{R}}{\tau^{R}} + \beta_{Z,\tau}^{E} \frac{\Delta \tau^{E}}{\tau^{RE}} + \beta_{Z,\rho}^{R} \frac{\Delta \rho^{R}}{\rho^{R}} + \beta_{Z,\tau}^{E} \frac{\Delta \rho^{E}}{\rho^{E}}$$

Z = employer cost (gross earnings + employer NICs)

 τ^{E} and τ^{R} are employee and employer net-of-marginal NICs rates; ρ^{E} and ρ^{R} are employee and employer net-of-average NICs rates

 $\beta_{Z,\tau}^R$ and $\beta_{Z,\tau}^E$ are compensated elasticities of employer cost wrt NICs

- Note that changes in net-of-average NICs rates ($\Delta \rho$ I) are calculated holding earnings fixed at pre-reform levels
 - Lehmann (2013) provides a proof showing using standard net-ofaverage NICs rates ($\Delta \rho$) is inconsistent with underlying behaviour

Conceptual framework: employer cost (II)

- Usually coefficients on net-of-average NICs rates (e.g. $\beta_{Z,\rho}^{R}$) are interpreted as income effects. But also pick up incidence.
- e.g. Employer cost increase when employee NICs increase
 - Income effect?
 - Or shifting of burden on to employers?
- Additional assumptions required & paper uses two approaches
 - Using data on employer cost only
 - Also making use of data on hours of work
- If making use of data on employer cost only, then
 - Assume income effects (e.g. 0) → estimate incidence
 - − Assume incidence (e.g. on employees) → estimate income effects

Conceptual framework: employer cost (III)

Table 2. Coefficient values under various assumptions about incidence and income effects, employer cost

			Net-of-marginal rate coefs.		average coefs.
		$\beta^R_{Z,\tau}$	$\beta_{Z,\tau}^{E}$.	$\beta^R_{Z,\rho}$	$\beta^{E}_{Z,\rho}$
(1)	Full incidence on employee ^a	≥0	≥0	≤0	≤0
Assu	ming away income effects:				
(2)	Sharing of incidence ^b	≥0	≥0	-1<β<0	-1<β<0
(3)	Full incidence on employer ^c	≥0	≥0	-1	-1
(4)	Statutory incidence ^d	≥0	≥0	-1	0

Notes: (a) In standard models, furthermore $\beta_{Z,\tau}^R = \beta_{Z,\tau}^E \operatorname{and} \beta_{Z,\rho}^R = \beta_{Z,\rho}^E$.

(b) In standard models, furthermore $\beta_{Z,\tau}^R = \beta_{Z,\tau}^E \operatorname{and} \beta_{Z,\rho}^R = \beta_{Z,\rho}^E$.

(c) Unless labour supply was fully elastic, full incidence on employers requires $\beta_{Z,\tau}^R = \beta_{Z,\tau}^E = 0$.

(d) Statutory incidence requires models with at least temporary gross wage stickiness.

Conceptual framework: hours and hourly cost (I)

- If make use of data on hours, can estimate effect of NICs on hours and hourly employer cost
- Hours pick up standard substitution and income effects
- If assume away income effects operating via non-hours margins of labour supply like effort, then response of hourly employer cost to changes in net-of-average NICs rates picks up incidence

Conceptual framework: hourly cost (II)

Table 4. Coefficient values under various assumptions about incidence and income effects, hourly employer cost

			narginal		average
		_	coefs.	rate coefs.	
		$\beta^R_{Z,\tau}$	$\beta_{Z,\tau}^{E}$.	$\beta^{R}_{Z,\rho}$	$\beta_{Z,\rho}^E$
With	L				
(1)	Full incidence on employee ^a	≥0	≥0	≤0	≤0
Assu	ming away income effects:				
(2)	Sharing of incidence ^b	≥0	≥0	-1<β<0	-1<β<0
(3)	Full incidence on employer ^c	≥0	≥0	-1	-1
(4)	Statutory incidence ^d	≥0	≥0	-1	0
Also	assuming away substitution effects:				
(5)	Sharing of incidence ^b	0	0	-1<β<0	-1<β<0
(6)	Full incidence on employer ^c	0	0	-1	-1
(7)	Statutory incidence ^d	0	0	-1	0

(c) Unless labour supply was fully elastic, full incidence on employers requires $\beta_{Z/H,\tau}^R = \beta_{Z/H,\tau}^E = 0$.

(d) Statutory incidence requires models with at least temporary gross wage stickiness.

- Background and related literature
- UK policy context
- Data
- Conceptual framework
- Econometric methodology
- Results
- Summary and future directions

Empirical specification (I)

 $\Delta ln Z_{i,t} = \alpha_Z + \beta_{Z,\tau}^R \Delta ln \tau_{i,t}^R + \beta_{Z,\tau}^E \Delta ln \tau_{i,t}^E + \beta_{Z,\rho}^R \Delta ln \rho_{i,t}^R | + \beta_{Z,\rho}^E \Delta ln \rho_{i,t}^E | + + \gamma_Z X_{i,t} + \varepsilon_{i,t,Z}$

- Endogeneity problems to be addressed
 - − Change in tax rate → change in earnings → change in tax rates
 - Mean reversion and secular trends
- Standard approach in NTR literature is to instrument for, e.g., $\Delta \tau$ using $\Delta \tau | Z_{t-1}$ and then including functions of Z_{t-1} to control for mean reversion and secular trends
 - Critiqued by Caroline Weber (2014)
 - Shows inclusion of such controls cannot properly control for mean reversion and estimates obtained typically very sensitive to specification of controls

Empirical specification (II)

- Weber (2014) suggests using instruments based on holding earnings fixed at levels in earlier periods (t-1-k)
 - And suggests testing for their 'exogeneity' by difference-in-Sargan test (under assumption instruments based on even earlier earnings, e.g. t-1-k-1, are exogenous)
 - Control for secular trends using functions of Z_{t-1-k}
- We test 'exogeneity' of instruments based on t-2 earnings and find they are exogenous if t-3 and t-4 are exogenous
 - Control for secular trends using (different) functions of Z_{t-2}
 - Also include year dummies to pick up aggregate shocks, inflation
- Instruments based on t-3 used as sensitivity check
 - Main results hold

Lagged NICs changes to examine year-2 effects

• To pick up year-2 effects, include lagged changes in NICs rates

$$\Delta ln Z_{i,t} = \alpha_Z + \sum_{n=0}^{1} (\beta_{Z,\tau}^{R,n} \Delta ln \tau_{i,t-n}^{R} + \beta_{Z,\tau}^{E,n} \Delta ln \tau_{i,t-n}^{E} + \beta_{Z,\rho}^{R,n} \Delta ln \rho_{i,t-n}^{R}| + \beta_{Z,\rho}^{E,n} \Delta ln \rho_{i,t-n}^{E}|) + \gamma_Z X_{i,t}$$
$$+ \varepsilon_{i,t,Z}$$

- Add up coefficients: e.g. $\beta_{Z,\tau}^{R,0} + \beta_{Z,\tau}^{R,1}$
- Examine whether incidence and behavioural effects change over time e.g. equalisation of effects of employer and employee NICs
- Varying duration of difference. eg. $\Delta lnZ_{i,t} = lnZ_{i,t} lnZ_{i,t-3}$ does not properly capture difference between short and longer term effects
 - e.g. if tax changes in period t-3, t-2 and t-1, ΔZ will pick up a combination of all effects, but attribute all to overall tax change between period t-3 and period t

- Background and related literature
- UK policy context
- Data
- Conceptual framework
- Econometric methodology
- Results
- Summary and future directions

		$\Delta lnZ_{i,t}$		
	Cubic	Quintic	Spline	
$\beta^{E,0}_{X,\tau}$	0.270^{*}	0.278^{*}	0.299*	
	(0.1399)	(0.1399)	(0.1380)	
$\beta_{X,\tau}^{E,1}$ (Lag)	-0.060	-0.058	-0.022	
	(0.1056)	(0.1048)	(0.1065)	

 Moderately-sized comp. elasticity for employee NICs

		$\Delta lnZ_{i,t}$		
	Cubic	Quintic	Spline	
$\beta_{X,\tau}^{E,0}$	0.270^{*}	0.278^{*}	0.299*	
$P_{X,\tau}$	(0.1399)	(0.1399)	(0.1380)	
$\beta_{X,\tau}^{E,1}$ (Lag)	-0.060	-0.058	-0.022	
	(0.1056)	(0.1048)	(0.1065)	
$\beta_{X,\tau}^{R,0}$	-0.006	-0.015	-0.009	
· A,t	(0.0753)	(0.0755)	(0.0739)	
$\beta_{X,\tau}^{R,1}$ (Lag)	0.025	0.008	0.033	
	(0.0791)	(0.0787)	(0.0807)	
No. of Observations		1,777,732		

 Moderately-sized comp. elasticity for employee NICs

• Zero comp. elasticity for employer NICs

		$\Delta lnZ_{i,t}$		
	Cubic	Quintic	Spline	
$\beta_{X,\tau}^{E,0}$	0.270^{*}	0.278^{*}	0.299*	
$P_{X,\tau}$	(0.1399)	(0.1399)	(0.1380)	
$\beta_{X,\tau}^{E,1}$ (Lag)	-0.060	-0.058	-0.022	
	(0.1056)	(0.1048)	(0.1065)	
$\beta_{X,\tau}^{R,0}$	-0.006	-0.015	-0.009	
A,	(0.0753)	(0.0755)	(0.0739)	
$\beta_{X,\pi}^{R,1}$ (Lag)	0.025	0.008	0.033	
	(0.0791)	(0.0787)	(0.0807)	
$\beta_{X,\rho}^{E,0}$	0.010	-0.003	-0.04	
· <i>x,p</i>	(0.2367)	(0.2369)	(0.2324)	
$\beta_{X,o}^{E,1}$ (Lag)	-0.132	-0.120	-0.168	
	(0.1642)	(0.1636)	(0.1675)	
No. of Observations		1,777,732		

- Moderately-sized comp. elasticity for employee NICs
- Zero comp. elasticity for employer NICs
- Coefficients on net-of-av employee NICs rate consistent with zero or low income effects and incidence on workers

		$\Delta lnZ_{i,t}$		
	Cubic	Quintic	Spline	
$\beta_{X,\tau}^{E,0}$	0.270^{*}	0.278^{*}	0.299*	
$P_{X,\tau}$	(0.1399)	(0.1399)	(0.1380)	
$\beta_{X,\tau}^{E,1}$ (Lag)	-0.060	-0.058	-0.022	
	(0.1056)	(0.1048)	(0.1065)	
$\beta_{X,\tau}^{R,0}$	-0.006	-0.015	-0.009	
	(0.0753)	(0.0755)	(0.0739)	
$\beta_{X,\tau}^{R,1}$ (Lag)	0.025	0.008	0.033	
	(0.0791)	(0.0787)	(0.0807)	
$\beta_{X,\rho}^{E,0}$	0.010	-0.003	-0.04	
· <i>x,p</i>	(0.2367)	(0.2369)	(0.2324)	
$\beta_{X,\rho}^{E,1}$ (Lag)	-0.132	-0.120	-0.168	
	(0.1642)	(0.1636)	(0.1675)	
$\beta_{X,\rho}^{R,0}$	-1.304*†	-1.304*†	-1.334*†	
Γ Χ,ρ	(0.1408)	(0.1409)	(0.1465)	
$\beta_{X,o}^{R,1}$ (Lag)	-0.222	-0.212	-0.275	
All P	(0.1546)	(0.1536)	(0.1598)	
No. of Observations		1,777,732		

- Moderately-sized comp. elasticity for employee NICs
- Zero comp. elasticity for employer NICs
- Coefficients on net-of-av employee NICs rate consistent with zero or low income effects and incidence on workers
- Coefficients on net-of-av employer rate consistent with income effects and incidence on employer
- Lagged terms insignificant: little evidence of changes between year 1 and 2

Results: hours regressions

		$\Delta ln H_{i,t}$		
	Cubic	Quintic	Spline	
$\beta_{X,\tau}^{E,0}$	0.201*	0.209*	0.227^{*}	
	(0.0995)	(0.0995)	(0.0982)	
$\beta_{X,\tau}^{E,1}$ (Lag)	0.096	0.101	0.105	
	(0.0762)	(0.0756)	(0.0768)	
$\beta_{X,\tau}^{R,0}$	-0.083	-0.092	-0.073	
	(0.0546)	(0.0548)	(0.0535)	
$\beta_{X,\tau}^{R,1}$ (Lag)	-0.118	-0.107	-0.156	
	(0.0603)	(0.0599)	(0.0616)	
$\beta_{X,\rho}^{E,0}$	-0.185	-0.197	-0.235	
- F 1	(0.1645)	(0.1647)	(0.1609)	
$\beta_{X,\rho}^{E,1}$ (Lag)	-0.118	-0.107	-0.156	
	(0.1130)	(0.1124)	(0.1157)	
$\beta^{R,0}_{X,\rho}$	-0.173	-0.176	-0.219*	
- <i>R</i> 1	(0.0922)	(0.0920)	(0.0953)	
$\mathcal{R}^{R,1}_{X,\rho}$ (Lag)	-0.139	-0.135	-0.175	
	(0.1088)	(0.1077)	(0.1129)	
No. of Observations		1,697,556		

- Moderately-sized comp. elasticity for employee NICs
- Zero or slightly negative comp. elasticity for employer NICs
- Moderate sized income effects
- Lagged terms insignificant: little evidence of changes between year 1 and 2
- But year 2 effects reinforce year 1 effects, making them more significant

Results: hours regressions

		$\Delta ln H_{i,t}$		
	Cubic	Quintic	Spline	
$\beta_{X,\tau}^{E,0}$	0.201*	0.209*	0.227^{*}	
	(0.0995)	(0.0995)	(0.0982)	
$\beta_{X,\tau}^{E,1}$ (Lag)	0.096	0.101	0.105	
	(0.0762)	(0.0756)	(0.0768)	
$\beta_{X,\tau}^{R,0}$	-0.083	-0.092	-0.073	
P 1	(0.0546)	(0.0548)	(0.0535)	
$\beta_{X,\tau}^{R,1}$ (Lag)	-0.118	-0.107	-0.156	
	(0.0603)	(0.0599)	(0.0616)	
$\beta_{X,\rho}^{E,0}$	-0.185	-0.197	-0.235	
- F 1	(0.1645)	(0.1647)	(0.1609)	
$\beta_{X,\rho}^{E,1}$ (Lag)	-0.118	-0.107	-0.156	
	(0.1130)	(0.1124)	(0.1157)	
$\beta^{R,0}_{X,\rho}$	-0.173	-0.176	-0.219*	
- <i>R</i> 1	(0.0922)	(0.0920)	(0.0953)	
$\mathcal{R}^{R,1}_{X,\rho}$ (Lag)	-0.139	-0.135	-0.175	
	(0.1088)	(0.1077)	(0.1129)	
No. of Observations		1,697,556		

- Moderately-sized comp. elasticity for employee NICs
- Zero or slightly negative comp. elasticity for employer NICs
- Moderate sized income effects
- Lagged terms insignificant: little evidence of changes between year 1 and 2
- But year 2 effects reinforce year 1 effects, making them more significant

Results: hours regressions

		$\Delta ln H_{i,t}$		
	Cubic	Quintic	Spline	
$\beta_{X,\tau}^{E,0}$	0.201^{*}	0.209*	0.227^{*}	
	(0.0995)	(0.0995)	(0.0982)	
$\beta_{X,\tau}^{E,1}$ (Lag)	0.096	0.101	0.105	
	(0.0762)	(0.0756)	(0.0768)	
$\beta_{X,\tau}^{R,0}$	-0.083	-0.092	-0.073	
- P 1	(0.0546)	(0.0548)	(0.0535)	
$\beta_{X,\tau}^{R,1}$ (Lag)	-0.118	-0.107	-0.156	
	(0.0603)	(0.0599)	(0.0616)	
$\beta_{X,\rho}^{E,0}$	-0.185	-0.197	-0.235	
-F.1	(0.1645)	(0.1647)	(0.1609)	
$\beta_{X,\rho}^{E,1}$ (Lag)	-0.118	-0.107	-0.156	
5.0	(0.1130)	(0.1124)	(0.1157)	
$\beta^{R,0}_{X,\rho}$	-0.173	-0.176	-0.219*	
o.R.1	(0.0922)	(0.0920)	(0.0953)	
$\mathcal{S}_{X,\rho}^{R,1}$ (Lag)	-0.139	-0.135	-0.175	
	(0.1088)	(0.1077)	(0.1129)	
No. of Observations		1,697,556		

- Moderately-sized comp. elasticity for employee NICs
- Zero or slightly negative comp. elasticity for employer NICs
- Moderate sized income effects
- Lagged terms insignificant: little evidence of changes between year 1 and 2
- But year 2 effects reinforce year 1 effects, making them more significant

	Δ	$\Delta ln(Z/H)_{i,t}$		
	Cubic	Quintic	Spline	
$\beta_{X,\tau}^{E,0}$	0.140	0.142	0.136	
	(0.0999)	(0.0999)	(0.0987)	
$\beta_{X,\tau}^{E,1}$ (Lag)	-0.193*	-0.186^{*}	-0.172^{*}	
	(0.0735)	(0.0730)	(0.0742)	
$\beta_{X,\tau}^{R,0}$	0.020	0.020	0.004	
	(0.0484)	(0.0486)	(0.0475)	
$\beta_{X,\tau}^{R,1}$ (Lag)	0.028	0.027	0.015	
	(0.0531)	(0.0528)	(0.0541)	
$\beta_{X,\rho}^{E,0}$	0.201	0.194	0.219	
F 1	(0.1598)	(0.1601)	(0.1570)	
$\beta_{X,\rho}^{E,1}$ (Lag)	0.055	0.053	0.074	
	(0.1142)	(0.1138)	(0.1165)	
$\beta_{X,\rho}^{R,0}$	-0.986*	-1.000^{*}	-0.951 *	
- <i>R</i> -1	(0.0981)	(0.0981)	(0.1009)	
$\beta_{X,\rho}^{R,1}$ (Lag)	0.098	0.087	0.101	
	(0.1080)	(0.1074)	(0.1114)	
No. of Observations		1,697,556		

- Coefficient ~ -1 for net-ofaverage employer NICs
- Coefficient ~ 0 for net-ofaverage employee NICs

	Δ	$\Delta ln(Z/H)_{i,t}$		
	Cubic	Quintic	Spline	
$\beta_{X,\tau}^{E,0}$	0.140	0.142	0.136	
	(0.0999)	(0.0999)	(0.0987)	
$\beta_{X,\tau}^{E,1}$ (Lag)	-0.193*	-0.186*	-0.172^{*}	
	(0.0735)	(0.0730)	(0.0742)	
$\beta_{X,\tau}^{R,0}$	0.020	0.020	0.004	
P 1	(0.0484)	(0.0486)	(0.0475)	
$\beta_{X,\tau}^{R,1}$ (Lag)	0.028	0.027	0.015	
	(0.0531)	(0.0528)	(0.0541)	
$\beta_{X,\rho}^{E,0}$	0.201	0.194	0.219	
- F 1	(0.1598)	(0.1601)	(0.1570)	
$\beta_{X,\rho}^{E,1}$ (Lag)	0.055	0.053	0.074	
	(0.1142)	(0.1138)	(0.1165)	
$\beta_{X,\rho}^{R,0}$	-0.986*	-1.000^{*}	-0.951*	
o.R.1	(0.0981)	(0.0981)	(0.1009)	
$\beta_{X,\rho}^{R,1}$ (Lag)	0.098	0.087	0.101	
	(0.1080)	(0.1074)	(0.1114)	
No. of Observations		1,697,556		

- Coefficient ~ -1 for net-ofaverage employer NICs
- Coefficient ~ 0 for net-ofaverage employee NICs
- Economic incidence follows statutory
- Lagged terms insignificant: little evidence of moves away from statutory incidence between year 1 and 2

- Background and related literature
- UK policy context
- Data
- Conceptual framework
- Econometric methodology
- Results
- Summary and future directions

Summary of results

- Responses of employer costs and hours to employee and employer NICs differs
 - +ve compensated elasticity for employee NICs
 - -ve income effects for both employees and employer NICs
 - Statutory incidence in the first and second year following reform
- Main results are robust to using instruments based on earlier instruments
 - Although a number of other coefficients more sensitive
- Results are very similar to Lehmann et al (2013) in France
 - We extend by looking at hours as well as employer cost
 - And slightly longer run as well as immediate responses

Possible extensions

- Disaggregate results according to sex, age, earnings-level, occupation, etc
- Extend number of lagged changes in NICs rates to look at third and fourth year responses
- Extend analysis to look at other labour taxes (e.g. Income tax, or withdrawal of benefits and tax credits)
 - Require alternative data as depend on family income not just earnings

