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Abstract

This paper considers nonparametric additive models that have a deterministic time

trend and both stationary and integrated variables as components. The diverse nature

of the regressors caters for applications in a variety of settings. In addition, we extend

the analysis to allow the stationary regressor to be instead locally stationary, and we

allow the models to include a linear form of the integrated variable. Heteroscedasticity

is allowed for in all models. We propose an estimation strategy based on orthogonal

series expansion that takes account of the different type of stationarity/nonstationarity

possessed by each covariate. We establish pointwise asymptotic distribution theory

jointly for all estimators of unknown functions and also show the conventional optimal

convergence rates jointly in the L2 sense. In spite of the entanglement of different kinds

of regressors, we can separate out the distribution theory for each estimator. We provide

Monte Carlo simulations that establish the favourable properties of our procedures in

moderate sized samples. Finally, we apply our techniques to the study of a pairs trading

strategy.
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1 Introduction

This paper is devoted to the investigation of additively separable nonparametric regressions

with deterministic time trend, stationary and nonstationary variables. In practice all these

types of variables are important in applications in economics, finance and related fields. For

example, aggregate consumption, disposable income and share prices are widely accepted as

being (globally) nonstationary variables, while interest rates and the volume of share trading

are often taken as stationary variables or locally stationary variables with mild trends. Some

variables may also contain a deterministic time trend. Therefore, from a practical point

of view, it is necessary to study regression with different kinds of regressors. The choice

of functional form is also important, and we should not like to restrict the shape of the

regression functions, this is quite hard to address in the presence of nonstationarity, which is

the purpose of our study.

Grenander and Rosenblatt [16] is a classic treatment of parametric deterministic trend

models, while Phillips [31, 32] provide an update and discussion. There are a number of

papers that develop theory for nonparametric regression with nonstationary variables alone.

Karlsen et al. [19] investigate the nonparametric regression situation where the single covari-

ate is a recurrent Markov chain. Schienle [36] investigates additive nonparametric regressions

with Harris recurrent covariates and obtained a limit theory for kernel smooth backfitting

estimators. Wang and Phillips [43] consider an alternative treatment by making use of local

time limit theory and, instead of recurrent Markov chains, worked with partial sum repre-

sentations. Phillips et al. [33] consider a functional coefficient model where the covariates

are unit root processes and the functional coefficient is driven by rescaled time. Wang [42]

gives an excellent overview of the tools needed for distribution theory in a variety of these

settings.

To the best of our knowledge, there are no theoretical studies that accommodate these

three kinds of regressors in a nonparametric setting. The closest study is Chang et al. [4]

where, though all the three regressors are contained, a nonlinear parametric model is studied,

that is, all functions are supposed to be known. In addition, there are a number of studies

that contain regressors with two of these features and most of them are linear regression

with perhaps functional coefficients. Park and Hahn [27] study linear regression with I(1)

regressor and time varying coefficients depending on fixed design; Xiao [44] studies functional-

coefficient cointegration regression where the coefficients depend on a stationary variable and

the regressor is an I(1) vector; Cai et al. [3] study a similar model with more flexibility; more

interestingly, Li et al. [21] recently investigate the convergence of sample covariances which

have I(1) process and a variable that can be a fixed design or a random design but not both.
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In this paper, we mainly consider the model

yt = β(t/n) + g(zt) +m(xt) + et, t = 1, . . . , n (1.1)

where: β, g and m are unknown smooth functions, zt is a stationary process, xt is an inte-

grated process, et is an error term. Here, β(·) is defined on [0,1], g(·) is defined on Vz, the

support of z1, and m(·) is supposed to be integrable and defined on R. Notice that Vz could

be a finite interval like [a, b] or an infinite interval like (−∞,∞) or (0,∞).

All unknown functions will be estimated by the series method, which is particularly

convenient in additive models (Andrews and Whang [1]), compared with the kernel method

that requires an iterative “backfitting technique” (Mammen et al. [25]). Indeed, the series

method gives an explicit solution for the estimators obtained by the ordinary least squares,

which facilitates the asymptotic analyses. In contrast, the smooth backfitting technique needs

two steps, in order to derive the estimators. See, for example, Vogt [41, p. 2612].

Moreover, the setting of model (1.1) is quite different from existing papers such as Dong

et al. [9] and Phillips et al. [33]. Note that Dong et al. [9] mainly investigates a single-

index model with an integrated regressor that does not contain either deterministic trend

or stationary variable, while Phillips et al. [33] deals with a functional-coefficient model. In

particular, the approach of deriving asymptotic distribution makes much improvement in this

paper as simultaneously three types of variables are involved in nonparametric models.

The most important feature of model (1.1) is the diverse nature of the regressors, which

permits a wide variety of applications. This, however, gives rise to a challenge for the

asymptotic analyses. Our findings include that: (1) the interactions between m(xt), properly

normalized, and any one of the other components eventually vanishes; (2) although different

kinds of variables are entangled inside the estimators, each has its own separable convergence

rate; (3) conventional optimal convergence rates are attainable.

We further extend the model (1.1) in two respects. We shall relax the stationary process

zt to be a locally stationary process. That is, we consider also

yt = β(t/n) + g(znt) +m(xt) + et, (1.2)

where t = 1, . . . , n, all ingredients are the same as in model (1.1) except that znt is a locally

stationary process defined below. This class of processes has received a lot of attention

recently, (see, Vogt, 2012), and it captures an important notion that there is slowly evolving

change. In addition, since the integrability of the function m(·) excludes the polynomial form

in xt, we extend the model below to contain a linear form of the integrated process. It is clear

that this linear form may be substituted by any polynomial without constant and similar

theoretical results remain true.
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We work with scalar covariates although it is easy to extend the theory to allow the

stationary or locally stationary regressor znt to be a vector (znt;j, j = 1, . . . , d) and g(znt) =∑d
j=1 gj(znt;j), but we have eschewed this further complication due to its notational cost.

Our procedure is easy to implement and we verify in simulation experiments that the

distribution theory we obtain well captures the finite sample behaviour of our estimators.

We apply our methodology to the study of pairs trading, [see, 15]. We consider the stock

prices of Coke and Pepsi and build a model that links these prices and allows for globally

nonstationary components, slowly moving deterministic trends, and a stationary or locally

stationary covariate, in our case the relative trading volume of the two common stocks.

We find that our model captures important nonlinearity and evolutionary behaviour in the

relationship between the two stock prices that the usual linear cointegrating relationship

ignores. The value of our approach is quantified through out of sample forecast and trading

profits relative to the linear alternative.

The organization of the rest is as follows. Section 2 describes the procedure of estimation;

Section 3 gives the entire asymptotic theory that covers the normality of estimators for model

(1.1) in Section 3.1, that for model (1.2) in Section 3.2 and that for the extended model which

contains an extra linear form of xt in Section 3.3; Monte Carlo experiment is conducted in

Section 4, followed by an empirical study in Section 5, and Section 6 concludes. Appendix

A contains all technical lemmas whose proofs are relegated to the supplementary material of

the paper; Appendix B gives the proofs of theorems in Section 3.1-3.2 while that of all other

theorems, proposition and corollaries are shown in the supplement.

Throughout the paper, Ik is the identity matrix of dimension k; ‖v‖ is Euclidean norm

for any vector v and ‖A‖ is entry-wise norm for any matrix;
∫
f(x)dx is an integral on the

entire R; C, C1, · · · , can be any constants and may be different at each appearance.

2 Assumptions and estimation procedure

This section gives assumptions on the regressors and the error term as well as the procedure

by which the unknown functions are estimated.

2.1 Assumptions

We first give the structure of the integrated regressor xt that we shall assume.

Assumption A

A.1 Let {εj,−∞ < j < ∞} be a scalar sequence of independent and identically distributed

(i.i.d.) random variables having an absolutely continuous distribution with respect to
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the Lebesgue measure and satisfying E[ε1] = 0,E[ε21] = 1,E|ε1|q1 < ∞ for some q1 ≥ 4.

The characteristic function of ε1 satisfies that
∫
|λ||E exp(iλε1)|dλ <∞.

A.2 Let wt =
∑∞

j=0 ψjεt−j where
∑∞

j=0 j|ψj| <∞ and ψ :=
∑∞

j=0 ψj 6= 0.

A.3 For t ≥ 1, xt = xt−1 + wt, and x0 = OP (1).

The conditions in Assumption A are commonly used in the literature concerning unit root

time series (see, e.g. Park and Phillips 28, 29 and Dong et al. 9). The innovation variables

{εj} are building blocks for the linear process wt from which the regressor is obtained by

integration. All crucial properties of xt for our theoretical development given in Lemma A.1

are derived from the I(1) structure.

Meanwhile, from the structure of xt, we may have d2n := E(x2n) = ψ2n(1 + o(1)) simply by

virtue of the BN decomposition for wt [34, p. 972]. It follows that for r ∈ [0, 1], d−1n x[nr] →D

W (r) in the space D[0, 1] as n → ∞, where [·] is the biggest integer not exceeding the

argument. Here, D[0, 1] is the Skorokhod space on [0, 1], that is, the collection of functions

defined on [0, 1] that are everywhere right-continuous and have left limits everywhere; W (r)

is a standard Brownian motion and our theory developed below depends on its local time

process defined by LW (r, a) = limε→0 ε
−1 ∫ r

0
I(|W (u)− a| < ε)du, where I(·) is the indicator

function. Note that LW (r, a) stands for the sojourn time of the process W (·) at the spatial

point a over the time period [0, r], and Revuz and Yor [35] is a standard book introducing

the local time of Brownian motion.

Assumption B

B.1 Suppose that either (a) zt is a strictly stationary and α-mixing process with mixing

coefficients α(i) such that
∑∞

i=1 α
δ/(2+δ)(i) <∞ for some δ > 0, and zt are independent of

{εj,−∞ < j <∞} defined in Assumption A; or (b) zt = ρ(εt, · · · , εt−d+1; ηt, · · · , ηt−d+1)

with fixed d and measurable function ρ : R2d 7→ R, and zt have finite second moment,

where i.i.d.(0,1) sequence {ηj} is independent of {εj}.

B.2 There exists an orthogonal function sequence {pi(z), i ≥ 0} on the support Vz of z1 and

the orthogonality is with respect to dF (z) where F (z) is a distribution function on Vz.

In addition, for δ > 0 given by Assumption B.1, we have either (a) E|pj(z1)|2(2+δ) = O(j)

for large j or (b) supj≥0 E|pj(z1)|2(2+δ) <∞.

B.3 There is a filtration sequence Fn,t such that (et,Fn,t) form a martingale difference se-

quence and (zt, xt) is adapted to Fn,t−1. Moreover, almost surely E(e2t |Fn,t−1) = σ2(t/n),

where σ2(·) is a positive continuous function on [0, 1] and max1≤t≤n E(|et|q2|Fn,t−1) <∞
for some q2 ≥ 4.
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Condition B.1 takes into account two cases for zt. In (a), zt is an α-mixing stationary

process (a common assumption that we only refer the readers to Gao [12]) and independent

of xt, while in (b), zt is correlated with xt by sharing the same εt, · · · , εt−d+1. These two

conditions are different but overlap, because zt in (b) is d-dependent, a subclass of α-mixing

process, while in terms of the relationship with xt they are mutually exclusive. Definitely,

the presence of the correlation between xt and zt would give rise to a challenge for our

theoretical derivation. To tackle the issue, we show the probability properties of xt and its

decompositions in Lemmas A.1-A.2 and the correlation for functions of xt and zt in Lemma

A.3 below. Due to these lemmas we are able to deal with the correlation in model (1.1) and

hence our model is applicable broadly.

Condition B.2 stipulates an orthogonal sequence {pi(z), i ≥ 0} on the support V (≡ Vz,

the subscript is suppressed here and below) that is used to approximate the unknown function

g(·) in the regression model.

Given a support V ⊂ R, the choice of the density dF (z) determines what function space we

shall work with. It is well known that an orthogonal polynomial sequence can be constructed

on a support with respect to a density by the Gram-Schmidt orthonormalization theorem.

See, for example, Dudley [10, p. 168]. If z1 is normal, V = R, the sequence is consisting

of Hermite polynomials given dF (z) = (2π)−1/2e−z
2/2dz; if z1 has support V = [0,∞), the

sequence is consisting of Laguerre polynomials given dF (z) = e−zdz; if V = [0, 1], orthogonal

trigonometric polynomials could be used; if V = [−1, 1], the orthogonal polynomials are

Chebyshev or Legendre polynomials.

Notice also that Conditions (a) and (b) in B.2 are about how to control the high order

moments of the basis pj(x) and are used to measure the divergence of certain partial sum

below. Because we do not specify the interval V of the variable z1, there are two cases

considered herein. B.2(a) is tackling the case that V is an infinite interval where the high

order moment of pj(x) diverges with j, while B.2(b) is mainly for the case where V is a

compact set (e.g. [0, 1], [−1, 1] and so on) such that the high order moment is uniformly

bounded with j. The moment condition is mild and commonly used. In the literature,

B.2(a) is used in Assumption 3 of Dong et al. [8] and B.2(b) is used in Assumption 3 of Su

and Jin [39]. It is worth to point out that the similar assumption for bases used to estimate

β(·) and m(·) (i.e. ϕj(·) and Hj(·) below) is not necessary since these are specified bounded

functions.

The martingale difference structure for the error term is extensively used in the litera-

ture such as Park and Phillips [28, 29] and Gao and Phillips [13] among others. However,

Condition B.3 here allows heteroscedasticity that is a function depending on the normalized

time t/n. This makes our theoretical results more applicable, but the function σ2(·) might be
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multivariate to contain additionally either zt or xt even both. This possibility would affect

a bit the conditional variance matrices studied below while the main results still hold. To

preserve space, we do not consider all possibilities in this regard.

In order to be more applicable, we may allow zt in model (1.1) to be a locally stationary

process, which is defined as follows.

Definition 2.1 (Locally stationary process)

Process {znt} is locally stationary if for each rescaled time point v ∈ [0, 1] there exists an

associated process {zt(v)} satisfying:

(i) {zt(v)} is strictly stationary;

(ii) it holds that

|znt − zt(v)| ≤
(∣∣∣∣ tn − v

∣∣∣∣+
1

n

)
Unt(v) a.s.,

where Unt(v) is a process of positive variables such that E[(Unt(v))q3 ] < C for some

q3 ≥ 1 and C > 0 independent of v, t and n.

This definition of locally stationarity accommodates a variety of financial datasets. Koo

and Linton [20] give sufficient conditions under which a time-inhomogeneous diffusion process

is locally stationary and meanwhile, Vogt [41] studies nonparametric regression for locally

stationary time series. Certainly, each stationary process is locally stationary.

Assumption B* Suppose that

B*.1 {znt} is locally stationary with associated process {zt(v)}, and all znt ( 1 ≤ t ≤ n) have

the same compact support Vz = [amin, amax]. Moreover, the density f(v, z) of zt(v) is

smooth in v.

B*.2 For all t and any v ∈ [0, 1], either (a) zt(v) satisfies Assumption B.1.a, or (b) zt(v)

satisfies Assumption B.1.b.

B*.3 There exists an orthogonal function sequence {pi(z), i ≥ 0} on the support [amin, amax]

with respect to dF (z) such that supv∈[0,1] supj≥0 E|pj(z1(v))| <∞.

B*.4 Suppose that there is a filtration sequence Fnt such that (et,Fn,t) form a martingale

difference sequence and (zt(t/n), xt) is adapted with Fn,t−1. Meanwhile, E(e2t |Fn,t−1) =

σ2(t/n) almost surely with continuous and nonzero function σ(·) and for some q3 ≥ 4,

max1≤t≤n E(|et|q3|Fn,t−1) <∞.
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This assumption allows us to approximate the locally stationary variable znt by stationary

variable zt(v) when t/n is in a small neighborhood of v. Thus, the theoretical results below

may be applicable. As studied in Koo and Linton [20, p. 212], {znt} may have a common

domain of closed interval. Thus, we simply require the support of the locally stationary

process to be compact in this paper. Moreover, {zt(v)} possibly is α-mixing and β-mixing,

as studied in Koo and Linton [20] and Chen et al. [6]. Moreover, Theorem 3.3 of Vogt [41]

shows, under certain conditions, the density f(v, z) of zt(v) is smooth in v. Here again, by

B*.2 we allow the associated stationary process to be either independent of or correlated with

the nonstationary process xt.

Basically, Assumptions B*.1 is particularly for the local stationary process, while Assump-

tions B*.2-B*.4 are a generalized version of Assumptions B.1-B.3, that take into account the

dependence of the locally stationarity on the normalized time v ∈ [0, 1]. As znt is approximat-

ed asymptotically by the stationary process zt(t/n), the condition of et in B*.4 is assumed

to be a martingale difference sequence with respect to a filtration that satisfies conditions

similar to B.3 of Assumption B.

2.2 Estimation procedure

The least squares series estimation method is used to estimate all unknown functions in

models (1.1) and (1.2). By nature these functions belong to different function spaces, and

therefore we introduce these function spaces and their orthonormal bases.

First, suppose that β(·) ∈ L2[0, 1] = {u(r) :
∫ 1

0
u2(r)dr <∞}, in which the inner product

is given by 〈u1, u2〉 =
∫ 1

0
u1(r)u2(r)dr and the induced norm ‖u‖2 = 〈u, u〉. Let ϕ0(r) ≡ 1,

and for j ≥ 1, ϕj(r) =
√

2 cos(πjr). Then, {ϕj(r)} is an orthonormal basis in the Hilbert

space L2[0, 1], 〈ϕi(r), ϕj(r)〉 = δij the Kronecker delta. The basis {ϕj(r)} is used to expand

the unknown continuous function β(r) ∈ L2[0, 1] into orthogonal series, that is,

β(r) =
∞∑
j=0

c1,jϕj(r), where c1,j = 〈β(r), ϕj(r)〉. (2.1)

It is noteworthy that {ϕj(r)} can be replaced by any other orthonormal basis in L2[0, 1],

as shown in Chen and Shen [7], Gao et al. [14] and Phillips [30] among others. However,

with this specific basis other than a general one we do not need any assumption on it, and

all quantities related to the basis are easily and directly calculated. See Lemma A.2 below.

Second, in order to expand g(zt), suppose that the function g(·) is in Hilbert space

L2(V, dF (x)) = {q(x) :
∫
V
q2(x)dF (x) < ∞} where F (x) is a distribution on the support

V that may not be compact. The sequence {pj(x), j ≥ 0} in Assumption B.2 is an orthonor-

mal basis in L2(V, dF (x)) where an inner product is given by 〈q1, q2〉 =
∫
V
q1(x)q2(x)dF (x)
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and the induced norm ‖q‖2 = 〈q, q〉. Hence, the unknown function g(x) has an orthogonal

series expansion in terms of the basis of {pj(x), j ≥ 0}, viz.,

g(x) =
∞∑
j=0

c2,jpj(x), where c2,j = 〈g(x), pj(x)〉. (2.2)

Third, because of xt = OP (
√
t), the support of m(·) has to be R. We thus suppose

m(·) ∈ L2(R) = {f(x) :
∫
f 2(x)dx < ∞} in which an inner product is given by 〈f1, f2〉 =∫

f1(x)f2(x)dx and the induced norm ‖f‖2 = 〈f, f〉. To expand m(x), recall the Hermite

polynomials {Hj(x)} and the Hermite functions {Hj(x)}. By definition

Hj(x) = (−1)j exp(x2)
dj

dxj
exp(−x2), j ≥ 0, (2.3)

are Hermite polynomials such that
∫
Hi(x)Hj(x) exp(−x2)dx =

√
π2jj!δij, meaning that they

are orthogonal with respect to the density exp(−x2). It is known that

Hj(x) = (
√
π2jj!)−1/2Hj(x) exp

(
−x

2

2

)
, j ≥ 0, (2.4)

are called Hermite functions in the relevant literature.

The orthogonality of the Hermite polynomials implies that 〈Hi(x),Hj(x)〉 = δij. In

addition, {Hj(x)} is bounded uniformly in both j and x ∈ R. See Szego [40, p. 242].

Moreover, {Hj(x)} is an orthonormal basis in Hilbert space L2(R). The unknown function

m(x) thence has an orthogonal series expansion in terms of {Hj(x)}, viz.,

m(x) =
∞∑
j=0

c3,jHj(x), where c3,j = 〈m(x),Hj(x)〉. (2.5)

2.2.1 Estimation procedure for model (1.1)

Let ki, i = 1, 2, 3, be positive integers. Define truncation series with truncation parameter

k1 for β(r) as βk1(r) =
∑k1

j=1 c1,jϕj(r) (noting by Assumption C.2 below that c1,0 = 0) and

residue after truncation γ1k1(r) =
∑∞

j=k1+1 c1,jϕj(r). It is known that βk1(r) → β(r) as

k1 →∞ in pointwise sense for smooth β(r). Similarly, define the truncation series for g(x) as

gk2(x) =
∑k2−1

j=0 c2,jpj(x) and residue after truncation as γ2k2(x) =
∑∞

j=k2
c2,jpj(x); for m(x)

as mk3(x) =
∑k3−1

j=0 c3,jHj(x) and residue after truncation as γ3k3(x) =
∑∞

j=k3
c3,jHj(x). It

follows that gk2(x) → g(x) and mk3(x) → m(x) as k2, k3 → ∞ in some sense under certain

condition. We omit mathematical details in order not to deviate from our main course.

Denote φk1(r) = (ϕ1(r), . . . , ϕk1(r))
ᵀ

and c1 = (c1,1, . . . , c1,k1)
ᵀ
. We then have βk1(r) =

φk1(r)
ᵀ
c1. Denote also ak2(x) = (p0(x), . . . , pk2−1(x))

ᵀ
, bk3(x) = (H0(x), . . . ,Hk3−1(x))

ᵀ
, and

ci = (ci,0, . . . , ci,ki−1)
ᵀ
, i = 2, 3. Accordingly, gk2(x) = ak2(x)

ᵀ
c2 and mk3(x) = bk3(x)

ᵀ
c3.
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Thus, model (1.1) is written as

yt =φk1(t/n)
ᵀ
c1 + ak2(zt)

ᵀ
c2 + bk3(xt)

ᵀ
c3

+ γ1k1(t/n) + γ2k2(zt) + γ3k3(xt) + et,
(2.6)

where t = 1, . . . , n.

To write all equations in (2.6) into a matrix form, let y = (y1, . . . , yn)
ᵀ
, c = (c

ᵀ

1, c
ᵀ

2, c
ᵀ

3)
ᵀ
,

e = (e1, . . . , en)
ᵀ
, γ = (γ(1), . . . , γ(n))

ᵀ
where γ(t) = γ1k1(t/n) + γ2k2(zt) + γ3k3(xt), t =

1, . . . , n, and

Bnk =


φk1(1/n)

ᵀ
ak2(z1)

ᵀ
bk3(x1)

ᵀ

...
...

...

φk1(1)
ᵀ

ak2(zn)
ᵀ
bk3(xn)

ᵀ


a n× k matrix with k = k1 + k2 + k3 for convenience. Consequently, we have

y = Bnkc+ γ + e (2.7)

which by the ordinary least squares (OLS) gives ĉ = (ĉ
ᵀ

1, ĉ
ᵀ

2, ĉ
ᵀ

3)
ᵀ

= (B
ᵀ

nkBnk)
−1B

ᵀ

nky provided

that the matrix B
ᵀ

nkBnk is non-singular (which will be so under our conditions with high

probability).

Therefore, for any r ∈ [0, 1], z ∈ V and x ∈ R define naturally β̂n(r) = φk1(r)
ᵀ
ĉ1,

ĝn(z) = ak2(z)
ᵀ
ĉ2 and m̂n(x) = bk3(x)

ᵀ
ĉ3 as estimators of the unknown functions β, g and m,

which can be wrapped up in a vector

(β̂n(r), ĝn(z), m̂n(x))
ᵀ

= Ψ(r, z, x)
ᵀ
ĉ, (2.8)

where Ψ(r, z, x) is a block matrix given by

Ψ(r, z, x) =


φk1(r) 0 0

0 ak2(z) 0

0 0 bk3(x)


in which 0’s are zero column vectors that have different dimensions over each row. We study

the asymptotics of the estimators in the next section.

2.2.2 Estimation procedure for model (1.2)

In model (1.2) where the regressor zt is replaced by a locally stationary process znt, the

procedure of estimation remains the same, but notice that, ak2(zt) in Bnk in this case are

replaced by ak2(znt), t = 1, . . . , n. Let B̃nk be the counterpart of Bnk in the previous setting.
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Meanwhile, the estimator in (2.8) should be adjusted by using the coefficient vector ĉ calcu-

lated from B̃nk, as the model can be written as y = B̃nkc+ γ̃+ e, where γ̃ = (γ̃(1), . . . , γ̃(n))
ᵀ

with γ̃(t) = γ1k1(t/n) + γ2k2(znt) + γ3k3(xt), t = 1, . . . , n. As a result, ĉ = (B̃
ᵀ

nkB̃nk)
−1B̃

ᵀ

nky.

The asymptotics of these estimators will be studied in the next section as well.

3 Asymptotic theory

We shall first study the asymptotics of the estimators defined in (2.8) for model (1.1). After

this, the estimators for model (1.2) where zt is replaced by a locally stationary process znt

are investigated. Additionally, we also consider in the third subsection an extension of our

model.

3.1 Estimators for model (1.1)

Note by equation (2.7) that ĉ − c = (B
ᵀ

nkBnk)
−1B

ᵀ

nk(γ + e). Thus, it is necessary to study

first the asymptotics of B
ᵀ

nkBnk, which is done under the following assumptions and given by

Lemma A.5.

Assumption C

C.1 The functions β(·), g(·) and m(·) are continuously differentiable up to s1, s2 and s3,

respectively. Moreover, β(s1)(·), g(s2)(·) and m(s3)(·) belong to the Hilbert spaces which

contain the original functions, respectively.

C.2 For β(·) function, let
∫ 1

0
β(r)dr = 0.

Since we need not only the convergence of all orthogonal expansions discussed before

but also quicker rates for them, the smoothness of the unknown functions is necessary to

guarantee a certain rate of the convergence. The concrete requirements on si will be shown

below, combining with sample size as well as truncation parameters. Note that C.2 is an

identification condition since in both the expansions of β(·) and g(·) there is constant term

that could not be distinguished one from another in the following regression. Notice also that

C.2 is sufficient as m(·) is integrable on R.

Assumption D All ki, i = 1, 2, 3, diverge with n such that:

D.1 If B.2(a) holds, (1) k
2+2/(2+δ)
2 = o(n), k53 = o(n), (2) k1k

1+1/(2+δ)
2 = o(n), k21k

3
3 = o(n),

k22k
3/2
3 = o(n); if B.2(b) holds, (3) k22 = o(n), k53 = o(n), (4) k1k2 = o(n), k21k

3
3 = o(n),

k32k
3
3 = o(n).
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D.2 Suppose that as n→∞, (5) nk
−(2s1−1)
1 = o(1), nk

−(s2−1)
2 = o(1) and n1/2k

−(s3−1)
3 = o(1)

and (6) nk2k
−2s1
1 = o(1), nk3k

−2s1
1 = o(1), nk1k

−s2
2 = o(1), nk3k

−s2
2 = o(1), n1/2k1k

−s3
3 =

o(1), n1/2k2k
−s3
3 = o(1).

This assumption imposes the divergence rates for ki, i = 1, 2, 3, which guarantee the

convergence of the estimators. Because of the divergence of the moment of pj(z1) with j in

B.2(a), the requirement for k2 in (1) and (2) is harsher than its counterpart in (3) and (4).

Due to the nonstationarity of xt, k3 diverges very slowly, the rate of which is similar to the

related study purely on integrated time series, see, for example, Dong et al. [9]. Anyway, if

we simply take ki = k̃ for i = 1, 2, 3, then k̃6 = o(n) is a concise condition.

Additionally, note that the conditions in (2) and (4) are for two of ki’s, while (1) and

(3) are for each of k2 and k3. This is due to the structure of B
ᵀ

nkBnk := (Πij)3×3 a

block symmetric matrix. Note also that the conditions in (2) are made for the blocks like

Π12 =
∑n

t=1 φk1(t/n)ak2(zt)
ᵀ

under B.2(a), whereas that in (4) are made the same blocks

but under B.2(b). More importantly, k1 is not included in (1) and (3). This is because

Π11 :=
∑n

t=1 φk1(t/n)φk1(t/n)
ᵀ

is convergent so fast that the condition derived from Π11 is

substituted by the slower ones that are derived from Π12 and Π13.

Given the smoothness of the unknown functions in Condition C.1, Condition D.2 demands

that the smoothness orders be large enough such that the residues after truncation (γiki ,

i = 1, 2, 3) converging to zero rapidly enough and do not affect the convergence of the

estimators. This can be understood as an undersmoothing condition (see Comment 4.3 in

Belloni et al. [2, p. 352]). The combination of the requirements in Assumption D for ki

implies that we have a minimum demand on the smoothness. We here emphasize that all

requirements on ki are compatible. For example, in an extreme case that ki = [nτ ] for all

i = 1, 2, 3 with 0 < τ < 1/5, along with s1 ≥ 3, s2 ≥ 6 and s3 ≥ 4, Assumption D is fulfilled.

Before showing the large sample theory for the estimators, we introduce some notation

and preliminary results. Let Dn = diag(
√
nIk1 ,

√
nIk2 ,

√
n/dnIk3) a diagonal matrix of k× k

(k = k1 + k2 + k3). Then, as shown in Lemma A.5, D−1n B
ᵀ

nkBnkD
−1
n is asymptotically

approximated by a matrix Uk in probability, viz., ‖D−1n B
ᵀ

nkBnkD
−1
n −Uk‖ = oP (1) as n→∞

on a richer probability space. Here, Uk = diag(Ik1 , Uk2 , LW (1, 0)Ik3) where LW (1, 0) is the

local time of W (r) given in Section 2, and Uk2 = E[ak2(z1)ak2(z1)
ᵀ
].

In addition, in order to tackle the heteroskedasiticity we also need to consider the limit of

the conditional covariance matrix B
ᵀ

nkΣnBnk where Σn = diag(σ2(1/n), σ2(2/n), . . . , σ2(1)).

Note that ‖D−1n B
ᵀ

nkΣnBnkD
−1
n − Vk‖ = oP (1) where Vk = diag

(
V∗,
∫ 1

0
σ2(r)dLW (r, 0)Ik3

)
in

which V∗ = (V∗ij) is a 2× 2 symmetric block matrix with

V∗11 =

∫ 1

0

φk1(r)φk1(r)
ᵀ
σ2(r)dr,
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V∗12 =

∫ 1

0

φk1(r)σ
2(r)drE(ak2(z1)

ᵀ
),

V∗22 =

∫ 1

0

σ2(r)drE(ak2(z1)ak2(z1)
ᵀ
).

This is given by Lemma A.7. In the homoskedastic case, Vk = σ2Uk, where σ2(·) ≡ σ2. To

show the following theorem, denote by Ψ(r, z, x) the normalized version of Ψ(r, z, x) defined

in Section 2, i.e. post-multiplying diag(‖φk1(r)‖, ‖ak2(z)‖, ‖bk3(x)‖)−1 to Ψ(r, z, x) such that

all block vectors in Ψ(r, z, x) are unit, Ūk = diag(Ik1 , Uk2 , Ik3) and V̄k = diag(V∗, Ik3).

Theorem 3.1. Suppose that uniformly over all n, all eigenvalues of Uk2 and V∗ are bounded

below from zero and above from infinity, and that Assumptions A-D hold. Then, for any

r ∈ [0, 1], z ∈ V and x ∈ R,

Ω−1/2n


√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]√

n
dn

1
‖bk3 (x)‖

[m̂n(x)−m(x)]

→D N

0,


1 0 0

0 1 0

0 0 a2


 (3.1)

as n→∞ where 0 is a 3-dimensional zero column vector, a2 := L−2W (1, 0)
∫ 1

0
σ2(r)dLW (r, 0)

and Ωn := Ψ(r, z, x)
ᵀ
Ū−1k V̄kŪ

−1
k Ψ(r, z, x) is a 3× 3 deterministic matrix.

The proof is relegated to Appendix B below. Here, the estimator has a mixed normal

limiting distribution. As argued in Park and Phillips [29, p. 122], the random variable a

is independent of the underling normal distribution due to the integrability of m(·). This

applies to the following theorems too.

The boundedness of all eigenvalues of the deterministic matrices Uk2 and V∗ is a commonly

used assumption in the literature. See, Condition A.2 in Belloni et al. [2, p. 347] and

Assumptions 1.3 and 1.4 in Hansen [18] among others. Here, Uk2 = E[ak2(z1)ak2(z1)
ᵀ
] and

V∗ is formed in the same way but from one deterministic basis functions and another basis

functions of variable zt. This condition, along with the block diagonal structure containing

the local time LW (1, 0), is sufficient in the derivation of the normality in the theorem. This

is because LW (1, 0) = OP (1) in the sense that, for any ε > 0, there exists a constant M > 0

such that P (M−1 ≤ LW (1, 0) ≤ M) ≥ 1 − ε (so is L−1W (1, 0) = OP (1)). This is easy to be

verified by virtue of the distribution function of LW (1, 0), viz., 2Φ(x) − 1 with Φ(x) being

the standard normal distribution.

In the homoskedastic case Vk = σ2Uk, two requirements on Uk2 and V∗ are reduced to that

about Uk2 and researchers often normalize Uk2 to be the identity matrix. See, for example,

equation (11) of Chen and Christensen [5, p. 450] and the normalization of Belloni et al. [2,

p. 347].
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Note that the matrix Ωn has a diagonal block form

Ωn = diag
(
Ψ12(r, z)

ᵀ
U−1∗ V∗U

−1
∗ Ψ12(r, z), 1

)
,

where we denote by Ψ12(r, z) the left-top 2× 2 sub-matrix of Ψ(r, z, x) defined in Section 2

and U∗ := diag(Ik1 , Uk2). This reveals some crucial asymptotic behaviors for the variables.

Due to the divergence of the I(1) process xt, all interactions between m(xt) and each one of

β(t/n) and g(zt) with proper normalization are asymptotically negligible and thence Ωn has

the above diagonal block form. The details can be found in Lemmas A.5 and A.7 below.

Therefore, we may separate the estimator m̂n(x) from the other estimators in (3.1). That

is, as n→∞,

[Ψ12(r, z)
ᵀ
U−1∗ V∗U

−1
∗ Ψ1(r, z)]−1/2

 √
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

→DN(0, I2) (3.2)

√
n

dn

1

‖bk3(x)‖
(m̂n(x)−m(x))→DN(0, a2). (3.3)

They are all comparable with the literature in the corresponding context. To see this, observe

that Ψ12(r, z)
ᵀ
U−1∗ V∗U

−1
∗ Ψ1(r, z) has eigenvalues bounded below from zero and above from

infinity due to the condition on Uk2 and V∗. Then, the rates of (3.2) are [
√
n/‖φk1(r)‖]−1 and

[
√
n/‖ak2(z)‖]−1 for β̂n(r) − β(r) and ĝn(z) − g(z), respectively, the same as the estimators

in Theorem 2 of Newey [26] and Theorem 3.1 of Chen and Christensen [5] in the case that

the functional of the estimator in the papers is identical.

On the other hand, the rate in (3.3) is about n−1/4k3, very slow due to the divergence

of xt and the integrability of m(x). This is the same as that in Theorem 3.3 of Dong

et al. [9]. Overall, although the additive model has the mixture of deterministic trend,

nonparametric function of stationary variable and nonparametric integrable function of the

unit root variable, the estimators have their own separable rate of convergence.

Note that the matrices U∗ and V∗ could be further simplified in the special case that the

function sequence {pj(x)} is orthogonal with respect to the density of z1 (i.e., dF (x) in the

space L2(V, dF (x)) is the density of z1). Hence, E(ak2(z1)) = 0 and E(ak2(z1)ak2(z1)
ᵀ
) = Ik2 .

Particularly, when σ2(·) ≡ σ2, V∗ = σ2Ik1+k2 and U∗ = Ik1+k2 . Therefore, the statement

about the limits for β̂n(r)− β(r) and ĝn(z)− g(z) in (3.2) would be simplified too.

More importantly, the conventional optimal convergence rates for ‖β̂n(r) − β(r)‖ and

‖ĝn(z) − g(z)‖ can be jointly established where ‖ · ‖ stands for the norm of functions in

different spaces defined in Section 2. Here, the conventional optimal rates are in the sense

studied in Stone [37, 38].

14



Proposition 3.1. Suppose that Assumptions A-D hold. In the model (1.1) we have jointly

‖β̂n(r) − β(r)‖ = OP (
√
k1/n + k−s11 ), ‖ĝn(z) − g(z)‖ = OP (

√
k2/n + k−s22 ) and ‖m̂n(x) −

m(x)‖ = OP (
√
k3/ 4
√
n+ k

−s3/2
3 ) as n→∞, where the norms are of L2 sense in the function

spaces, respectively.

The proposition implies that the optimal rates of Stone [37, 38] are attainable jointly for

the estimators β̂n(r) and ĝn(z). Indeed, if ki = O(n1/(2si+1)), the rates will be OP (n−si/(2si+1)),

i = 1, 2, which are exactly the optimal rates in Stone [37, 38]. Note also that in the literature

as far as we know, there is no study dwelling on the optimal rates with respect to unit root

regressor. While Newey [26] and Chen and Christensen [5, p.451] obtain optimal rates for

sieve estimator in some situations, Corollary 3.1 establishes the optimal rates jointly for two

nonparametric functions in an additive model.

In order to make statistical inference, there is a need to estimate the function σ2(·).
Though the estimation is possible by nonparametric method using the estimated residues,

the main purpose of the paper would be deviated if we were about to do so. In what follows,

we focus on the inference in a simpler case, the case of homoskedasticity. It can be seen

from (3.2)-(3.3) that V∗ = σ2U∗ and we need to estimate σ2 and nLW (1, 0)/dn because of∫ 1

0
σ2(r)dLW (r, 0) = σ2LW (1, 0). Here, as an unknown parameter in dn, viz., ψ, can be offset

from the estimate of LW (1, 0), we simply estimate the quantity nLW (1, 0)/dn directly. Define

σ̂ =

[
1

n

n∑
t=1

(yt − β̂n(t/n)− ĝn(zt)− m̂n(xt))
2

]1/2
,

Λn =
n∑
t=1

f(xt), where f(x) =
1√
2π
e−x

2/2.

We then have the following corollary.

Corollary 3.1. Suppose that Assumptions A-D hold. Then, σ̂ →P σ and Λn/(nLW (1, 0)/dn)

→P 1 as n → ∞. As a result, with the replacement of σ by σ̂ and nLW (1, 0)/dn by Λn, we

have, n→∞,

[σ̂2Ψ12(r, z)
ᵀ
U−1∗ Ψ1(r, z)]−1/2

 √
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

→DN(0, I2) (3.4)

√
Λn

1

σ̂‖bk3(x)‖
(m̂n(x)−m(x))→DN(0, 1). (3.5)

3.2 Estimators for model (1.2)

In this case we have ĉ − c = (B̃
ᵀ

nkB̃nk)
−1B̃

ᵀ

nk(γ̃ + e). The asymptotics of B̃
ᵀ

nkB̃nk is given

by Lemma A.6. Note that B̃nk is the same as Bnk but the stationary process zt is replaced
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by the locally stationary process znt. The replacement only affects Π12 (Π21), Π23 (Π32)

and Π22, denoted respectively by Π̃12, Π̃23 and Π̃22 the resulting counterparts. Precisely,

Π̃12 =
∑n

t=1 φk1(t/n)ak2(znt)
ᵀ
, Π̃22 =

∑n
t=1 ak2(znt)ak2(znt)

ᵀ
, and Π̃23 =

∑n
t=1 ak2(znt)bk3(xt)

ᵀ
.

Define Ũk = diag(Ũ∗, LW (1, 0)Ik3), where Ũ∗ = (Ũ∗ij) is a symmetric 2 × 2 block matrix

of order (k1 + k2)× (k1 + k2) with Ũ∗11 = Ik1 , Ũ∗12 =
∫ 1

0
φk1(r)E[ak2(z1(r))

ᵀ
]dr with elements∫ 1

0
ϕi(r)E[pj(z1(r))]dr for 1 ≤ i ≤ k1, 0 ≤ j ≤ k2−1, and Ũ∗22 =

∫ 1

0
E[ak2(z1(r))ak2(z1(r))

ᵀ
]dr

with elements
∫ 1

0
E[pi(z1(r))pj(z1(r))]dr for i, j = 0, . . . , k2 − 1. As shown in Lemma A.6,

under certain condition we have ‖D−1n B̃
ᵀ

nkB̃nkD
−1
n − Ũk‖ = oP (1) where Dn is the same as

before.

Meanwhile, due to the heteroskedasticity, we also consider the limit of B̃
ᵀ

nkΣnB̃nk where

Σn is the same as in the preceding section. The result is given by Lemma A.8, that is,

‖D−1n B̃
ᵀ

nkΣnB̃nkD
−1
n −Ṽk‖ = oP (1), where Ṽk = diag

(
Ṽ∗,
∫ 1

0
σ2(r)dLW (r, 0)Ik3

)
in which Ṽ∗ =

(Ṽ∗ij) is a 2×2 symmetric block matrix with Ṽ∗11 = V∗11, Ṽ∗12 =
∫ 1

0
φk1(r)σ

2(r)E(ak2(z1(r))
ᵀ
)dr

and Ṽ∗22 =
∫ 1

0
σ2(r)E(ak2(z1(r))ak2(z1(r))

ᵀ
)dr.

Denote Ω̃n = diag(Ψ12(r, z)
ᵀ
Ũ−1∗ Ṽ∗Ũ

−1
∗ Ψ12(r, z), 1) a deterministic matrix of 3 × 3 with

the same Ψ12(r, z) as before. We then have the following theorem.

Theorem 3.2. Suppose that uniformly over all n, all eigenvalues of Ũ∗ and Ṽ∗ are bounded

below from zero and above from infinity, and that Assumptions A, B*, C and D hold. Then,

for any r ∈ [0, 1], z ∈ V and x ∈ R, the estimators of the unknown functions in model (1.2)

obey

Ω̃−1n


√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]√

n
dn

1
‖bk3 (x)‖

[m̂n(x)−m(x)]

→D N

0,


1 0 0

0 1 0

0 0 a2


 (3.6)

as n → ∞ where 0 is a 3-dimensional zero column vector and a2 is the same as in the

previous theorem.

The proof is relegated to Appendix B below. The main contribution of the theorem is

the relaxation of the stationary process in model (1.1) to the locally stationary process in

model (1.2). It is readily seen that if the distribution of the associated process zt(v) does not

depend on v, implying that E[pj(z1(r))] = E[pj(z1)], Ũk would reduce to Uk and Ṽk would

reduce to Vk. Consequently, in this degenerated case Ω̃n = Ωn and essentially model (1.2)

would reduce to model (1.1).

We have similar comments for Theorem 3.2 as that for Theorem 3.1. In particular, the

condition on the eigenvalues of the deterministic matrices Ũ∗ and Ṽ∗ is often encountered in

the sieve literature such as Condition A.2 in Belloni et al. [2, p. 347]. For the statistical
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inference purpose, under homoskedasticity the unknown parameter in (3.6) may be estimated

similar to Corollary 3.1, which is omitted for brevity.

3.3 Extension of model (1.1)

Since the function m(·) is integrable on R, model (1.1) is impossible to have any polynomial

form of the regressor xt. This possibly is a restriction in some situations. Thus, it is worth

to extend model (1.1) to be

yt = β(t/n) + g(zt) + θ0xt +m(xt) + et, (3.7)

where t = 1, . . . , n, β, g and m are unknown smooth functions and θ0 is an unknown scalar,

zt , xt and et are the same as before. It can be seen later that the linear form of xt may be

replaced by any polynomial form θ01xt + · · ·+ θ0dx
d
t with d being known and a similar result

remains true.

To estimate β(·), g(·) and m(·), the same bases are used for their orthogonal expansions.

Notice that θ0 can be estimated along with the estimate of the coefficients in the expansions

and this can be viewed as an advantage of the series method because it parameterizes the

nonparametric variables. Using previous notation model (3.7) is written as

yt =φk1(t/n)
ᵀ
c1 + ak2(zt)

ᵀ
c2 + θ0xt + bk3(xt)

ᵀ
c3

+ γ1k1(t/n) + γ2k2(zt) + γ3k3(xt) + et,
(3.8)

and we define

Ank =


φk1(1/n)

ᵀ
x1 ak2(z1)

ᵀ
bk3(x1)

ᵀ

...
...

...
...

φk1(1)
ᵀ

xn ak2(zn)
ᵀ
bk3(xn)

ᵀ


a n× k matrix with k = k1 + k2 + k3 + 1 for convenience. Consequently, we have

y = Ankc+ γ + e (3.9)

which by the ordinary least squares (OLS) gives ĉ = (ĉ
ᵀ

1, θ̂, ĉ
ᵀ

2, ĉ
ᵀ

3)
ᵀ

= (A
ᵀ

nkAnk)
−1A

ᵀ

nky pro-

vided that A
ᵀ

nkAnk is non-singular (that is true with high probability).

Similarly, for any r ∈ [0, 1], z ∈ V and x ∈ R define β̂n(r) = φk1(r)
ᵀ
ĉ1, ĝn(z) = ak2(z)

ᵀ
ĉ2

and m̂n(x) = bk3(x)
ᵀ
ĉ3 as estimators of the unknown functions, which together with the

estimator of θ0 can be wrapped up in a vector

(β̂n(r), θ̂, ĝn(z), m̂n(x))
ᵀ

= Φ(r, z, x)
ᵀ
ĉ, (3.10)
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where Φ(r, z, x) is a block matrix given by

Φ(r, z, x) =



φk1(r) 0 0 0

0 1 0 0

0 0 ak2(z) 0

0 0 0 bk3(x)


in which 0’s are zero column vectors that have different dimension over each row while 0’s

are scalar.

As before, we introduce first some notation and preliminary results. LetMn = diag(
√
nIk1 ,√

ndn,
√
nIk2 ,

√
n/dnIk3) a diagonal matrix of k×k. Then, M−1

n A
ᵀ

nkAnkM
−1
n is asymptotical-

ly approximated by a matrix in probability, viz., ‖M−1
n A

ᵀ

nkAnkM
−1
n −Qk‖ = oP (1) as n→∞

as shown in Lemma A.9. Here Qk = diag(Q∗, LW (1, 0)Ik3) and Q∗ has a 3 × 3 block form

(Q∗ij): Q∗11 = Ik1 , Q∗12 =
∫ 1

0
φk1(r)W (r)dr of k1×1, Q∗13 = 0 of k1×k2, Q∗22 =

∫ 1

0
W 2(r)dr

a scalar, Q∗23 = E[ak2(z1)
ᵀ
]
∫ 1

0
W (r)dr of k2 × 1 and Q∗33 = E[ak2(z1)ak2(z1)

ᵀ
].

In addition, in order to tackle the heteroskedasiticity we also need to consider the limit of

the conditional covariance matrix A
ᵀ

nkΣnAnk where Σn = diag(σ2(1/n), . . . , σ2(1)). By Lem-

ma A.11, ‖M−1
n A

ᵀ

nkΣnAnkM
−1
n −Pk‖ = oP (1) where Pk = diag

(
P∗,
∫ 1

0
σ2(r)dLW (r, 0)Ik3

)
in

which P∗ = (P∗ij) is a 3× 3 symmetric block matrix with

P∗11 =

∫ 1

0

φk1(r)φk1(r)
ᵀ
σ2(r)dr, P∗13 =

∫ 1

0

φk1(r)σ
2(r)drE(ak2(z1)

ᵀ
),

P∗12 =

∫ 1

0

φk1(r)σ
2(r)W (r)dr, P∗22 =

∫ 1

0

σ2(r)W 2(r)dr,

P∗23 =

∫ 1

0

σ2(r)W (r)drE(ak2(z1)
ᵀ
), P∗33 =

∫ 1

0

σ2(r)drE(ak2(z1)ak2(z1)
ᵀ
).

Once the model reduces to the case of homoskedasticity, Pk = σ2Qk where σ2(·) ≡ σ2, as

expected.

Denote Ξn = Φ(r, z, x)
ᵀ
Q̄−1k P̄kQ̄

−1
k Φ(r, z, x) a matrix of 4-by-4, where Φ is the normalized

version of Φ, i.e. the φk1(r), ak2(z) and bk3(x) in Φ are replaced by the φk1(r)/‖φk1(r)‖,
ak2(z)/‖ak2(z)‖ and bk3(x)/‖bk3(x)‖, respectively; Q̄k = diag(Q∗, Ik3) and P̄k = diag (P∗, Ik3).

Hence, Ξn = diag(Ξ1n, 1) where Ξ1n is of 3-by-3 and Ξ1n = Φ13(r, z)
ᵀ
Q−1∗ P∗Q

−1
∗ Φ13(r, z)

where Φ13(r, z) is the left-top 3-by-3 block submatrix of Φ(r, z, x).

Note that the Brownian motion W (r) is contained in Q∗ and P∗, we thus need to strength-

en the conditions on et in Assumptions B and B*.

Assumption E The limit Brownian motion W (r) derived from xt is independent of

{et, t ≥ 1}.
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This assumption would facilitate the establishment of the following asymptotic normality

for our estimators. The condition can be fulfilled if {εj} in Assumption A is independent of

{et} and xt is substituted by x′t = xt + f(et−1) for some measurable function f(·). Notice

that, x′t still has limit W (r), d−1n x′[nr] →D W (r), as long as E|f(et)| < ∞ and therefore

Assumption E is satisfied. A stronger one to replace Assumption E is that xt is independent

of es for all t and s.

Theorem 3.3. In addition to Assumptions A-E, suppose that uniformly over all n, all eigen-

values of Q∗ and P∗ are bounded below from zero and above from infinity almost surely, and

Ξ1n →P Ξ1 when n→∞. Then, for any r ∈ [0, 1], z ∈ V and x ∈ R,

√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
ndn[θ̂ − θ0]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

√
n

‖bk3 (x)‖
√
dn

[m̂n(x)−m(x)]


→D N

0,

Ξ1

a2

 (3.11)

as n → ∞ where 0 is a 4-dimensional zero column vector, and a2 is the same as in the

previous theorem.

The proof is relegated to Appendix D in the supplementary material. We have similar

comment as that for Theorem 3.1. Note that the covariance matrix in the limit has a diagonal

block form diag(Ξ1, a
2). This is similar to but more than the situation in Theorem 3.1. First,

all interactions between m(xt) and one of β(t/n), g(zt) and xt with proper normalization

are asymptotically negligible and thence the covariance has the above diagonal block form;

second, interestingly, the interactions between xt and each of β(t/n) and g(zt) with the same

normalization last ultimately, and thereby the block in Ξ1 is a square matrix of order 3 that

in general cannot be reduced further. The details can be found in Lemmas A.9 and A.10

below.

Therefore, we may isolate the estimator m̂n(x) from the other estimators in (3.11). That

is, as n→∞, 
√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
ndn[θ̂ − θ0]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

→DN(0,Ξ1) (3.12)

√
n

‖bk3(x)‖
√
dn

(m̂n(x)−m(x))→DN(0, a2). (3.13)

Here, (3.13) is exactly the same as (3.3), meaning that the estimate of m(·) is not affected

by the linear form of xt at all, while since W (r) is involved in Ξ1n, the other estimators are
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affected more or less. All function estimators have the same order as before, whereas θ̂ − θ0
has a super rate OP (n−1) in view of dn ∼

√
n. The normalizer

√
ndn in the front of θ̂−θ0 has

an extra dn comparing with the usual stationary regression. That is due to the convergence

of d−1n x[nr] →D W (r) and thus results in the super rate. Because the linear form θ0xt is one

particular kind of H-regular function defined in Park and Phillips [29], the order of θ̂ − θ0
is comparable with its counterpart in Theorem 7 of Chang et al. [4, p. 13]. Overall, the

estimators in this additive model, where each component is different dramatically in terms

of regressors and functions, have their own separable rate of convergence.

Observe that both the matrices Q∗ and P∗ are almost surely positive definite by their

structures. Note further that the matrices Q∗ and P∗ could be further simplified in the special

case aforementioned, which gives E(ak2(z1)) = 0 and E(ak2(z1)ak2(z1)
ᵀ
) = Ik2 . Particularly,

when σ2(·) ≡ σ2, P∗11 = σ2Ik1 , P∗13 = 0, P∗22 = σ2
∫ 1

0
W 2(r)dr, P∗23 = 0 and P∗33 = σ2Ik2 ,

but normally P∗12 = σ2
∫ 1

0
φ(r)W (r)dr 6= 0. The same situation applies to Q∗. Therefore, Q∗

and P∗ are reduced to diagonal block matrices and thus the limit for ĝn(z) − g(z) in (3.12)

can be isolated from the other two, that however can not be broken up any more due to

P∗12 6= 0.

The case that zt in model (3.7) is replaced by znt is considered now, that is,

yt = β(t/n) + g(znt) + θ0xt +m(xt) + et, (3.14)

where t = 1, . . . , n.

With the same estimation procedure, in this case we have ĉ− c = (Ã
ᵀ

nkÃnk)
−1Ã

ᵀ

nk(γ̃ + e).

Here, Ãnk is the counterpart of Ank with zt substituted by znt. The asymptotics of Ã
ᵀ

nkÃnk

is given by Lemma A.10.

Define Q̃k = diag(Q̃∗, LW (1, 0)Ik3), where Q̃∗ = (Q̃∗ij) is a symmetric 3 × 3 block ma-

trix of order (k1 + k2 + 1) × (k1 + k2 + 1) with Q̃∗11 = Ik1 , Q̃∗12 =
∫ 1

0
φk1(r)W (r)dr,

Q̃∗13 =
∫ 1

0
φk1(r)E[ak2(z1(r))

ᵀ
]dr with elements

∫ 1

0
ϕi(r)E[pj(z1(r))]dr for i = 1, . . . , k1, j =

0, . . . , k2 − 1, Q̃∗22 =
∫ 1

0
W 2(r)dr a scalar, Q̃∗23 =

∫ 1

0
E[ak2(z1(r))

ᵀ
]W (r)dr and Q̃∗33 =∫ 1

0
E[ak2(z1(r))ak2(z1(r))

ᵀ
]dr with elements

∫ 1

0
E[pi(z1(r))pj(z1(r))]dr for i, j = 0, . . . , k2 − 1.

As shown in Lemma A.10, under certain condition we have ‖M−1
n Ã

ᵀ

nkÃnkM
−1
n − Q̃k‖ = oP (1)

where Mn is the same as before.

Meanwhile, due to the heteroskedasticity, we also consider the limit of Ã
ᵀ

nkΣnÃnk where

Σn is the same as in the preceding section. The result is given by Lemma A.12, that is,

‖M−1
n Ã

ᵀ

nkΣnÃnkM
−1
n − P̃k‖ = oP (1), where P̃k = diag

(
P̃∗,
∫ 1

0
σ2(r)dLW (r, 0)Ik3

)
in which

P̃∗ = (P̃∗ij) is a 3 × 3 symmetric block matrix with P̃∗11 = P∗11, P̃∗22 = P∗22, P̃∗12 = P∗12,

while P̃∗13 =
∫ 1

0
φk1(r)σ

2(r)E(ak2(z1(r))
ᵀ
)dr and P̃∗33 =

∫ 1

0
σ2(r)E(ak2(z1(r))ak2(z1(r))

ᵀ
)dr

and P̃∗23 =
∫ 1

0
σ2(r)E(ak2(z1(r))

ᵀ
)W (r)dr.
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Define Ξ̃1n = Φ13(r, z)
ᵀ
Q̃−1∗ P̃∗Q̃

−1
∗ Φ13(r, z) an 3-by-3 matrix with Φ13(r, z) defined as

before. We then have the following theorem.

Theorem 3.4. In addition to Assumptions A, B*, C-E, suppose that uniformly over all

n, all eigenvalues of Q̃∗ and P̃∗ are bounded below from zero and above from infinity, and

Ξ̃1n →P Ξ̃1 as n→∞. Then, for any r ∈ [0, 1], z ∈ V and x ∈ R, the estimators for model

(3.14) obey 

√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
ndn[θ̂ − θ0]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

√
n

‖bk3 (x)‖
√
dn

[m̂n(x)−m(x)]


→D N

0,

Ξ̃1

a2

 (3.15)

as n → ∞ where 0 is a 4-dimensional zero column vector and a2 is the same as in the

previous theorem.

The proof is relegated to Appendix D in the supplementary material. The main contri-

bution of the theorem is the relaxation of the stationary process in model (3.7) to the locally

stationary process in model (3.14). It is readily seen that if the distribution of the associated

process zt(v) does not depend on v, implying that E[pj(z1(r))] = E[pj(z1)], Q̃k would reduce

to Qk and P̃k would reduce to Pk. Consequently, in this degenerated case Ξ̃n = Ξn and

essentially model (3.14) would reduce to model (3.7).

We have similar comments for Theorem 3.4 as that for Theorem 3.3, which is omitted for

brevity.

4 Simulation

In this section we conduct Monte Carlo simulation to investigate the performance of our

estimators proposed in the last section in the finite sample situation. We mainly focus on

model (1.1). Let M = 1000 be the number of replication and n the sample size.

Example 1. Let zt ∼ i.i.U [−1, 1] and g(z) = z2 + sin(z). The Chebyshev polynomials

of the first kind, pj(x) = cos(j arccos(x)), j ≥ 0, are used to approximate the function g(·).
Suppose that εi ∼ N(0, 1), wt = ρwt−1 + εt with ρ = 0.2 and w0 ∼ N(0, 1/(1 − ρ2)).

This is the theoretical distribution of w0 in the AR(1) process. Let x0 = 0, xt = xt−1 + wt,

t ≥ 1. Put m(x) = 1/(1 + x4). The hermite functions are used for the orthogonal expansion

of m(x).

Moreover, let β(r) = r − 1/2 satisfying
∫ 1

0
β(r)dr = 0. The cosine sequence given in

Section 2 is utilized for β(r) expansion.
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In the experiments below, the sample size is n = 400, 600 and 1200, respectively, and

the truncation parameters k1 = k2 = 3, 4, 5 for β(·) and g(·) and k3 = 3, 4, 6 for m(·),
corresponding to each sample size. This indicates the move of the truncation parameters

with the sample size. It is noteworthy that, though in stationary case one may use the

Generalized Cross Validation (GCV) [see, e.g., 12] to determine the truncation parameter,

similar approach is not available in nonstationary case.

After we obtain all estimators by the procedure described in Section 2, we shall calculate

the bias (denoted by Bβ(n), Bg(n) and Bm(n)), standard deviation (denoted by πβ(n), πg(n)

and πm(n)) and RMSE (denoted by Πβ(n), Πg(n) and Πm(n)) of estimators, that is,

Bβ(n) :=
1

Mn

n∑
t=1

M∑
`=1

[β(t/n)− β̂(t/n)], πβ(n) :=

(
1

Mn

n∑
t=1

M∑
`=1

[β̂`(t/n)− β̂(t/n)]2

)1/2

,

Bg(n) :=
1

Mn

n∑
t=1

M∑
`=1

[g`(zt)− ĝ(zt)], πg(n) :=

(
1

Mn

n∑
t=1

M∑
`=1

[ĝ`(zt)− ĝ(zt)]
2

)1/2

,

Bm(n) :=
1

Mn

n∑
t=1

M∑
`=1

[m`(xt)− m̂(xt)], πm(n) :=

(
1

Mn

n∑
t=1

M∑
`=1

[m̂`(xt)− m̂(xt)]
2

)1/2

,

where the superscript ` indicates the `-th replication, β̂(·) = φk1(·)
ᵀ
ĉ1, ĝ(·) = ak2(·)

ᵀ
ĉ2 and

m̂(·) = bk3(·)
ᵀ
ĉ3 are the average of β̂`(·), ĝ`(·) and m̂`(·), respectively, over Monte Carlo

replications ` = 1, · · · ,M , g`(zt) and m`(xt) means the values of g and m are evaluated for

the zt and xt, respectively, in the `-th replication; and

Πβ(n) :=

(
1

Mn

n∑
t=1

M∑
`=1

[β(t/n)− β̂`(t/n)]2

)1/2

,

Πg(n) :=

(
1

Mn

n∑
t=1

M∑
`=1

[g`(zt)− ĝ`(zt)]2
)1/2

,

Πm(n) :=

(
1

Mn

n∑
t=1

M∑
`=1

[m`(xt)− m̂`(xt)]
2

)1/2

.

It can be seen from Tables 1 and 2 that all the statistics perform very well as all quantities

are decreasing reasonably with the increase of the sample size. Nevertheless, there might be a

visible slower rate for the estimator of m function than the other two. This possibly is because

the convergence rate of the estimator m̂n(x) to m(x) is the slowest among all estimators, in

view of Theorem 3.1.

In addition, with the same estimators, we also calculate their values at particular points,

i.e., β̂`(0.5), ĝ`(−0.4) and m̂`(1.2) for all ` = 1, . . . ,M . Then we may estimate the densities

of β̂`(0.5)−β(0.5), ĝ`(−0.4)− g(−0.4) and m̂`(1.2)−m(1.2) with normalization in Corollary
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Table 1: Bias and S.d. of the estimators

Bias S.d.

n Bβ(n) Bg(n) Bm(n) πβ(n) πg(n) πm(n)

400 0.0012 -0.0605 0.0863 0.1040 0.1093 0.2117

600 0.0004 -0.0496 0.0804 0.0992 0.0990 0.1429

1200 0.0001 -0.0431 0.0497 0.0761 0.0725 0.1193

Table 2: RMSE of the estimators

n Πβ(n) Πg(n) Πm(n)

400 0.0917 0.0831 0.1063

600 0.0831 0.0775 0.0975

1200 0.0707 0.0624 0.0774

3.1. These are done in Matlab by the ksdensity function and are plotted in the following

figures.
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(a) Estimated density of β̂n(0.5)− β(0.5)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

--n=400
:n=600
-.n=1200
-Normal

(b) Estimated density of ĝ(−0.4)− g(−0.4)

Figure 1: The plot of estimated density functions

From the three pictures in Figures 1 and 2, the curves of the estimated densities for

β̂n(0.5) − β(0.5), ĝ(−0.4) − g(−0.4) and m̂n(1.2) −m(1.2) are gradually approaching the s-

tandard normal density. Particularly, the first two estimations seem visually to have a quicker

convergence, which coincides again with our theoretical results in the preceding section.

Example 2. Let all settings be the same as in Example 1 except that zt = ∆xt = wt.
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Figure 2: Estimated density of m̂n(1.2)−m(1.2)

Hereby, zt and xt share infinite many innovations εi. Although we cannot establish our

theory on this situation, this example implies that the estimation procedure might be still

workable. We report the results of the experiments in the following tables. In addition, in this

correlated case we also calculate the proportion of β̂n(0.1), ĝn(0.4) and m̂n(−0.5) dropping

into the theoretical confidence intervals at 95% significant level according to Corollary 3.1.

Table 3: Bias and S.d. of estimators in correlated case

Bias S.d.

n Bβ(n) Bg(n) Bm(n) πβ(n) πg(n) πm(n)

400 0.0010 -0.0539 0.0662 0.1099 0.1104 0.1683

600 0.0006 -0.0472 0.0389 0.1008 0.0967 0.1438

1200 0.0001 -0.0224 -0.0226 0.0738 0.0717 0.1075

It can be seen from Tables 3 and 4 that the three statistics and the proportions of the

estimators in the confidence intervals perform satisfactorily, and, comparing with the results

in Example 1, it seems that in our settings the correlation between xt and zt does not affect

the implementation of our estimating procedure. In particular, the proportions are very

high, and therefore sharing infinite many innovations for xt and zt might not affect statistical

inference.

5 Empirical study

This section provides an investigation of the relationship between the stock prices of Coke

and Pepsi. Let Yt be the log adjusted close price of Coke, Xt be the log adjusted close price of

Pepsi and let zt be the ratio of the trading volume for Coke and that for Coke plus Pepsi such
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Table 4: RMSE and Proportions of estimators in correlated case

RMSE Proportion

n Πβ(n) Πg(n) Πm(n) β̂n(0.1) ĝn(0.4) m̂n(−0.5)

400 0.1118 0.1250 0.1439 0.9938 0.9933 1

600 0.1034 0.1076 0.1255 0.9970 0.9950 1

1200 0.0745 0.0752 0.0887 1 1 1

that we always have 0 ≤ zt ≤ 1. The time span is from the first of June, 1972 to the 31st of

August, 2016. Excluding all weekends and public holidays, we have n = 11163 observations.

In Figures 3 and 4 are the plots of Yt and Xt as well as zt, respectively.
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(b) Log price of Pepsi

Figure 3: Plot data about Coke and Pepsi

To verify whether Xt is a unit root process, the ADF test is employed. The test fails to

reject the null hypothesis that Xt is a unit root process with the p-Value 0.9901. The same

test is implemented on Yt and results in the p-Value 0.9627, a unit root process as well. We

also plot the daily returns of Coke and Pepsi in Figure 5, in order to visualize the unit root

processes. The marginal price series appear to contain drifts and be non-recurrent, that is,

we may suppose that Xt = µ1 + Xt−1 + ξt and Yt = µ2 + Yt−1 + ζt, with µ1, µ2 6= 0. This

implies that Xt−µ1t = X0+
∑t

j=1 ξj and Yt−µ2t = Y0+
∑t

j=1 ζj are recurrent processes that

satisfy the theoretical requirement in the preceding sections. We work with xt = Xt − µ̂1t

and yt = Yt− µ̂2t, where µ̂1 = (Xn−X0)/n and µ̂2 = (Yn−Y0)/n are clearly super-consistent

estimators of µ1 and µ2. More importantly, zt and xt may have certain correlation which our

theory can deal with (see Assumption B.1.(b)).
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Figure 4: Volume weight
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Figure 5: Daily returns of Coke and Pepsi

We shall look into the relationship of the variables yt, t/n, zt and xt through the model

yt = β(t/n) + g(zt) +m(xt) + et, (5.1)

for t = 1, . . . , n, where all functions β(·), g(·) and m(·) are unknown and will be estimated.

Since both β(·) and g(·) are defined on [0, 1], we use the cosine basis for their expansions,

and for m(·) we use the Hermite sequence. All of these bases can be found in Section 2.

A key issue in using the series method in practice is the determination of the truncation

parameters in the orthogonal expansions. The model can be estimated by the proposed

procedure only if the truncation parameters are specified. However, there is no theoretical

guide for the choice of such parameters, in particular in the case where both stationary

and integrated processes are present. Since forecasting ability is one of the most important

characteristics for a model, we shall choose the truncation parameters for our model through

the best forecasting ability.

The forecasting ability for a model is measured by the so-called Out-of-Sample mean

square errors (mse). That is, we use part of data, 1 ≤ t ≤ n1 (n1 < n), say, to estimate the

model for given ki (i = 1, 2, 3), then using the estimated model we may forecast the dependent

variable at t = n1 + 1, obtaining ŷn1+1. The Out-of-Sample mse with the given truncation

parameters is defined by J−1
∑J

j=1(ŷnj+1− ynj+1)
2 where nj < nj+1 < n for j = 1, . . . , J − 1.
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The model that has the smaller Out-of-Sample mse has better forecasting ability.

In this example, let J = 20, nj = 9162 + 100j, 1 ≤ j ≤ J . In view of the nature of

the dataset, we shall use the same truncation parameter for β(·) and g(·), k1 = k2, while

the parameter for m(·) is still denoted by k3. The Out-of-Sample mse’s are calculated for all

feasible ki, that is, for all ki that are not too large since from the complexity point of view

this requirement is reasonable for a model. The results are reported in Table 5. From the

Table 5: Out-of-Sample Mean Square Errors for model (5.1)

k3
k1(= k2)

2 3 4 5 6 7 8

1 0.0146 0.0515 0.0241 0.0364 0.0358 0.0251 0.0227

2 0.0752 0.0392 0.0190 0.0251 0.0454 0.0378 0.0342

3 0.0529 0.0316 0.0150 0.0191 0.0380 0.0332 0.0314

4 0.0329 0.0293 0.0197 0.0225 0.0367 0.0330 0.0318

5 0.0315 0.0290 0.0196 0.0224 0.0407 0.0383 0.0368

6 0.0260 0.0299 0.0226 0.0248 0.0388 0.0356 0.0338

table we can see that with k̂1 = k̂2 = 2 and k̂3 = 1 the model has the smallest Out-of-Sample

mse 0.0146, viz., the best forecasting ability. For the dataset we thus suggest the unknown

functions in model (5.1) have the form β̂(r) = β2(r), ĝ(z) = g2(z) and m̂(x) = m1(r). After

the estimation procedure, we obtain

β̂(r) =− 0.0223ϕ1(r)− 0.0115ϕ2(r), r ∈ [0, 1],

ĝ(z) =− 2.7906 + 0.1461ϕ1(z), z ∈ [0, 1], (5.2)

m̂(x) =3.4201e−x
2/2, x ∈ R,

where ϕj(r) =
√

2 cos(πjr) for j ≥ 1. We plot the pictures of β̂(r), ĝ(z) and m̂(x) and their

confidence curves at 95% level in Figure 6. The effect of relative trading volume is estimated

as negative and close to linear, meaning that large amounts of trading in Coke relative to

Pepsi is predictive of a decline in the price of Coke, ceteris paribus. The effect of Pepsi price

on Coke is symmetrical around zero, implying that Pepsi price far away from its central range

in either direction has a negative effect on the price of Coke, ceteris paribus. The estimated

trend seems to be upward during the sample and bottoming out at the end, meaning that
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the price of Coke has increased over the sample period relative to the value predicted by a

time invariant relationship based on the chosen covariates.
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Figure 6: Plot of estimated functions and confidence curves at 95% level

Comparison. In what follows the proposed model is compared with some potential

competing models. One is a pure linear parametric model and another one is the model

studied in Section 3.3,

yt =a0 + a1
t

n
+ a2zt + a3xt + ε1t (5.3)

yt =β1

(
t

n

)
+ g1(zt) + θ0xt +m1(xt) + ε2t. (5.4)

The models are still measured by their forecasting ability.

For model (5.3), using the full data we have the estimated coefficients, confidence intervals

at 95% significance level and related statistics reported in Table 6. The linear model is fitted

well as the R2 is close to one, F � f and p < 0.05. However, it is easily to calculate that the

Out-of-Sample mse for model (5.3) is 0.0453, much larger than that of the proposed model

with functions in (5.2). Nevertheless, the residual plot looks quite similar for the two models

in Figure 7.

Table 6: Estimation and Related Statistics for model (5.3)

a0 0.045 (0.0173, 0.0727) a1 0.1304 (0.1125, 0.1482)

a2 -0.3357 (-0.3735, -0.2980) a3 1.2609 (1.2506, 1.2711)

R2 = 0.8985 F = 32945

f = 0 p = 0.0491
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Figure 7: Plot of residuals for the proposed and linear models

For model (5.4) we compute the Out-of-Sample mse’s with different combinations of

feasible truncation parameters, showing in Table 7. It can be seen that the smallest Out-of-

Sample mse is 0.0154 that corresponds to model (5.4) with k̂1 = k̂2 = 4 and k̂3 = 2. Though

we seek the model that has the best forecasting ability in a broad area for the truncation

parameters, the resulting Out-of-Sample mse is larger than that calculated for model (5.1)

with k̂1 = k̂2 = 2 and k̂3 = 1.

Table 7: Out-of-Sample Mean Square Errors for model (5.4)

k3
k1(= k2)

2 3 4 5 6 7 8

1 0.0462 0.0366 0.0167 0.0218 0.0319 0.0240 0.0227

2 0.0508 0.0313 0.0154 0.0195 0.0371 0.0322 0.0306

3 0.0457 0.0324 0.0181 0.0225 0.0356 0.0300 0.0286

4 0.0315 0.0289 0.0196 0.0223 0.0408 0.0386 0.0371

5 0.0313 0.0288 0.0195 0.0224 0.0408 0.0392 0.0376

6 0.0261 0.0293 0.0230 0.0259 0.0388 0.0370 0.0341

Taking both models (5.3) and (5.4) into account, in terms of Out-of-Sample mse we still

recommend model (5.1) with functions in (5.2) for the given dataset.

Trading strategy. We consider the performance of our proposed model in a pair trading

strategy. The strategy has at least a 30-year history on Wall Street and is among the

proprietary ’statistical arbitrage’ tools currently used by hedge funds as well as investment

banks. The strategy makes use of the idea of cointegration between two related stocks: it
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opens short/long positions when they diverge and closes the positions when they converge.

See Gatev et al. [15] for details. However, usually the cointegration is depicted by a linear

form equation in the related literature. By contrast, we shall use nonparametric nonlinear

cointegration in defining the pair strategy.

Let n0 ∈ (1, n) be an integer. With the proposed model (5.1) and (5.2), we have êt =

yt − β̂(t/n0)− ĝ(zt)− m̂(xt), 1 ≤ t ≤ n0. Let α be a significance level specified below. Find

the empirical lower (α/2)-quantile `(α/2) and upper (α/2)-quantile L(α/2) from {êt : 1 ≤
t ≤ n0}.

The trading rule is as follows. From t = n0 + 1 to t = n, calculate êt = yt− β̂(1)− ĝ(zt)−
m̂(xt). If êt > L(α/2), short one dollar in Coke and long one dollar in Pepsi; if êt < `(α/2),

long one dollar in Coke and short one dollar in Pepsi; otherwise, close all positions held if

any, and put positive gain into a risk free bond account with rate r0 and offset negative gain

from the account. At the last trading day, all positions shall be closed ignoring the location

of the residual.

Mathematically, at date t ≥ n0 + 1, if êt > L(α/2), we owe 1/Yt share of Coke and buy

1/Xt share of Pepsi; if êt < `(α/2), we owe 1/Xt share of Pepsi and buy 1/Yt share of Coke;

otherwise, we clear all positions held since last date of closing positions, say, date k, that is,

we obtain
∑t−1

j=k ∆t
j, where

∆t
j =



(Xt/Xj − Yt/Yj)(1 + r0)
n−t, if êj > L(α/2) and Xt/Xj − Yt/Yj ≥ 0,

Xt/Xj − Yt/Yj, if êj > L(α/2) and Xt/Xj − Yt/Yj < 0,

(Yt/Yj −Xt/Xj)(1 + r0)
n−t, if êj < `(α/2) and Yt/Yj −Xt/Xj ≥ 0,

Yt/Yj −Xt/Xj, if êj < `(α/2) and Yt/Yj −Xt/Xj < 0.

Then, the total profit of the trading period is
∑

t∈A
∑t−1

j=k ∆t
j where A is the collection of all

clearing dates.

Let α = 0.01 and 0.05, and put r0 = 0.02/250 per day. Here, we do not consider any cost

in the trading like transaction fee or price impact. We report the trading results in Table 8.

In order to compare with the linear model, we also show the trading results in the same table

using model (5.3). It can be seen that normally the results are sensitive to the length of the

data history that determines the thresholds of taking action. In terms of profit, the proposed

nonlinear cointegration model outperforms the linear model. Also, it seems no action token

place for t > 9000 for both but with α = 0.01 the linear model in the experiment always has

nothing to gain. The results imply that nonlinear cointegration might be a better alternative

relationship to the linear cointegration in the literature of pair trading strategy.
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Table 8: Pair trading for Coke and Pepsi

Nonlinear cointegration Linear cointegration

α L(α/2) `(α/2) Profit L(α/2) `(α/2) Profit

n0 = 7000
0.01 0.3511 -1.2710 0.0227 0.5678 -0.4937 0

0.05 0.1130 -1.2025 0.6525 0.4631 -0.4324 0.0767

n0 = 7500
0.01 0.3450 -1.2669 0.0227 0.5680 -0.4874 0

0.05 0.1012 -1.1963 0.8162 0.4614 -0.4236 0.1389

n0 = 8000
0.01 0.3401 -1.2647 0.0227 0.5681 -0.4828 0

0.05 0.0806 -1.1913 0.9117 0.4580 -0.4167 0.1931

n0 = 8500
0.01 0.3318 -1.2561 0.0145 0.5646 -0.4780 0

0.05 0.0704 -1.1963 0.7515 0.4562 -0.4122 0.5708

n0 = 9000
0.01 0.3234 -1.2622 0 0.5635 -0.4734 0

0.05 0.0580 -1.2059 0 0.4547 -0.4153 0

6 Conclusion and Extension

This paper has studied additive models that have nonparametrically time trend, stationary

and integrated variables as their components. Meanwhile, in order to accommodate more

practical situations, the stationary variable has been relaxed to be locally stationary; the

correlation between regressors is allowed; the models have been extended to include an extra

linear form of the integrated process that compensates a possible shortcoming in some par-

ticular cases. All these efforts provide with practitioners a variety of options, as illustrated

by the empirical study.

As far as we know, it seems the first time in the literature that such models are investigat-

ed. All nonparametric functions are estimated by orthogonal series method; the central limit

theorems for all proposed estimators have been established; the conventional optimal conver-

gence rates are attainable; Monte Carlo experiment has conducted to verify the performance

of the estimators with finite sample and an empirical study is provided.

The series estimators are convenient, but they are known in other contexts to be inefficient

in the sense considered in Fan [11]. Following Linton [22], Liu et al. [24], and Linton and

Wang [23] we may consider efficiency improvement by one step kernel estimation. However,
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given the orthogonality between the estimated components, it is likely that the efficiency im-

provement is minimal, which is why we have not pursued this here. In addition, it is desirable

to investigate the situation where zt and xt may be sharing infinite many innovations. Our

next study would relax this condition to make the estimation procedure more applicable.

7 Acknowledgement

We would like to thank co-editor Prof Jianqing Fan, the Associate Editor and three anony-

mous referees for their constructive comments and suggestions that improve the paper con-

siderably. In addition, Dong thanks the support from National Natural Science Foundation

of China under Grant 71671143.

A Lemmas

This section presents all technical lemmas while their proofs are relegated in Appendix C in

the supplementary material of the paper.

We first study some properties about xt. Without loss of generality, let x0 = 0 almost

surely. It follows that

xt =
t∑

`=1

w` =
t∑

`=1

∑̀
i=−∞

ψ`−iεi =
t∑

i=−∞

 t∑
`=max(1,i)

ψ`−i

 εi =:
t∑

i=−∞

bt,iεi. (A.1)

Taking into account that in Assumption B.1.(b), zt maybe contains εt, · · · , εt−d+1, we

decompose, for t > d,

xt =
t∑

i=t−d+1

bt,iεi +
t−d∑
i=−∞

bt,iεi := x
(d)
t + x

(t−d)
t . (A.2)

Thus, x
(d)
t and x

(t−d)
t are mutually independent, and x

(d)
t is stationary since it is a combination

of εt, · · · , εt−d+1 with fixed coefficients ψ0, · · · ,
∑d−1

`=0 ψ` (i.e., a MA(d) process), while x
(t−d)
t

is still nonstationary as we only take out fixed number of ε’s from xt.

Letting 1 ≤ s < t, xt also has the following decomposition:

xt =x∗s + xts,

where x∗s = xs + x̄s with x̄s =
∑t

i=s+1

∑s
a=−∞ ψi−aεa containing all information available

up to s and xts =
∑t

i=s+1 bt,iεi which captures all information containing in xt on the time

periods (s, t]. Let dts := (Ex2ts)
1/2 ∼

√
t− s for large t− s. Moreover, x̄s = OP (1) by virtue

of Assumption A.
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Additionally, taking into account of that zt and zs maybe have εt, · · · , εt−d and εs, · · · , εs−d
for t− s ≥ d, we decompose

xt =x
(d)
t + x

(d)
ts + x(d∗)s + x(s−d∗)s , (A.3)

where x
(d)
t =

t∑
i=t−d+1

bt,iεi, x
(d)
ts =

t−d∑
i=s+1

bt,iεi

x(d∗)s = x(d)s + x̄(d)s , x(s−d∗)s = x(s−d)s + x̄(s−d)s ,

recalling that x
(d)
s and x̄

(d)
s are the sums of the first d terms of xs and x̄s, respectively,

whereas x
(s−d)
s and x̄

(s−d)
s are the rests of them in xs and x̄s, respectively. Obviously, all four

components in (A.3) are mutually independent.

Lemma A.1. Suppose that Assumption A holds. For t or t− s is large,

(1) d−1t xt have uniformly bounded densities ft(x) over all t and x satisfying a uniform Lip-

schitz condition supx |ft(x + y) − ft(x)| ≤ C|y| for any y and some constant C > 0. In

addition, supx |ft(x) − φ(x)| → 0 as t → ∞ where φ(x) is the standard normal density

function.

(2) Let 1 ≤ s < t. d−1ts xts have uniformly bounded densities fts(x) over all (t, s) and x

satisfying the above uniform Lipschitz condition as well.

Lemma A.2. Suppose that Assumption 1 holds. For t or t− s is large,

(1) Let d̃2t = E[(x
(t−d)
t )2]. d̃−1t x

(t−d)
t have uniformly bounded densities ft/d(x) over all t and

x satisfying a uniform Lipschitz condition supx |ft/d(x + y) − ft/d(x)| ≤ C|y| for any y

and some constant C > 0. In addition, supx |ft/d(x) − φ(x)| → 0 as t → ∞ where φ(x)

is the standard normal density function.

(2) For 1 ≤ s < t and t − s > d, let d̃2ts = E[(x
(t−d)
ts )2]. d̃−1ts x

(t−d)
ts have uniformly bounded

densities fts/d(x) over all (t, s) and x satisfying the above uniform Lipschitz condition as

well.

It is noteworthy that d̃t ∼
√
t, the same order as dt for large t, and d̃ts ∼

√
t− s, the

same order as dts, for large t− s noting by that d is fixed. This fact will be used frequently

in the following derivation which, for simplicity, will not be mentioned repeatedly.

Lemma A.3. Suppose that Assumptions A and B.1(b) hold.

(1) Let p(·) be a function such that E|p(zt)| < ∞, h(·) be an integrable function on R, i.e.∫
|h(x)|dx <∞. Then, for large t, |Ep(zt)h(xt)| < Cd̃−1t E|p(zt)|

∫
|h(x)|dx(1 +O(d̃−1t )).
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(2) Let p1(·) and p2(·) satisfy the above condition for p(·); and h1(·) is integrable and h2(·) is

such that
∫
|xh2(x)|dx <∞. For 1 ≤ s < t and t−s > d, |E[p1(zt)p2(zs)h1(xt)h2(xs)]| ≤

Cd̃−1ts d̃
−1
s E|p1(zt)|E|p2(zs)|

∫
|h1(x)|dx

∫
|h2(x)|dx(1 +O(d̃−1ts )).

This lemma is sufficient to deal with the correlation between zt and xt stipulated in

Assumptions B and B*.

All notation used below can be found in the text and thus is omitted for brevity.

Lemma A.4. (1)
∥∥ 1
n

∑n
t=1 φk1(t/n)φ

ᵀ

k1
(t/n)− Ik1

∥∥2 = O(n−2k21) as k1/n→ 0;

(2) sup0≤r≤1 ‖φk1(r)‖2 = k1 +O(1) as k1 →∞.

Lemma A.5. Let Dn = diag(
√
nIk1 ,

√
nIk2 ,

√
n/dnIk3). Then, under Assumptions A, B

and D, ‖D−1n B
ᵀ

nkBnkD
−1
n − Uk‖ = oP (1) as n → ∞ on a richer probability space. Particu-

larly, ‖ 1
n

∑n
t=1 φk1(t/n)φk1(t/n)

ᵀ − Ik1‖ = o(1), ‖ 1
n

∑n
t=1 ak2(zt)ak2(zt)

ᵀ − U∗22‖ = oP (1) and

‖dn
n

∑n
t=1 bk2(xt)bk2(xt)

ᵀ − LW (1, 0)Ik3‖ = oP (1).

Lemma A.6. Under Assumptions A, B* and D, ‖D−1n B̃
ᵀ

nkB̃nkD
−1
n − Ũk‖ = oP (1) as n→∞

on a richer probability space, where Dn is given in Lemma A.5.

Lemma A.7. Under Assumptions A, B and D, ‖D−1n B
ᵀ

nkΣnBnkD
−1
n −Vk‖ = oP (1) as n→∞

on a richer probability space, where Σn = diag(σ2(1/n), . . . , σ2(1)) and Dn is given in Lemma

A.5.

Lemma A.8. Under Assumptions A, B* and D, ‖D−1n B̃
ᵀ

nkΣnB̃nkD
−1
n − Ṽk‖ = oP (1) as

n→∞ on a richer probability space, where Dn is given in Lemma A.5.

Lemma A.9. Let Mn = diag(
√
nIk1 ,

√
ndn,

√
nIk2 ,

√
n/dnIk3). Then, under Assumptions

A, B and D, ‖M−1
n A

ᵀ

nkAnkM
−1
n −Qk‖ = oP (1) as n→∞ on a richer probability space.

Lemma A.10. Under Assumptions A, B* and D, ‖M−1
n Ã

ᵀ

nkÃnkM
−1
n − Q̃k‖ = oP (1) as

n→∞ on a richer probability space, where Mn is the same as in Lemma A.9.

Lemma A.11. Under Assumptions A, B and D, ‖M−1
n A

ᵀ

nkΣnAnkM
−1
n − Pk‖ = oP (1) as

n→∞ on a richer probability space, where Mn is the same as in Lemma A.9.

Lemma A.12. Under Assumptions A, B* and D, ‖M−1
n Ã

ᵀ

nkΣnÃnkM
−1
n − P̃k‖ = oP (1) as

n→∞ on a richer probability space, where Mn is the same as in Lemma A.9.

B Proof of the main result

In this appendix only the proofs of Theorems 3.1 and 3.2 are provided, while that for other

theorems, proposition and corollaries are relegated to the supplement of the paper.
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Proof of Theorem 3.1. The theorem will be shown via Cramér-Wold theorem. Notice

that

ĉ− c =(B
ᵀ

nkBnk)
−1B

ᵀ

nk(γ + e) = D−1n [D−1n B
ᵀ

nkBnkD
−1
n ]−1D−1n B

ᵀ

nk(γ + e), (B.1)

which implies

Dn(ĉ− c) = [D−1n B
ᵀ

nkBnkD
−1
n ]−1D−1n B

ᵀ

nk(γ + e).

Hence, for any r ∈ [0, 1], z ∈ V and x ∈ R,
√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

√
n

‖bk3 (x)‖
√
dn

[m̂n(x)−m(x)]

 = Ψ(r, z, x)
ᵀ
Dn(ĉ− c)−


√
n

‖φk1 (r)‖
γ1k1(r)

√
n

‖ak2 (z)‖
γ2k2(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)


=Ψ(r, z, x)

ᵀ
[D−1n B

ᵀ

nkBnkD
−1
n ]−1D−1n B

ᵀ

nke (B.2)

+ Ψ(r, z, x)
ᵀ
[D−1n B

ᵀ

nkBnkD
−1
n ]−1D−1n B

ᵀ

nkγ −


√
n

‖φk1 (r)‖
γ1k1(r)

√
n

‖ak2 (z)‖
γ2k2(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)

 , (B.3)

where Ψ(r, z, x) is the Ψ(r, z, x) defined in Section 2 postmultiplying by diag(‖φk1(r)‖−1,
‖ak2(z)‖−1, ‖bk3(z)‖−1), so that each block in Ψ(r, z, x) is a unit vector. Here, the leading

term in the above is Ψ(r, z, x)
ᵀ
[D−1n B

ᵀ

nkBnkD
−1
n ]−1D−1n B

ᵀ

nke that will be dealt with firstly. To

begin, by Lemma A.5, ‖D−1n B
ᵀ

nkBnkD
−1
n − Uk‖ = oP (1) as n → ∞, and making use of the

block diagonal structure of Uk, it follows that

Ψ(r, z, x)
ᵀ
[D−1n B

ᵀ

nkBnkD
−1
n ]−1D−1n B

ᵀ

nke =Ψ(r, z, x)
ᵀ
U−1k D−1n B

ᵀ

nke(1 + oP (1))

=L−13 Ψ(r, z, x)
ᵀ
Ū−1k D−1n B

ᵀ

nke(1 + oP (1)), (B.4)

where L3 = diag(1, 1, LW (1, 0)) and Ūk = diag(Ik1 , Uk2 , Ik3). As L3 is independent of the

sample size, we now focus on Ψ(r, z, x)
ᵀ
Ū−1k D−1n B

ᵀ

nke.

Write

Ψ(r, z, x)
ᵀ
Ū−1k D−1n B

ᵀ

nke =
n∑
t=1

ξntet

where we denote

ξnt := Ψ(r, z, x)
ᵀ
Ū−1k D−1n


φk1(t/n)

ak2(zt)

bk3(xt)

 .

Since (et,Fnt) is a martingale difference sequence stipulated in Assumption B,
∑n

t=1 ξntet

is a martingale due to Assumption B.4. We calculate the conditional variance as follows:
n∑
t=1

E[ξntξ
ᵀ

nte
2
t |Fn,t−1] =

n∑
t=1

ξntξ
ᵀ

ntσ
2(t/n)
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=Ψ(r, z, x)
ᵀ
Ū−1k D−1n B

ᵀ

nkΣnBnkD
−1
n Ū−1k Ψ(r, z, x)

=Ψ(r, z, x)
ᵀ
Ū−1k VkŪ

−1
k Ψ(r, z, x)(1 + oP (1))

=Ψ(r, z, x)
ᵀ
Ū−1k V̄kŪ

−1
k Ψ(r, z, x)Lσ(1 + oP (1))

:=ΩnLσ(1 + oP (1)) (B.5)

by Lemma A.7 and the structure of Vk, where Lσ = diag(1, 1,
∫ 1

0
σ2(r)dL(r, 1)), V̄k =

diag(V∗, Ik3) a deterministic matrix, and Ωn := Ψ(r, z, x)
ᵀ
Ū−1k V̄kŪ

−1
k Ψ(r, z, x) is a 3 × 3 de-

terministic matrix as well. This means that the conditional variance of Ω
−1/2
n

∑n
t=1 ξntet is

approximated by Lσ in probability.

Here, we emphasize that Ω
−1/2
n is exchangeable with L3, i.e. Ω

−1/2
n L3 = L3Ω

−1/2
n . Indeed,

notice that

Ω−1/2n =

Ψ(r, z, x)
ᵀ

U−1∗ V∗U
−1
∗ 0

0 Ik3

Ψ(r, z, x)

−1/2

=

[Ψ12(r, z)
ᵀ
U−1∗ V∗U

−1
∗ Ψ12(r, z)]−1/2 0

0 1

 ,

where Ψ12(r, z) := diag(φk1(r)/‖φk1(r)‖, ak2(z)/‖ak2(z)‖) the left-top 2-by-2 sub-block matrix

of Ψ(r, z, x), while the right-bottom block of Ψ(r, z, x) is bk3(x)/‖bk3(x)‖, U∗ = diag(Ik1 , Uk2).

Then, it is obvious that Ω
−1/2
n is exchangeable with L3. This point allows us to normalize the

left hand side of the equation (B.2) and the martingale
∑n

t=1 ξntet by Ω
−1/2
n simultaneously.

Hence, we shall show that the martingale Ω
−1/2
n

∑n
t=1 ξntet converges to N(0, Lσ) by

Cramér-Wold theorem and Corollary 3.1 of Hall and Heyde [17, p. 58].

To this end, let λ = (λ1, λ2, λ3) 6= 0 and we need to check for

ξn :=
n∑
t=1

λΩ−1/2n ξntet,

whether (1) Lindeberg condition and (2) the convergence of the conditional variance are

fulfilled.

(1). The Lindeberg condition is fulfilled if we show that
∑n

t=1 E[(λξntet)
4|Fn,t−1]→P 0 as

n→∞. Indeed, denoting µ4 := max1≤t≤n E[e4t |Fn,t−1],
n∑
t=1

E[(λξntet)
4|Fn,t−1] ≤ µ4

n∑
t=1

(λξnt)
4

=µ4

n∑
t=1

[λΨ(r, z, x)
ᵀ
Ū−1k D−1n (φk1(t/n)

ᵀ
, ak2(zt)

ᵀ
, bk3(xt)

ᵀ
)
ᵀ
]4

=µ4

n∑
t=1

(
λ1

1√
n

φk1(r)
ᵀ

‖φk1(r)‖
φk1(t/n) + λ2

1√
n

ak2(z)
ᵀ

‖ak2(z)‖
U−1k2 ak2(zt)
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+

√
dn
n
λ3‖bk3(x)‖−1bk3(x)

ᵀ
bk3(xt)

)4

≤C1λ
4
1

1

n2

n∑
t=1

1

‖φk1(r)‖4
[φk1(r)

ᵀ
φk1(t/n)]4 + C2λ

4
2

1

n2

n∑
t=1

1

‖ak2(z)‖
[ak2(z)

ᵀ
ak2(zt)]

4

+ C3
d2n
n2

n∑
t=1

[λ4‖bk3(x)‖−1bk3(x)
ᵀ
bk3(xt)]

4,

because Uk2 has eigenvalues greater than zero and bounded from above uniformly. Denote

u1 = φk1(r)/‖φk1(r)‖ and u2 = ak2(z)/‖ak2(z)‖ two unit vectors with dimensions k1 and k2,

respectively. It follows that

1

n2

n∑
t=1

[u
ᵀ

1φk1(t/n)]4 =
1

n

∫ 1

0

[u
ᵀ

1φk1(s)]
4ds+O(n−2)

≤ 1

n

∫ 1

0

‖φk1(s)‖4ds = O(n−1k21)→ 0,

by Cauchy-Schwarz inequality and supr∈[0,1] ‖φk1(s)‖2 = O(k1). Also, in order to show that
1
n2

∑n
t=1[u

ᵀ

2ak2(zt)]
4 →P 0, note that

1

n2
E

n∑
t=1

(u
ᵀ

2ak2(zt))
4 =

1

n2
E

n∑
t=1

(
k2−1∑
i=0

u2ipi(zt)

)4

=
1

n2

n∑
t=1

k2−1∑
i=0

u42iEp4i (zt) + 6
1

n2

n∑
t=1

k2−1∑
i=1

i−1∑
j=1

u22iu
2
2jE[p2i (zt)p

2
j(zt)]

+ 4
1

n2

n∑
t=1

k2−1∑
i=1

i−1∑
j=1

u2iu
3
2jE[(pi(zt))p

3
j(zt)]

+ 8
1

n2

n∑
t=1

k2−1∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

i3−1∑
i4=0

u2i1u2i2u2i3u2i4E[pi1(zt)pi2(zt)pi3(zt)pi4(zt)]

≤ 1

n
k2

k2∑
i=1

u42i + 6
1

n
k2

k2∑
i=1

i−1∑
j=0

u22iu
2
2j + 4

1

n
k2

k2∑
i=1

i−1∑
j=1

|u2i||u2j|3

+ 8
1

n
k2

k2∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

i3−1∑
i4=0

|u2i1u2i2u2i3u2i4|

≤ 1

n
k2 + 4

1

n
k2k

1/2
2 + 8

1

n
k2k

2
2 = o(1),

where we denote u2 = (u21, · · · , u2k2)
ᵀ
, and Assumption B.2(a) is used for Ep4i (zt) = O(i) for

i large, Cauchy-Schwarz inequality to derive E|(pi(zt))p3j(zt)| ≤ (E|(pi(zt))|4)1/4(E|pj(zt)|4)4/3

as well as other similar terms; meanwhile,
∑k2−1

i=0 |u2i| ≤ k
1/2
2 . The third term is much easier

to be dealt with. Let u3 := ‖bk3(x)‖−1bk3(x) a unit vector, and notice that ‖bk3(·))‖2 ≤ Ck3

uniformly by the uniform boundedness of Hermite functions. We have, by Lemma A.1,

d2n
n2

E
n∑
t=1

(u
ᵀ

3bk3(xt))
4 ≤ Ck3

d2n
n2

n∑
t=1

E(u
ᵀ

3bk3(xt))
2
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=Ck3
d2n
n2

n∑
t=1

∫
(u

ᵀ

3bk3(dtx))2ft(x)dx = Ck3
d2n
n2

n∑
t=1

1

dt

∫
(u

ᵀ

3bk3(x))2ft(d
−1
t x)dx

≤Ck3
d2n
n2

n∑
t=1

1

dt

∫
(u

ᵀ

3bk3(x))2dx = Ck3
d2n
n2

n∑
t=1

1

dt

=Ck3n
−1/2 = o(1),

where
∫

(u
ᵀ

3bk3(x))2dx = ‖u3‖2 = 1 by the orthogonality. This finishes the Lindeberg condi-

tion.

(2). For the conditional variance, it is clear by (B.5) that the martingale ξn has conditional

variance approaching λLσλ
ᵀ

in probability. The normality therefore is shown.

To finish the proof, we next demonstrate that all reminder terms in (B.3) are negligible,

that is, as n→∞,

n∑
t=1

ξntγ(t) = oP (1),
√
n‖φk1(r)‖−1γ1k1(r) = o(1),

√
n‖ak2(z)‖−1γ2k2(z) = o(1),

√
n/dn‖bk3(x)‖−1γ3k3(x)) = o(1).

Here, we omit the normalizer Ωn since it is positive definite and has eigenvalues bounded

below from zero and above from infinity due to the condition on Uk2 and V∗.

In view of the structures of ξnt, we need to show

(3)
1√
n

n∑
t=1

‖φk1(r)‖−1φk1(r)
ᵀ
φk1(t/n)γ(t) = o(1),

(4)
1√
n

n∑
t=1

‖ak2(z)‖−1ak2(z)
ᵀ
ak2(zt)γ(t) = oP (1),

(5)
√
n‖φk1(r)‖−1γ1k1(r) = o(1),

√
n‖ak2(z)‖−1γ2k2(z) = o(1),

(6)

√
dn
n

n∑
t=1

1

‖bk3(x)‖
bk3(x)

ᵀ
bk3(xt)γ(t) = oP (1),

(7)

√
n

dn

1

‖bk3(x)‖
γ3k3(x) = o(1).

To fulfill (3)-(5), it suffices to show

A1n :=
1√
n

n∑
t=1

‖φk1(t/n)‖|γ(t)| = oP (1), B1n :=
1√
n

n∑
t=1

‖ak2(zt)‖|γ(t)| = oP (1),

A2n :=
√
n

1

‖φk1(r)‖
|γ1k1(r)| = o(1), B2n :=

√
n

1

‖ak2(z)‖
|γ2k2(z)| = o(1).

Indeed, note that maxr∈[0,1] |γ1k1(r)| = O(k−s11 ) and E|γ2k2(zt)|2 = O(k−s22 ) by Newey [26] and

Chen and Christensen [5] where s1 and s2 are respectively the smoothness order of β(·) and
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g(·), whereas using the density for d−1t xt in Lemma A.1 and the result of Lemma C.1 in Dong

et al. [9], we have E|γ3k3(xt)|2 ≤ Cd−1t
∫
|γ3k3(x)|2dx = d−1t O(k−s33 ). Notice further that,

E|A1n| ≤
1√
n

n∑
t=1

‖φk1(t/n)‖E|γ(t)|

≤ 1√
n

n∑
t=1

‖φk1(t/n)‖|γ1k1(t/n)|

+
1√
n

n∑
t=1

‖φk1(t/n)‖E|γ2k2(zt)|

+
1√
n

n∑
t=1

‖φk1(t/n)‖E|γ3k3(xt)|

≤
√
nk1 max

r∈[0,1]
|γ1k1(r)|+

√
nk1O(k

−s2/2
2 )

+
1√
n

n∑
t=1

‖φk1(t/n)‖d−1/2t O(k
−s3/2
3 )

≤
√
nk1O(k−s11 ) +

√
nk1O(k

−s2/2
2 ) + n1/4

√
k1O(k

−s3/2
3 )

=o(1)

by Assumption D, implying A1n = oP (1). Similarly, it is readily seen that A2n = o(1) as well.

For B1n, denoting u2 = ‖ak2(z)‖−1ak2(z) temporarily,

E|B1n| ≤
1√
n

n∑
t=1

E‖ak2(zt)γ(t)‖ ≤ 1√
n

n∑
t=1

[
E‖ak2(zt)‖2E|γ(t)|2

]1/2
≤C 1√

n

n∑
t=1

[
E‖ak2(zt)‖2

]1/2 [|γ1k1(t/n)|2 + E|γ2k2(zt)|2 + E|γ3k3(xt)|2
]1/2

=C
√
nk

1/2
2 max

r∈[0,1]
|γ1k1(r)|+ C

√
nk

1/2
2 O(k

−s2/2
2 ) + Ck

1/2
2 n1/4O(k

−s3/2
3 )

=C
√
nk

1/2
2 O(k−s11 ) + C

√
nk

1/2
2 O(k

−s2/2
2 ) + Ck

1/2
2 n1/4O(k

−s3/2
3 ),

due to Assumption D where E‖ak2(zt)‖2 ≤ Ck2 for some constant C since E[ak2(zt)ak2(zt)
ᵀ
]

a block in Lemma A.5 has bounded eigenvalues. In addition,

|B2n| =
1

‖ak2(z)‖
√
n|γ2k2(z)| = 1

‖ak2(z)fz(z)‖
√
n|γ2k2(z)fz(z)|

=O(k
−1/2
2 )

√
nk
−s2/2
2 = o(1),

where we have used ‖ak2(z)fz(z)‖2 = O(k2) for fixed z and pointwise convergence |γ2k2(z)fz(z)| =
o(k
−s2/2
2 ).

For (6), letting u3 = ‖bk3(x)‖−1bk3(x) as before and by Lemma A.1,√
dn
n

n∑
t=1

E|uᵀ

3bk3(xt)γ(t)|
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≤
√
dn
n

n∑
t=1

E|uᵀ

3bk3(xt)|γ1k1(t/n)|

+

√
dn
n

n∑
t=1

E|uᵀ

3bk3(xt)||γ2k2(zt)|

+

√
dn
n

n∑
t=1

E|uᵀ

3bk3(xt)γ3k3(xt)||

≤
√
dn
n

max
r∈[0,1]

|γ1k1(r)|
n∑
t=1

[
E‖bk3(xt)‖2

]1/2
+

√
dn
n
k
−s2/2
2

n∑
t=1

[E‖bk3(xt)‖2]1/2

+

√
dn
n

n∑
t=1

[E‖bk3(xt)‖2E|γ3k3(xt)|2]1/2

≤C1n
−1/4k−s11 k

1/2
3 n3/4 + C2n

−1/4k
−s2/2
2 k

1/2
3 n3/4

+ C3

√
dn
n

n∑
t=1

d−1t

[∫
‖bk3(x)‖2dx

∫
|γ3k3(x)|2dx

]1/2
=C1n

1/2k−s11 k
1/2
3 + C2n

1/2k
−s2/2
2 k

1/2
3 + C3n

1/4k
−s3/2
3 k

1/2
3

=o(1)

due to Assumption D where we have used the boundedness of the density ft(x) for xt/dt by

Lemma A.1. In the mean time, for (7),

1

‖bk3(x)‖
√
n/dn|γ3k3(x)| =O(k

−1/2
3 )O(n1/4)o(k

−(s3−1)/2−1/12
3 )

=o(n1/4k
−s3/2−1/12
3 ) = o(1),

where supx |γ3k3(x)| = o(k
−(s3−1)/2−1/12
3 ) by again Lemma C.1 in the supplement of Dong

et al. [9]. The entire proof is complete.

Proof of Theorem 3.2. Similar to (B.1), we have

ĉ− c = D−1n Ũ−1k D−1n B̃
ᵀ

nk(γ̃ + e)(1 + oP (1)),

where γ̃ = (γ̃(1), · · · , γ̃(n))
ᵀ

with γ̃(t) = γ1k1(t/n) + γ2k2(zt,n) + γ3k3(xt). Hence, Dn(ĉ− c) =

Ũ−1k D−1n B̃
ᵀ

nk(γ̃+ e) where the term oP (1) is omitted for better exposition. Also, note that for

any r ∈ [0, 1], z ∈ [amin, amax] and x ∈ R,
√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

√
n

‖bk3 (x)‖
√
dn

[m̂n(x)−m(x)

 = Ψ(r, z, x)
ᵀ
Dn(ĉ− c)−


√
n

‖φk1 (r)‖
γ1k1(r)

√
n

‖ak2 (z)‖
γ2k(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)


40



=Ψ(r, z, x)
ᵀ
Ũ−1k D−1n B̃

ᵀ

nk(γ̃ + e)−


√
n

‖φk1 (r)‖
γ1k1(r)

√
n

‖ak2 (z)‖
γ2k(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)

 . (B.6)

The normality will be derived from Ψ(r, z, x)
ᵀ
Ũ−1k D−1n B̃

ᵀ

nke. It can be shown exactly

in the same fashion as Theorem 3.1 by Cramér-Wold theorem as well as the diagonal block

structure of Ũk and Ṽk. In addition, using the approximation of zt(t/n) to zt,n [some examples

can be found in the proof of the lemmas] it is not hard to demonstrate all the remainder

terms are asymptotically negligible. These are omitted for the sake of similarity. The proof

thus is finished.
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This supplementary document provides with all technical lemmas and their proofs in

Appendix C and the proofs for Theorems 3.3-3.4, Proposition 3.1 as well as Corollaries 3.1

in Appendix D.

Appendix C: Lemmas and their proofs

This section presents the proofs for all lemmas in Appendix A. Note that the lemmas A.1-A.10

are restated and relabelled respectively by C.1-C.10 for convenience of readership.

We consider here several decompositions of xt. Without loss of generality, in what follows

let x0 = 0 almost surely. It follows that

xt =
t∑

`=1

w` =
t∑

`=1

∑̀
i=−∞

ψ`−iεi =
t∑

i=−∞

 t∑
`=max(1,i)

ψ`−i

 εi =:
t∑

i=−∞

bt,iεi. (C.1)

Taking into account that in Assumption B.1.(b), zt maybe contains εt, · · · , εt−d+1, we decom-

pose, for t > d,

xt =
t∑

i=t−d+1

bt,iεi +
t−d∑
i=−∞

bt,iεi := x
(d)
t + x

(t−d)
t . (C.2)

∗Corresponding author: Chaohua Dong, School of Economics, Southwestern University of Finance and Eco-
nomics, Chengdu, Sichuan 611130, China. Email: dchaohua@hotmail.com.
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Thus, x
(d)
t and x

(t−d)
t are mutually independent, and x

(d)
t is stationary since it is a combination

of εt, · · · , εt−d+1 with fixed coefficients ψ0, · · · ,
∑d−1

`=0 ψ`, while x
(t−d)
t is still nonstationary as we

only take out fixed ε’s from xt.

Letting 1 ≤ s < t, xt also has the following decomposition:

xt =xts + x∗s, (C.3)

where x∗s = xs + x̄s with x̄s =
∑t

i=s+1

∑s
a=−∞ ψi−aεa containing all information available up to s

and xts =
∑t

i=s+1 bt,iεi which captures all information containing in xt on the time periods (s, t].

Let dts := (Ex2ts)
1/2 for late use. Moreover, x̄s = OP (1) by virtue of Assumption A.

Additionally, taking into account of zt and zs maybe have εt, · · · , εt−d and εs, · · · , εs−d for

t− s ≥ d, we decompose

xt =x
(d)
t + x

(d)
ts + x(d∗)s + x(s−d∗)s , (C.4)

where x
(d)
t =

t∑
i=t−d+1

bt,iεi, x
(d)
ts =

t−d∑
i=s+1

bt,iεi

x(d∗)s = x(d)s + x̄(d)s , x(s−d∗)s = x(s−d)s + x̄(s−d)s ,

recalling that x
(d)
s and x̄

(d)
s are the sums of the first d terms of xs and x̄s, respectively, whereas

x
(s−d)
s and x̄

(s−d)
s are the rests of them in xs and x̄s, respectively. Obviously, all four components

in (C.4) are mutually independent.

Lemma C.1. Suppose that Assumption 1 holds. For t or t− s is large,

(1) d−1t xt have uniformly bounded densities ft(x) over all t and x satisfying a uniform Lipschitz

condition supx |ft(x + y) − ft(x)| ≤ C|y| for any y and some constant C > 0. In addition,

supx |ft(x)− φ(x)| → 0 as t→∞ where φ(x) is the standard normal density function.

(2) Let 1 ≤ s < t. d−1ts xts have uniformly bounded densities fts(x) over all (t, s) and x satisfying

the above uniform Lipschitz condition as well.

Proof. We shall prove (1) only, since (2) follows in the same fashion. Denote by ϕ(λ) the charac-

teristic function of ε0. Under Assumption A,
∫
|λϕ(λ)|dλ <∞. Let Φt(α) be the characteristic

function of d−1t xt for α ∈ R. Denote xt = x+t + x−t , where x+t includes all εj with j > 0 in xt,

while x−t includes all εj with j ≤ 0 in xt. It follows that∫
|α||Φt(α)|dα =

∫
|α||E exp(iαd−1t xt)|dα ≤

∫
|α||E exp(iαd−1t x+t )|dα

=

∫
|α|

∣∣∣∣∣E exp

[
i

(
αd−1t

t∑
j=1

bt,jεj

)]∣∣∣∣∣ dα =

∫
|α|

∣∣∣∣∣
t∏

j=1

E exp
[
iαd−1t bt,jεj

]∣∣∣∣∣ dα
2



=

∫
|α|

t∏
j=1

∣∣ϕ(αd−1t bt,j)
∣∣ dα.

It is clear that there exists a δ0 > 0 such that |ϕ(λ)| < e−|λ|
2/4 whenever |λ| ≤ δ0 and |ϕ(λ)| < η

if |λ| > δ0 for some 0 < η < 1 (Wang and Phillips, 2009, p. 730). Note also that bt,j =

ψ0 + · · · + ψt−j. If t − j is large, bt,j = ψ(1 + o(1)) where ψ =
∑

j ψj 6= 0. Let ν = νt be a

function of t such that ν → ∞ and ν/t → 0 as t → ∞. Thus, for 1 ≤ j ≤ t − ν, there exist

constants c1, c2 such that 0 < c1 < c2 <∞ and c1 < |bt,j| < c2. Indeed, we may take c1 = |ψ|/2
and c2 = 3|ψ|/2. Therefore, letting δ = δ0/c2,

∫
|α|

t∏
j=1

∣∣ϕ(αd−1t bt,j)
∣∣ dα ≤ ∫ |α| t−ν∏

j=1

∣∣ϕ(αd−1t bt,j)
∣∣ dα

=

(∫
|α|≤dtδ

+

∫
|α|>dtδ

)
|α|

t−ν∏
j=1

∣∣ϕ(αd−1t bt,j)
∣∣ dα

≤
∫
|α|≤dtδ

|α|e−α2d−2
t

∑t−ν
j=1 b

2
t,j/4dα + ηt−ν−1

∫
|α|>dtδ

|α|
∣∣ϕ (αd−1t bt,1

)∣∣ dα
≤
∫
|α|≤dtδ

|α|e−α2c1(1−ν/t)/4dα + b−2t,1d
2
tη
t−ν−1

∫
|α|>δ
|α| |ϕ(α)| dα

≤
∫
|α|e−α2c1/4dα + b−2t,1d

2
tη
t−ν−1

∫
|α| |ϕ (α)| dα <∞,

where we have used the fact that d2tη
t−ν−1 → 0 and bt,1 → ψ 6= 0 as t → ∞. The integrability

of |Φt(α)| implies the uniform boundedness of the densities ft(x) due to the inverse formula.

Similarly, the integrability of |α||Φt(α)| gives the uniform boundedness of the derivative of ft(x).

As a matter of fact, we have∣∣∣∣ ddxft(x)

∣∣∣∣ =
1

2π

∣∣∣∣ ddx
∫
e−iαxΦt(α)dα

∣∣∣∣ =
1

2π

∣∣∣∣∫ (−iα)e−iαxΦt(α)dα

∣∣∣∣
≤ 1

2π

∫
|α||Φt(α)|dα ≤ C.

It follows immediately from the mean value theorem that supx |ft(x + y) − ft(x)| ≤ C|y|. The

normality approximation can be found in literature, for example, equation (5.11) of Wang and

Phillips (2009, p. 729).

Similarly, we have the following lemma for the components in the decomposition of xt in

(C.2) and (C.4).

Lemma C.2. Suppose that Assumption 1 holds. For t or t− s is large,

(1) Let d̃2t = E[(x
(t−d)
t )2]. d̃−1t x

(t−d)
t have uniformly bounded densities ft/d(x) over all t and x

satisfying a uniform Lipschitz condition supx |ft/d(x + y) − ft/d(x)| ≤ C|y| for any y and

3



some constant C > 0. In addition, supx |ft/d(x) − φ(x)| → 0 as t → ∞ where φ(x) is the

standard normal density function.

(2) For 1 ≤ s < t and t − s > d, let d̃2ts = E[(x
(t−d)
ts )2]. d̃−1ts x

(t−d)
ts have uniformly bounded

densities fts/d(x) over all (t, s) and x satisfying the above uniform Lipschitz condition as

well.

It is noteworthy that d̃t ∼
√
t, the same order as dt for large t, and d̃ts ∼

√
t− s, the same

order as dts, for large t − s noting by that d is fixed. This fact will be used frequently in the

following derivation which, for simplicity, will not be mentioned repeatedly.

The proof of the lemma is exactly that same as that of Lemma C.1, hence we omit it.

Lemma C.3. Suppose that Assumptions A and B.1(b) hold.

(1) Let p(·) be a function such that E|p(zt)| < ∞, h(·) be an integrable function on R, i.e.∫
|h(x)|dx <∞. Then, for large t, |Ep(zt)h(xt)| < Cd̃−1t E|p(zt)|

∫
|h(x)|dx(1 +O(d̃−1t )).

(2) Let p1(·) and p2(·) satisfy the above condition for p(·); and h1(·) is integrable and h2(·) is

such that
∫
|xh2(x)|dx < ∞. For 1 ≤ s < t and t − s > d, |E[p1(zt)p2(zs)h1(xt)h2(xs)]| ≤

Cd̃−1ts d̃
−1
s E|p1(zt)|E|p2(zs)|

∫
|h1(x)|dx

∫
|h2(x)|dx(1 +O(d̃−1ts )).

Proof. (1) Invoking the decomposition (C.2) of xt, the conditional argument and Lemma C.2,

we have

Ep(zt)h(xt) =Ep(zt)h(x
(d)
t + x

(t−d)
t ) = E

∫
p(zt)h(x

(d)
t + d̃tx)ft/d(x)dx

=
1

d̃t
E
∫
p(zt)h(x)ft/d

(
x− x(d)t
d̃t

)
dx

=
1

d̃t
Ep(zt)

∫
h(x)ft/d

(
x

d̃t

)
dx

+
1

d̃t
Ep(zt)

∫
h(x)

[
ft/d

(
x− x(d)t
d̃t

)
− ft/d

(
x

d̃t

)]
dx.

Then, it follows immediately from the uniform boundedness and Lipschitz condition for the

densities in Lemma C.2, |Ep(zt)h(xt)| < Cd̃−1t E|p(zt)|
∫
|h(x)|dx + C1d̃

−2
t E|p(zt)x(d)t |

∫
|h(x)|dx

from which the assertion holds in view of d̃−1t = o(1) for large t.

(2) Invoking the decompositions (C.3) and (C.4) of xt, and similar to the above,

E[p1(zt)p2(zs)h1(xt)h2(xs)] = E[p1(zt)p2(zs)h2(xs)h1(x
(d)
t + x

(t−d)
ts + x∗s)]

=E
∫
p1(zt)p2(zs)h2(xs)h1(x

(d)
t + d̃tsx+ x∗s)fts/d(x)dx

=
1

d̃ts
E
∫
p1(zt)p2(zs)h2(xs)h1(x)fts/d

(
x− x(d)t − x∗s

d̃ts

)
dx

4



=
1

d̃ts
E[p1(zt)p2(zs)h2(xs)]

∫
h1(x)fts/d

(
x

d̃ts

)
dx

+
1

d̃ts
E
∫
p1(zt)p2(zs)h2(xs)h1(x)

[
fts/d

(
x− x(d)t − x∗s

d̃ts

)
− fts/d

(
x

d̃ts

)]
dx.

Then,

|E[p1(zt)p2(zs)h1(xt)h2(xs)]| ≤Cd̃−1ts E|p1(zt)|E|p2(zs)h2(xs)|
∫
|h1(x)|dx

+ C1d̃
−2
ts E|p1(zt)x

(d)
t |E|p2(zs)h2(xs)|

∫
|h1(x)|dx

+ C2d̃
−2
ts E|p1(zt)|E|p2(zs)h2(xs)x∗s|

∫
|h1(x)|dx.

With further calculation, E|p2(zs)h2(xs)| ≤ C3d̃
−1
s E|p2(zs)|

∫
|h2(x)|dx, and noting that x∗s =

xs + x̄s and x̄s = OP (1), E|p2(zs)h2(xs)x∗s| ≤ C4d̃
−1
s E|p2(zs)|

∫
|xh2(x)|dx. In conclusion,

|E[p1(zt)p2(zs)h1(xt)h2(xs)]| ≤ Cd̃−1ts d̃
−1
s E|p1(zt)|E|p2(zs)|

∫
|h1(x)|dx

∫
|h2(x)|dx(1 + o(1)), in

view of d̃−1ts = o(1) for large t− s.

Recall that φk1(r) = (ϕ1(r), · · · , ϕk1(r))
ᵀ
. Some preliminaries are as follows.

Lemma C.4. (1)
∥∥ 1
n

∑n
t=1 φk1(t/n)φ′k1(t/n)− Ik1

∥∥2 = O(n−2k21) as k1/n→ 0;

(2) sup0≤r≤1 ‖φk1(r)‖2 = k1 +O(1) as k1 →∞.

Proof. (1) Note that the matrix
∑n

t=1 φk1(t/n)φk1(t/n)′ has element at (u, v), u, v = 1, · · · , k1,∑n
t=1 ϕu(t/n)ϕv(t/n). At the diagonal are, for v = 1, · · · , k1,

n∑
t=1

ϕ2
v(t/n) =2

n∑
t=1

cos2(πvt/n) = n+
n∑
t=1

cos(2πvt/n)

=n+ Re
n∑
t=1

exp(i2πvt/n)

=n+ Re

[
exp(i2πv/n)

n−1∑
t=0

exp(i2πvt/n)

]

=n+ Re

[
exp(i2πv/n)

1− exp(i2πv)

1− exp(i2πv/n)

]
= n,

where i is the imagine unit. At off-diagonal are, for u > v > 0,

n∑
t=1

ϕu(t/n)ϕv(t/n) = 2
n∑
t=1

cos(πut/n) cos(πvt/n)

=
n∑
t=1

[cos(π(u+ v)t/n) + cos(π(u− v)t/n)] =

0, if u+ v is even;

−2 if u+ v is odd,

5



because for any w ≥ 1,

n∑
t=1

cos(πwt/n) = Re
n∑
t=1

exp(iπwt/n) = Re

[
exp(iπw/n)

n−1∑
t=0

exp(iπwt/n)

]

=Re

[
exp(iπw/n)

1− exp(iπw)

1− exp(iπw/n)

]
=

0, if w is even;

−1 if w is odd.

Hence, the assertion follows. (2) Observe that

‖φk1(r)‖2 =

k1∑
j=1

ϕ2
j(r) =

k1∑
j=1

2 cos2(πjr)

=

k1∑
j=1

[1 + cos(2πjr)] = k1 +

k1∑
j=1

cos(2πjr)

=k1 + Re

k1∑
j=1

exp(i2πjr) = k1 + Re

[
exp(i2πr)

k1−1∑
j=0

exp(i2πjr)

]

=k1 + Re

[
exp(i2πr)

1− exp(i2πk1r)

1− exp(i2πr)

]
=k1 +

[cos(2πr)− cos(2πk1r)][1− cos(2πr)] + sin(2πr)[sin(2πr)− sin(2πk1r)]

2(1− cos(2πr))

=k1 +
1

2
(1 + 2 cos(2πr)− cos(2πk1r))−

sin(2πk1r) sin(2πr)

2(1− cos(2πr))

=k1 +
1

2
(1 + 2 cos(2πr)− cos(2πk1r))−

sin(2πk1r) cos(πr)

2 sin(πr)
.

Notice that limr→0 sin(2πk1r) cos(πr)/ sin(πr) = −k1 and limr→1 sin(2πk1r) cos(πr)/ sin(πr) =

k1. Then, it follows from the continuity of sin function that the assertion holds.

We are about to study the asymptotics of B
ᵀ

nkBnk which plays a significant role in the

derivation of the limit distribution for the estimators. Note that B
ᵀ

nkBnk has the following block

expression

B
ᵀ

nkBnk =
n∑
t=1


φk1(t/n)φk1(t/n)

ᵀ
φk1(t/n)ak2(zt)

ᵀ
φk1(t/n)bk3(xt)

ᵀ

ak2(zt)φk1(t/n)
ᵀ

ak2(zt)ak2(zt)
ᵀ

ak2(zt)bk3(xt)
ᵀ

bk3(xt)φk1(t/n)
ᵀ

bk3(xt)ak2(zt)
ᵀ

bk3(xt)bk3(xt)
ᵀ



:=


Π11 Π12 Π13

Π21 Π22 Π23

Π31 Π32 Π33

 ,

where Πij are defined according to the blocks in B
ᵀ

nkBnk, e.g., Π11 =
∑n

t=1 φk1(t/n)φk1(t/n)
ᵀ
.
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Lemma C.5. Let Dn = diag(
√
nIk1 ,

√
nIk2 ,

√
n/dnIk3) and Uk = diag(U∗, LW (1, 0)Ik3) where

U∗ = diag(Ik1 , U∗22), U∗22 is a square matrix of dimension k2, U∗22 = E[ak2(z1)ak2(z1)
′], and

LW (1, 0) is the local time of W (r) at point 0 over time period [0, 1]. Then, under Assumptions A,

B and D, ‖D−1n B′nkBnkD
−1
n −Uk‖ = oP (1) as n→∞ on a richer probability space. Particularly,

‖ 1
n
Π11 − Ik1‖ = o(1), ‖ 1

n
Π22 − U∗22‖ = oP (1) and ‖dn

n
Π33 − LW (1, 0)Ik3‖ = oP (1).

Proof. As we shall consider two cases for the process zt according to Assumption B, we divide the

proof into two steps, the steps A and B. Step A considers the case that zt and xt are independent

each other, whereas Step B deals with the case that zt and xt are possibly correlated.

Step A. Because Assumption B.2 has two parallel parts B.2(a) and B.2(b), the whole proof

is mainly based on Assumption B.2(a), since B.2(b) is a similar but easier case. For brevity we

do not mention this in what follows. Observe that

D−1n B′nkBnkD
−1
n =


1
n
Π11

1
n
Π12

√
dn
n

Π13

1
n
Π21

1
n
Π22

√
dn
n

Π23

√
dn
n

Π31

√
dn
n

Π32
dn
n

Π33



=
n∑
t=1


1
n
φk1(t/n)φk1(t/n)′ 1

n
φk1(t/n)ak2(zt)

′
√
dn
n
φk1(t/n)bk3(xt)

′

1
n
ak2(zt)φk1(t/n)′ 1

n
ak2(zt)ak2(zt)

′
√
dn
n
ak2(zt)bk3(xt)

′

√
dn
n
bk3(xt)φk1(t/n)′

√
dn
n
bk3(xt)ak2(zt)

′ dn
n
bk3(xt)bk3(xt)

′

 .

To prove the assertion, it suffices to show that ‖ 1
n
Π11 − Ik1‖ = o(1), ‖ 1

n
Π22 − U∗22‖ = oP (1),

‖dn
n

Π33 − LW (1, 0)Ik3‖ = oP (1) and ‖ 1
n
Π12‖ = oP (1), ‖

√
dn
n

Π13‖ = oP (1), ‖
√
dn
n

Π23‖ = oP (1). We

shall show them one by one.

(1) By Lemma C.4, ‖ 1
n
Π11 − Ik1‖2 = 1

n2O(k21) = o(1) due to Assumption D.

(2) Consider ‖ 1
n
Π22−U∗22‖2 = oP (1). Note that Π22 =

∑n
t=1 ak2(zt)ak2(zt)

′ is a square matrix

of dimension k2 × k2 where at (i, j) is
∑n

t=1 pi−1(zt)pj−1(zt), i, j = 1, · · · , k2. Note also that

∥∥∥∥ 1

n
Π22 − U∗22

∥∥∥∥2 =

k2∑
i=1

(
1

n

n∑
t=1

(p2i−1(zt)− E[p2i−1(zt)])

)2

+ 2

k2∑
i=2

i−1∑
j=1

(
1

n

n∑
t=1

(pi−1(zt)pj−1(zt)− E[pi−1(zt)pj−1(zt)])

)2

,

where the first term is related to the elements of Π22 on the diagonal, while the second is about

the elements at off-diagonal. Note further that

1

n2
E

(
n∑
t=1

{p2i−1(zt)− E[p2i−1(zt)]}

)2

7



=
1

n2

n∑
t=1

E{p2i−1(zt)− E[p2i−1(zt)]}2

+
2

n2

n∑
t=2

t−1∑
s=1

E
(
{p2i−1(zt)− E[p2i−1(zt)]}{p2i−1(zt)− E[p2i−1(zt)]}

)
=

1

n
V ar[p2v(z1)] +

2

n2

n∑
t=2

t−1∑
s=1

cov(p2i−1(zt), p
2
i−1(zs)).

Using Davydov’s inequality in Corollary 1.1 of Bosq (1996, p. 19) or Theorem A.1 of Gao (2007),

we have |cov(p2i−1(zt), p
2
i−1(zs))| ≤ Cα(|t − s|)δ/(δ+2)[Ep2(2+δ)i−1 (zt)]

2/(2+δ). Hence, by Assumption

B,

E

(
1

n

n∑
t=1

p2i−1(zt)− E[p2i−1(z1)

)2

≤ 1

n
V ar[p2i−1(z1)] +

1

n
[Ep2(2+δ)i−1 (z1)]

2/(2+δ).

Similarly, for i 6= j, directly use of α-mixing condition for the function of zt gives

E

(
1

n

n∑
t=1

(pi−1(zt)pj−1(zt)− E[pi−1(zt)pj−1(zt)])

)2

≤ 1

n2

n∑
t=1

E[pi−1(zt)pj−1(zt)− E[pi−1(zt)pj−1(zt)]]
2

+
2

n2

n∑
t=2

t−1∑
s=1

|cov(pi−1(zt)pj−1(zt), pi−1(zs)pj−1(zs))|

≤ 1

n

(
E[p4i−1(z1)]E[p4j−1(z1)]

)1/2
+ C

1

n

(
E|pi−1(z1)pj−1(z1)|2+δ

)2/(2+δ)
,

by Cauchy-Schwarz inequality and α-mixing condition. Thus, if Assumption B.2(a) holds, we

have, ignoring all constants,

E
∥∥∥∥ 1

n
Π22 − U∗22

∥∥∥∥2
≤

k2∑
i=1

(
1

n
V ar[p2i−1(z1)] +

1

n
[Ep2(2+δ)i−1 (z1)]

2/(2+δ)

)

+ 2

k2∑
i=2

i−1∑
j=1

1

n

(
E[p4i−1(z1)]E[p4j−1(z1)]

)1/2
+ C

k2∑
i=2

i−1∑
j=1

1

n

(
E|pi−1(z1)pj−1(z1)|2+δ

)2/(2+δ)
≤ 1

n
k22 +

1

n
k
(4+δ)/(2+δ)
2 +

1

n
k
5/2
2 +

1

n
k
(6+2δ)/(2+δ)
2

=
1

n
k
2+2/(2+δ)
2 (1 + o(1)) = o(1)
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by Assumption D, where we have used Cauchy-Schwarz inequality to derive the upper bound

for some terms, e.g.
(
E|pv1(z1)pv2(z1)|2+δ

)2/(2+δ) ≤ (
E|pv1(z1)|2(2+δ)E|pv2(z1)|2(2+δ)

)1/(2+δ) ≤
(v1v2)

1/(2+δ). If Assumption B.2(b) holds, it is readily seen that

E
∥∥∥∥ 1

n
Π22 − U∗22

∥∥∥∥2 = O(1)
1

n
k22 = o(1)

due to Assumption D again.

(3) The assertion ‖dn
n

Π33 − LW (1, 0)Ik3‖ = oP (1) is exactly the result of Theorem 3.2 of Cai

et al. (2015).

(4) To show ‖ 1
n
Π12‖ = oP (1), note that Π12 =

∑n
t=1 φk1(t/n)ak2(zt)

′ is a k1 × k2 matrix,

where φk1(r) = (ϕ1(r), · · · , ϕk1(r))′ and ak2(z) = (p0(z), · · · , pk2−1(z))′. Hence, Π12 has elements∑n
t=1 ϕi(t/n)pj(zt) for i = 1, · · · , k1, j = 0, 1, · · · , k2 − 1. For i ≥ 1, write

1

n

n∑
t=1

ϕi(t/n)pj(zt)

=E[pj(z1)]
1

n

n∑
t=1

ϕi(t/n) +
1

n

n∑
t=1

ϕi(t/n)(pj(zt)− E[pj(zt)])

=CE[pj(z1)]
1

n
+OP (n−1/2)[Ep2(2+δ)i−1 (z1)]

1/(2+δ)

using Lemma C.4 for the first term and the α-mixing condition for the second term. It follows

that

E
∥∥∥∥ 1

n
Π12

∥∥∥∥2 =

k1∑
i=1

k2−1∑
j=0

E

(
1

n

n∑
t=1

ϕi(t/n)pj(zt)

)2

≤2

k1∑
i=1

k2−1∑
j=0

E

(
1

n

n∑
t=1

ϕi(t/n)(pj(zt)− E[pj(zt)])

)2

+ 2

k1−1∑
i=1

k2−1∑
j=0

(
E[pj(z1)]

1

n

n∑
t=1

ϕi(t/n)

)2

=2
1

n2

k1−1∑
i=1

k2−1∑
j=0

V ar[pj(z1)]
n∑
t=1

ϕ2
i (t/n)

+ 4
1

n2

k1−1∑
i=1

k2−1∑
j=0

n∑
t=2

t−1∑
s=1

ϕi(t/n)ϕj(s/n)Cov[pj(zt), pj(zs)]

+ 8
1

n2

k1−1∑
i=1

k2−1∑
j=0

(E[pj(z1)])
2

≤C1
1

n
k1k

1+2/(2+δ)
2 + C2

1

n2
k1k

2
2 = o(1),

by Assumption B for the α-mixing condition for zt and the moment condition, as well as As-
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sumption D for the ki.

(5) ‖
√
dn
n

Π13‖ = oP (1), here Π13 =
∑n

t=1 φk1(t/n)bk3(xt)
′ is of k1 × k3 in view of bk3(x) =

(H0(x), · · · ,Hk3−1(x))′. Then, Π13 has elements
∑n

t=1 ϕi(t/n)Hj(xt) where i = 1, · · · , k1, j =

0, 1, · · · , k3−1. Using the decomposition xt = xts +x∗s and the densities in Lemma C.1, we have

E

(√
dn
n

n∑
t=1

ϕi(t/n)Hj(xt)

)2

=
dn
n2

n∑
t=1

ϕ2
i (t/n)E[H 2

j (xt)]

+ 2
dn
n2

n∑
t=2

t−1∑
s=1

ϕi(t/n)ϕi(s/n)E[Hj(xt)Hj(xs)]

=
dn
n2

n∑
t=1

1

dt
ϕ2
i (t/n)

∫
H 2

j (x)ft

(
x

dt

)
dx

+ 2
dn
n2

n∑
t=2

t−1∑
s=1

ϕi(t/n)ϕi(s/n)E[Hj(xts + x∗s)Hj(xs)]

≤C1
dn
n2

n∑
t=1

1

dt
+ 2

dn
n2

n∑
t=2

t−1∑
s=1

1

dts
ϕi(t/n)ϕi(s/n)

× E
∫

Hj(x)Hj(xs)fts

(
x− x∗s
dts

)
dx

≤C1
1

n
+ C2

dn
n2

n∑
t=2

t−1∑
s=1

1

dts
E|Hj(xs)|

∫
|Hj(x)|dx

≤C1
1

n
+ C2

dn
n2

n∑
t=2

t−1∑
s=1

1

dts

1

ds

(∫
|Hj(x)|dx

)2

≤C1
1

n
+ C2

1√
n

√
j = C

1√
n

√
j,

where we derive
∫
|Hj(x)|dx = O(1)j1/4 for large j, because, by Askey and Wainger (1965, p.

700) there exist two positive constants c1 and c2 such that |Hj(x)| ≤ c1(|N − x2| + N1/3)−1/4

whenever x2 < N = 2j + 1, otherwise |Hj(x)| < c1 exp(−c2x2). Straightforward calculation

yields
∫
|Hj(x)|dx = O(1)j1/4 for large j. It follows that E‖

√
dn
n

Π13‖2 ≤ C 1√
n
k1k

3/2
3 = o(1).

(6) ‖
√
dn
n

Π23‖ = oP (1), where Π23 =
∑n

t=1 ak2(zt)bk3(xt)
′ and Π23 is of k2×k3 and has elements∑n

t=1 pi(zt)Hj(xt) where i = 0, 1, · · · , k2 − 1 and j = 0, 1, · · · , k3 − 1. Using the densities in

Lemma C.1, the independence and the α-mixing condition again, we may calculate

E

(√
dn
n

n∑
t=1

pi(zt)Hj(xt)

)2

=
dn
n2

n∑
t=1

E[p2i (zt)]E[H 2
j (xt)]

10



+ 2
dn
n2

n∑
t=2

t−1∑
s=1

E[pi(zt)pi(zs)]E[Hj(xt)Hj(xs)]

≤C1E[p2i (zt)]
dn
n2

n∑
t=1

1

dt

+ 2
dn
n2

n∑
t=2

t−1∑
s=1

|E[pi(zt)pi(zs)]|
1

dts

1

ds

(∫
|Hj(x)|dx

)2

≤C1

√
i
1

n
+ C2

√
j
dn
n2

n∑
t=2

t−1∑
s=1

1

dts

1

ds
E[|pi(zt)|2]

≤C1

√
i
1

n
+ C2

√
i
√
j
dn
n2

n∑
t=2

t−1∑
s=1

1√
t− s

1√
s

=C1

√
i
1

n
+ C2

√
ij
dn
n

=C1

√
i
1

n
+ C2

√
ij

1√
n

= C
√
ij

1√
n
.

Hence, E‖
√
dn
n

Π23‖2 ≤ 1√
n
k
3/2
2 k

3/2
3 = o(1) by Assumption D. The proof of Step A is complete.

Step B. It is clear that we only need to prove the assertions about Π12, Π22 and Π23

(Π32). Here, noting that zt = ρ(εt, · · · εt−d+1; ηt, · · · , ηt−d+1), zt is d-dependent sequence which

is a subclass of α-mixing. Thus, the assertions about Π12 and Π22 hold immediately. As Π23

contains zt and xt simultaneously, we now dwell on ‖
√
dn
n

Π23‖ = oP (1), under the definition of

zt = ρ(εt, · · · εt−d+1; ηt, · · · , ηt−d+1). Observe that Π23 has elements
∑n

t=1 pi(zt)Hj(xt), and

E

(√
dn
n

n∑
t=1

pi(zt)Hj(xt)

)2

=
dn
n2

n∑
t=1

E[p2i (zt)H
2
j (xt)]

+ 2
dn
n2

n∑
t=2

t−1∑
s=1

E[pi(zt)pi(zs)Hj(xt)Hj(xs)]

:=I1 + I2, say.

In the sum of I1, we only consider the summands for large t, t ≥ τn with τn → ∞ but very

slow, as the partial sum for t < τn is negligible. For large t, invoking Lemma C.2 and conditional

arguement,

E[p2i (zt)H
2
j (xt)] =E[p2i (zt)H

2
j (x

(d)
t + x

(t−d)
t )]

=E[p2i (zt)

∫
H 2

j (x
(d)
t + d̃tx)ft/d(x)dx]

=
1

d̃t
E[p2i (zt)

∫
H 2

j (x)ft/d

(
x− x(d)t
d̃t

)
dx]

=
1

d̃t
E[p2i (zt)

∫
H 2

j (x)ft/d

(
x

d̃t

)
dx]

11



+
1

d̃t
Ep2i (zt)

∫
H 2

j (x)

[
ft/d

(
x− x(d)t
d̃t

)
− ft/d

(
x

d̃t

)]
dx,

where using the uniform boundedness of ft/d(·), the first term is bounded by C 1
d̃t
E[p2i (zt)] =

O(i)d−1t by noting that d̃t = O(
√
t) the same order as dt; while using the Lipchitz condition for

ft/d(·) the second term is bounded in absolute value by Cd̃−2t E[p2i (zt)|x
(d)
t |] which is proportional

to the first term by d̃−1t , recalling the definition of x
(d)
t , and thus is negligible in I1. This means

I1 has the same oder as its counterpart in Step A.

Now, we consider I2. As indicated before, we only consider the large t, s and t − s. Notice

that, by the decomposition (C.3) and (C.4),

E[pi(zt)pi(zs)Hj(xt)Hj(xs)] = E[pi(zt)pi(zs)Hj(xts + x∗s)Hj(xs)]

=E[pi(zt)pi(zs)Hj(x
(d)
t + x

(t−d)
ts + x∗s)Hj(xs)]

=E
∫

[pi(zt)pi(zs)Hj(x
(d)
t + d̃tsx+ x∗s)Hj(xs)]fts/d(x)dx

=
1

d̃ts
E
∫

[pi(zt)pi(zs)Hj(x)Hj(xs)]fts/d

(
x− x(d)t − x∗s

d̃ts

)
dx

=
1

d̃ts
E[pi(zt)pi(zs)Hj(xs)]

∫
Hj(x)fts/d

(
x

d̃ts

)
dx

+
1

d̃ts
E
∫

[pi(zt)pi(zs)Hj(x)Hj(xs)]

[
fts/d

(
x− x(d)t − x∗s

d̃ts

)
− fts/d

(
x

d̃ts

)]
dx

:=I21(t, s) + I22(t, s), say.

Hence, by virtue of the uniform boundedness of the density in Lemma C.2, we have |I21(t, s)| ≤
d−1ts |E[pi(zt)pi(zs)Hj(xs)]|

∫
|Hj(x)|dx = O(j1/4)d−1ts |E[pi(zt)]| |E[pi(zs)Hj(xs)]| where the defi-

nition of zt and the facts that d̃ts has the same order as dts and
∫
|Hj(x)|dx = O(j1/4) de-

rived in Step A are used. Repeated use of the argument will result in |E[pi(zs)Hj(xs)]| ≤
O(j1/4)d−1s |E[pi(zs)|. Accordingly, |I21(t, s)| ≤ O(

√
ij)d−1ts d

−1
s .

On the other hand, by the Lipschitz condition,

|I22(t, s)| ≤ O(j1/4)d−2ts (E|pi(zt)x(d)t |E|[pi(zs)Hj(xs)]|+ E|pi(zt)|E|[pi(zs)Hj(xs)x
∗
s]|).

Here, for the first term, noting the definition of x
(d)
t and repeated use of the similar argument

before for E|[pi(zs)Hj(xs)]|, it has order O(
√
ij)d−2ts d

−1
s ; for the second term, noting that x∗s =

xs + x̄s given in Eq. (C.3) and x̄s = OP (1), it is bounded by O(i1/2j1/4)d−2ts d
−1
s

∫
|xHj(x)|dx =

O(i1/2j)d−2ts d
−1
s by Lemma C.1 of the supplement of Dong et al. (2016). Eventually, |I22(t, s)| ≤

O(
√
ij)d−1ts d

−1
s .

Therefore, E‖
√
dn
n

Π23‖2 = O(k
3/2
2 k

3/2
3 n−1/2) = o(1). The proof of Step B is finished as

12



well.

Moreover, we also study the asymptotics of B̃
ᵀ

nkB̃nk where B̃nk is the same as Bnk but

the stationary process zt is replaced by locally stationary process znt. The replacement only

affects Π12 (Π21), Π23 (Π32) and Π22, denoted respectively by Π̃12, Π̃23 and Π̃22 the resulting

counterparts. Precisely,

B̃
ᵀ

nkB̃nk :=


Π11 Π̃12 Π13

Π̃21 Π̃22 Π̃23

Π31 Π̃32 Π33


which is a symmetric matric with Π̃12 =

∑n
t=1 φk1(t/n)ak2(znt)

ᵀ
, Π̃22 =

∑n
t=1 ak2(znt)ak2(znt)

ᵀ

and Π̃13 =
∑n

t=1 ak2(znt)bk3(xt)
ᵀ
, while all the other blocks remain the same as in Lemma C.9.

Define Ũk = diag(Ũ∗, LW (1, 0)Ik3), where Ũ∗ = (Ũ∗ij) is a symmetric 2 × 2 block matrix of

order (k1 + k2)× (k1 + k2) with Ũ∗11 = Ik1 , Ũ∗12 =
∫ 1

0
φk1(r)E[ak2(z1(r))

ᵀ
]dr, i.e. it has elements∫ 1

0
ϕi(r)E[pj(z1(r))]dr for i = 1, · · · , k1, j = 0, · · · , k2−1 and Ũ∗22 =

∫ 1

0
E[ak2(z1(r))ak2(z1(r))

ᵀ
]dr,

i.e. it has elements
∫ 1

0
E[pi(z1(r)pj(z1(r))]dr for i, j = 0, · · · , k2 − 1. Once the locally stationary

process reduces to be stationary, Ũ∗12 = 0 since
∫ 1

0
φk1(r)dr = 0, and Ũ∗22 = E[ak2(z1)ak2(z1)

ᵀ
].

This means that Ũk would reduce to Uk.

Lemma C.6. Let Dn = diag(
√
nIk1 ,

√
nIk2 ,

√
n/dnIk3). Then, under Assumptions A, B* and

D, ‖D−1n B̃′nkB̃nkD
−1
n − Ũk‖ = oP (1) as n→∞ on a richer probability space.

Proof. It is clear we only need to show the convergence of the blocks Π̃12, Π̃23 and Π̃22, that is,

‖ 1
n
Π̃12 − Q̃∗12‖ = oP (1), ‖

√
dn
n

Π̃23‖ = oP (1) and ‖ 1
n
Π̃22 − Q̃∗22‖ = oP (1), since all the others are

the same as in Lemma C.5.

The proof is divided into two parts, Part A and B, according to Assumption B*.2 whether

zt are independent of xt.

Part A. Note that the matrix Π̃22 has elements
∑n

t=1 pi(zt,n)pj(zt,n) with i, j = 0, · · · , k2−1.

At the diagonal where i = j we have 1
n

∑n
t=1 pi(zt,n)2 = 1

n

∑n
t=1 pi(zt(t/n))2 +OP

(
1
n

)
. Indeed,

1

n

∣∣∣∣∣
n∑
t=1

pi(zt,n)2 −
n∑
t=1

pi(zt(t/n))2

∣∣∣∣∣ ≤ 1

n

n∑
t=1

∣∣pi(zt,n)2 − pi(zt(t/n))2
∣∣

≤C 1

n

n∑
t=1

|zt,n − zt(t/n)| ≤ C
1

n2

n∑
t=1

Ut,n(t/n) = OP

(
1

n

)
,

by the definition of locally stationarity of zt,n in which positive variable Ut,n(t/n) satisfies that

supt E[Ut,n(t/n)] is bounded independent of n, where since zt,n have the same compact support

stipulated in Assumption B*.1 the orthogonal polynomials are uniformly bounded. Moreover,

for every i, 1
n

∑n
t=1 pi(zt(t/n))2 =

∫ 1

0
Epi(z1(v))2dv + OP (1/n). In fact, using the definition of

13



Riemann integral and the stationarity of zt(v) for each v,∣∣∣∣∣ 1n
n∑
t=1

pi(zt(t/n))2 −
∫ 1

0

Epi(z1(v))2dv

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
t=1

pi(zt(t/n))2 − 1

n

n∑
t=1

Epi(z1(t/n))2

∣∣∣∣∣+O(
1

n
)

=

∣∣∣∣∣ 1n
n∑
t=1

[pi(zt(t/n))2 − Epi(zt(t/n))2]

∣∣∣∣∣+O(
1

n
)

and by Assumption B*.1,

E

∣∣∣∣∣ 1n
n∑
t=1

[pi(zt(t/n))2 − Epi(zt(t/n))2]

∣∣∣∣∣
2

=
1

n2

n∑
t=1

E[pi(zt(t/n))2 − Epi(zt(t/n))2]2

+ 2
1

n2

n∑
t=2

t−1∑
s=1

E[(pi(zt(t/n))2 − Epi(zt(t/n)2)(pi(zs(s/n))2 − Epi(zs(s/n))2)]

≤C 1

n
+ 2

1

n2

n∑
t=2

t−1∑
s=1

α(t− s)δ/(2+δ)[Epi(zs(s/n))2(2+δ)]2/(2+δ)

≤C 1

n
+ C1

1

n2

n∑
t=2

t−1∑
p=1

α(p)δ/(2+δ)

≤C 1

n
+ C1

1

n2

n∑
t=2

∞∑
p=1

α(p)δ/(2+δ)

=C
1

n
,

by the α-mixing property of zt(t/n) and zs(s/n) in Assumption B*.2.(a) and the uniform bound-

edness of the orthogonal sequence on the compact set, where C and C1 may vary at each ap-

pearance. Similarly, for i 6= j,

1

n

n∑
t=1

pi(zt,n)pj(zt,n)−
∫ 1

0

E[pi(z1(v))pj(z1(v))]dv = OP (1/n).

Thus, ‖ 1
n
Π̃22 − Ũ∗22‖ = oP (1) in view of Assumption D. Next, ‖ 1

n
Π̃12 − Ũ∗12‖ = oP (1). It

can be similarly shown that 1
n

∑n
t=1 ϕi(t/n)pj(zt,n) = 1

n

∑n
t=1 ϕi(t/n)pj(zt(t/n)) + OP (1/n) and

1
n

∑n
t=1 ϕi(t/n)pj(zt(t/n)) =

∫ 1

0
ϕi(r)E[pj(z1(r))]dr + OP (1/n). Thus, ‖ 1

n
Π̃12 − Ũ∗12‖ = oP (1) in

view of Assumption D. Finally, we show ‖
√
dn
n

Π̃23‖ = oP (1). Actually, it can be shown similar to

that of Π̃12, because Hj(x) is bounded uniformly over j and x, and zt,n is independent of xt. In

fact,
√
dn
n

∑n
t=1 pi(zt,n)Hj(xt) =

√
dn
n

∑n
t=1 pi(zt(t/n))Hj(xt) +OP (

√
dn
n

) and
√
dn
n

∑n
t=1 pi(zt(t/n))

Hj(xt) =
√
dn
n

∑n
t=1 E[pi(z1(t/n))]Hj(xt) +OP (

√
dn
n

), for i = 0, · · · , k2− 1 and j = 0, · · · , k3− 1.
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Thus, using the density of d−1t xt in Lemma C.1, we can show E‖
√
dn
n

Π̃23‖2 ≤ Cn−1/2k2k3 = o(1).

This completes the proof of Part A.

Part B. Here, we consider Assumption B*.2.(b) where zt,n are correlated with xt. Since zt,n

is associated with zt(t/n) which is d-dependent, the proof for ‖ 1
n
Π̃22−Ũ∗22‖ = oP (1) and ‖ 1

n
Π̃12−

Ũ∗12‖ = oP (1) remains unchanged. Now, consider ‖
√
dn
n

Π̃23‖ = oP (1) where Π̃23 has elements∑n
t=1 pi(zt,n)Hj(xt). Notice that using the approximation of the associated stationary process

to zt,, we have
√
dn
n

∑n
t=1 pi(zt,n)Hj(xt) =

√
dn
n

∑n
t=1 pi(zt(t/n))Hj(xt) + OP (

√
dn
n

). Then, using

Lemma C.3 we may show
√
dn
n

∑n
t=1 pi(zt(t/n))Hj(xt) = OP (n−1/2) from which the assertion

follows immediately.

Due to the heteroskedasticity, we shall also encounter the limit of B
ᵀ

nkΣnBnk where Σn =

diag(σ2(1/n), · · · , σ2(1)). Note that

B
ᵀ

nkΣnBnk =
n∑
t=1

σ2(t/n)


φk1(t/n)φk1(t/n)

ᵀ
φk1(t/n)ak2(zt)

ᵀ
φk1(t/n)bk3(xt)

ᵀ

ak2(zt)φk1(t/n)
ᵀ

ak2(zt)ak2(zt)
ᵀ

ak2(zt)bk3(xt)
ᵀ

bk3(xt)φk1(t/n)
ᵀ

bk3(xt)ak2(zt)
ᵀ

bk3(xt)bk3(xt)
ᵀ



:=


A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

Let Vk = diag(V∗,
∫ 1

0
σ2(r)dLW (r, 0)Ik3) where V∗ = (V∗ij) is a 2 × 2 symmetric block matrix

where

V∗11 =

∫ 1

0

φk1(r)φk1(r)
ᵀ
σ2(r)dr,

V∗12 =

∫ 1

0

φk1(r)σ
2(r)drE(ak2(z1)

ᵀ
),

V∗22 =

∫ 1

0

σ2(r)drE(ak2(z1)ak2(z1)
ᵀ
).

Lemma C.7. Under Assumptions A-D, ‖D−1n B′nkΣnBnkD
−1
n − Vk‖ = oP (1) as n → ∞ on a

richer probability space, where Dn is the same as in Lemma C.5.

Proof. To show ‖D−1n B′nkΣnBnkD
−1
n −Vk‖ = oP (1), it suffices to prove that (1) ‖ 1

n
A11−V∗11‖ =

o(1), (2) ‖ 1
n
A22−V∗22‖ = oP (1), (3) ‖dn

n
A33−

∫ 1

0
σ2(r)dLW (r, 0)Ik3‖ = oP (1), (4) ‖ 1

n
A12−V∗12‖ =

oP (1), (5) ‖
√
dn
n
A13‖ = oP (1) and (6) ‖

√
dn
n
A23‖ = oP (1). All assertions follow exactly in the

same fashion as the proof of Lemma C.5 except (3). The assertion (3) can be shown by virtue of

the assertion (3) in the proof of Lemma C.5 and Lemma B.1 in Dong and Gao (2017). Indeed,
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Lemma B.1 in Dong and Gao (2017) gives, for integrable function f(r, x) on [0, 1]× R,∣∣∣∣∣dnn
n∑
t=1

f(t/n, xt)−
∫ 1

0

∫
f(r, x)dxdLW (r, 0)

∣∣∣∣∣ = oP (1),

which, together with Lemma C.5, yields (3).

Similarly, we need to consider the limit of Ã
ᵀ

nkΣnÃnk in the case where zt is substituted by

the local stationary process zn,t. Note that

Ã
ᵀ

nkΣnÃnk =
n∑
t=1

σ2(t/n)


φk1(t/n)φk1(t/n)

ᵀ
φk1(t/n)ak2(zn,t)

ᵀ
φk1(t/n)bk3(xt)

ᵀ

ak2(zn,t)φk1(t/n)
ᵀ

ak2(zn,t)ak2(zn,t)
ᵀ

ak2(zn,t)bk3(xt)
ᵀ

bk3(xt)φk1(t/n)
ᵀ

bk3(xt)ak2(zn,t)
ᵀ

bk3(xt)bk3(xt)
ᵀ



:=


A11 Ã12 A13

Ã21 Ã22 Ã23

A31 Ã32 A33

 .

Let Ṽk = diag
(
Ṽ∗,
∫ 1

0
σ2(r)dLW (r, 0)Ik3

)
in which Ṽ∗ is a 2 × 2 symmetric block matrix with

Ṽ∗11 = V∗11, Ṽ∗12 =
∫ 1

0
φk1(r)σ

2(r)E(ak2(z1(r))
ᵀ
)dr and Ṽ∗22 =

∫ 1

0
σ2(r)E(ak2(z1(r))ak2(z1(r))

ᵀ
)dr.

Definitely, once the locally stationary process reduces to be stationary, Ṽk reduces to Vk.

Lemma C.8. Under Assumptions A, B* and D, ‖D−1n Ã′nkΣnÃnkD
−1
n − Ṽk‖ = oP (1) as n→∞

on a richer probability space, where Dn is the same as in Lemma C.5.

Proof. The proof is using the approximation of the locally stationary process zn,t by zt(t/n), as

in the proof of Lemma C.6, and then assertion follows immediately via the arguments in Lemma

C.7.

We are about to study the asymptotics of A
ᵀ

nkAnk which plays a significant role in the

derivation of the limit distribution for the estimators. Note that A
ᵀ

nkAnk has the following block

expression

A
ᵀ

nkAnk =
n∑
t=1



φk1(t/n)φk1(t/n)
ᵀ
φk1(t/n)xt φk1(t/n)ak2(zt)

ᵀ
φk1(t/n)bk3(xt)

ᵀ

φk1(t/n)
ᵀ
xt x2t ak2(zt)

ᵀ
xt bk3(xt)

ᵀ
xt

ak2(zt)φk1(t/n)
ᵀ

ak2(zt)xt ak2(zt)ak2(zt)
ᵀ

ak2(zt)bk3(xt)
ᵀ

bk3(xt)φk1(t/n)
ᵀ

bk3(xt)xt bk3(xt)ak2(zt)
ᵀ

bk3(xt)bk3(xt)
ᵀ


:=(Πij)4×4,

where Πij are defined according to the blocks in A
ᵀ

nkAnk, e.g., Π11 =
∑n

t=1 φk1(t/n)φk1(t/n)
ᵀ
.
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Lemma C.9. Let Qk = diag(Q∗, LW (1, 0)Ik3) where LW (1, 0) is the local time of W (r) at point

0 over time period [0, 1] and

Q∗ =


Ik1

∫ 1

0
φk1(r)W (r)dr∫ 1

0
φk1(r)

ᵀ
W (r)dr

∫ 1

0
W 2(r)dr E[ak2(z1)

ᵀ
]
∫ 1

0
W (r)dr

E[ak2(z1)]
∫ 1

0
W (r)dr Q∗33


in which Q∗33 is a square matrix of dimension k2, Q∗33 = E[ak2(z1)ak2(z1)

ᵀ
]. Denote Mn =

diag(
√
nIk1 ,

√
ndn,

√
nIk2 ,

√
n/dnIk3). Then, under Assumptions A, B and D, ‖M−1

n A
ᵀ

nkAnkM
−1
n

− Qk‖ = oP (1) as n → ∞ on a richer probability space. Particularly, ‖ 1
n
Π11 − Ik1‖ = o(1),

‖ 1
n
Π33 −Q∗33‖ = oP (1) and ‖dn

n
Π44 − LW (1, 0)Ik3‖ = oP (1).

Proof. Observe that

M−1
n A

ᵀ

nkAnkM
−1
n =



1
n
Π11

1
ndn

Π12
1
n
Π13

√
dn
n

Π14

1
ndn

Π21
1
nd2n

Π22
1
ndn

Π23
1

n
√
dn

Π24

1
n
Π31

1
ndn

Π32
1
n
Π33

√
dn
n

Π34

√
dn
n

Π41
1

n
√
dn

Π42

√
dn
n

Π43
dn
n

Π44



=
n∑
t=1



1
n
φk1(t/n)φk1(t/n)

ᵀ 1
ndn

φk1(t/n)xt
1
n
φk1(t/n)ak2(zt)

ᵀ
√
dn
n
φk1(t/n)bk3(xt)

ᵀ

1
ndn

xtφk1(t/n)
ᵀ 1

nd2n
x2t

1
ndn

xtak2(zt)
ᵀ 1

n
√
dn
xtbk3(xt)

ᵀ

1
n
ak2(zt)φk1(t/n)

ᵀ 1
ndn

ak2(zt)xt
1
n
ak2(zt)ak2(zt)

ᵀ
√
dn
n
ak2(zt)bk3(xt)

ᵀ

√
dn
n
bk3(xt)φk1(t/n)

ᵀ 1
n
√
dn
bk3(xt)xt

√
dn
n
bk3(xt)ak2(zt)

ᵀ dn
n
bk3(xt)bk3(xt)

ᵀ


.

To prove the assertion, it suffices to show that (1) | 1
nd2n

Π22−
∫ 1

0
W 2(r)dr| = oP (1), (2) ‖ 1

ndn
Π12−∫ 1

0
φk1(r)W (r)dr‖ = oP (1), (3) ‖

√
dn
n

Π23 − E[ak2(z1)]
∫ 1

0
W (r)dr‖ = oP (1) and (4) ‖ 1

ndn
Π24‖ =

oP (1), since all the other blocks are the same as in Lemma C.5.

To show these, we need consider two cases for zt in Assumption B.1, so the following is

divided into Parts A and B.

Part A. Let Assumption B.1.(a) hold.

(1) It follows from Theorem 3.1 of Park and Phillips (2001, p. 129) that 1
nd2n

∑n
t=1 x

2
t →∫ 1

0
W 2(r)dr almost surely. Thus, | 1

nd2n
Π22 −

∫ 1

0
W 2(r)dr| = oP (1) holds. (2) We are to show

‖ 1
ndn

Π12 −
∫ 1

0
φk1(r)W (r)dr‖ = oP (1). Letting Wn(r) = x[nr]/dn,

1

ndn
Π12 −

∫ 1

0

φk1(r)W (r)dr =
1

n

n∑
t=1

φ(t/n)
xt
dn
−
∫ 1

0

φk1(r)W (r)dr

=
1

n

n∑
t=1

φ(t/n)Wn(t/n)−
∫ 1

0

φk1(r)W (r)dr
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=
n∑
t=1

∫ t/n

(t−1)/n
φ([nr]/n)Wn([nr]/n)dr −

∫ 1

0

φk1(r)W (r)dr +
1

n
φ(1)Wn(1)

=

∫ 1

0

[φ([nr]/n)Wn([nr]/n)− φk1(r)W (r)]dr +
1

n
φ(1)Wn(1).

Notice that by Lemma 2.3 of Park and Phillips (1999, p. 271), sup0≤r≤1 |Wn(r) − W (r)| =

oP (n−1/2). Also, ‖φ([nr]/n)− φk1(r)‖2 ≤ k31/n
2 by the mean value theorem. The assertion then

follows immediately. (3) Next, we show ‖ 1
ndn

Π23 − E[ak2(z1)
ᵀ
]
∫ 1

0
W (r)dr‖ = oP (1). Note that

1

ndn
Π23 =

1

n

n∑
t=1

ak2(zt)
ᵀ 1

dn
xt

=E[ak2(z1)
ᵀ
]
1

n

n∑
t=1

1

dn
xt +

1

n

n∑
t=1

(ak2(zt)
ᵀ − E[ak2(zt)

ᵀ
])

1

dn
xt. (C.5)

Similar to the proof of (2), ‖E[ak2(z1)
ᵀ
] 1
n

∑n
t=1

1
dn
xt − E[ak2(z1)

ᵀ
]
∫ 1

0
W (r)dr‖ = oP (1), and from

the α-mixing property of the zt it is easily to show the second term in norm is oP (1). (4) Finally,

we shall show ‖ 1
n
√
dn

Π24‖ = oP (1). Note that Π24 =
∑n

t=1 bk3(xt)xt a vector with elements∑n
t=1 Hj(xt)xt, j = 0, · · · , k3− 1. As Hj(x)x are integrable function,

∑n
t=1 Hj(xt)xt = OP (

√
n)

by Theorem 3.2 of Park and Phillips (2001, p. 130). Thus, ‖ 1
n
√
dn

Π24‖ = OP (k3/n
3/4) = oP (1).

The proof is complete.

Part B. Suppose that Assumption B.1.(b) holds. In this case we only need to show

‖ 1
ndn

Π23−E[ak2(z1)
ᵀ
]
∫ 1

0
W (r)dr‖ = oP (1) because all other parts have been proved in the preced-

ing lemmas. In view of (C.5), it suffices to verify that 1
n

∑n
t=1(ak2(zt)

ᵀ−E[ak2(zt)
ᵀ
]) 1
dn
xt = oP (1).

This holds immediately by virtue of xt = x
(d)
t + xt−dt and xt−dt is independent of zt.

Moreover, we also study the asymptotics of Ã
ᵀ

nkÃnk where Ãnk is the same as Ank but the

stationary process zt is replaced by locally stationary process znt. The replacement only affects

Π13 (Π31), Π23 (Π32), Π33 and Π34 (Π43), denoted respectively by Π̃13, Π̃23, Π̃33 and Π̃34, the

resulting counterparts. Precisely,

Ã
ᵀ

nkÃnk :=



Π11 Π12 Π̃13 Π14

Π21 Π22 Π̃23 Π24

Π̃31 Π̃32 Π̃33 Π̃34

Π41 Π42 Π̃43 Π44


which is a symmetric matric with Π̃13 =

∑n
t=1 φk1(t/n)ak2(znt)

ᵀ
, Π̃33 =

∑n
t=1 ak2(znt)ak2(znt)

ᵀ
,

Π̃23 =
∑n

t=1 ak2(znt)
ᵀ
xt and Π̃34 =

∑n
t=1 ak2(znt)bk3(xt)

ᵀ
, while all the other blocks remain the

same as in Lemma C.9.

Define Q̃k = diag(Q̃∗, LW (1, 0)Ik3), where Q̃∗ = (Q̃∗ij) is a symmetric 3 × 3 block matrix of
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order (k1 + k2 + 1) × (k1 + k2 + 1) with Q̃∗11 = Ik1 , Q̃∗13 =
∫ 1

0
φk1(r)E[ak2(z1(r))

ᵀ
]dr, i.e. it

has elements
∫ 1

0
ϕi(r)E[pj(z1(r))]dr for i = 1, · · · , k1, j = 0, · · · , k2− 1, Q̃∗12 =

∫ 1

0
φk1(r)W (r)dr

and Q̃∗33 =
∫ 1

0
E[ak2(z1(r))ak2(z1(r))

ᵀ
]dr, i.e. it has elements

∫ 1

0
E[pi(z1(r)pj(z1(r))]dr for i, j =

0, · · · , k2 − 1, Q̃∗23 =
∫ 1

0
E[ak2(z1(r))

ᵀ
]W (r)dr, Q̃∗22 =

∫ 1

0
W 2(r)dr a scalar. Once the local-

ly stationary process reduces to be stationary, Q̃∗13 = 0 since
∫ 1

0
φk1(r)dr = 0, and Q̃∗33 =

E[ak2(z1)ak2(z1)
ᵀ
], Q̃∗23 = E[ak2(z1)

ᵀ
]
∫ 1

0
W (r)dr. This means that Q̃k would reduce to Qk.

Lemma C.10. Under Assumptions A, B* and D, ‖M−1
n Ã′nkÃnkM

−1
n − Q̃k‖ = oP (1) as n→∞

on a richer probability space, where Mn is the same as before.

Proof. It is clear we only need to show the convergence of the blocks Π̃13, Π̃23, Π̃33 and Π̃34, that

is, ‖ 1
n
Π̃13 − Q̃∗13‖ = oP (1), ‖ 1

ndn
Π̃23 − Q̃∗23‖ = oP (1), ‖

√
dn
n

Π̃34‖ = oP (1) and ‖ 1
n
Π̃33 − Q̃∗33‖ =

oP (1), since all the others are the same as in Lemma C.9. The proof is divided into two steps,

A and B, according to Assumption B*.2 whether the associated process of zt,n is independent of

xt.

Step A. Let Assumption B*.2(a) hold.

Note that the matrix Π̃33 has elements
∑n

t=1 pi(znt)pj(znt) with i, j = 0, · · · , k2 − 1. At the

diagonal where i = j we have 1
n

∑n
t=1 pi(znt)

2 = 1
n

∑n
t=1 pi(zt(t/n))2 +OP

(
1
n

)
. Indeed,

1

n

∣∣∣∣∣
n∑
t=1

pi(znt)
2 −

n∑
t=1

pi(zt(t/n))2

∣∣∣∣∣ ≤ 1

n

n∑
t=1

∣∣pi(znt)2 − pi(zt(t/n))2
∣∣

≤C 1

n

n∑
t=1

|znt − zt(t/n)| ≤ C
1

n2

n∑
t=1

Ut,n(t/n) = OP

(
1

n

)
,

by the definition of locally stationarity of znt in which positive variable Ut,n(t/n) satisfies that

supt E[Ut,n(t/n)] is bounded independent of n, where since znt have the same compact support

stipulated in Assumption B* the orthogonal polynomials are uniformly bounded. Moreover,

for every i, 1
n

∑n
t=1 pi(zt(t/n))2 =

∫ 1

0
Epi(z1(v))2dv + OP (1/n). In fact, using the definition of

Riemann integral and the stationarity of zt(v) for each v,∣∣∣∣∣ 1n
n∑
t=1

pi(zt(t/n))2 −
∫ 1

0

Epi(z1(v))2dv

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
t=1

pi(zt(t/n))2 − 1

n

n∑
t=1

Epi(z1(t/n))2

∣∣∣∣∣+O(
1

n
)

=

∣∣∣∣∣ 1n
n∑
t=1

[pi(zt(t/n))2 − Epi(zt(t/n))2]

∣∣∣∣∣+O(
1

n
)

and similar to Lemma C.4, by Assumption B*.1,

E

∣∣∣∣∣ 1n
n∑
t=1

[pi(zt(t/n))2 − Epi(zt(t/n))2]

∣∣∣∣∣
2

≤ C
1

n
,
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due to the α-mixing property of zt(t/n) and zs(s/n) and the uniform boundedness of the or-

thogonal sequence on the compact set. Similarly, for i 6= j,

1

n

n∑
t=1

pi(znt)pj(znt)−
∫ 1

0

E[pi(z1(v))pj(z1(v))]dv = OP (1/n).

Thus, ‖ 1
n
Π̃33−Q̃∗33‖ = oP (k22/n) = oP (1) in view of Assumption D. Next, ‖ 1

n
Π̃13−Q̃∗13‖ = oP (1).

It can be similarly shown that 1
n

∑n
t=1 ϕi(t/n)pj(znt) = 1

n

∑n
t=1 ϕi(t/n)pj(zt(t/n))+OP (1/n) and

1
n

∑n
t=1 ϕi(t/n)pj(zt(t/n)) =

∫ 1

0
ϕi(r)E[pj(z1(r))]dr + OP (1/n). Thus, ‖ 1

n
Π̃13 − Q̃∗13‖ = oP (1)

in view of Assumption D. We are now to show that ‖ 1
ndn

Π̃23 − Q̃∗23‖ = oP (1). Using the

approximation of znt by zt(t/n), 1
ndn

∑n
t=1 pj(znt)xt = 1

ndn

∑n
t=1 pj(zt(t/n))xt + OP (1/n). Then,

letting Wn(r) := x[nr]/dn for r ∈ [0, 1],

1

ndn

n∑
t=1

pj(zt(t/n))xt =
1

n

n∑
t=1

E[pj(zt(t/n))]Wn(t/n)

+
1

ndn

n∑
t=1

{pj(zt(t/n))− E[pj(zt(t/n))]}xt.

Similar to the proof for Π̃33, using sup0≤r≤1 |Wn(r) − W (r)| = oP (n−1/2) as in the proof of

Lemma C.9 and the independence between xt and zt(r), the assertion follows. Finally, we

show ‖
√
dn
n

Π̃34‖ = oP (1). Actually, it can be shown similar to that of Π̃13, because Hj(x) is

bounded uniformly over j and x, and znt is independent of xt. In fact,
√
dn
n

∑n
t=1 pi(znt)Hj(xt) =

√
dn
n

∑n
t=1 pi(zt(t/n))Hj(xt) +OP (

√
dn
n

) and
√
dn
n

∑n
t=1 pi(zt(t/n))

Hj(xt) =
√
dn
n

∑n
t=1 E[pi(z1(t/n))]Hj(xt) +OP (

√
dn
n

), for i = 0, · · · , k2− 1 and j = 0, · · · , k3− 1.

Thus, using the density of d−1t xt in Lemma C.1, we can show E‖
√
dn
n

Π̃34‖2 ≤ Cn−1/2k2k3 = o(1).

This completes the proof of Step A.

Step B. Let Assumption B*.2(b) hold.

This assumption only affects the proof for ‖ 1
ndn

Π̃23 − Q̃∗23‖ = oP (1) and ‖
√
dn
n

Π̃34‖ = oP (1).

It is clear from the proof of preceding lemmas that these can be verified by Lemma C.3, the

definition of local stationarity and the decomposition for xt.

Due to the heteroskedasticity, we shall also encounter the limit of A
ᵀ

nkΣnAnk where Σn =

diag(σ2(1/n), · · · , σ2(1)). Note that

A
ᵀ

nkΣnAnk := (Aij)4×4

=
n∑
t=1

σ2(t/n)



φk1(t/n)φk1(t/n)
ᵀ
φk1(t/n)xt φk1(t/n)ak2(zt)

ᵀ
φk1(t/n)bk3(xt)

ᵀ

xtφk1(t/n)
ᵀ

x2t xtak2(zt)
ᵀ

xtbk3(xt)
ᵀ

ak2(zt)φk1(t/n)
ᵀ

ak2(zt)xt ak2(zt)ak2(zt)
ᵀ

ak2(zt)bk3(xt)
ᵀ

bk3(xt)φk1(t/n)
ᵀ

bk3(xt)xt bk3(xt)ak2(zt)
ᵀ

bk3(xt)bk3(xt)
ᵀ


.
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Let Pk = diag
(
P∗,
∫ 1

0
σ2(r)dLW (r, 0)Ik3

)
in which P∗ = (P∗ij) is a 3×3 symmetric block matrix

with

P∗11 =

∫ 1

0

φk1(r)φk1(r)
ᵀ
σ2(r)dr, P∗13 =

∫ 1

0

φk1(r)σ
2(r)drE(ak2(z1)

ᵀ
),

P∗12 =

∫ 1

0

φk1(r)σ
2(r)W (r)dr, P∗22 =

∫ 1

0

σ2(r)W 2(r)dr,

P∗23 =

∫ 1

0

σ2(r)W (r)drE(ak2(z1)
ᵀ
), P∗33 =

∫ 1

0

σ2(r)drE(ak2(z1)ak2(z1)
ᵀ
).

Lemma C.11. Under Assumptions A-D, ‖M−1
n A′nkΣnAnkM

−1
n − Pk‖ = oP (1) as n → ∞ on a

richer probability space, where Mn is the same as in Lemma C.9.

Proof. To show ‖M−1
n A′nkΣnAnkM

−1
n −Pk‖ = oP (1), it suffices to prove that (1) ‖ 1

n
A11−P∗11‖ =

o(1), (2) ‖ 1
n
A22−P∗22‖ = oP (1), (3) ‖ 1

nd2n
A33−P∗33‖ = oP (1), (4) ‖dn

n
A44−

∫ 1

0
σ2(r)dLW (r, 0)Ik3‖

= oP (1), (5) ‖ 1
n
A12 − P∗12‖ = oP (1), (6) ‖ 1

ndn
A13 − P∗13‖ = oP (1), (7) ‖

√
dn
n
A14‖ = oP (1), (8)

‖ 1
ndn
A23 − P∗23‖ = oP (1), (9) ‖

√
dn
n
A24‖ = oP (1) and (10) ‖ 1

n
√
dn
A34‖ = oP (1).

(A). Suppose Assumption B.1(a) holds. All assertions follow exactly in the same fashion as

the proof of Lemma C.9 except (4). The assertion (4) can be shown by virtue of the assertion

(4) in the proof of Lemma C.9 and Lemma B.1 in Dong and Gao (2017). Indeed, Lemma B.1 in

Dong and Gao (2017) gives, for integrable function f(r, x) on [0, 1]× R,∣∣∣∣∣dnn
n∑
t=1

f(t/n, xt)−
∫ 1

0

∫
f(r, x)dxdLW (r, 0)

∣∣∣∣∣ = oP (1),

which, together with Lemma C.9, yields (4).

(B). Suppose Assumption B.1.(b) holds. This condition only affects the verification of (8)

and (10) which, however, can be done by Lemma C.3 and the decomposition of xt and is omitted

for brevity.

Similarly, we need to consider the limit of Ã
ᵀ

nkΣnÃnk in the case where zt is substituted by

the locally stationary process znt. Note that

Ã
ᵀ

nkΣnÃnk :=



A11 A12 Ã13 A14

A21 A22 Ã23 A24

Ã31 Ã32 Ã33 Ã34

A41 A42 Ã43 A44
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=
n∑
t=1

σ2(t/n)



φk1(t/n)φk1(t/n)
ᵀ
φk1(t/n)xt φk1(t/n)ak2(znt)

ᵀ
φk1(t/n)bk3(xt)

ᵀ

xtφk1(t/n)
ᵀ

x2t xtak2(znt)
ᵀ

xtbk3(xt)
ᵀ

ak2(znt)φk1(t/n)
ᵀ

ak2(zn,t)xt ak2(znt)ak2(znt)
ᵀ

ak2(znt)bk3(xt)
ᵀ

bk3(xt)φk1(t/n)
ᵀ

bk3(xt)xt bk3(xt)ak2(znt)
ᵀ

bk3(xt)bk3(xt)
ᵀ


.

Let P̃k = diag
(
P̃∗,
∫ 1

0
σ2(r)dLW (r, 0)Ik3

)
where P̃∗ = (P̃∗ij) be a 3 × 3 symmetric block ma-

trix where P̃∗11 = P∗11, P̃∗22 = P∗22, P̃∗33 =
∫ 1

0
σ2(r)E(ak2(z1(r))ak2(z1(r))

ᵀ
)dr and P̃∗13 =∫ 1

0
φk1(r)σ

2(r)E(ak2(z1(r))
ᵀ
)dr, P̃∗23 =

∫ 1

0
W (r)σ2(r)E(ak2(z1(r))

ᵀ
)dr. Definitely, once the local-

ly stationary process reduces to be stationary, P̃k reduces to Pk.

Lemma C.12. Under Assumptions A, B* and D, ‖M−1
n Ã′nkΣnÃnkM

−1
n −P̃k‖ = oP (1) as n→∞

on a richer probability space, where Mn is the same as in Lemma C.9.

Proof. The proof is using the approximation of the locally stationary process zn,t by zt(t/n),

as in the proof of Lemma C.10, and then assertion follows immediately via the arguments in

Lemma C.11.

Appendix D: Proof of Theorems 3.3-3.4, Proposition 3.1 and Corollary 3.1

Proof of Theorem 3.3: The theorem will be shown via Cramér-Wold theorem.

It follows from Lemma C.9 that ‖M−1
n A

ᵀ

nkAnkM
−1
n − Qk‖ = oP (1) as n → ∞ on a richer

probability space where Mn = diag(
√
nIk1 ,

√
ndn,

√
nIk2 ,

√
n/dnIk3) and Qk is a diagonal block

matrix given in the lemma with Q∗ and LW (1, 0)Ik3 on the diagonal. It follows that

ĉ− c =(A
ᵀ

nkAnk)
−1A

ᵀ

nk(γ + e) = M−1
n [D−1n A

ᵀ

nkAnkM
−1
n ]−1M−1

n A
ᵀ

nk(γ + e)

=M−1
n [Qk + oP (1)]−1M−1

n A
ᵀ

nk(γ + e) = M−1
n [Q−1k + oP (1)]M−1

n A
ᵀ

nk(γ + e), (D.6)

which implies

Mn(ĉ− c) = [Q−1k + oP (1)]M−1
n A

ᵀ

nk(γ + e).

It is obvious that in what follows we may ignore the oP (1) term.

Hence, for any r ∈ [0, 1], z ∈ V and x ∈ R,

√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
ndn[θ̂ − θ0]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

√
n

‖bk3 (x)‖
√
dn

[m̂n(x)−m(x)]


=Φ(r, z, x)

ᵀ
Mn(ĉ− c) +



√
n

‖φk1 (r)‖
γ1k1(r)

0
√
n

‖ak2 (z)‖
γ2k2(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)
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=Φ(r, z, x)
ᵀ
Q−1k M−1

n A
ᵀ

nk(γ + e) +



√
n

‖φk1 (r)‖
γ1k1(r)

0
√
n

‖ak2 (z)‖
γ2k(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)


,

where Φ(r, z, x) is normalized version of Φ(r, z, x) defined as in Section 3, i.e.

Φ(r, z, x) =



φk1 (r)

‖φk1 (r)‖
0 0 0

0 1 0 0

0 0
ak2 (z)

‖ak2 (z)‖
0

0 0 0
bk3 (x)

‖bk3 (x)‖


.

Write

Φ(r, z, x)
ᵀ
Q−1k M−1

n A
ᵀ

nk(γ + e) = Φ(r, z, x)
ᵀ
Q−1k M−1

n

n∑
t=1



φk1(t/n)

xt

ak2(zt)

bk3(xt)


(et + γ(t)),

recalling that γ(t) = γ1k1(t/n) + γ2k2(zt) + γ3k3(xt) and γ = (γ(1), · · · , γ(n))
ᵀ

defined in Section

2. Accordingly,

√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
ndn[θ̂ − θ0]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

√
n

‖bk3 (x)‖
√
dn

[m̂n(x)−m(x)]


= L−14

n∑
t=1

ξntet + L−14

n∑
t=1

ξntγ(t) +



√
n

‖φk1 (r)‖
γ1k1(r)

0
√
n

‖ak2 (z)‖
γ2k(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)


, (D.7)

where L4 = diag(1, 1, 1, LW (1, 0)) and we denote

ξnt := Φ(r, z, x)
ᵀ
Q̄−1k M−1

n



φk1(t/n)

xt

ak2(zt)

bk3(xt)


.

The normality of the estimators will be derived from the first term in (D.7) with normaliza-

tion. Since (et,Fnt) is a martingale difference sequence stipulated in Assumption B, by virtue
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of Assumption E, we calculate the conditional variance as follows:

n∑
t=1

E[ξntξ
ᵀ

nte
2
t |Fn,t−1] =

n∑
t=1

ξntξ
ᵀ

ntσ
2(t/n)

=Φ(r, z, x)
ᵀ
Q−1k M−1

n A
ᵀ

nkΣnAnkM
−1
n Q−1k Φ(r, z, x)

=Lσ Φ(r, z, x)
ᵀ
Q̄−1k P̄kQ̄

−1
k Φ(r, z, x)(1 + oP (1))

by Lemma C.11, where Lσ = diag(1, 1, 1,
∫ 1

0
σ2(r)dLW (r, 0)) and Q̄k and P̄k are defined in the

paper.

We shall show, with Ξ := diag(Ξ1, Lσ),

n∑
t=1

ξntet →D N(0,Ξ),

by Cramér-Wold theorem and Corollary 3.1 of Hall and Heyde (1980, p. 58) since it is a

martingale array by Assumptions B and E. To this end, let λ = (λ1, · · · , λ4) 6= 0 and we need

to check for

ξn :=
n∑
t=1

λξntet,

whether (1) Lindeberg condition and (2) the convergence of the conditional variance are fulfilled.

(1) The Lindeberg condition is fulfilled if we show that
∑n

t=1 E[(λξntet)
4|Fn,t−1] →P 0 as

n→∞. Indeed, denoting µ4 := max1≤t≤n E[e4t |Fn,t−1],

n∑
t=1

E[(λξntet)
4|Fn,t−1] ≤ µ4

n∑
t=1

(λξnt)
4

=µ4

n∑
t=1

[λΦ(r, z, x)
ᵀ
Q̄−1k M−1

n (φk1(t/n)
ᵀ
, xt, ak2(zt)

ᵀ
, bk3(xt)

ᵀ
)
ᵀ
]4

=µ4

n∑
t=1

(λ1, λ2, λ3)Φ13(r, z)
ᵀ
Q−1∗ M

−1
1n


φk1(t/n)

xt

ak2(zt)


+

√
dn
n
λ4‖bk3(x)‖−1bk3(x)

ᵀ
bk3(xt)

)4

≤C1

n∑
t=1

(λ1, λ2, λ3)Φ13(r, z)
ᵀ
Q−1∗ M

−1
1n


φk1(t/n)

xt

ak2(zt)




4

+ C2
d2n
n2

n∑
t=1

[λ4‖bk3(x)‖−1bk3(x)
ᵀ
bk3(xt)]

4,
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where we have used the structure of the matrices, Pk = diag(P∗,
∫ 1

0
σ2(r)dLW (r, 0)Ik3), Qk =

diag(Q∗, LW (1, 0)Ik3), and denoted M1n = diag(
√
nIk1 ,

√
ndn,

√
nIk2) and Φ13(r, z) is the left-top

3-by-3 sub-block matrix of Φ(r, z, x).

Because Q∗ has eigenvalues greater than a positive number and bounded from above uni-

formly, in the first term the vector (λ1, λ2, λ3)Φ13(r, z)
ᵀ
Q−1∗ has norm bounded between two

positive numbers that are independent of n. Thus, without affecting the order of the first term,

we may normalize the vector to be a unit vector, denoted by (u1, u2, u3) where u1 is the first

k1-subvector, u2 a scalar and u3 the rest k2-subvector. It follows that the first term is bounded

by, ignoring some constant,

n∑
t=1

(
1√
n
u

ᵀ

1φk1(t/n) +
1√
n
u

ᵀ

3ak2(zt) +
1√
ndn

u2xt

)4

≤C3
1

n2

n∑
t=1

(u
ᵀ

1φk1(t/n))4 + C4
1

n2

n∑
t=1

(u
ᵀ

3ak2(zt))
4 + C5

1

n2d4n

n∑
t=1

x4t .

Observe further that

1

n2

n∑
t=1

[u
ᵀ

1φk1(t/n)]4 =
1

n

∫ 1

0

[u
ᵀ

1φk1(s)]
4ds

≤ 1

n

∫ 1

0

‖φk1(s)‖4ds = O(n−1k21)→ 0,

where Cauchy-Schwarz inequality is used for [u
ᵀ

1φk1(s)]
2 ≤ ‖φk1(s)‖2 and supr∈[0,1] ‖φk1(s)‖2 =

O(k1).

Also, to show that 1
n2

∑n
t=1[u

ᵀ

3ak2(zt)]
4 →P 0, note that

1

n2
E

n∑
t=1

(u
ᵀ

3ak2(zt))
4 =

1

n2
E

n∑
t=1

(
k2−1∑
i=0

u3ipi(zt)

)4

=
1

n2

n∑
t=1

k2−1∑
i=0

u43iEp4i (zt)

+ 6
1

n2

n∑
t=1

k2−1∑
i=1

i−1∑
j=1

u23iu
2
3jE[p2i (zt)p

2
j(zt)]

+ 4
1

n2

n∑
t=1

k2−1∑
i=1

i−1∑
j=1

u3iu
3
3jE[(pi(zt))p

3
j(zt)]

+ 8
1

n2

n∑
t=1

k2−1∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

i3−1∑
i4=0

u3i1u3i2u3i3u3i4E[pi1(zt)pi2(zt)pi3(zt)pi4(zt)]

≤ 1

n
k2

k2∑
i=1

u43i + 6
1

n
k2

k2∑
i=1

i−1∑
j=0

u23iu
2
3j
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+ 4
1

n
k2

k2∑
i=1

i−1∑
j=1

|u3i||u3j|3

+ 8
1

n
k2

k2∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

i3−1∑
i4=0

|u3i1u3i2u3i3u3i4|

≤ 1

n
k2 + 4

1

n
k2k

1/2
2 + 8

1

n
k2k

2
2 = o(1),

where we denote u3 = (u31, · · · , u3k2)
ᵀ
, and Assumption B.2(a) is used for Ep4i (zt) = O(i) for i

large, Cauchy-Schwarz inequality to derive E|(pi(zt))p3j(zt)| ≤ (E|(pi(zt))|4)1/4(E|pj(zt)|4)4/3 as

well as other similar terms; meanwhile,
∑k2−1

i=0 |u2i| ≤ k
1/2
2 .

Moreover, notice that 1
n2d4n

∑n
t=1 x

4
t = oP (1) since 1

nd4n

∑n
t=1 x

4
t →P

∫ 1

0
W 4(r)dr by Theorem

3.1 of Park and Phillips (2001).

The second term is much easier to be dealt with. Let u4 := ‖bk3(x)‖−1bk3(x) a unit vector,

and notice that ‖bk3(·))‖2 ≤ Ck3 uniformly by the uniform boundedness of Hermite functions.

We have, by Lemma C.1,

d2n
n2

E
n∑
t=1

(u
ᵀ

4bk3(xt))
4 ≤ Ck3

d2n
n2

n∑
t=1

E(u
ᵀ

4bk3(xt))
2

=Ck3
d2n
n2

n∑
t=1

∫
(u

ᵀ

4bk3(dtx))2ft(x)dx = Ck3
d2n
n2

n∑
t=1

1

dt

∫
(u

ᵀ

4bk3(x))2ft(d
−1
t x)dx

≤Ck3
d2n
n2

n∑
t=1

1

dt

∫
(u

ᵀ

4bk3(x))2dx = Ck3
d2n
n2

n∑
t=1

1

dt

=Ck3n
−1/2 = o(1),

where
∫

(u
ᵀ

4bk3(x))2dx = ‖u4‖2 = 1 by the orthogonality. This finishes the Lindeberg condition.

(2) For the conditional variance, it is clear by the construction that ξn has conditional variance

approaching ‖λ‖2 in probability. Indeed,

n∑
t=1

E[(λξntet)
2|Fnt] =

n∑
t=1

(λξnt)
2σ2(t/n)

=λ

(
n∑
t=1

ξntξ
ᵀ

nt

)
λ

ᵀ
= λLσλ

ᵀ
(1 + oP (1)),

by Lemma C.11 and previous calculation of the conditional variance. The normality is shown.

To finish the proof, we next demonstrate that all reminder terms in (D.7) are negligible, that

is, as n→∞,

n∑
t=1

ξntγ(t) = oP (1),

√
n

‖φk1(r)‖
γ1k1(r) = o(1),

26



√
n

‖ak2(z)‖
γ2k2(z) = o(1),

√
n/dn

1

‖bk3(x)‖
γ3k3(x) = o(1).

In view of the structures of ξnt, we need to show

(3)
n∑
t=1

Φ13(r, z)
ᵀ
Q−1∗ M

−1
1n


φk1(t/n)

xt

ak2(zt)

 γ(t) = oP (1),

(4)

√
n

‖φk1(r)‖
γ1k1(r) = o(1),

√
n

‖ak2(z)‖
γ2k2(z) = o(1)

(5)

√
dn
n

n∑
t=1

1

‖bk3(x)‖
bk3(x)

ᵀ
bk3(xt)γ(t) = oP (1),

(6)
1

‖bk3(x)‖

√
n

dn
γ3k3(x) = o(1).

Because of the boundedness of the eigenvalues of Q∗ again, to fulfill (3) and (4), it suffices

to show

A1n :=
1√
n

n∑
t=1

‖φk1(t/n)‖|γ(t)| = oP (1),

B1n :=
1√
n

n∑
t=1

‖ak2(zt)‖|γ(t)| = oP (1),

C1n :=
1√
n

n∑
t=1

∣∣∣∣xtdn
∣∣∣∣ |γ(t)| = oP (1),

A2n :=
√
n

1

‖φk1(r)‖
|γ1k1(r)| = o(1),

B2n :=
√
n

1

‖ak2(z)‖
|γ2k2(z)| = o(1).

Indeed, note that maxr∈[0,1] |γ1k1(r)| = O(k−s11 ) and E|γ2k2(zt)|2 = O(k−s22 ) by Newey (1997)

and Chen and Christensen (2015) where s1 and s2 are respectively the smoothness order of β(·)
and g(·), whereas using the density for d−1t xt in Lemma C.1 and the result of Lemma C.1 in

Dong et al. (2016), we have E|γ3k3(xt)|2 ≤ Cd−1t
∫
|γ3k3(x)|2dx = d−1t O(k−s33 ).

Notice further that,

E|A1n| ≤
1√
n

n∑
t=1

‖φk1(t/n)‖E|γ(t)|

≤ 1√
n

n∑
t=1

‖φk1(t/n)‖|γ1k1(t/n)|

+
1√
n

n∑
t=1

‖φk1(t/n)‖E|γ2k2(zt)|
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+
1√
n

n∑
t=1

‖φk1(t/n)‖E|γ3k3(xt)|

≤
√
nk1 max

r∈[0,1]
|γ1k1(r)|+

√
nk1O(k

−s2/2
2 )

+
1√
n

n∑
t=1

|uᵀ

1φk1(t/n)|d−1/2t O(k
−s3/2
3 )

≤
√
nk1O(k−s11 ) +

√
nk1O(k

−s2/2
2 ) + n1/4

√
k1O(k

−s3/2
3 )

=o(1)

by Assumption D, implying A1n = oP (1). Similarly, it is readily seen that A2n = o(1) as well.

For B1n, denoting u2 = ‖ak2(z)‖−1ak2(z) temporarily,

E|B1n| ≤
1√
n

n∑
t=1

E‖ak2(zt)γ(t)‖ ≤ 1√
n

n∑
t=1

[
E‖ak2(zt)‖2E|γ(t)|2

]1/2
≤C 1√

n

n∑
t=1

[
E‖ak2(zt)‖2

]1/2 [|γ1k1(t/n)|2 + E|γ2k2(zt)|2 + E|γ3k3(xt)|2
]1/2

=C
√
nk

1/2
2 max

r∈[0,1]
|γ1k1(r)|+ C

√
nk

1/2
2 O(k

−s2/2
2 ) + Ck

1/2
2 n1/4O(k

−s3/2
3 )

=C
√
nk

1/2
2 O(k−s11 ) + C

√
nk

1/2
2 O(k

−s2/2
2 ) + Ck

1/2
2 n1/4O(k

−s3/2
3 ),

due to Assumption D where E‖ak2(zt)‖2 ≤ Ck2 for some constant C since E[ak2(zt)ak2(zt)
ᵀ
] has

bounded eigenvalues.

For C1n, note that d−1n xt = Wn(t/n) and sup0≤r≤1 |Wn(r) − W (r)| = oP (n−1/2). Thus,

C1n = OP (1)
√
nmaxi k

−si
i = oP (1).

In addition,

|B2n| =
1

‖ak2(z)‖
√
n|γ2k2(z)| = 1

‖ak2(z)fz(z)‖
√
n|γ2k2(z)fz(z)|

=O(k
−1/2
2 )

√
nk
−s2/2
2 = o(1),

where we have used ‖ak2(z)fz(z)‖2 = O(k2) for fixed z and |γ2k2(z)fz(z)| = o(k
−s2/2
2 ) for the

pointwise convergence.

For (5), letting u4 = ‖bk3(x)‖−1bk3(x) as before and by Lemma C.1,√
dn
n

n∑
t=1

E|uᵀ

4bk3(xt)γ(t)|

≤
√
dn
n

n∑
t=1

E|uᵀ

4bk3(xt)|γ1k1(t/n)|

+

√
dn
n

n∑
t=1

E|uᵀ

4bk3(xt)||γ2k2(zt)|
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+

√
dn
n

n∑
t=1

E|uᵀ

4bk3(xt)γ3k3(xt)||

≤
√
dn
n

max
r∈[0,1]

|γ1k1(r)|
n∑
t=1

[
E‖bk3(xt)‖2

]1/2
+

√
dn
n
k
−s2/2
2

n∑
t=1

E‖bk3(xt)‖

+

√
dn
n

n∑
t=1

[E‖bk3(xt)‖2E|γ3k3(xt)|2]1/2

≤C1n
−1/4k−s11 k

1/2
3 n3/4 + C2n

−1/4k
−s2/2
2 k

1/2
3 n3/4

+ C3

√
dn
n

n∑
t=1

d−1t

[∫
‖bk3(x)‖2dx

∫
|γ3k3(x)|2dx

]1/2
=C1n

1/2k−s11 k
1/2
3 + C2n

1/2k
−s2/2
2 k

1/2
3 + C3n

1/4k
−s3/2
3 k

1/2
3

=o(1)

due to Assumption D where we have used the boundedness of the density ft(x) for xt/dt by

Lemma C.1 under Assumption B.1.(a) or Lemma C.3 under Assumption B.1.(b).

In the mean time, for (6),

1

‖bk3(x)‖
√
n/dn|γ3k3(x)| =O(k

−1/2
3 )O(n1/4)o(k

−(s3−1)/2−1/12
3 )

=o(n1/4k
−s3/2−1/12
3 ) = o(1),

where supx |γ3k3(x)| = o(k
−(s3−1)/2−1/12
3 ) by again Lemma C.1 in the supplement of Dong et al.

(2016). The entire proof is complete. �

Proof of Theorem 3.4: Similar to (D.6), we have

ĉ− c = M−1
n [Q̃−1k + oP (1)]M−1

n Ã
ᵀ

nk(γ̃ + e),

where γ̃ = (γ̃(1), · · · , γ̃(n))
ᵀ

with γ̃(t) = γ1k1(t/n) + γ2k2(zt,n) + γ3k3(xt). Hence, Mn(ĉ − c) =

Q̃−1k M−1
n Ã

ᵀ

nk(γ̃ + e) where the term oP (1) is omitted for better exposition.

Also, note that for any r ∈ [0, 1], z ∈ [amin, amax] and x ∈ R,

√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
ndn[θ̂ − θ0]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

√
n

‖bk3 (x)‖
√
dn

[m̂n(x)−m(x)]


=Φ(r, z, x)

ᵀ
Mn(ĉ− c)−



√
n

‖φk1 (r)‖
γ1k1(r)

0
√
n

‖ak2 (z)‖
γ2k(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)
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=Φ(r, z, x)
ᵀ
Q̃−1k M−1

n Ã
ᵀ

nk(γ̃ + e)−



√
n

‖φk1 (r)‖
γ1k1(r)

0
√
n

‖ak2 (z)‖
γ2k(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)


. (D.8)

The normality will be derived from Φ(r, z, x)
ᵀ
Q̃−1k M−1

n Ã
ᵀ

nke which is considered now, while

all the other terms will be treated later.

By virtue of the structure of Q̃k, we may write Φ(r, z, x)
ᵀ
Q̃−1k M−1

n Ã
ᵀ

nke = L−14

∑n
t=1 ξ̃n,tet

where L4 = daig(1, 1, 1, LW (1, 0)) and

ξ̃n,t := Φ
ᵀ

(r, z, x)Q̄−1k M−1
n



φk1(t/n)

xt

ak2(znt)

bk3(xt)


,

in which Q̄k = daig(Q̃∗, Ik3).

Hence, rewrite (D.8) as

√
n

‖φk1 (r)‖
[β̂n(r)− β(r)]

√
ndn[θ̂ − θ0]

√
n

‖ak2 (z)‖
[ĝn(z)− g(z)]

√
n

‖bk3 (x)‖
√
dn

[m̂n(x)−m(x)]


=L−14

n∑
t=1

ξ̃n,tet + L−14

n∑
t=1

ξ̃n,tγ̃(t)−



√
n

‖φk1 (r)‖
γ1k1(r)

0
√
n

‖ak2 (z)‖
γ2k(z)

√
n

‖bk3 (x)‖
√
dn
γ3k3(x)


. (D.9)

Here,
∑n

t=1 ξ̃n,tet forms a martingale array by Assumptions B* and E. The conditional vari-

ance matrix is

n∑
t=1

E[ξ̃n,tξ̃
ᵀ

n,te
2
t |Fn,t−1] =

n∑
t=1

σ2(t/n)ξ̃n,tξ̃
ᵀ

n,t

=Φ
ᵀ

(r, z, x)Q̄−1k M−1
n Ã

ᵀ

nkΣnÃnkM
−1
n Q̄−1k Φ(r, z, x)

=Φ
ᵀ

(r, z, x)Q̄−1k P̃kQ̄
−1
k Φ(r, z, x)(1 + oP (1))

by Lemma C.10.

Denote Ξ̃n = Φ
ᵀ

(r, z, x)Q̄−1k P̃kQ̄
−1
k Φ(r, z, x) a matrix of 4 × 4. Then, in view of the struc-

tures of Q̄k and P̃k, we may further write Ξ̃n = daig(Ξ̃1n,
∫ 1

0
σ(r)2dLW (r, 0)) where Ξ̃1n =

Φ
ᵀ

13(r, z)Q̃−1∗ P̃∗Q̃
−1
∗ Φ13(r, z) a 3-by-3 matrix.

Following exactly the same fashion as before we may show the normality, letting Ξ =
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daig(Ξ̃1,
∫ 1

0
σ(r)2dLW (r, 0)),

n∑
t=1

ξ̃ntet →D N(0,Ξ),

by Cramér-Wold theorem. In addition, using the approximation of zt(t/n) to zt,n it is not hard

to demonstrate all the remainder terms asymptotically negligible. These are omitted for the

sake of similarity. The proof thus is finished. �

Proof of Proposition 3.1: In this corollary we consider the attainability of the conventional

optimal rate for sieve estimation, that is, we shall compare the convergence rates of β̂(·) and

ĝ(·) in L2 sense with that in Stone (1982, 1985), since in the literature there is no research on

the optimal rate of convergence with respect to unit root regressor.

We next investigate the rates of ‖β̂n(r)−β(r)‖2, ‖ĝn(z)−g(z)‖2 and ‖m̂n(x)−m(x)‖2 where

the norm is of L2 in the function spaces, respectively. All notation used below is the same as

defined in Section 2 of the paper. Observe by the orthogonality of the basis function that
‖β̂n(r)− β(r)‖2

‖ĝn(z)− g(z)‖2

‖m̂n(x)−m(x)‖2

 =


‖φk1(r)

ᵀ
(ĉ1 − c1)− γ1k1(r)‖2

‖ak2(z)
ᵀ
(ĉ2 − c2)− γ2k2(z)‖2

‖bk3(x)
ᵀ
(ĉ3 − c3)− γ3k3(x)‖2



=


‖ĉ1 − c1‖2

‖ĉ2 − c2‖2

‖ĉ3 − c3‖2

+


‖γ1k1(r)‖2

‖γ2k2(z)‖2

‖γ3k3(x)‖2

 .

Here, we already know that ‖γ1k1(r)‖2 = O(k−2s11 ) and ‖γ2k2(r)‖2 = O(k−2s22 ) by Newey (1997)

and ‖γ3k3(r)‖2 = o(k−s33 ) by Lemma C.1 of Dong et al. (2016).

On the other hand, by Lemma A.3 we have
ĉ1 − c1

ĉ2 − c2

ĉ3 − c3

 =ĉ− c = (B
ᵀ

nkBnk)
−1B

ᵀ

nk(e+ γ)

=D−1n U−1k D−1n B
ᵀ

nk(e+ γ)(1 + oP (1))

=D−1n U−1k D−1n

n∑
t=1


φk1(t/n)

ak2(zt)

bk3(xt)

 (et + γ(t))(1 + oP (1))
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=


1
n

∑n
t=1 φk1(t/n)(et + γ(t))

1
n
U−1∗22

∑n
t=1 ak2(zt)(et + γ(t))

L−1W (1, 0)dn
n

∑n
t=1 bk3(xt)(et + γ(t))

 (1 + oP (1))

due to Uk = diag(U∗, LW (1, 0)Ik3), U∗ = diag(Ik1 , U∗22) and U∗22 = E[ak2(z1)ak2(z1)
ᵀ
]. Under the

condition that U∗22 has eigenvalues bounded below from zero and above from infinity uniformly,

it follows that 
‖ĉ1 − c1‖2

‖ĉ2 − c2‖2

‖ĉ3 − c3‖2

 �


1
n2‖
∑n

t=1 φk1(t/n)(et + γ(t))‖2

1
n2‖
∑n

t=1 ak2(zt)(et + γ(t))‖2

d2n
n2‖
∑n

t=1 bk3(xt)(et + γ(t))‖2

 .

Moreover,

1

n2
E‖

n∑
t=1

φk1(t/n)et‖2 =
1

n2

n∑
t=1

‖φk1(t/n)‖2σ2(t/n)

=
1

n

∫ 1

0

‖φk1(r)‖2σ2(r)dr(1 + o(1)) = O(k1/n),

by Lemma A.2, while n−2‖
∑n

t=1 φk1(t/n)γ(t))‖2 is negligible comparing with the above term,

as can be seen from the proof of Theorem 3.1. The assertion of ‖ĉ2 − c2‖2 = OP (k2/n) can be

derived similarly, and

d2n
n2

E‖
n∑
t=1

bk3(xt)et‖2 =
d2n
n2

n∑
t=1

E‖bk3(xt)‖2σ2(t/n)

�d
2
n

n2

n∑
t=1

d−1t

∫
‖bk3(x)‖2dx = O(k3/

√
n),

invoking Lemma A.1, which implies ‖ĉ3 − c3‖2 = OP (k3/
√
n). So the conclusion follows. �

Proof of Corollary 3.1. It suffices to show that σ̂2 →P σ2 and Λn/(nLW (1, 0)/dn) →P 1 as

n→∞, from which the second part of the corollary follows immediately.

(1). Notice that

σ̂2 =
1

n

n∑
t=1

(yt − β̂n(t/n)− ĝn(zt)− m̂n(xt))
2

=
1

n

n∑
t=1

(et + β(t/n)− β̂n(t/n) + g(zt)− ĝn(zt) +m(xt)− m̂n(xt))
2

=
1

n

n∑
t=1

e2t +
1

n

n∑
t=1

(β(t/n)− β̂n(t/n) + g(zt)− ĝn(zt) +m(xt)− m̂n(xt))
2
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+ 2
1

n

n∑
t=1

et(β(t/n)− β̂n(t/n) + g(zt)− ĝn(zt) +m(xt)− m̂n(xt)),

and we shall show that the first term converges to σ2 and the second to zero in probability

that imply the third term converges to zero in probability as well. In fact, using the martingale

structure for et,

E

(
1

n

n∑
t=1

e2t − σ2

)2

= E

(
1

n

n∑
t=1

(e2t − σ2)

)2

=
1

n2

n∑
t=1

E(e2t − σ2)2

=
1

n2

n∑
t=1

(Ee4t − σ4) ≤ 1

n
max
1≤t≤n

(Ee4t − σ4)→ 0,

by Assumption B as n→∞. In addition,

1

n

n∑
t=1

(β(t/n)− β̂n(t/n) + g(zt)− ĝn(zt) +m(xt)− m̂n(xt))
2

≤3
1

n

n∑
t=1

(β(t/n)− β̂n(t/n))2 + 3
1

n

n∑
t=1

(g(zt)− ĝn(zt))
2

+ 3
1

n

n∑
t=1

(m(xt)− m̂n(xt))
2

≤6
1

n

n∑
t=1

(φk1(t/n)
ᵀ
(c1 − ĉ1))2 + 6

1

n

n∑
t=1

γ21k1(t/n)

+ 6
1

n

n∑
t=1

(ak2(zt)
ᵀ
(c2 − ĉ2))2 + 6

1

n

n∑
t=1

γ22k2(zt)

+ 6
1

n

n∑
t=1

(bk3(xt)
ᵀ
(c3 − ĉ3))2 + 6

1

n

n∑
t=1

γ23k3(xt)

=6(c1 − ĉ1)
ᵀ 1

n
Π11(c1 − ĉ1) + 6

1

n

n∑
t=1

γ21k1(t/n)

+ 6(c2 − ĉ2)
ᵀ 1

n
Π22(c2 − ĉ2) + 6

1

n

n∑
t=1

γ22k2(zt)

+ 6d−1n (c3 − ĉ3)
dn
n

Π44(c3 − ĉ3)
ᵀ
Π33(c3 − ĉ3) + 6

1

n

n∑
t=1

γ23k3(xt)

≤6‖c1 − ĉ1‖2 + 6 sup
0≤r≤1

γ21k1(r) + 6‖c2 − ĉ2‖2

+ 6
1

n

n∑
t=1

γ22k2(zt) + 6d−1n LW (1, 0)‖c3 − ĉ3‖2 + 6
1

n

n∑
t=1

γ23k3(xt)]

where Πii, i = 1, 2, 4, are the blocks in Lemma A.3, and we use the results for them therein. It

follows from the proof of Theorem 3.1 that ‖ci − ĉi‖ = oP (1) for i = 1, 2, 3. Moreover, notice

that sup0≤r≤1 γ
2
1k1

(r) = O(k−s11 ), and similar to the proof of A1n = oP (1) and B1n = oP (1) in
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Theorem 3.1, we may easily show that 1
n

∑n
t=1 γ

2
2k2

(zt) = oP (1) and 1
n

∑n
t=1 γ

2
3k3

(xt) = oP (1)

which is omitted due the similarity. The proof of σ̂2 →P σ
2 as n→∞ is complete.

(2). The assertion of Λn/(nLW (1, 0)/dn)→P 1 is an implication of Lemma A.3. �
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