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Abstract

This paper shows how to construct locally robust semiparametric GMM estimators,

meaning equivalently moment conditions have zero derivative with respect to the first

step and the first step does not affect the asymptotic variance. They are constructed by

adding to the moment functions the adjustment term for first step estimation. Locally

robust estimators have several advantages. They are vital for valid inference with machine

learning in the first step, see Belloni et. al. (2012, 2014), and are less sensitive to the

specification of the first step. They are doubly robust for affine moment functions, where

moment conditions continue to hold when one first step component is incorrect. Locally

robust moment conditions also have smaller bias that is flatter as a function of first step

smoothing leading to improved small sample properties. Series first step estimators confer

local robustness on any moment conditions and are doubly robust for affine moments, in

the direction of the series approximation. Many new locally and doubly robust estimators

are given here, including for economic structural models. We give simple asymptotic theory

for estimators that use cross-fitting in the first step, including machine learning.
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1 Introduction

There are many economic parameters that depend on nonparametric or large dimensional first

steps. Examples include games, dynamic discrete choice, average consumer surplus, and treat-

ment effects. This paper shows how to construct GMM estimators that are locally robust to the

first step, meaning equivalently that moment conditions have a zero derivative with respect to

the first step and that estimation of the first step does not affect their influence function.

Locally robust moment functions have several advantages. Belloni, Chen, Chernozhukov,

and Hansen (2012) and Belloni, Chernozhukov, and Hansen (2014) showed that local robust-

ness, also referred to as orthogonality, is important for correct inference about parameters of

interest when machine learning is used in the first step. Locally robust moment conditions

are also nearly correct when the nonparametric part is approximately correct. This robustness

property is appealing in many settings where it may be difficult to get the first step completely

correct. Furthermore, local robustness implies the small bias property analyzed in Newey, Hsieh,

and Robins (1998, 2004; NHR henceforth). As a result asymptotic confidence intervals based

on locally robust moments have actual coverage probability closer to nominal than for other

moments. Also, bias is flatter as a function of first step bias for locally robust estimators than

for other estimators. This tends to make their mean-square error (MSE) flatter as a function

of smoothing also, so their performance is less sensitive to smoothing. In addition, by virtue

of their smaller bias, locally robust estimators have asymptotic MSE that is smaller than other

estimators in important cases and undersmoothing is not required for root-n consistency. Fi-

nally, asymptotic variance estimation is straightforward with locally robust moment functions,

because the first step is already accounted for.

Locally robust moment functions are constructed by adding to the moment functions the

terms that adjust for (or account for) first step estimation. This construction gives moment

functions that are locally robust. It leads to new estimators for games, dynamic discrete choice,

average surplus, and other important economic parameters. Also locally robust moments that

are affine in a first step component are globally robust in that component, meaning the moments

continue to hold when that component varies away from the truth. This result allows construc-

tion of doubly robust moments in the sense of Scharfstein, Rotnitzky, and Robins (1999) and

Robins, Rotnitzky, and van der Laan (2000) by adding to affine moment conditions an affine

adjustment term. Here we construct many new doubly robust estimators, e.g. where the first

step solves a conditional moment restriction or is a density.

Certain first step estimators confer the small bias property on moment functions that are

not locally robust, including series estimators of mean-square projections (Newey, 1994), sieve
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maximum likelihood estimators (Shen, 1996, Chen and Shen, 1997), bootstrap bias corrected

first steps (NHR), and higher-order kernels (Bickel and Ritov, 2003). Consequently the inference

advantages of locally robust estimators may be achieved by using one of these first steps. These

first steps only make moment conditions locally robust in certain directions. Locally robust

moments have the small bias property in a wider sense, that the moments are nearly zero as the

first step varies in a general way. This property is important when the first step is chosen by

machine learning or in other very flexible, data based ways; see Belloni et. al. (2014).

First step series estimators have some special robustness properties. Moments without the

adjustment term can be interpreted as locally robust because there is an estimated adjustment

term with average that is identically zero. This property corresponds to first step series esti-

mators conferring local robustness in the direction of the series approximation. Also, first step

series estimators are doubly robust in those directions when the moment functions and first step

estimating equations are affine.

The theoretical and Monte Carlo results of NHR show the bias and MSE advantages of lo-

cally robust estimators for linear functionals of a density. The favorable properties of a twicing

kernel first step versus a standard first step found there correspond to favorable properties of

locally robust moments versus original moments, because a twicing kernel estimator is numer-

ically equivalent to adding an estimated adjustment term. The theoretical results show that

using locally robust moment conditions increases the rate at which bias goes to zero but only

raises the variance constant, and so leads to improved asymptotic MSE. The Monte Carlo results

show that the MSE of the locally robust estimator is much flatter as a function of bandwidth

and has a smaller minimum than the original moment functions, even with quite small samples.

Advantages have also been found in the literature on doubly robust estimation of treatment

effects, as in Bang and Robins (2005) and Firpo and Rothe (2016). These results from ear-

lier work suggest that locally robust moments provide a promising approach to improving the

properties of semiparametric estimators.

This paper builds on other earlier work. Locally robust moment conditions are semipara-

metric versions of Neyman (1959) () test moments for parametric models, with parametric

extensions to nonlikelihood settings given by Wooldridge (1991), Lee (2005), Bera et. al. (2010),

and Chernozhukov, Hansen, and Spindler (2015). Hasminskii and Ibragimov (1978) suggested

an estimator of a functional of a nonparametric density estimator that can be interpreted as

adding the first step adjustment term. Newey (1990) derived the form of the adjustment term

in some cases. Newey (1994) showed local robustness of moment functions that are derivatives

of an objective function where the first step has been "concentrated out," derived the form

of the adjustment term for many important cases, and showed that moment functions based

on series nonparametric regression have small bias. General semiparametric model results on

doubly robust estimators were given in Robins and Rotnitzky (2001).
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NHR showed that adding the adjustment term gives locally robust moments for functionals

of a density integral and showed the important bias and MSE advantages for locally robust

estimators mentioned above. Robins et. al. (2008) showed that adding the adjustment term

gives local robustness of explicit functionals of nonparametric objects, characterized some doubly

robust moment conditions, and considered higher order adjustments that could further reduce

bias. The form of the adjustment term for first step estimation has been derived for a variety

of first step estimators by Pakes and Olley (1995), Ai and Chen (2003), Bajari, Chernozhukov,

Hong, and Nekipelov (2009), Bajari, Hong, Krainer, and Nekipelov (2010), Ackerberg, Chen,

and Hahn (2012), Ackerberg, Chen, Hahn, and Liao (2014), and Ichimura and Newey (2016),

among others. Locally and doubly robust moments have been constructed for a variety of

estimation problems by Robins, Rotnitzky, and Zhao (1994, 1995), Robins and Rotnitzky (1995),

Scharfstein, Rotznitzky, and Robins (1999), Robins, Rotnitzky, and van der Laan (2000), Robins

and Rotnitzky (2001), Belloni, Chernozhukov, and Wei (2013), Belloni, Chernozhukov, and

Hansen (2014), Ackerberg, Chen, Hahn, and Liao (2014), Firpo and Rothe (2016), and Belloni,

Chernozhukov, Fernandez-Val, and Hansen (2016).

Contributions of this paper are a general construction of locally robust estimators in a

GMM setting, a general nonparametric construction of doubly robust moments, and deriving

bias and other large sample properties. The special robustness properties of first step series

estimators are also shown here. We use these results to obtain many new locally and doubly

robust estimators, such as those where the first step allows for endogeneity or is a conditional

choice probability in an economic structural model. We expect these estimators to have the

advantages mentioned above, that machine learning can be used in the first step, the estimators

have appealing robustness properties, smaller bias and MSE, are less sensitive to bandwidth,

have closer to nominal coverage for confidence intervals, and standard errors that can be easily

computed.

Section 2 describes the general construction of locally robust moment functions for semipara-

metric GMM. Section 3 shows how the first step adjustment term can be derived and shows the

local robustness of the adjusted moments. Section 4 introduces local double robustness, shows

that affine, locally robust moment functions are doubly robust, and gives new classes of doubly

robust estimators. Section 5 describes how locally robust moment functions have the small bias

property and a smaller remainder term. Section 6 considers first step series estimation. Section

7 characterizes locally robust moments based on conditional moment restrictions. Section 8

gives locally robust moment conditions for conditional choice probability estimation of discrete

game and dynamic discrete choice models. Section 9 gives asymptotic theory based on cross

fitting with easily verifiable regularity conditions for the first step, including machine learning.
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2 Constructing Locally Robust Moment Functions

The subject of this paper is GMM estimators of parameters where the sample moment functions

depend on a first step nonparametric or large dimensional estimator. We refer to these estimators

as semiparametric. We could also refer to them as GMMwhere first step estimators are “plugged

in” the moments. This terminology seems awkward though, so we simply refer to them as

semiparametric GMM estimators. We denote such an estimator by ̂, which is a function of the

data 1   where  is the number of observations. Throughout the paper we will assume that

the data observations  are i.i.d. We denote the object that ̂ estimates as 0, the subscript

referring to the parameter value under the distribution that generated the data.

To describe the type of estimator we consider let(  ) denote an ×1 vector of functions
of the data observation  parameters of interest , and a function  that may be vector valued.

The function  can depend on  and  through those arguments of  Here the function 

represents some possible first step, such as an estimator, its limit, or a true function. A GMM

estimator can be based on a moment condition where 0 is the unique parameter vector satisfying

[( 0 0)] = 0 (2.1)

and 0 is the true . Here it is assumed that this moment condition identifies  Let ̂ denote

some first step estimator of 0. Plugging in ̂ to obtain(  ̂) and averaging over  gives the

estimated sample moments ̂() =
P

=1(  ̂) For ̂ a positive semi-definite weighting

matrix a semiparametric GMM estimator is

̂ = argmin
∈

̂()̂̂()

where  denotes the transpose of a matrix  and  is the parameter space for .

As usual a choice of ̂ that minimizes the asymptotic variance of
√
(̂ − 0) will be

a consistent estimator of the inverse of the asymptotic variance of
√
̂(0) Of course that

efficient ̂ may include adjustment terms for the first step estimator ̂. This optimal ̂ also

gives an efficient estimator in the wider sense shown in Ackerberg, Chen, Hahn, and Liao (2014).

The optimal ̂ makes ̂ efficient in a semiparametric model where the only restrictions imposed

are equation (2.1).

To explain and analyze local robustness we consider limits when the true distribution of a

single observation  is  , and how those limits vary with  over a general class of distributions.

This kind of analysis can be used to derive the asymptotic variance of semiparametric estimators,

as in Newey (1994), and is also useful here. Let ( ) denote the limit of ̂ when  is the true

distribution of . Here ( ) is understood to be the limit of ̂ under general misspecification

where  need not satisfy the conditions used to construct ̂We also consider parametric models

 where  denotes a vector of parameters, with  equal to the true distribution 0 at  = 0
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We will restrict each parametric model to be regular in the sense used in the semiparametric

efficiency bounds literature, so that  has a score () (derivative of the log-likelihood in many

cases, e.g. see Van der Vaart, 1998, p. 362) at  = 0 and possibly other conditions are satisfied.

We also require that the set of scores over all regular parametric family has mean square closure

that includes all functions with mean zero and finite variance. Here we are assuming that the

set of scores for regular parametric models is unrestricted, the precise meaning of the domain of

( ) being a general class of distributions. We define local robustness in terms of such families

of regular parametric models.

Definition 1: The moment functions (  ) are locally robust if and only if for all

regular parametric models
[( 0 ())]



¯̄̄̄
=0

= 0

This zero pathwise derivative condition means that moment conditions are nearly zero as the

first step limit ( ) departs from the truth 0 along any path () Below we use a functional

derivative condition, but for now this pathwise derivative definition is convenient. Throughout

the remainder of the paper we evaluate derivatives with respect to  at  = 0 unless otherwise

specified.

In general, locally robust moment functions can be constructed by adding to moment func-

tions the term that adjusts for (or accounts for) first step estimation. Under conditions discussed

below there is a unique vector of functions (  ) such that [( 0 0)] = 0 and

√
̂(0) =

1√


X
=1

( 0 ̂) =
1√


X
=1

{( 0 0) + ( 0 0)}+ (1) (2.2)

Here ( 0 0) adjusts for the presence of ̂ in ( 0 ̂). Locally robust moment functions

can be constructed by adding (  ) to (  ) to obtain new moment functions

(  ) = (  ) + (  ) (2.3)

For ̂() =
P

=1 (  ̂) a locally robust semiparametric GMM estimator is obtained as

̂ = argmin


̂()0̂ ̂()

In a parametric setting it is easy to see how adding the adjustment term for first step

estimation gives locally robust moment conditions. Suppose that the first step estimator ̂ is

a function of a finite dimensional vector of parameters  where there is a vector of functions

( ) satisfying [( 0)] = 0 and the first step parameter estimator ̂ satisfies

1√


X
=1

( ̂) = (1) (2.4)
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For  = [( )]|=0 the usual expansion gives

√
(̂− 0) = −−1 1√



X
=1

( 0) + (1)

For notational simplicity let the moment functions depend directly on  (rather than  ()) and

so take the form (  ) Let  = [( 0 0)] Another expansion gives

√
̂(0) =

1√


X
=1

( 0 0) +

√
(̂− 0) + (1)

=
1√


X
=1

{( 0 0)−
−1( 0)}+ (1)

Here we see that the adjustment term is

(  ) = −
−1( ) (2.5)

We can add this term to the original moment functions to produce new moment functions of

the form

(  ) = (  ) + (  ) = (  )−
−1( )

Local robustness of these moment functions follows by the chain rule and

[( 0 )]



¯̄̄̄
=0

=
[( 0 )−

−1( )]


¯̄̄̄
=0

= −
−1 = 0

Neyman (1959) used scores and the information matrix to form such (  ) in a parametric

likelihood setting, where ( 0 0) has an orthogonal projection interpretation. There the

purpose was to construct tests, based on (  ) where estimation of the nuisance parameters

 did not affect the distribution of the tests. The form here was given in Wooldridge (1991) for

nonlinear least squares and Lee (2005), Bera et. al (2010), and Chernozhukov et. al. (2015)

for GMM. What appears to be new here is construction of locally robust moment functions by

adding the adjustment term to original moment functions.

In general the adjustment term (  ) may depend on unknown components that are

not present in the original moment functions (  ). In the above parametric example the

matrix 
−1 is unknown so its elements should really be included in , along with  If we

do this local robustness will continue to hold with these additional components of  because

[( 0)] = 0 For notational simplicity we will take  to be the first step for the locally

robust moment functions (  ) = (  ) + (  ), with the understanding (  )

will generally depend on first step functions that are not included in (  ).

In general semiparametric settings the form of the adjustment term (  ) and local

robustness of (  ) can be explained in terms of influence functions. We will do so in the
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next Section. In many interesting cases the form of the adjustment term (  ) is already

known, allowing construction of locally robust estimators. We conclude this section with an

important class of examples.

The class of examples we consider is one where the first step ̂1 is based on a conditional

moment restriction [( 10)|] = 0 for a residual ( 1) and instrumental variables . The
conditional mean or median of  given  are included as special cases where ( 1) = −1()
and ( 1) = 2·1(  1())−1 respectively, as are versions that allow for endogeneity where 1
depends on variables other than . We take ̂1 to have the same limit as the nonparametric two-

stage least squares (NP2SLS) estimator of Newey and Powell (1989, 2003) and Newey (1991).

Thus, ̂1 has limit 1( ) satisfying

1( ) = argmin
1∈Γ

 [{ [( 1)|]}2]

and  denotes the expectation under the distribution  . Suppose that there is 20() in the

mean square closure of the set of derivatives [( 1())|] as  varies over regular

parametric models such that

[( 0 1())]


= −[20()[( 1())|]


] (2.6)

Then from Ichimura and Newey (2016) the adjustment term is

(  ) = 2( )( 1) (2.7)

A function 20() satisfying equation (2.6) exists when the set of derivatives [( 1())|]
is linear as  varies over parametric models, [( 0 1())] is a linear functional

of [( 1())|] and that functional is continuous in mean square. Existence of

20() then follows from the Riesz representation theorem. Special cases of this characteri-

zation of 20() are in Newey (1994), Ai and Chen (2007), and Ackerberg, Chen, Hahn, and

Liao (2014). When [( 0 1( ))] is not a mean square continuous functional of

[( 1( ))|] then first step estimation should make the moments converge slower
than 1

√
, as shown by Newey and McFadden (1994) and Severini and Tripathi (2012) for

special cases. The adjustment term given here includes Santos (2011) as a special case with

(  1) =
R
()1()− , though Santos (2011) is more general in allowing for noniden-

tification of 10

There are a variety of ways to construct an estimator (  ̂) of the adjustment term to

be used in forming locally robust moment functions, see NHR and Ichimura and Newey (2016).

A relatively simple and general one when the first step is a series or sieve estimator is to treat

the first step as if it were parametric and use the parametric formula in equation (2.5). This

approach to estimating the adjustment term is known to be asymptotically valid in a variety
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of settings, see Newey (1994), Ackerberg, Chen, and Hahn (2012), and Ichimura and Newey

(2016). For completeness we give a brief description here.

We parameterize an approximation to 1 as 1 = () where  is a finite dimensional vector

of parameters as before. Let (  ) = (  1()) and ̂ denote an estimator of 0

solving [( 0)] = 0 that is allowed to depend on observation  Being a series or sieve

estimator the dimension of  and hence of ( ) will increase with sample size. Also, let I()
be a set of observation indices that can also depend on  An estimator of the adjustment term

is give by

(  ̂) = −̂()̂
−1
 ( ̂) ̂() =

X
∈I()

(  ̂)


 ̂ =

X
∈I()

( ̂)




This estimator allows for cross fitting where ̂, ̂, and ̂ depend only on observations other

than the  cross fitting is known to improve performance in some settings, such as in "leave

one out" kernel estimators of averages, e.g. see NHR. This adjustment term will lead to locally

robust moments in a variety of settings, as further discussed below.

3 Influence Functions, Adjustment Terms, and Local Ro-

bustness

Influence function calculations can be used to derive the form of the adjustment term (  )

and show local robustness of the adjusted moment functions (  ) = (  ) + (  )

To explain influence functions note that many estimators are asymptotically equivalent to a

sample average. The object being averaged is the unique influence function. For example, in

equation (2.2) we are assuming that the influence function of ̂(0) is ( 0 0) = ( 0 0)+

( 0 0) This terminology is widely used in the semiparametric estimation literature.

In general an estimator ̂ of a true value 0 and its influence function () satisfy

√
(̂− 0) =

1√


X
=1

() + (1) [()] = 0 [()()
0] exists.

The function () can be characterized in terms of the functional ( ) that is the limit of ̂

under general misspecification where  need not satisfy the conditions used to construct ̂. As

before, we allow  to vary over a family of regular parametric models where the set of scores for

the family has mean square closure that includes all mean zero functions with finite variance. As

shown by Newey (1994) the influence function () is then the unique solution to a derivative

equation of Van der Vaart (1991),

( )


= [()()] [()] = 0 (3.1)
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as  (and hence ()) varies over the general family of regularly parametric models. Ichimura

and Newey (2016) also showed that when () has certain continuity properties it can be

computed as

() = lim
−→0

( 
 )


  

 = (1− )0 + 
  (3.2)

where 
 is constructed so that 


 is in the domain of ( ) and 


 approaches the point mass

at  as  −→ 0

These results can be used to derive the adjustment term (  ) and to explain local

robustness. Let ( ) denote the limit of the first step estimator ̂ under general misspecification

when a single observation has CDF  as discussed above. From Newey (1994, pp. 1356-1357) we

know that the adjustment term ( 0 0) is the influence function of ( ) = [( 0 ( ))]

where [·] denotes the expectation at the truth. Thus (  ) can be calculated as in equation
(3.2) for that ( ) Also (  ) satisfies equation (3.1) for ( ) = [( 0 ( ))] i.e. for

the score () at  = 0 for any regular parametric model {}
[( 0 ())]


= [( 0 0)()] [( 0 0)] = 0 (3.3)

Also, ( 0 0) can be computed as

( 0 0) = lim
−→0

[( 0 (

 ))]


  

 = (1− )0 + 
 

The characterization of ( 0 0) in equation (3.3) can be used to specify another local

robustness property that is equivalent to Definition 1. We have defined local robustness as the

derivative on the left of the first equality in equation (3.3) being zero for all regular parametric

models. If that derivative is zero for all parametric models then ( 0 0) = 0 is the unique

solution to this equation, by the set of scores being mean square dense in the set of mean zero

random variables with finite variance. Also, if ( 0 0) = 0 then the derivative on the left is

always zero. Therefore we have

Proposition 1: ( 0 0) = 0 if and only if (  ) is locally robust.

Note that (  ) is the term in the influence function of ̂(0) that accounts for the first

step estimator ̂ Thus Proposition 1 gives an alternative characterization of local robustness,

that first step estimation does not affect the influence function of ̂(0). This result is a

semiparametric version of Theorem 6.2 of Newey and McFadden (1994). It also formalizes the

discussion in Newey (1994, pp. 1356-1357).

Local robustness of the adjusted moment function (  ) = (  ) + (  ) fol-

lows from Proposition 1 and (  ) being a nonparametric influence function. Because

(  ) is an influence function it has mean zero at all true distributions, i.e. ( )

=
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R
( 0 ( )) () ≡ 0 identically in  Consequently the derivative in equation (3.1) is

zero, so that (like Proposition 1) the influence function of ( ) is zero. Consequently, under

appropriate regularity conditions ̄ =
P

=1 ( 0 ̂) has a zero influence function and so√
̄ = (1) It then follows that

1√


X
=1

( 0 ̂) =
√
̂(0)+

√
̄ =

√
̂(0)+ (1) =

1√


X
=1

( 0 0)+ (1) (3.4)

where the last equality follows by equation (2.2). Here we see that the adjustment term is zero

for the moment functions (  ). From Proposition 1 with (  ) replacing (  ) it

then follows that (  ) is locally robust.

Proposition 2: For the influence function ( 0 0) of ( ) = [( 0 ( ))] the

adjusted moment function (  ) = (  ) + (  ) is locally robust.

Local robustness of (  ) also follows directly from the identity
R
( 0 ( )) () ≡ 0

as discussed in the Appendix. Also, the adjusted moments ̂(0) have the same asymptotic

variance as the original moments, as in the second equality of equation (3.4). That is, adding

(  ) to (  ) does not affect the asymptotic variance. Thus the asymptotic benefits

of the locally robust moments are in their higher order properties. Other modifications of

the moments may also improve higher-order properties of estimators, such as the cross fitting

described above (like "leave on out" in NHR) and the higher order bias corrections in Robins

et. al. (2008) and Cattaneo and Jansson (2014).

4 Local and Double Robustness

The zero derivative condition in Definition 1 is an appealing robustness property in and of itself.

Mathematically a zero derivative is equivalent to the moments remaining closer to zero than  as

 varies away from zero. This property can be interpreted as local robustness of the moments to

the value of  being plugged in, with the moments remaining close to zero as  varies away from

its true value. Because it is difficult to get nonparametric functions exactly right, especially in

high dimensional settings, this property is an appealing one.

Such robustness considerations, well explained in Robins and Rotnitzky (2001), have moti-

vated the development of doubly robust estimators. For our purposes doubly robust moments

have expectation zero if just one first stage component is incorrect. When there are only two first

stage components this means that the moment conditions hold when only one of the first stage

components is correct. Doubly robust moment conditions allow two chances for the moment

conditions to hold.
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It turns out that locally robust moment functions are automatically doubly robust in a local

sense that the derivative with respect to each individual, distinct first stage component is zero. In

that way the moment conditions nearly hold as each distinct component varies in a neighborhood

of the truth. Furthermore, when locally robust moment functions are affine functions of a distinct

first step component they are automatically globally robust in that component. Thus, locally

robust moment functions that are affine in each distinct first step are doubly robust.

These observations suggest a way to construct doubly robust moment functions. Starting

with any two step semiparametric moment function we can add the adjustment term to get a

locally robust moment function. When we can choose a first step of that moment function so

that it enters in an affine way the new moment function will be doubly robust in that component.

To give these results we need to define distinct components of  A distinct component is

one where there are parametric models  with that component varying in an unrestricted way

but the other components of  not varying. For a precise definition we will focus on the first

component 1 of  = (1  ).

Definition 2: A component 1 of  is distinct if and only if there is  such that

() = (1() 20  0)

and 1( ) is unrestricted as  varies across parametric models.

An example is the moment function (  1 2) = (  1) + 2( )( 1), where

[( 10)|] = 0 In that example the two components 1 and 2 are often distinct because 1
depends only on the conditional distribution of  given  and 20( ) depends on the marginal

distribution of  in an unrestricted way.

Local robustness means that the derivative must be zero for any model, so in particular it

must be zero for any model where only the distinct component is varying. Thus we have

Proposition 3: If 1 is distinct then for (  ) = (  ) + (  ) and regular

parametric models  as in Definition 2,

[( 0 1() 20  0)]


= 0

This result is an application of the simple fact that when a multivariable derivative is zero

the partial derivative must be zero when the variables are allowed to vary in an unrestricted

way. Although this fact is simple, it is helpful in understanding when local robustness holds

for individual components. This means that locally robust moment functions automatically

have a local double robustness property, that the expectation of the moment function remains

nearly zero as each distinct first stage component varies away from the truth. For example, for
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a first step conditional moment restriction where (  ) = (  1) + 2( )( 1), the

conclusion of Proposition 3 is

[( 0 1()) + 20()( 1())]


= 0

In fact, this result is implied by equation (2.6), so by construction (  ) is already lo-

cally robust in 1 alone. Local robustness in 2 follows by the conditional moment restriction

[( 10)|] = 0
Moments that are locally robust in a distinct component 1 will be globally robust in 1 if

1 enters the moments in an affine way, meaning that for any 1 and  = (1 20  0)
0 and

any ,

(  (1− )0 + ) = (1− ) · (  0) +  · (  ) (4.1)

Global robustness holds because an affine function with zero derivative is constant. For simplicity

we state a result when  can be chosen so that ( ) = (1− )0+  though it will hold more

generally. Note that here

[( 0 ())] = (1− )[( 0 0)] +  ·[( 0 )] =  · [( 0 )]

Here the derivative of the moment condition with respect to  is just[( 0 )] so Proposition

3 gives the following result:

Proposition 4: If equation (4.1) is satisfied and there is  with () = ((1 − )10 +

1 20  0)
0 then [( 0 1 20  0)] = 0

Thus we see that locally robust moment functions that are affine in a distinct first step

component are globally robust in that component. This result includes many existing examples

of doubly robust moment functions and can be used to construct new ones.

A general class of doubly robust moment functions that appears to be new and includes

many new and previous examples has first step satisfying a conditional moment restriction

[( 10)|] = 0 where ( 1) and ( 0 1) are affine in 1 Suppose that [( 0 1)]
is a mean-square continuous linear functional of [( 1)|] for 1 in a linear set Γ Then by
the Riesz representation theorem there is ∗() in the mean square closure Π of the image of

[( 1)|] such that

[( 0 1)] = −[∗()[( 1)|]] = −[∗()( 1)] 1 ∈ Γ (4.2)

Let 20() be any function such that 20() − ∗() is orthogonal to Π and (  ) =

(  1) + 2( )( 1) Then [( 0 1 20)] = 0 by the previous equation. It also

follows that [( 0 10 2)] = 0 by [( 10)|] = 0 Therefore (  1 2) is doubly

robust, showing the following result:
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Proposition 5: If ( 0 1) and ( 1) are affine in 1 ∈ Γ with Γ linear and

[( 0 1)] is a linear, mean square continuous functional of [( 1)|] then there is
20() such that (  1 2) = (  1) + 2( )( 1) is doubly robust.

Section 3 of Robins et. al. (2008) gives necessary and sufficient conditions for a moment

function to be doubly robust when 1 and 2 enter the moment functions as functions evaluated

at observed  Proposition 5 is complementary to that work in deriving the form of doubly robust

moment functions when the first step satisfies a conditional moment restriction and (  1)

can depend on the entire function 1.

It is interesting to note that 20 such that [( 0 1 20)] = 0 for all 1 ∈ Γ is not unique

when Π does not include all functions of , the overidentified case of Chen and Santos (2015).

This nonuniqueness can occur when there are multiple ways to estimate the first step 10 using

the conditional moment restrictions [( 10)|] = 0. As discussed in Ichimura and Newey
(2016), the different 20() correspond to different first step estimators, with 20() = ∗()

corresponding to the NP2SLS estimator.

An important case is a linear conditional moment restrictions setup up like Newey and Powell

(1989, 2003) and Newey (1991) where

( 1) =  − 1() [ − 10()|] = [( 10)|] = 0 (4.3)

Consider a moment function equal to (  1) = ()1() −  for some known function

() where the parameter of interest is 0 = [()10()]. If there is ̄() such that () =

[̄()|] then we have

[( 0 1)] = [(){1()− 10()}] = [[̄()|]{1()− 10()}]
= [̄(){1()− 10()}] = −[̄()( 1)]

It follows that (  ) = (  1) + 2()( 1) is doubly robust for 20() = ̄(). Inter-

estingly, the existence of ̄ with () = [̄()|] is a necessary condition for root-n consistent

estimability of 0 as in Severini and Tripathi’s (2012, Lemma 4.1). We see here that a doubly

robust moment condition can always be constructed when this necessary condition is satisfied.

Also, similarly to the above, the 20() may not be unique.

Corollary 6: If (  1) = ()1()−, equation ( 43) is satisfied, and there is ̄()
such that () = [̄()|] then (  1 2) = ()1() −  + 2()[ − 1()] is doubly

robust for 20()− ̄() orthogonal to Π.

A new example of a doubly robust moment condition corresponds to the weighted average

derivative of 10() of Ai and Chen (2007). Here (  1) = ̄()1() −  for some
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function ̄(). Let 0() be the pdf of . Assuming that ̄()1()0() is zero on the

boundary of the support of  integration by parts gives

[( 0 1)] = [(){1()− 10()}] () = 0()
−1[̄()0()]

Assume that there exists ̄() such that () = [̄()|]. Then as in Proposition 5 a doubly

robust moment function is

(  ) = ̄()
1()


−  + 2()[ − 1()]

A special case of this example is the doubly robust moment condition for the weighted average

derivative in the exogenous case where  =  given in Firpo and Rothe (2016).

Doubly robust moment conditions can be used to identify parameters of interest. In general,

if (  1 2) is doubly robust and 20 is identified then 0 may be identified from

[( 0 ̄1 20)] = 0

for any fixed ̄1 when the solution 0 to this equation is unique.

Proposition 7: If (  1 2) is doubly robust, 20 is identified, and for some ̄1 the

equation [(  ̄1 20)] = 0 has a unique solution then 0 is identified as that solution.

Applying this result to the NPIV setting gives an explicit formula for certain functionals of

10() without requiring that the completeness identification condition of Newey and Powell

(2003) be satisfied, similarly to Santos (2011). Suppose that () is identified, e.g. as for the

weighted average derivative. Since both  and  are observed it follows that a solution 20()

to () = [20()|] will be identified if such a solution exists. Plugging in ̄1 = 0 in the

equation [( 0 ̄1 20)] = 0 gives

Corollary 8: If () is identified and there exists 20() such that () = [20()|]

then 0 = [()10()] is identified as 0 = [20()].

Note that this result holds without the completeness condition. Identification of 0 =

[()10()] for known () with () = [20()|] follows from Severini and Tripathi

(2006). Santos (2011) gives a related formula for a parameter 0 =
R
̃()20(). The for-

mula here differs from Santos (2011) in being an expectation rather than a Lebesgue integral.

Santos (2011) constructed an estimator. That is beyond the scope of this paper.

Another new example of a doubly robust estimator is a weighted average over income values

of an average (across heterogenous individuals) of exact consumer surplus bounds, as in Hausman

and Newey (2016). Here  is quantity consumed,  =  = (1 2)
0 1 is price, 2 is income,

10() = [|], price is changing between ̆1 and ̄1, and  is a bound on the income
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effect. Let 2(2) be some weight function and 1(1) = 1(̆1 ≤ 1 ≤ ̄1)
−(1−̆1) For the

moment function (  1) = 2(2)
R
1()1( 2) −  the true parameter 0 is a bound

on the average of equivalent variation over unobserved individual heterogeneity and income. Let

10(1|2) denote the conditional pdf of 1 given 2. Note that

[( 0 1)] = [2(2)

Z
1()[1( 2)− 10( 2)]]

= [10(1|2)−11(1)2(2){1()− 10()}]
= −[20()[ − 1()|]] 20() = 10(1|2)−11(1)2(2)

Then it follows by Proposition 5 that a doubly robust moment function is

(  ) = 2(2)

Z
1()1( 2)−  + 2()[ − 1()]

When the moment conditions are formulated so that they are affine in the first step Propo-

sition 4 applies to many previously developed doubly robust moment conditions. Data missing

at random is a leading example. Let 0 be the mean of a variable of interest  where  is not

always observed,  ∈ {0 1} denote an indicator for  being observed, and  a vector of covari-

ates. Assume  is mean independent of  conditional on covariates . We consider estimating

0 using the propensity score 0() = Pr( = 1|). We specify an affine conditional moment
restriction by letting 1() = 1 () and ( 1) = 1()− 1We have 0 = [10()] as

is well known. An affine moment function is then (  1) = 1() −  Note that

[( 0 1)] = [[|]{1()− 10()}] = −[20()( 1)]
20() = −10()[|]

Then Proposition 5 implies that a doubly robust moment function is given by

(  ) = 1() −  − 2()[1() − 1]

This is the well known doubly robust moment function of Robins, Rotnitzky, and Zhao (1994).

This example illustrates how applying Propositions 4 and 5 require specifying the first step

so that the moment functions are affine. These moment conditions were originally shown to be

doubly robust when the first step is taken to be the propensity score  (). Propositions 4 and

5 only apply when the first step is taken to be 1 (). More generally we expect that particular

formulations of the first step may be needed to make the moment functions affine in the first

step and so use Propositions 4 and 5 to derive doubly robust moment functions.

Another general class of doubly robust moment functions depend on the pdf 1 of a sub-

set of variables  and are affine in 1 An important example of such a moment function

is the average where 0 =
R
0()

2 and (  1) = 1() −  Another is the density
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weighted average derivative (WAD) of Powell, Stock, and Stoker (1989) where (  1) =

−2 · 1()− . Assume that [( 0 1)] is a function of 1− 10 that is continuous in

the norm
£R
[1()− 10()]

2
¤12

 Then by the Riesz representation theorem there is 20()

with

[( 0 1)] =

Z
20()[1()− 10()] (4.4)

The adjustment term for (  ), as in Proposition 3 of Newey (1994), is (  ) = 2()−R
2()1() The corresponding locally robust moment function is

(  1 2) = (  1) + 2()−
Z

2()1() (4.5)

This function is affine in 1 and 2 separately so when they are distinct Proposition 4 implies

double robustness. Double robustness also follows directly from

[( 0 )] =

Z
20()[1()− 10()]+

Z
2()10()−

Z
2()1()

= −
Z
[2()− 20()][1()− 10()]

Thus we have the following result:

Proposition 9: If (  1) is affine in 1 and [( 0 1)] is a linear function of

1−10 that is continuous in the norm
£R {1()− 10()}2

¤12
 then for 20() from equation

(4.4), (  ) = (  1) + 2()−
R
2()1() is doubly robust.

We can use this result to derive doubly robust moment functions for the WAD. Let () =

[|]10(). Assuming that ()1() is zero on the boundary, integration by parts gives

[( 0 1)] = −2[1()]− 0 = 2

Z
[()]{1()− 10()}

so that 20() = 2() A doubly robust moment condition is then

(  ) = −21()


−  + 2
()


−
Z
2
()


1()

The double robustness of this moment condition appears to be a new result. As shown in Newey,

Hsieh, and Robins (1998), a "delete-one" symmetric kernel estimator based on this moment

function gives the twicing kernel estimator of NHR. Consequently the MSE comparisons of

NHR for twicing kernel estimators with the original kernel estimator correspond to comparison

of a doubly (and locally) robust estimator with one based on unadjusted moment conditions, as

discussed in the introduction.

It is interesting to note that Proposition 9 does not require that 1 and 2 are distinct first

step components. For the average density 1() and 2() both represent the marginal density
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of  and so are not distinct. Nevertheless the moment function ( 0 ) = 1() − 0 +

2() −
R
1()2() is doubly robust, having zero expectation if either 1 or 2 is correct.

This example shows a moment function may be doubly robust even though 1 and 2 are not

distinct. Thus, there are doubly robust moment functions that cannot be constructed using

Proposition 4.

All of the results of this Section continue to hold with cross fitting. That is true because the

results of this Section concern the moment and their expectation at various values of the first

step, and not the particular way in which the first step is formed.

5 Small Bias of Locally Robust Moment Conditions

Adding the adjustment term improves the higher order properties of the estimated moments

though it does not change their asymptotic variance. An advantage of locally robust moment

functions is that the effect of first step smoothing bias is relatively small. To describe this

advantage it is helpful to modify the definition of local robustness. In doing so we allow  to

represent a more general object, an unsigned measure (charge). Let k·k denote a seminorm on

 (a seminorm has all the properties of a norm but may be zero when  is not zero). Also, let

F be a set of charges where ( 0 ( )) is well defined.

Definition 3: (  ) is locally robust if and only if [( 0 ( ))] = (k − 0k)
for  ∈ F .

Definition 1 requires that ( ) have a zero pathwise derivative. Definition 3 requires a zero

Frechet derivative for the semi-norm k·k, generally a stronger condition than a zero pathwise
derivative. The zero Frechet derivative condition is helpful in explaining the bias properties of

locally robust moment functions.

Generally a first estimator will depend on some vector of smoothing parameters . This

 could be the bandwidth in a kernel estimator or the inverse of number of terms in a series

estimator. Suppose that the limit of ̂ for fixed  is () where  is a "smoothed" version of

the true distribution that approaches the truth 0 as  −→ 0. Then under regularity conditions

̂(0) will have limit [( 0 ())]We can think of k − 0k as a measure of the smooth-
ing bias of . Similarly [( 0 ())] is a measure of the bias in the moment conditions

caused by smoothing. The small bias property (SBP) analyzed in NHR is that the expectation

of the moment functions vanishes faster than the nonparametric bias as  −→ 0

Definition 4: (  ) and  have the small bias property if and only if [( 0 ())] =

(k − 0k) as  −→ 0.
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As long as  ∈ F , the set F in Definition 3, locally robust moments will have bias that

vanishes faster than the nonparametric bias k − 0k as  −→ 0 Thus locally robust moment

functions have the small bias property.

Proposition 10: If (  ) is locally robust then (  ) has the small bias property

for any  ∈ F.

Note that the bias of locally robust moment conditions will be flat as a function of the first

step smoothing bias k − 0k as that goes to zero. This flatter moment bias can also make the
MSE flatter, meaning the MSE of the estimator does not depend as strongly on k − 0k for
locally robust moments as for other estimators.

By comparing Definitions 3 and 4 we see that the small bias property is a form of directional

local robustness, with the moment being locally robust in the direction . If the moments are

not locally robust then there will be directions where the bias of the moments is not smaller

than the smoothing bias  Being locally robust in all directions can be important when the

first step is allowed to be very flexible, such as when machine learning is used to construct the

first step. There the first step can vary randomly across a large class of functions making the

use of locally robust moments important for correct inference, e.g. see Belloni, Chernozhukov,

and Hansen (2014).

This discussion of smoothing bias is based on sequential asymptotics where we consider

limits for fixed . This discussion provides useful intuition but it is also important to consider

asymptotics where  could be changing with the sample size. We can analyze the precise effect

of using locally robust moments by considering an expansion of the average moments. Let ̄ =P

=1( 0 0), ̄ =
P

=1 ( 0 0) () = ( 0 0), and ̃ denote the empirical

distribution. We suppose that ̂ = (̂ ) for some estimator ̂ of the true distribution 0. Let

( ) = [( 0 ( ))]. By adding and subtracting terms we have

̂(0) = ̄ + ̃1 + ̂2 + ̂3 ̃1 =

Z
()[̂ − ̃ ]() (5.1)

̂2 = (̂ )−
Z

()̂ () ̂3 = ̂(0)− ̄− (̂ )

The object
R
()̂ () =

R
()[̂ −0]() is a linearization of (̂ ) = (̂ )−(0) so ̂2 is

a nonlinearity remainder that is second order. Also ̂3 is a stochastic equicontinuity remainder

of a type familiar from Andrews (1994) that is also second order.

The locally robust counterpart ̂(0) to ̂(0) has a corresponding remainder term that

is asymptotically smaller than ̃1. To see this let ̂() = ( 0 (̂ )) and note that the

mean zero property of an influence function will generally give
R
̂()̂ () = 0 Then by

̂(0) = ̂(0) +
R
̂()̃ () we have
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Proposition 11: If
R
̂()̂ () = 0 then ̂(0) = ̄ + ̂1 + ̂2 + ̂3

̂1 = −
Z
[̂()− ()][̂ − ̃ ]()

Comparing this conclusion with equation (5.1) we see that locally robust moments have the

same expansion as the original moments except that the remainder ̃1 has been replaced by

the remainder ̂1 The remainder ̂1 will be asymptotically smaller than ̃1 under sufficient

regularity conditions. Consequently, depending on cross correlations with other terms, the

locally robust moments ̂(0) can be more accurate than ̂(0). For instance, as shown by

NHR the locally robust moments for linear kernel averages have a higher order bias term that

converges to zero at a faster rate than the original moments, while only the constant term in

the higher order variance is larger. Consequently, the locally robust estimator will have smaller

MSE asymptotically for appropriate choice of bandwidth. In nonlinear cases the use of locally

robust moments may not lead to an improvement in MSE because nonlinear remainder terms

may be important, see Robins et. al. (2008) and Cattaneo and Jansson (2014). Nevertheless,

using locally robust moments does make smoothing bias small, which can be an important

improvement.

In some settings it is possible to obtain a corresponding improvement by changing the first

step estimator. For example, as mentioned earlier, for linear kernel averages the locally robust

estimator is identical to the original estimator based on a twicing version of the original kernel

(see NHR). The improvement from changing the first step can be explained in relation to the

remainder ̃1 that is the difference of the integral of () over the estimated distribution ̂ and

its sample average. Note that ̂ − ̃ will be shrinking to zero so that ̃1 − [̃1] should be a

second order (stochastic equicontinuity) term. [̃1] is the most interesting term. If [̂ ] = 

and integrals can be interchanged then

[̃1] =

Z
()() =

Z
()[ − 0]()

When a twicing kernel or any other higher order kernel is used this remainder becomes second

order, depending on the smoothness of both the true distribution 0 and the influence function

() see NHR and Bickel and Ritov (2003). Thus, by using a twicing or higher order kernel

we obtain a second order bias, so all of the remainder terms are second order. Furthermore,

series estimator automatically have a second order bias term, as pointed out in Newey (1994).

Consequently, for all of these first steps the remainders are all second order even though the

moment function is not locally robust.

The advantage of locally robust moments are that the improvement applies to any first step

estimator. One does not have to depend on the particular structure of the estimator, such

as having a kernel of sufficiently high order. This feature is important when the first step is
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complicated so that it is hard to analyze the properties of terms that correspond to [̃1]

Important examples are first steps that use machine learning. In that setting locally robust

moments are very important for obtaining root-n consistency; see Belloni et. al. (2014). Locally

robust moments have the advantages we have discussed even for very complicated first steps.

6 First Step Series Estimators

First step series estimators have certain automatic robustness properties. Moment conditions

based on series estimators are automatically locally robust in the direction of the series approx-

imation. We also find that affine moment functions are automatically doubly robust in these

directions. In this Section we present these results.

It turns out that for certain first step series estimators there is a version of the adjustment

term that has sample mean zero, so that ̂() = ̂() That is, locally robust moments are

numerically identical to the original moments. This version of the adjustment term is con-

structed by treating the first step as if it were parametric with parameters given by those of the

series approximation, and calculating a sample version of the adjustment described in Section

2. Suppose that the coefficients ̂ of the first step estimator satisfy
P

=1 ( ̂) = 0. Let

̂() = −1
P

=1 (  ̂) ̂ = −1
P

=1 ( ̂) and

(  ̂) = −̂()̂
−1( ̂) (6.1)

be the parametric adjustment term described in Section 2, where ̂ includes the elements of

̂() and ̂ and there is no cross fitting. Note that

1



X
=1

(  ̂) = −̂()̂
−1 1


X
=1

( ̂) = 0

It follows that ̂() = ̂() i.e. the locally robust moments obtained by adding the adjustment

term are identical to the original moments. Thus, if
P

=1 ( ̂) = 0 we treat the first

step series estimator as parametric, and use the parametric adjustment term the locally robust

moments are numerically identical to the original moments. This numerical equivalence results is

an exact version of local robustness of the moments in the direction of the series approximation.

In some settings it is known that (  ̂) in equation (6.1) is an estimated approximation to

(  0), justifying its use. Newey (1994, p. 1369) showed that this approximation property

holds when the first step is a series regression. Ackerberg, Chen, and Hahn (2012) showed

that this property holds when the first step satisfies certain conditional moment restrictions

or is part of a sieve maximum likelihood estimator. It is also straightforward to show that

this approximation holds when the first step is a series approximates to the solution to the

conditional moment restriction [( 10)|] = 0. We expect that in general (  ̂) is an
estimator of (  0).
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We note that the result that ̂() = ̂() is dependent on ̂ not varying with the observations

and on being constructed from the whole sample. If we use cross fitting in any form then the

numerical equivalence of the original moments with their locally robust counterpart will generally

not hold. Also ̂() 6= ̂() will generally occur when different models are used for different

elements of . Such different models will often be present when machine learning is used for

constructing the estimators of the different elements of  See for example Chernozhukov et. al.

(2016).

There are interesting cases where the original moment functions (  ) with a series

estimator for  are doubly robust in certain directions, with [( 0 1)] = 0 when 1 is

a series approximation to 10 Here we show this directional double robustness property for

series estimators of solutions to conditional moment restrictions and orthogonal series density

estimators. Consider first a conditional moment restriction where the residual ( 1) is affine

in 1, (  1) is also affine in 1, and the first step is a linear series estimator. Suppose

that the series estimator approximates 10 by a linear combination 
0 of a vector of functions

() = (1()  ())
0. Let () be a  × 1 vector of instrumental variables and ̂

be the instrumental variables estimator solving a moment condition
P

=1 
()( 

0̂) = 0.

Under standard regularity conditions the limit ∗ of ̂ will solve the corresponding population

moment condition [()( 
0∗)] = 0 Let 20() satisfy equation (4.2). Then if 20() =

0() for some  it follows that

[( 0 
0∗)] = −[20()( 0∗)] = −0[()( 0∗)] = 0

Thus we have the result

Proposition 12: If (  1) and ( 1) are affine in 1 ∈ Γ with Γ linear, [( 0 1)]

is a mean square continuous functional of [( 1)|] and 20() satisfying [( 0 1)] =
−[20()( 1)] also satisfies 20() = 0() for some  then [( 0 

0∗)] = 0.

The property shown in the conclusion of Proposition 12 is a directional double robustness

condition that depends on 1 being equal to a series approximation to 10 and on 20() being

restricted. These restrictions are not required for double robustness of (  ) = (  1)+

2()( 1) We will have [( 0 20 1)] = 0 for all 1, and not just for the 1 that are a

series approximation to 10 and for any 20() and not just one that is a linear combination of

(). For series first steps the the original moment functions will be doubly robust in certain

directions just as they are locally robust in certain directions.

Previous examples of Proposition 12 are given in Newey (1990, p. 116), Newey (1999), and

Robins et. al. (2007). Proposition 12 allows for endogeneity and (  1) to depend on the

entire function 1. The condition that the instruments 
() have the same dimension as the

approximating functions () allows for more than instrumental variables. As is well known,
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any IV estimator of  can be viewed as having only  instruments (), each one of which

is equal to a linear combination of all the instrumental variables. Here the existence of  such

that 20() = 0() is restrictive. It is not sufficient that 20() be any linear combination

of all the instrumental variables. We must have 20() equal to a linear combination of the

instruments () used in estimating ∗. This result also extends to the case where an infinite

number of instrumental variables are used in the limit. In that case () can also be interpreted

as an infinite dimensional linear combination of instrumental variables.

To illustrate, consider again the weighted average derivative example discussed above where

(  1) = ()1() −  ( 1) =  − 1(), and there is 20() such that

[20()|] = −0()−1[0()()] (6.2)

Suppose that the first step is a linear instrumental variables (IV) estimator with right-hand side

variables () and instruments 
() and let ∗ be the limit of the IV coefficients. From

Proposition 12 it follows that if there is a  such that 0() = 20() then

[()
©
()

0∗
ª
]− 0 = [( 0 

0∗)] = 0

Thus, the weighted average derivative of the linear IV estimator will be consistent when 20()

is a linear combination of ()

The case where () is 1  is Gaussian, and [|] is linear in  is interesting. Partial

out constants and means so that (0 
0
)
0 has mean zero. Let () =  and let  = () be

any linear combination  such that  = [
0
] is nonsingular. Normalize  and  so that each

have an identity variance matrix. Then 0()
−10() = − Note that [|] =  so

that equation (6.2) is satisfied with 20() = −−1()Thus the conditions of Proposition 12
are satisfied, giving the following result

Corollary 13: If  = 10() + , [] = 0 [
2
 ] ∞  is Gaussian, and [|]

is linear in  then for instruments equal to any linear combination  of  with ( )

nonsingular 

[10()] = ( )
−1( )

We can give a simple, direct proof that only uses  and  uncorrelated, as is assumed in

Corollary 11, rather than the conditional moment restriction we have been focusing on. With

means partialed out we have [] = [] = 0 so that

( )
−1( ) = ([

0
])
−1[] = ([

0
])
−1[10()]

= ([[|]
0
])
−1[[|]10()] = ([

0
])
−1[10()]

= ([
0
])
−1[10()] = [10()]
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where the fourth equality follows by [|] =  and the last equality holds by Stoker (1986)

and  Gaussian. This result generalizes that of Stoker (1986) to NPIV models where the right

hand variables are Gaussian. Further generalizations to non Gaussian cases can be obtained by

letting () and () be nonlinear in  and .

Orthogonal series density estimators have a property analogous to Proposition 12. Sup-

pose now that () is orthonormal with respect to Lebesgue measure on (−∞∞) so thatR
()()0 =  An orthogonal series pdf estimator is ̂1() = ()0̂ where ̂ =P

=1 
() has limit ∗ =

R
()10() Suppose that [( 0 1)] is a continuous

linear functional of 1 − 10 so that by the Riesz representation theorem there is 20() with

[( 0 1)] =
R
20()[1()− 10()] If there is  with 0() = 20() then by ()

orthonormal and equation (4.4) we have

[( 0 
0∗)] =

Z
20()[

()0∗ − 10()] =

Z
0()[()0∗ − 10()]

= 0[
Z

()()0]∗ − 0
Z

()10() = 0∗ − 0∗ = 0

Thus we have the following result:

Proposition 14: If i) ( 0 1) is affine in 1 ii) [( 0 1)] − 0 is a functional

of 1() − 10() that is continuous in the norm
¡R
[1()− 10()]

2
¢12

 and iii) 20() =

0() for some  then [( 0 
0∗)] = 0.

The orthogonal series estimators of linear functionals of a pdf discussed in Bickel and Ri-

tov (2003) are examples. Those estimators are special cases of the estimator above where

(  1) =
R
20()1() −  for prespecified 20() Proposition 14 implies that the or-

thogonal series estimator of 0 will be consistent if 20() is a linear combination of the ap-

proximating functions. For example, if () is vector of polynomials of order  − 1 then the
orthogonal series estimator of moments of up to order  − 1 is consistent for fixed 

7 Conditional Moment Restrictions

Conditional moment restrictions are widely used in econometrics to identify parameters of inter-

est. In this Section we expand upon the cases already considered to construct a wide variety of

locally robust moment conditions. In particular we extend above results to residuals that may

depend on parameters of interest with instrumental variables that can differ across residuals.

Here we depart from deriving locally robust moments from the adjustment term for first step

estimation. Instead we extend the form of previously derived locally robust moments to the

more general setting of this Section.
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To describe these results let  = 2   index conditional moment restrictions, (  1)

denote a corresponding residual, and  be corresponding conditioning variables. We will con-

sider construction of locally robust moment conditions when the true parameters of interest 0

and a first step 10 satisfy conditional moment restrictions

[( 0 10)|] = 0 ( = 2  ) (7.1)

Here 1 is specified to include all functions that affect any of the residuals (  1) We

continue to assume that the unconditional moment restriction in equation (2.1) holds, though

(  1) could be zero, with identification of 0 coming from the conditional moment restric-

tions of equation (7.1). We will discuss this case below.

In this setting we consider locally robust moment conditions having the form

(  ) = (  1) +

X
=2

( )(  1) (7.2)

where ( ) ( = 2  ) are unknown functions satisfying properties discussed below. These

moment functions depend on  first step components  = (1  ). By virtue of the condi-

tional moment restrictions these moment functions will be doubly robust in (2  ) meaning

that [( 0 10 2  ) = 0. They will be locally robust in 1 if for the limit 1( ) of ̂1

and all regular parametric models  as discussed in Section 2,




[( 0 1( ))] +[

X
=2

0()



[( 0 1( ))|]] = 0 (7.3)

If [( 0 1())] |=0 is a linear mean-square continuous function of

([2( 0 1( ))|]  [( 0 1( ))|])|=0
and the mean-square closure of the set of such vectors over all parametric submodels is linear

then existence of 0(),  ≥ 2 satisfying equation (7.3) will follow by the Riesz representation
theorem. In addition, if ( 0 1) and ( 0 1), ( ≥ 2), are affine in 1 then we will have

double robustness in 1 similarly to Proposition 12. Summarizing we have

Proposition 15: If equation (7.3) is satisfied then (  ) from equation (7.2) is locally

robust. Furthermore, if i) ( 0 1) and ( 0 1) ( ≥ 2) are affine in 1 ∈ Γ with Γ

linear; ii) [( 0 1)] is a mean square continuous functional of [( 0 1)|] ( ≥ 2)
then there is 0() ( ≥ 2) such that (  ) is doubly robust.

For local identification of  we also require that

([(  0)]|=0) = dim() (7.4)
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A model where 0 is identified from semiparametric conditional moment restrictions with

common instrumental variables  is a special case where (  ) is zero and  =  ( ≥ 2)
In this case let (  1) = (2(  1)  (  1))

0 The conditional moment restrictions

of equation (7.1) can be summarized as

[( 0 10)|] = 0

This model is considered by Chamberlain (1992) and Ai and Chen (2003, 2007, 2012). We allow

the residual vector (  1) to depend on the entire function 1 and not just its value at some

function of the observed data . Also let () = [2()  ()] denote an ×(−1) matrix of
functions of . A locally robust moment function (  ) = ()(  1) will be one which

satisfies Definition 1 with (  ) replacing (  ) i.e. where

[( 0 ())]


= 

∙
()

[( 0 1( ))|]


¸
= 0

for all regular parametric models. We also require that equation (7.4) is satisfied.

To characterize local robustness here it is helpful to assume that the set of pathwise deriva-

tives of [( 0 )|] varies over a linear set as the regular parametric model  varies. To

be precise we will assume that 1 ∈ Γ for Γ linear and for ∆ ∈ Γ we let

(∆) =
[( 0 10 + ∆)|]



¯̄̄̄
=0

denote the ( − 1)× 1 random vector that is Gateaux derivative of the conditional expectation
[( 0 1)|] with respect to the first step 1 in the direction ∆ We assume that (∆)

is linear in ∆ and that the mean square closure M of the set {(∆) : ∆ ∈ Γ} equals
the mean-square closure of the set {[( 0 1())|]} as  varies over all regular

parametric models. The local robustness condition can then be interpreted as orthogonality of

each row ()
0 of () with M in the Hilbert space of functions of  with inner product

h i = [()
0()] where  is the  unit vector. Thus the condition for locally robust

(  ) = ()(  1) is that

[()(∆)] = 0 for all ∆ ∈ Γ

We refer to such () as being orthogonal. They can be interpreted as instrumental variables

where the effect of estimation of 1 has been partialed out.

There are many ways to construct orthogonal instruments. For instance, given a × ( − 1)
matrix of instrumental variables () one could construct corresponding orthogonal ones ()

as the matrix where each row is the residual of the least squares projection of the corresponding

row of () onM. We focus on another way of constructing orthogonal instruments that leads
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to an efficient estimator of 0. Let Σ() denote some positive definite matrix with smallest eigen-

value bounded away from zero, so that Σ()
−1 is bounded. Let h iΣ = [()

0Σ()−1()]

denote an inner product and note thatM is closed in this inner product by Σ()
−1 bounded.

Let ̃( Σ) denote the residual from the least squares projection of the  row  ()
0


of () onM with the inner product h iΣ  Also let ( Σ) be the matrix with  row

̃( Σ)
0Σ()−1 ( = 1  ) Then for all ∆ ∈ Γ

 ()
0
 − ̃( Σ) ∈M [( Σ)(∆)] = [̃( Σ)Σ()

−1(∆)] = 0

so that ( Σ) are orthogonal instruments. Also, ̃(Σ) can be interpreted as the

solution to

min
{():()0∈M =1}

[{()−()}Σ()−1{()−()}0]

where the minimization is in the positive semidefinite sense.

The orthogonal instruments that minimize the asymptotic variance of GMM in the class of

GMM estimators with orthogonal instruments are given by

∗() = ( 
∗Σ∗) ∗() =

[(  10)|]


¯̄̄̄0
=0

Σ∗() =  (( 0 10)|)

To see that ∗() minimizes the asymptotic variance note that for any orthogonal instrumental

variable matrix ()

 = [()
∗()

0] = [()̃( 
∗Σ∗)0] = [()( 0 10)( 0 10)

0∗()
0]

where the first equality defines  and the second equality holds by () orthogonal. Since the

instruments are orthogonal the asymptotic variance matrix of GMM estimator with ̂
−→ 

is the same as if ̂1 = 10 Define  = 0()( 0 10) and 
∗
 = ∗()( 0 10) The

asymptotic variance of the GMM estimator for orthogonal instruments () is

(0)−10[()( 0 10)( 0 10)
0()

0](0)−1

= ([
∗0
 ])

−1[
0
]([

∗
 ])
−10

The fact that this matrix is minimized in the positive semidefinite sense for () = ∗() follows

from Theorem 5.3 of Newey and McFadden (1994) and can also be shown using the argument

in Chamberlain (1987).

Proposition 16: The instruments ∗() give an efficient estimator in the class of IV

estimators with orthogonal instruments.

The asymptotic variance of the GMM estimator with optimal orthogonal instruments is

([∗


∗0
 ])

−1 = [̃( 
∗Σ∗)Σ∗()

−1̃( 
∗Σ∗)0])−1

27



This matrix coincides with the semiparametric variance bound of Ai and Chen (2003). Esti-

mation of the optimal orthogonal instruments is beyond the scope of this paper. The series

estimator of Ai and Chen (2003) could be used for this.

8 Structural Economic Examples

Estimating structural models can be difficult when that requires computing equilibrium solu-

tions. Motivated by this difficulty there is increasing interest in two step semiparametric methods

based on first step estimation of conditional choice probabilities (CCP). This two step approach

was pioneered by Hotz and Miller (1993). In this Section we show how locally robust moment

conditions can be formed for two kinds of structural models, the dynamic discrete choice model

of Rust (1987) and the static model of strategic interactions of Bajari, Hong, Krainer, and

Nekipelov (2010, BHKN). It should be straightforward to extend the construction of locally ro-

bust moments to other more complicated structural economic models. The use of such moment

conditions will allow for conditional choice probabilities that are estimated by modern, machine

learning methods.

8.1 Static Models of Strategic Interactions

We begin with a static model of interactions where results are relatively simple. To save space we

describe the estimator of BHKN while only describing a small part of the motivational economic

structure. Let  denote a vector of state variables for a fixed set of individuals and let  denote

a vector of binary variables, each one representing a choice of an alternative by an individual.

Let the observations  = ( ) represent repeated plays of a static game of interaction and

10() = [| = ] the vector of conditional choice probabilities given a value  of the state.

In the semiparametric estimation problem described in Section 4.2 of BHKN there is a known

function (  1()) of the state variable , a vector of parameters , and a possible value

() of the conditional choice probabilities such that the true parameter 0 satisfies

[| = ] =  ( 0 10 ()) ,

This model can be used to form moment functions

(  1) = ()[ −  (  1 ())]

where () is a matrix of instrumental variables; see equation (17) of BHKN.

To describe locally robust moment functions in this example, let (  1) = (  1)1

where 1 here denotes a real vector representing a possible value of 10(). Then, it follows from
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Proposition 4 of Newey (1994), as discussed in BHKN, that the adjustment term for first step

estimation of 10() = [| = ] is

(  1) = −()(  1)[ − 1()]

This expression differs from BHKN in the appearance of 1() at the end of the expression

rather than (  1()), which is essential for local robustness. The locally robust moment

conditions are then

(  1) = (){ − (  1())− (  1())[ − 1()]}

For a first step estimator ̂() of the conditional choice probabilities, the locally robust sample

moments will be

̂() =
1



X
=1

(){ − (  ̂1())− (  ̂1())[ − ̂1()]}

Here the locally robust moments are constructed by subtracting from the structural residuals 

a linear combination of the first step residuals. Using these moment functions should result in

an estimator of the structural parameters with less bias and the other improved properties of

locally robust estimators mentioned above.

The optimal instruments here are the same as discussed in BHKN. Let  denote the identity

matrix, set () =  − ( 0 10())1 and let Ω() = () (|)() denote
the conditional variance of ()( − 10()). The optimal instruments are given by

∗() =
( 0 10())



0
Ω()−

where − denotes a generalized inverse of a positive semi-definite matrix .

This model can also be viewed as a special case of the conditional moment restrictions

framework with residual vector (  1) = ( − 1()  − (  1()))
 . An orthogonal

instrument that gives the above locally robust moment function is ()[−(  1()) ]
Here the locally robust moment function only depend on one first step function 1(). This

feature is shared by all setups where the second step residual (  1) depends only on regres-

sors that are included in the first step 1(). The static model of strategic interactions leads

to this structure. The situation is not so simple in other structural economic models, as we see

next.

8.2 Dynamic Discrete Choice

Dynamic discrete choice estimation is important for modeling economic decisions, Rust (1987).

In this setting we find it helpful to describe the underlying economic model in order to explain
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the form of the moment conditions. Here we give locally robust moment conditions moment

conditions that depend on first step estimation of the conditional choice probabilities. We do

this for the infinite horizon, stationary, dynamic discrete choice model of Rust (1987). It is

straightforward to derive locally robust moment conditions for other structural econometric

models. We also focus here on the case of data on many homogenous individuals, but discuss

how the approach extends to time series on one individual.

Suppose that the per-period utility function for an agent making choice  in period  is given

by

 = ( 0) +  ( = 1   ;  = 1 2 )

where we suppress the individual subscript  for notational convenience. The vector  is the

observed state variables of the problem (e.g. work experience, number of children, wealth) and

the vector  is unknown parameters. The disturbances  = {1  } are not observed by the
econometrician. As in the majority of the literature we assume that  is i.i.d. over time with

known CDF that has support  and is independent of the state process  and that  is Markov

of order 1. Let  denote a time discount parameter, ̄() the expected value function,  ∈ {0 1}
the indicator that choice  is made and ̄() = ( 0)+ [̄(+1)|  = 1] the expected
value function for choice . Also let ̃ denote a possible realization of ̃() = ̄()− ̄1()

so that ̃1 ≡ 0. Let ̃ = (̃2  ̃) and (̃) = Pr(̃ +  ≥ ̃ + ; ̃1 = 0;  = 1  )

( = 1  ) denote the choice probabilities associated with the distribution of  Here we

normalize to focus on the difference with ̄1() throughout. Let ̃() = (̃2()  ̃())
0. Let

() = (1()  ())
 be a vector of first step functions with true values 0() =

Pr( = 1|). From Rust (1987) we know that for

0() = (̃()) ( = 1  )

̄() = [max

{̄() + }|] = ̄1() +[max


{̃() + }|]

From Hotz and Miller (1993) we know that  (̃) = (1(̃) 2(̃)  (̃))
0 is a one-to-one

function of ̃ so that inverting this relationship it follows that [max{̃() + }|] is a
function of 0() say [max{̃() + }|] = (0()) for some function (·) (e.g. for
binary logit (0()) = 5772− ln(10())). Then the expected value function is given by

̄() = ̄1() +(0())

To use these relationships to construct semiparametric moment conditions we normalize

1( ) = 0 and make an additional assumption for ̄1(). The additional assumption is that

[̄(+1)| 1] does not depend on  With this normalization and assumption we have a

constant choice specific value function for  = 1 that is ̄1() = ̄1 with

̄1() = 0 + [̄(+1)| 1 = 1] = [̄(+1)|1 = 1] = ̄1
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A sufficient condition for constant ̄1() is that  = 1 is a "renewal" choice where the distribution

of the future state does not depend on the current state. In the Rust (1987) example this state

is the one where the bus engine is replaced.

With this normalization and assumption we now have

̄() = ( 0) + [̄1 +(0(+1))| =   = 1]

= ( 0) + ̄1 + [(0(+1))| =   = 1]

̃() = ( 0) + [(0(+1))| =   = 1]− [(0(+1))|1 = 1] ( = 2  )

The choice specific expected value differences ̃() have a parametric part ( 0) and a

nonparametric part that depends on  − 1 additional nonparametric regressions ( ) =
(1( )  −1( )) and an unknown parameter  where

0( ) = [((+1))| =  +1 = 1]  = 1   − 1; 0() = [((+1))|1 = 1]

Let 1() = (()
  ( )

  ())
 be a vector of first step objects and

̃(  1) = ( ) + [( )− ()] ̃(  1) = (̃2(  1)  ̃(  1))


denote the semiparametric choice specific expected value differences. Semiparametric moment

conditions can then be formed by plugging in a nonparametric ̂1 estimator of the first step into

the expected differences and plugging those into the choice probability. Let  = (1  )


denote the vector of choice indicators for period  and  = (1  

1   


  


 )

 be the vector

consisting of the observations on choice and state variables  for each time period  Also let

() be an  × 1 vector of functions of  where  is the dimension of  Then for each

 = 1   − 1 we can form semiparametric moment conditions as

(  1) = ()[ −  (̃(  1))]

To derive locally robust moment functions we can derive the adjustment term for estimation

of 1. The first step function 1 is more complicated than previously considered. It depends on

two unknown conditional expectations, [|] and [·| ], ( = 2  ) From Newey (1994,
p. 1357) we know that the adjustment term will be the sum of two terms, each adjusting for

one of the two conditional expectations while treating the other as if it was equal to the truth.

In the Appendix we give a general form for each of these adjustment terms. Here we apply that

general form to derive the corresponding locally robust moment functions for dynamic discrete

choice.

We begin by deriving the adjustment terms for  and  because they are simpler than

for . The adjustment term for  and  are obtained by applying Proposition A1 in the
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Appendix. Let ̃( ) ̃( ) have the same form as  and  except that [·| ] is replaced
by  [·| ] For +1 =  (0(+1)) and 1 = [1] let

(  1) = [+1+1()]{((+1))− +1( )}
(  1) = (1(  1)  −1(  1))

 

(  1 1) = −11 1((+1))− ()

Then for  a ( − 1)× 1 vector of 10 we have
[( 0 0 ̃( ) ̃())]


= [( 0 1 2)()]

(  1 ) = −()


̃
(̃(  1))(  1)

+ [()


̃
(̃(  1))] · (  1 1)}

The adjustment term for estimation of () is obtained by applying Proposition A2. This

term is somewhat complicated because () is evaluated at  = +1 rather than the condition-

ing argument  of its true value We assume that  is stationary over time so that +1 and 

have the same pdf, eliminating the ratio of pdf’s in the conclusion of Proposition A2. Let ̄( )

have the same form as 10 except that 10() is replaced by [| = ] Also let

20(  1) = 

∙


()
()

 (̃(  ))

̃
|+1 = 

¸
 ( = 1   − 1)

30( 1) = −11 [1|+1 = ]|=
Then we have

[( 0 () 0 0)]


= [( 0 1 2)()]

(  1 2 3 1) = −{2(  1)−[()̃(̃(  1))]3( 1)}

× (())


[ − ()]

We can now form locally robust moment conditions as

(  1 2 3 1) = (  1) + (  1 2 3 1) + (  1 1)

With data  that is i.i.d. over individuals these moment functions can be used for any  to

estimate the structural parameters  Also, for data for a single individual we could use a time

average
P−1

=1 (  1 2 3 1)( − 1) to estimate  although the asymptotic theory we
give does not apply to this estimator.

Bajari, Chernozhukov, Hong, and Nekipelov (2009) derived the adjustment term for the more

complicated dynamic discrete game of imperfect information. Locally robust moment conditions

for such games could be formed using their results. We leave that formulation to future work.
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9 Asymptotic Theory for Locally Robust Moments

In this Section we give asymptotic theory for locally robust estimators. In keeping with the

general applicability of locally robust moments to a variety of first steps we consider estimation

and conditions that have the most general conditions we can find for the first step. In particular,

the construction here only requires that the first step converge at rate slightly faster than −14

in norms specified below, a more generally applicable condition than in most of the literature.

This formulation allows the results to be applied in settings where it is challenging to say much

about the first step other than its convergence rate, such as when machine learning is used in

the first step. The locally robust form of the moment conditions is essential for this formulation,

as previously discussed.

We use cross fitting in the first step to obtain an estimator that is root-n consistent and

asymptotically normal with under such generally applicable conditions. Chernozhukov et. al.

(2016) gives results with cross fitting that allow for moment functions that are not smooth in

parameters. Here we focus on the smooth in parameters case. Cross fitting has been previously

used in the literature on semiparametric estimation. See Bickel, Klaasen, Ritov, and Wellner

(1993) for discussion. This approach is different than that some previous work in semiparamet-

ric estimation, as in Andrews (1994), Newey (1994), Chen, Linton, and van Keilegom (2003),

Ichimura and Lee (2010), where cross fitting was not used and the moment conditions need not

be locally robust. The approach adopted here leads to general and simple conditions.

The estimator is formed by grouping observations into  distinct groups. Let I ( = 1  )
partition the set of observation indices {1  }. Let ̂− be the first step constructed from all

observations not in I. Consider sample moment conditions of the form

̃() =
1



X
=1

X
∈I

(  ̂−)

We consider GMM estimators based on these moment functions. This is a special case of the

cross fitting described earlier. Also, leave one out moment conditions are a further special case

where each I consists of a single observation. We focus here on the case where the number of
groups  is fixed to keep the conditions as simple as possible.

An important intermediate result is that the adjustment term for the first step is zero by

virtue of (  ) being locally robust, that is

√
̃(0) =

1√


X
=1

( 0 0) + (1) (9.1)

With cross fitting this result holds under relatively weak and simple conditions:

Assumption 1: For each  = 1  , i)
R k( 0 ̂−)− ( 0 0)k2 0() −→ 0 ii) for

  1   0 we have
°°R ( 0 ̂−)0()°° ≤  k̂− − 0k  and iii)

√
 k̂− − 0k −→ 0.

33



Lemma 17: If Assumption 1 is satisfied then equation (9.1) is satisfied.

This Lemma is proved in the Appendix. There are two important components to this result.

One component is a stochastic equicontinuity result

√
̃(0)− 1√



X
=1

( 0 0)− 1√


X
=1



Z
( 0 ̂−)0()

−→ 0

where  is the number of observations with  ∈ I Assumption 1 i) is sufficient for this result.
Assumption 1 i) is a much weaker stochastic equicontinuity condition than appears in much of

the literature, e.g. Andrews (1994). Those other conditions generally involve boundedness of

some derivatives of ̂ In contrast Assumption 1 i) only requires that ̂− have a mean square

convergence property. The cross fitting is what makes this condition sufficient. Cattaneo and

Jansson (2014) have also previously weakened the stochastic equicontinuity condition and estab-

lished the validity of the bootstrap for kernel estimators under substantially weaker bandwidth

conditions than usually imposed.

The second component of the result is that

√
̄(̂−)

−→ 0 ̄() =

Z
( 0 )0()

This component follows from Assumptions 1 ii) and iii). By comparing Assumption 1 ii) with

Definition 2 we see that this condition implies local robustness in the sense that the Frechet

derivative of ̄() is zero at 0. Assumption 1 ii) will generally hold with  = 2 if ̄() is twice

continuously Frechet differentiable. In that case Assumption 1 iii) become the 14 rate condition

familiar from Newey and McFadden (1994) and other works. The more general 1    2 case

allows for the first Frechet derivative of ̄() to satisfy a Lipschitz condition. In this case

Assumption 1 iii) will require a convergence rate of ̂ that is faster than 14

We note that previous results suggest that 14 convergence of ̂ may be stronger than is

needed. As shown in Robins et. al. (2008) and Cattaneo and Jansson (2014) the variance terms

in
√
̄(̂) are of the same order as the variance term of a nonparametric estimator, rather

than being the order of
√
 times those variance terms. The arguments for these weaker results

are quite complicated so we do not attempt to give an account here. Instead we focus on the

relatively simple conditions of Assumption 1.

Another component of an asymptotic normality result is convergence of the Jacobian term

̃() The conditions we impose to account for the Jacobian term are standard. Let ̃() =

̃() denote the derivative of the moment function.

Assumption 2: There is a neighborhood N of 0 such that i) (  ) is differentiable in

 on  with probability approaching 1 ii) there is  0  0 and () with [()] ∞ such that
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for  ∈  and k − 0k small enough°°°°(  )
− ( 0 0)



°°°° ≤ ()(k − 0k
0
+ k − 0k

0
)

iii) [k( 0 0)k] ∞; iv) k̂− − 0k −→ 0 ( = 1  )

Define

 = [(  0)|=0 ]

Lemma 18: If Assumption 2 is satisfied then for any ̄
−→ 0 ̃() is differentiable at ̄

with probability approaching one and ̃(̄)
−→ 

With Lemmas 17 and 18 in place the asymptotic normality of semiparametric GMM follows

in a standard way.

Theorem 19: If Assumptions 1 and 2 are satisfied, ̂
−→ 0 ̂

−→ , 0 is nonsin-

gular, and [k( 0 0)k2] ∞ then for Ω = [( 0 0)( 0 0)
0]

√
(̂ − 0)

−→ (0  )  = (0)−10Ω(0)−1

It is also useful to have a consistent estimator of the asymptotic variance of ̂. As usual such

an estimator can be constructed as

̂ = (̂0̂̂)−1̂0̂ Ω̂̂̂(̂0̂̂)−1

̂ =
̃(̂)


 Ω̂ =

1



X
=1

X
∈I

( ̂ ̂−)( ̂ ̂−)
0

Note that this variance estimator ignores the estimation of , which works here because the

moment conditions are locally robust. Its consistency will follow under the conditions of Theorem

19 and one additional condition that accounts for the presence of ̂ in Ω̂

Theorem 20: If the conditions of Theorem 19 are satisfied and there is ̃() with [̃()
2] 

∞ such that for k − 0k and k − 0k small enough

k(  )− ( 0 0)k ≤ ̃()(k − 0k
0
+ k − 0k

0
)

then ̂
−→ 

In this Section we have used cross fitting to obtain relatively simple conditions for asymptotic

normality of locally robust semiparametric estimators. It is also known that in some settings
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some kinds of cross fitting improves the properties of semiparametric estimators. For linear

kernel averages it is known that the leave one out method eliminates a bias term and leads to

a reduction in asymptotic mean square error; e.g. see NHR and the references therein. Also

Robins et. al. (2008) use cross fitting in higher order bias corrections. These results indicate

the some kind of cross fitting can lead to estimators with improved properties. For reducing

higher order bias and variance it may be desirable to let the number of groups grow with the

sample size. That case is beyond the scope of this paper.

10 APPENDIX

We first give an alternative argument for Proposition 2 that is a special case of the proof of

Theorem 2.2 of Robins et. al. (2008). As discussed above, ( 0 0) is the influence function

of the functional ( ) = [( 0 ( ))]. Because it is an influence function it has mean

zero at all true distributions, i.e.
R
( 0 (0))0() ≡ 0 identically in 0 Since a regular

parametric model {} is just a subset of all true models, we haveZ
( 0 ( ))() ≡ 0

identically in  . Differentiating this identity at  = 0 and applying the chain rule gives

[( 0 ())]



¯̄̄̄
=0

= −[( 0 0)()] (10.1)

Summing equations (3.3) and (10.1) we obtain

[( 0 ())]



¯̄̄̄
=0

=
[( 0 ())]



¯̄̄̄
=0

+
[( 0 ())]



¯̄̄̄
=0

= [( 0 0)()]−[( 0 0)()] = 0

Thus we see that the adjusted moment functions (  ) are locally robust.

Next we derive the form of the adjustment term when a first step is [·|  = 1] for some
binary variable  with where  ∈ {0 1}. Consider a first step function of the form 1() =

[| =   = 1]. Let () = [|] Note that [|  = 1] = [|][|] so
that

 [|  = 1]


= [()
−1{ −[|]}−[|  = 1]( − ())}()|]

= [()
−1{ −[|  = 1]}()|]

Suppose that there is () such that

 [( 0 1())]


= [()

 [|  = 1]


]

= [()()
−1{ −[|  = 1]}()]
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Then taking the limit gives the following result:

Proposition A1: If there is () such that [( 0 1())] = [() [|  =
1] ] then the adjustment term is

(  ) = ()()−1{ −[| =   = 1]}

Next we derive the adjustment term when a nonparametric regression is evaluated at a

variable different than the one being conditioned on in the regression. Note that for () with

[() [| = ]|=]


=
[[()|] [| = ]|=]



= 

Z
[()| = ] [| = ]()

= 

Z
[()()][()| = ] [| = ]()

= [{()−1()[()| = ]|=( −[|])}()]

Taking limits gives

Proposition A2: If there is () such that [( 0 1( ))] = [() [| =
]|=] then the adjustment term is

(  ) = ()
−1()[()| = ]( −[| = ])

Next we give the proofs for the asymptotic normality results.

Proof of Lemma 17: Let

̄() =

Z
( 0 )0() ∆̂ = ( 0 ̂−)− ̄(̂−)− ( 0 0) ( ∈ I) ∆̄ =

1



X
∈I

∆̂

Also, let − denote a vector of all observations  for  ∈ I Note that by construction
[∆̂|−] = 0, so for any   ∈ I  6=  it follows by  and  independent conditional

on − that [∆̂0
∆̂|−] = [∆̂0

|−][∆̂|−] = 0 Furthermore

[
°°°∆̂

°°°2 |−] ≤ Z k(0 ̂−)− ( 0 0)k2 0()

Therefore, for  equal to the number of observations in group  Assumption 1 i) implies

[∆̄0
∆̄|−] = 1

2

X
∈I

[
°°°∆̂

°°°2 |−] ≤ 

2

Z
k(0 ̂−)− ( 0 0)k2 0() = (

2)
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Standard arguments then imply that for each  we have ∆̄ = (
√
). It then follows that

√


"
̃(0)− 1



X
=1

( 0 0)− ̄(̂)

#
=
√


X
=1

∆̄ = (
p
)

−→ 0

It also follows by Assumption 1 ii) and iii) that

√
 k̄(̂)k ≤ √ k̂ − 0k −→ 0

The conclusion then follows by the triangle inequality. Q.E.D.

Proof of Lemma 18: Let ̃() = ̃() when the derivative exists and ̂ = ( 0 0)

By the law of large numbers and Assumption 2 iii), ̂
−→  Also, by Assumption 2 i), ii),

iii) ̃(̄) is well defined with probability approaching one
P

=1 () = (1) by the Markov

inequality, and by the triangle inequality,°°°̃(̄)− ̂
°°° ≤ 1



X
=1

X
∈I
{()(

°°̄ − 0
°°0 + k̂ − 0k

0
)}

≤
Ã
1



X
=1

()

!
(
°°̄ − 0

°°0 + X
=1

k̂ − 0k
0
) = (1)(1)

−→ 0

The conclusion then follows by the triangle inequality. Q.E.D.

The proofs of Theorems 19 and 20 are standard and so we omit them.
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