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SEMIPARAMETRIC EFFICIENT EMPIRICAL HIGHER ORDER INFLUENCE
FUNCTION ESTIMATORS

By Rajarshi Mukherjee∗, Whitney K. Newey†, and James M. Robins‡

Robins et al. (2008, 2016b) applied the theory of higher order
influence functions (HOIFs) to derive an estimator of the mean of
an outcome Y in a missing data model with Y missing at random
conditional on a vector X of continuous covariates; their estimator,
in contrast to previous estimators, is semiparametric efficient under
minimal conditions. However the Robins et al. (2008, 2016b) estima-
tor depends on a non-parametric estimate of the density of X. In
this paper, we introduce a new HOIF estimator that has the same
asymptotic properties as their estimator but does not require non-
parametric estimation of a multivariate density, which is important
because accurate estimation of a high dimensional density is not fea-
sible at the moderate sample sizes often encountered in applications.
We also show that our estimator can be generalized to the entire
class of functionals considered by Robins et al. (2008) which include
the average effect of a treatment on a response Y when a vector X
suffices to control confounding and the expected conditional variance
of a response Y given a vector X.

1. Introduction. (Robins et al., 2008, 2016b) introduced novel U-statistic based estimators
of nonlinear functionals in semi- and non-parametric models. Construction of these estimators
was based on the theory of Higher Order Influence Functions (henceforth referred to as HOIFs).
HOIFs are U-statistics that represent higher order derivatives of a functional. The authors’ used
the HOIFs to construct rate minimax estimators of an important class of functionals in models with
n−1/2 minimax rates and in higher complexity models with slower minimax rates, where the model
complexity was defined in terms of Hölder smoothness classes. This class of functionals is of central
importance in biostatistics, epidemiology, economics, and other social sciences and is formally de-
fined in Section 3 below. As specific examples, the class includes the mean of a response Y when Y
is missing at random, the average effect of a treatment on a response Y when treatment assignment
is ignorable given a vector X of baseline covariates, and the expected conditional covariance of two
variables given a vector X. Robins et al. (2008) describe other important functionals in the class.
Following Robins et al. (2008), we shall refer to functionals as

√
n− estimable if the minimax rate

of estimation is n−1/2 and to be non-
√
n− estimable if slower.

One may wonder why higher order influence functions are of interest in the
√
n case. Surprisingly

in this case, HOIFs estimators offer a free lunch, at least asymptotically : one may obtain semipara-
metric efficiency with HOIFs estimators whose variance is dominated by the linear term associated
with the usual first order influence function but whose bias is corrected using higher order influence
functions. Moreover, for many functionals, no estimator, other than a HOIF estimator, has been
constructed that is

√
n − consistent, much less efficient, under the minimal conditions needed for

semiparametric efficiency.
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The contribution of this paper is a new HOIF estimator for
√
n − estimable parameters that,

unlike previous HOIF estimators, does not require non-parametric estimation of a high dimensional
density g. This is important because accurate high dimensional non-parametric density estimation
is generally infeasible at the sample sizes often encountered.

The idea behind our new estimator is exceedingly simple. All HOIFs estimators considered
heretofore have required an estimate of the inverse of a large covariance matrix whose entries are
expectations under an estimate of a density g. For

√
n − estimable parameters we shall need to

consider matrices with up to n/ (log n)3 rows where n is the sample size . In the non-
√
n case

the number of rows is strictly greater than n and less than n2. Our new HOIFs estimator simply
uses an empirical inverse covariance matrix, thereby avoiding estimation of g. Of course this is
only possible in the

√
n case, as the empirical inverse covariance matrix does not exist if the

number of rows exceeds n. We refer to the new estimators as empirical HOIF estimators. Our main
technical contribution is a proof that our new estimator is minimax and in fact efficient in the
semiparametric sense in the

√
n case. For the sake of concreteness will we first consider the specific

example of missing data with the variable of interest missing at random. We then provide general
results that apply to all functionals in our class.

The rest of the paper is organized as follows. In Section 2.1 we introduce the missing at random
model and the functional we wish to estimate. In Section 2.2 we introduce our new empirical HOIF
estimator. In Section 2.3 we analyze the large sample properties of our estimator and compare
its behavior to the HOIF estimators of Robins et al. (2008, 2016b). In Section 2.4 we show the
empirical HOIF estimator is semiparametric efficient under minimal conditions when complexity
of the model is defined in terms of Holder smoothness classes. In Section 3 we extend the results
of Section 2 to the more general class of doubly robust functionals studied by Robins et al. (2008).
Section 4 discusses implications of the results. Finally we collect our proofs and required technical
lemmas in Section 5 and 6 respectively.

2. A New Higher order Influence Function Estimator in a Missing Data Model.

2.1. Observation Scheme. We observe N i.i.d copies of observed data W = (AY,A,X). Here
A ∈ {0, 1} is the indicator of the event that a binary response Y ∈ {0, 1} is observed and X is a
d-dimensional vector of covariates with density f (x) with respect to the Lebesgue measure on a
compact set in Rd, which we assume to be [0, 1]d from now on. Define

B := b (X) = E(Y |A = 1, X)

Π := π (X) = P(A = 1|X)

where x 7→ b (x) is the outcome regression function and x 7→ π (x) is the propensity score. We

are interested in estimating ψ = E
[
AY
π(X)

]
= E [b (X)] =

∫
b (x) f (x) dx. Interest in ψ lies in the

fact that it is the marginal mean of Y under the missing at random (MAR) assumption that
P(A = 1|X,Y ) = π (X) . It will useful to parametrize the model by θ = (b, p, g) for functions
x 7→ b (x) , x 7→ p (x) , x 7→ g (x) where x 7→ p (x) = 1/π (x) , x 7→ g (x) = E[A|X = x]f (x) =
π (x) f (x) = f (x|A = 1)P (A = 1). Further, it is easy to see that the parameters b, p, g are variation
independent. As discussed in Robins et al. (2008, 2016b), the parametrization (b, p, g) is much more
natural than (b, p, f), as will be evident from the formulas provided below. We also assume that g
is absolutely continuous with respect to the Lebesgue measure µ. In view of this parametrization
we write the corresponding probability measure, expectation, and variance operators as Pθ,Eθ, and
varθ respectively. Finally, in terms of this parametrization, we can write the functional θ 7→ ψ (θ)
of interest as
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χ(Pθ) = ψ (θ) =

∫
b (x) p (x) g (x) dx.

We assume that the law of W belongs to a model

M (Θ) = {Pθ, θ ∈ Θ} .

where for some σ > 0, M > 0,

Θ ⊆ {θ : inf
x
π (x) ≥ σ, inf

x
g (x) ≥ σ, sup

x
g (x) ≤M}. (2.1)

We will assume the model M(Θ) is locally non-parametric (in the sense that the tangent space at
each θ ∈ Θ equals L2(Pθ)). Then it is well-known (Robins and Ritov, 1997; Tsiatis, 2007) that the
unique first order influence function for ψ at θ is

IF1 (θ) = Ap (X) (Y − b(X)) + b(X)− ψ (θ) ,

which we can also write as AP (Y −B) +B − ψ (θ) in our notation.
In Section 2.4, we study a particular Θ defined by membership of the functions b, p, g in certain

Hölder smoothness balls and show that the proposed estimator is adaptive and semiparametric
efficient in the corresponding model M(Θ). However, for now, we work with any Θ satisfying (2.1).

We are now ready to define both the estimators of Robins et al. (2008, 2016b) and then the new
estimator of this paper, followed by their analyses.

2.2. The Estimators. Our estimators will depend on a random variable H1 that will vary de-
pending on the functional in the doubly robust class of Robins et al. (2008) under investigation
in Section 3. H1 = h1 (W ) will either be nonnegative w.p.1 or non-positive w.p.1. In our MAR
example, we have

H1 = −A.

which is non-positive w.p.1. We shall consider estimators ψ̂m,k constructed as follows where the
indices m and k are defined below.

(i) The sample is randomly split into 2 parts: an estimation sample of size n and a training
sample of size ntr = N − n with n/N → c∗ and n→∞ with 0 < c∗ < 1.

(ii) Estimators ĝ, b̂, p̂ are constructed from the training sample data.We do not restrict the form

of these estimators. Let θ̂ =
(
b̂, p̂, ĝ

)
.

(iii) Given a complete sequence of basis functions z1 (x) , z2 (x) , . . ., for L2[0, 1]d, let zk(x) =
(z1(x), z2(x), . . . , zk(x))T , Zk = zk (X), Zk = (Z1, Z2..., Zk)

T , and define the following covari-
ance matrices

Ω = Eθ
[
|H1|ZkZ

T
k

]
=

∫
zk (x) zTk (x) g (x) dx,

Ω̂ac
k = E

θ̂

[
|H1|ZkZ

T
k

]
=

∫
zk (x) zTk (x) ĝ (x) dx,

Ω̂emp = n−1
tr

∑
i∈training

[
|H1|ZkZ

T
k

]
i
.
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(iv) Set

ψ̂1 = ψ̂ + n−1
n∑
i

ÎF 1,i

where ψ̂ and ÎF 1 are ψ (θ) and IF1 (θ) with θ̂ replacing θ. The estimator ψ̂1 is the usual one-
step estimator that adds the estimated first order influence function to the plug-in estimator.

(v) Let εb = H1 (Y −B) , εp = H1P − 1. For m = 2, ..., and any invertible Ω̂ define

ψ̂m,k(Ω̂) ≡ ψ̂ +
m∑
j=2

ÎFj,j,k(Ω̂)

where ÎFj,j,k is the jth order U-statistic

ÎFj,j,k(Ω̂) =
j!

n!

∑
i1 6=i2 6=···6=ij

ÎF j,j,k,ij (Ω̂),

and where all the sums are only over subjects in the estimation sample with distinct coordinate
multi-indices īj := {i1, i2, . . . , ij}, and for j ≥ 2

ÎF 2,2,k,i2
(Ω̂) = − (−1)I(h1(Wi1

)≤0)
[
εp̂Z

T
k

]
i1

Ω̂−1
[
Zkεb̂

]
i2

ÎF j,j,k,ij (Ω̂) = (−1)j−1 (−1)I(h1(Wi1
)≤0)



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[{(
|H1|ZkZ

T
k

)
is
− Ω̂

}
Ω̂−1

]
×
[
Zkεb̂

]
i2

 , j > 2.

Finally we define

ψ̂
ac

m,k := ψ̂m,k(Ω̂
ac), ψ̂

emp

m,k := ψ̂m,k(Ω̂
emp),

where, by convention, we define an estimator to be zero if the associated covariance estimator Ω̂ac

or Ω̂emp fails to be invertible. Note that ψ̂1 is the sample average of AP̂ (Y − B̂) + B̂ and thus does
not depend on ĝ.

Remark 1. In our MAR model, regression estimators b̂, π̂ = 1/p̂ and density estimator f̂ (x|A = 1) =

ĝ (x)
{

(ntr)
−1∑ntr

i=1Ai

}−1
could, for example, be constructed from training sample data by using

multiple machine learning algorithms to construct candidate estimators and then using cross vali-
dation to choose the best candidate.

2.3. Analysis of the Estimators. Robins et al. (2008, 2016b) analyzed the estimator ψ̂
ac

m,k. In this

paper, we shall analyze the estimator ψ̂
emp

m,k , which has the advantage of not requiring an estimate

ĝ of g. The following theorem of Robins et al. (2008, 2016b) gives the conditional bias for any Ω̂
estimated from the training sample.
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Theorem 1. For any invertible Ω̂ one has conditional on the training sample,

Eθ
[
ψ̂m,k − ψ (θ)

]
= EBm,k (θ) + TBk (θ)

EBm,k (θ) = (−1)(m−1)+I(h1(W )≤0)

 Eθ
[
H1

(
P − P̂

)
Z
T
k

]
Ω−1

[{
Ω− Ω̂

}
Ω̂−1

]m−1

×Eθ
[
ZkH1

(
B − B̂

)]


TBk (θ)

= (−1)I(h1(W )≤0)


∫
dxg (x)

(
b− b̂

)
(x) (p− p̂) (x)

−
∫ ∫

g (x1) g (x2)
(
b− b̂

)
(x1)Kg,k (x1, x2) (p− p̂) (x2) dx2dx1


= (−1)I(h1(W )≤0)

[∫
dxg (x) (I −Πg,k)

[(
b− b̂

)]
(x) (I −Πg,k) [p− p̂] (x)

]
,

with
Kg,k

(
x′, x

)
= zTk

(
x′
)

Ω−1zk (x)

the orthogonal projection kernel onto zk (x) in L2 (g) , and

Πg,k [h] (x) =

∫
dx′g

(
x′
)
h
(
x′
)
Kg,k

(
x, x′

)
the corresponding orthogonal projection of any function x 7→ h (x), and I [h] (x) = h (x).

To proceed further we require the following definition.

Definition 1. We say that a choice of basis functions {zl, l ≥ 1}, and tuple of functions

θ̃ = (̃b, p̃, g̃) in R[0,1]d satisfies Condition(B) if the following hold for some 1 < B < ∞ and every
n, k ≥ 1

A.1 supx z
T
k (x) zk (x) ≤ B · k.

A.2 1
B ≤ λmin(Ω) ≤ λmax(Ω) ≤ B.

A.3
∥∥∥dPθdP

θ̃

∥∥∥
∞
≤ B.

Now we are ready to further analyze ψ̂
ac

m,k and ψ̂
emp

m,k . In particular, the following theorem con-

cerning ψ̂
ac

m,k can be easily derived from Remark 3.18 following (Robins et al., 2008, Theorem 3.17)
and (Robins et al., 2016b, Theorem 8.1).

Theorem 2. Assume that {zl, l ≥ 1} and θ̂ = (b̂, p̂, ĝ) satisfy Condition(B). Then there exists
c > 1 such that the following hold conditional on the training sample restricted to the event that
Ω̂ac is invertible.

1. TBk (θ) = O
(∥∥∥(I −Πg,k)

[(
b− b̂

)]∥∥∥
2
‖(I −Πg,k) [(p− p̂)]‖2

)
,

2. EBac
m,k (θ) = O

(∥∥∥b− b̂∥∥∥
m+1
‖p− p̂‖m+1 ‖g − ĝ‖

m−1
m+1

)
,

3. varθ[ψ̂
ac

m,k] ≤
∑m

j=1
cjkj−1(

n
j

) .

An analogous theorem for ψ̂
emp

m,k is stated below, which is the main result of this paper.
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Theorem 3. Assume that{zl, l ≥ 1} and θ̃ = (b̂, p̂, g) satisfy Condition(B) and that ‖Ω̂−Ω‖op ≤
1/2B. Then there exists c > 1 such that the following hold conditional on the training sample
restricted to the event that Ω̂emp is invertible.

1. TBk (θ) = O
(∥∥∥(I −Πg,k)

[(
b− b̂

)]∥∥∥
2
‖(I −Πg,k) [(p− p̂)]‖2

)
.

2. EBemp
m,k (θ) = O

(∥∥∥b− b̂∥∥∥
2
‖p− p̂‖2 ‖Ω̂− Ω‖m−1

op

)
.

3. varθ[ψ̂
emp

m,k ] ≤
m−2∑
l=0

(
m∑

j=(l+2)∨3

(
j−2
l

))2

cl+2kl+1

( n
l+2)

.

A few remarks are in order about the statement and implications of Theorem 3. First, we make
a clarification about the Condition(B) holding with θ̃ = (b̂, p̂, g). In particular, note that we do not

assume that g is known; rather only that P
θ̃

with θ̃ = (b̂, p̂, g) satisfies
∥∥∥dPθdP

θ̃

∥∥∥
∞
≤ B. Next we note

that the upper bound on the variance of ψ̂
emp

m,k is typically larger than that of ψ̂
ac

m,k in Theorem
2. We do not believe this to be a simple artifact of the proof but rather arises from the fact that
the empirical measure 1

ntr

∑
i∈training

δXi is not absolutely continuous with respect to the Lebesgue

measure. Obtaining the variance bound in Theorem 3 was the main technical challenge of the paper.
We now show that by allowing k and m to grow with n we may be able to obtain semiparametric

efficient estimators of ψ. In the context of ψ̂
ac

, the following theorem is closely related to and
is proved exactly like (Robins et al., 2016b, Theorem 8.2) and is the main step needed to show
semiparametric efficiency.

Theorem 4. Assume the following.

(i) k (n) = n/ (lnn)2 and m (n) = lnn and define ψ̂
ac

n = ψ̂
ac

m(n),k(n).

(ii) The conditions of Theorem 2 hold,
∥∥∥b̂− b∥∥∥

∞
and ‖p̂− p‖∞ are OPθ (1), and there exists some

δ > 0 such ‖ĝ − g‖∞ = OPθ(n
−δ).

(iii) TBk(n) (θ) = oPθ
(
n−1/2

)
.

Then

n1/2
(
ψ̂
ac

n − ψ (θ)
)

= n1/2
n∑
i=1

IF1,i (θ) + oPθ (1) .

An immediate corollary is that under the conditions of Theorem 4 is that
(
ψ̂
ac

n + ψ̂
ac

nt

)
/2 is

semiparametric efficient at θ where ψ̂
ac

nt is ψ̂
ac

n but with the roles of the training and estimation
sample reversed. This follows from the fact that any asymptotically linear estimator with the
efficient influence function as its influence function is regular and semiparametric efficient (Van der

Vaart, 2000). Below we provide the analogous theorem for ψ̂
emp

n .

Theorem 5. Assume the following.

(i) k (n) = n/ (lnn)3 and m (n) =
√

lnn and define ψ̂
emp

n = ψ̂
emp

m(n),k(n).

(ii) The conditions of Theorem 3 hold,
∥∥∥b̂− b∥∥∥

∞
and ‖p̂− p‖∞ are OPθ (1).

(iii) TBk(n) (θ) = oPθ
(
n−1/2

)
.

Then

n1/2
(
ψ̂
emp

n − ψ (θ)
)

= n1/2
n∑
i=1

IF1,i (θ) + oPθ (1) .
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Hence, once again,
(
ψ̂
emp

n + ψ̂
emp

nt

)
/2 is semiparametric efficient at θ under the conditions of

Theorem 5. Finally, it is immediate from a comparison of Theorem 4 and Theorem 5, that an
advantage of the latter is that it requires effectively no assumptions on the function g.

2.4. Adaptive Efficient Estimation. In this section we show that we can use our empirical HOIF
estimators to obtain adaptive semiparametric efficient estimators when Θ assumes the functions
b, p live in Hölder balls. Following Robins et al. (2008, 2016b) we define the complexity of the model
M (Θ) in terms of Hölder smoothness classes defined as follows.

Definition 2. A function x 7→ h(x) with domain a compact subset of D of Rd is said to belong
to a Hölder ball H(β,C), with Hölder exponent β > 0 and radius C > 0, if and only if h is uniformly
bounded by C, all partial derivatives of h up to order bβc exist and are bounded, and all partial
derivatives ∇bβc of order bβc satisfy

sup
x,x+δx∈D

∣∣∣∇bβch(x+ δx)−∇bβch(x)
∣∣∣ ≤ C||δx||β−bβc.

To construct adaptive semiparametric efficient estimators over Hölder balls we use specific bases
that satisfy (A.1) and (A.2) of Condition (B) that additionally give optimal rates of approximation
for Hölder classes. In particular, we shall assume our basis {zl (x) , l = 1, .., } has optimal approxi-
mation properties in L2 (µ) for Holder balls H(β,C) i.e.,

(2.2) suph∈H(β,C)infςl

∫
[0,1]d

(
h (x)−

k∑
l=1

ς
l
z
l

(x)

)2

dx = O
(
k−2β/d

)
.

where given any {zl, l ≥ 1} satisfying (2.2) the O-notation only depends on the Hölder radius C.
The basis of d − fold tensor products of B-splines of order s satisfies (2.2) for all 0 < β < s + 1
(Belloni et al., 2015; Newey, 1997). The basis consisting of d− fold tensor products of a univariate
Daubechies compact wavelet basis with mother wavelet ϕw (u) satisfying∫

R1

umϕw (u) du = 0,m = 0, 1, ...,M

also satisfies (2.2) for β < M + 1 (Härdle et al., 1998). In addition both of these bases satisfy (A.1)
and (A.2) of Condition (B) for some large but fixed 1 < B <∞ (Belloni et al., 2015; Härdle et al.,
1998; Newey, 1997; Robins et al., 2016a).

Theorem 6. Assume the following:

(i) The conditions of Theorem 5 hold and {zl, l ≥ 1} satisfy (2.2).
(ii) b, p b̂,p̂ lie in H(βb, Cb) and H(βp, Cp) with Cp >

1
σ .

(iii) β =
(
βb + βp

)
/2 satisfies d

4 < β < βmax for some known βmax.

Then the estimator ψ̂
emp

m(n),k(n) defined in Theorem 5 satisfies

TBk (θ) = OPθ

(
k−

2β
d

)
= oPθ

(
n−1/2

)
.

As an immediate consequence of Theorem 6 we have that
(
ψ̂
emp

n + ψ̂
emp

nt

)
/2 is semiparametric

efficient at any Pθ that satisfies conditions of the lemma. Moreover, this result is adaptive over
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any β ∈ (d4 , βmax). Interestingly, the knowledge of an upper bound βmax only becomes crucial in
constructing a sequence of basis functions {zl, l ≥ 1} satisfying (2.2) and is not required anywhere
else in the analysis. An analogous Theorem for ψ̂

ac

m,k was proved in (Robins et al., 2016b, Theorem
8.2) with additional conditions on g and ĝ.

Remark 2. When b, p satisfy (ii) in Theorem 6, the following estimators b̂, p̂ will do so as
well (van der Vaart, Dudoit and Laan, 2006) when the basis {zl, l ≥ 1} are compactly supported
Daubechies wavelets of sufficient regularity (at least 2βmax): b̂ (x) =

∑kb
l=1 η̂lzl (x) and p̂ (x)=1/π̂ (x)

with π̂ (x) =
∑kπ

l=1 α̂lzl (x) with parameters estimated by least squares and kb and kπ chosen by

cross validation, all in the training sample. Note, however, the choices b̂ (x) ≡ 0 and 1/p̂ (x) ≡ c for

1/c ∈ (0, 1), satisfy the conditions of Theorem 6 with
∥∥∥b̂− b∥∥∥

∞
and ‖p̂− p‖∞ being OPθ (1) . Thus

we obtain the surprising conclusion that our estimators b̂, p̂ do not need to be consistent for b and p to

obtain a semiparametric efficient estimator
(
ψ̂
emp

n + ψ̂
emp

nt

)
/2 of ψ (θ) if β/d > 1/4! In fact we can

even ignore the range of p̂ and choose b̂ = p̂ ≡ 0 and still preserve semiparametric efficiency. The
explanation of this fact is that when we choose b̂ = p̂ ≡ 0, then, although ψ̂, ÎF 1, and ψ̂1 are all iden-

tically zero, nonetheless
∑m(n)

j=2 ÎFj,j,k(n)(Ω̂
emp) is an estimate of

[∫
dxg (x) Πg,k [b] (x) Πg,k [p] (x)

]
with bias

∥∥∥Ω̂− Ω
∥∥∥m(n)−1

op
= OPθ

[{
{k (n) log (k (n))/n}1/2

}m(n)−1
]

= oPθ
(
n−1/2

)
for Ω̂ constructed

using Daubechies compactly supported wavelet bases of suitable regularity or B-Spline bases of suit-
able order.

Remark 3. Suppose modelM (Θ) restricts b and p to lie in pre-specified Hölder balls H(βb, Cb),
H(βp, Cp). Robins et al (2010) show that the minimax rate for estimating ψ when g is a known

function is n−1/2 + n
− 4β/d

4β/d+1 . Hence the minimax rate is slower than n−1/2 whether g is known or
unknown in the model M (Θ) when β/d < 1/4. However, even in such a model there exist param-
eters, θ∗ = (b∗, p∗, g∗) ∈ Θ in which b∗ and p∗ happen to lie in smaller Holder balls H(β∗b , C

∗
b ),

H(β∗p, C
∗
p) with

(
β∗b + β∗p

)
/2d > 1/4 . Thus

(
ψ̂
ac

n + ψ̂
ac

nt

)
/2 and

(
ψ̂
emp

n + ψ̂
emp

nt

)
/2 will be semi-

parametric efficient at θ∗ under the assumptions in Theorem 4 and 5, even though both will converge
to ψ (θ) at a rate slower than n−1/2 at nearly all θ ∈Θ.

Remark 4. Note even when b and p lie in Holder balls H(βb, Cb) and H(βp, Cp) with β =(
βb + βp

)
/2 > d/4, we still need for b̂,p̂ to lie in these Holder balls with probability approaching

one to insure, by Lemma 1, that TBk (θ) = op
(
n−1/2

)
. This may place restrictions on the machine

learning algorithms we can use to estimate b and p. As an example suppose (i) we use multiple
machine learning algorithms to construct candidate estimators and then use cross validation to
choose the best candidate and (ii) the aforementioned series estimators b̂ (x) =

∑kb
l=1 η̂lzl (x) and

p̂ (x)=1/π̂ (x) with π̂ (x) =
∑kπ

l=1 α̂lzl (x) are included among the candidates. If the only candidates
were these series estimators, we know that TBk (θ) = op

(
n−1/2

)
for k = n/(log n)3 and we would

be efficient. Nonetheless it may be the case at the particular law θ∗ = (b∗, p∗, g∗) that generated
the data, another pair of candidates b̂ and p̂ are chosen with high probability over these series
estimators because for these laws, b̂ and p̂ converge to b and p at faster rates than the series
estimators. However, faster rates of convergence does not imply that the associated truncation bias

TBk (θ) =
∫
dxg (x) (I −Πg,k)

[(
b− b̂

)]
(x) (I −Πg,k) [p− p̂] (x) is less than the truncation bias of

the series estimator and thus no guarantee it is op
(
n−1/2

)
. It is an interesting open question to

identify the subset of machine learning algorithm that would give such a guarantee.
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3. A Class of Doubly Robust Functionals. In this section we extend our results to incor-
porate a general class of double robust functionals studied in Robins et al. (2008). We consider N
i.i.d observations W = (X,V ) from a law Pθ with θ ∈ Θ and wish to make inference on a functional
χ (Pθ) = ψ (θ) . We make the following 4 assumptions :

Ai) For all θ ∈ Θ, the distribution of X is supported on a compact set in Rd which we take to
be [0, 1]d and has a density f (x) with respect to the Lebesgue measure.

Aii ) The parameter θ contains components b = b (·) and p = p (·), b : [0, 1]d→ R and p :
[0, 1]d→ R such that the functional ψ of interest has a first order influence function IF1,ψ (θ) =
N−1

∑
i IF1,ψ

(θ) , where

IF1,ψ (θ) = H (b, p)− ψ (θ) ,(3.1)

with H (b, p) ≡ h (W, b (X) , p (X))

≡ b (X) p (X)h1 (W ) + b (X)h2 (W ) + p (X)h3 (W ) + h4 (W )(3.2)

≡ BPH1 +BH2 + PH3 +H4,

and the known functions h1 (·) , h2 (·) , h3 (·) , h4 (·) do not depend on θ. Furthermore h1 (·) is either
nowhere negative or nowhere positive on the support of X.

Aiii) θ = (b, p, g, c) has the product parameter space. Θ = Θb × Θp × Θg × Θc with g (x) ≡
E[{|H1|} |X = x]f (x) bounded away from zero and infinity and absolutely continuous wrt to
Lesbegue measure on the support of X

Aiv ) The model M (Θ) for Pθ satisifes 2.1 and is locally nonparametric in the sense that the
tangent space at each Pθ ∈M (Θ) is all of L2 (Pθ) .

Our missing data example is the special case with H1 = −A,H2 = 1, H3 = AY,H4 = 0,
p (X) = 1/pr (A = 1|X) , b (X) = E[Y |A = 1, X], g (X) = E[A|X]f (X)

Robins et al. (2008) prove the H (b, p) is doubly robust for ψ (θ)in the sense that

Eθ [H (b∗, p)] = Eθ [H (b, p∗)] = Eθ [H (b, p)] = ψ (θ)

for any θ ∈ Θ and functions b∗ (x) and p∗ (x) . Specifically they prove the following.
Theorem : Double-Robustness: Assume Ai)-Aiv) hold. Then

ψ (θ) ≡ = Eθ[H4]− E [BPH1]

= Eθ[H4]− (−1)[I(h1(W )≤0)]
∫
b (x) p (x) g (x) dx

Eθ [{H1B +H3} |X] = Eθ [{H1P +H2} |X] = 0 w.p.1

Eθ [H (b∗, p∗)]− Eθ [H (b, p)] = (−1)[I(h1(W )≤0)]

{∫
[b− b∗] (x) [p− p∗] (x) g (x) dx

}
The development in (Robins et al., 2008, Theorem 3.2 and Lemma 3.3) show that results we

have obtained only require that Ai)-Aiv) are true. Thus we have the following.

Theorem 7. Assume Ai)-Aiv) and redefine εb = {BH1 +H3} , εp = {H1P +H2} , g (x) =
E[|H1||X = x]f (x). Then the conclusions of Theorem 1-Theorem 6 continue to hold under same
conditions on the redefined θ = (b, p, g).

4. Discussions. We have shown that for
√
n-estimable parameters the asymptotic properties

of our new empirical HOIF estimators are identical to those of the HOIF estimators of Robins et.
al (2008,2016), yet eliminate the need to construct multivariate density estimates. In particular the
new estimators are semiparametric efficient under minimal conditions.
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5. Proofs.

Proof of Theorem 3. We divide our proof into bias and variance computations respectively.
Throughout the proof Ω̂ stands for Ω̂emp. Throughout we assume I(h1(W ) ≤ 0) = 1 almost surely.
The case I(h1(W ) ≥ 0 requires obvious sign changes in various place.

Bias Bound : By analysis similar to Robins et al. (2008),

EBemp
m,k (θ) = (−1)mEθ[H1(P − P̂ )Z̄Tk ]Ω−1

[{
Ω− Ω̂

}
Ω̂−1

]m−1
Eθ[Z̄kH1(B − B̂)].

We next show that under the assumptions of Theorem 3∣∣∣EBemp
m,k (θ)

∣∣∣ = O

(
‖Ω̂− Ω‖m−1

op

{
Eθ[(B − B̂)2]Eθ[(P − P̂ )2]

}1/2
)
.

For any m > 1 we see that

‖Am‖op =

(
max
j
|Λjj |

)m
=
(
‖A‖op

)m
.

Let 1̂ denote the indicator function for the event that λmax(Ω̂−1) ≤ C−1.
By Cauchy-Schwartz Inequality,∣∣∣EBemp

m,k

∣∣∣ ≤ ∥∥∥Eθ[H1(P − P̂ )Z̄Tk ]Ω−1/2
∥∥∥∥∥∥∥Ω−1/2

[{
Ω− Ω̂

}
Ω̂−1

]m−1
Eθ[Z̄kH1(B − B̂)]

∥∥∥∥ .
Note that

∥∥∥Eθ[H1(P − P̂ )Z̄Tk ]Ω−1/2
∥∥∥2

is the second moment of the linear projection of −(P − P̂ )

on Z̄k under g, so that ∥∥∥Eθ[H1(P − P̂ )Z̄Tk ]Ω−1/2
∥∥∥ ≤ {Eθ[(P − P̂ )2]

}1/2
.

Also, note that for H = Ω−1/2
[{

Ω− Ω̂
}

Ω̂−1
]m−1

, in the positive semi-definite sense

1̂HTH = 1̂
[
Ω̂−1

{
Ω− Ω̂

}]m−1
Ω−1

[{
Ω− Ω̂

}
Ω̂−1

]m−1

≤ 1̂C−1
[
Ω̂−1

{
Ω− Ω̂

}]m−1 [{
Ω− Ω̂

}
Ω̂−1

]m−1

= 1̂C−1
[
Ω̂−1

{
Ω− Ω̂

}]m−2
Ω̂−1

{
Ω− Ω̂

}2
Ω̂−1

[{
Ω− Ω̂

}
Ω̂−1

]m−2

≤
∥∥∥Ω− Ω̂

∥∥∥2

op
1̂C−1

[
Ω̂−1

{
Ω− Ω̂

}]m−2
Ω̂−2

[{
Ω− Ω̂

}
Ω̂−1

]m−2

≤
∥∥∥Ω− Ω̂

∥∥∥2

op
1̂C−3

[
Ω̂−1

{
Ω− Ω̂

}]m−2 [{
Ω− Ω̂

}
Ω̂−1

]m−2
.

Repeating this argument (i.e. by induction) we have

1̂HTH ≤ 1̂
∥∥∥Ω− Ω̂

∥∥∥2(m−1)

op
C−2(m−1)−1I.

Next, since I ≤ Ω−1C in the p.s.d. sense we have

1̂HTH ≤ 1̂
∥∥∥Ω− Ω̂

∥∥∥2(m−1)

op
C−2(m−1)Ω−1.
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It then follows that

1̂

∥∥∥∥Ω−1/2
[{

Ω− Ω̂
}

Ω̂−1
]m−1

Eθ[Z̄kH1(B − B̂)]

∥∥∥∥2

= 1̂
∥∥∥H1Eθ[Z̄kH1(B − B̂)]

∥∥∥2
= 1̂Eθ[H1(B − B̂)Z̄Tk ]HTHEθ[Z̄kH1(B − B̂)]

≤ 1̂
∥∥∥Ω− Ω̂

∥∥∥2(m−1)

op
C−2(m−1)Eθ[H1(B − B̂)Z̄Tk ]Ω−1Eθ[Z̄kH1(B − B̂)].

≤ 1̂
∥∥∥Ω− Ω̂

∥∥∥2(m−1)

op
C−2(m−1)Eθ[(B − B̂)2],

where the last inequality follows by Eθ[H1(B − B̂)Z̄Tk ]Ω−1Eθ[Z̄kH1(B − B̂)] being the expected

square of the projection of B − B̂ on Z̄k under g. Therefore we have

1̂
∣∣∣EBemp

m,k

∣∣∣ ≤ 1̂
∥∥∥Ω− Ω̂

∥∥∥m−1

op
C−(m−1)

{
Eθ[(B − B̂)2]Eθ[(P − P̂ )2]

}1/2

This completes the bound for the bias.
Variance Bound : In this section we put εb̂ = H1(Y − b̂(X)) and εp̂ = |H1|p̂(X)− 1.

To control the variance of ψ̂m,k we begin by analyzing the variance of Un(ÎF 22,i2
). Letting

θ̂ = (b̂, p̂, ĝ) for any ĝ that makes Pθ̂ absolutely continuous with respect to Pθ we have the following
inequality by Lemma 9

Eθ
(
Un(ÎF 2,2,k,i2

)
)2
≤ 4

(
1 +

∥∥∥∥dPθdPθ̂

∥∥∥∥
∞

)4

Eθ̂
(
Un(ÎF 22,i2

)
)2
. (5.1)

Now note that for any choice of ĝ, Un(ÎF 22,i2
) is a second order degenerate U-statistics under Pθ̂.

Therefore by Lemma 8 for any 1 ≤ i1 6= i2 and an universal constant C > 0

Eθ̂
(
Un(ÎF 2,2,k,i2

)
)2
≤ C

n2
Eθ̂

((
εp̂Z

T
k

)
i1

Ω̂−1
(
Zkεb̂

)
i1

)2

. (5.2)

Now

Eθ̂

((
εp̂Z

T
k

)
i1

Ω̂−1
(
Zkεb̂

)
i1

)2

≤ ‖εp̂εb̂‖
2
∞Eθ̂

(
Z
T
k (Xi1)Ω̂−1Zk(Xi2)Z

T
k (Xi2)Ω̂−1Zk(Xi1)

)
≤ C‖εp̂εb̂‖

2
∞k

Eθ(λmax(ZkZ
T
k ))

λmin(Ω̂)
. (5.3)

Above the last inequality follows by Lemma 11.
Now note that for any {zl, l ≥ 1} satisfying Condition(B) and ‖Ω̂ − Ω‖op ≤ 1/2B, λmin(Ω̂) =

1

λmax(Ω̂−1)
≥ 1

λmax(Ω̂)
. Using this fact along with (5.1), (5.2), and (5.3), one has that there exists a

constant c depending on the choice of basis functions and ‖dPθdPθ̂
‖∞ such that

Eθ
(
Un(ÎF 2,2,k,i2

)
)2
≤ c2 k

n2
. (5.4)
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For a general j ≥ 3 note that

ÎF j,j,k

= Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[{(
|H1|ZkZ

T
k

)
is
− Ω̂

}
Ω̂−1

]
×
[
Zkεb̂

]
i2





=

j−2∑
l=0

∑
{t1,...,tl}⊆{3,...,j}

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2



 ,

(5.5)

where

κ(t1,...,tl)
s (H1ZkZ

T
k ) =

{
|H1|ZkZ

T
k − Ω if s ∈ {t1, . . . , tl}

Ω− Ω̂ o.w.

Fix {t1, . . . , tl} ⊆ {3, . . . , j}. Then letting θ̂ = (b̂, p̂, ĝ) for any ĝ that makes Pθ̂ absolutely
continuous with respect to Pθ we have the following inequality by Lemma 9

Eθ

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2






2

≤ 2(l + 2)

(
1 +

∥∥∥∥dPθdPθ̂

∥∥∥∥
∞

)2(l+2)

× Eθ̂

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2






2

.

(5.6)

Reducing the computation to a degenerate U-statistics under θ̂ can now be achieved by taking
ĝ = g. This in turn allows us to invoke Lemma 8 to conclude that

Eθ̂

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2






2
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≤ 1(
n
l+2

)Eθ̂



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2




2

=
1(
n
l+2

)Eθ̂



[
εp̂Z

T
k

]
1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )sΩ̂

−1
]

×
[
Zkεb̂

]
2




2

=
1(
n
l+2

)Eθ̂



[
εp̂Z

T
k

]
1

Ω̂−1×
l−1∏
r=0

[
{(Ω− Ω̂)Ω̂−1}tr+1−tr(|H1|ZkZ

T
k − Ω)tr+1

]
×{(Ω− Ω̂)Ω̂−1}j−tl

[
Zkεb̂

]
2




2

,

where t0 = 3. Since the projections contract norm it is enough to control

1(
n
l+2

)Eθ̂



[
εp̂Z

T
k

]
1

Ω̂−1×
l−1∏
r=0

[
{(Ω− Ω̂)Ω̂−1}tr+1−tr(|H1|ZkZ

T
k )tr+1

]
×{(Ω− Ω̂)Ω̂−1}j−tl

[
Zkεb̂

]
2




2

≤ kl+1(
n
l+2

) (‖Ω− Ω̂‖op
λmin(Ω̂)

)2
l∑

r=0
(tr+1−tr)

×

(
‖H1‖∞Eθ

(
λmax(ZkZ

T
k )
))l+2

λ2
min(Ω̂)

,

(5.7)

where tl+1 = j and the last inequality follows by Lemma 11. The occurrence of Eθ in the right hand
side of the inequality is due to fact that we have used ĝ = g in our θ̂ and this will allow to use the
generating distribution of X in the expectation calculation with respect to θ̂.

Therefore combining (5.5), and (5.7) we have

Eθ

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (|H1|ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2






2

≤ 2l

(
1 +

∥∥∥∥dPθdPθ̂

∥∥∥∥
∞

)2l

× Eθ̂

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2






2
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≤
2(l + 2)

((
1 +

∥∥∥dPθdPθ̂

∥∥∥
∞

)2(l+2)
‖H1‖∞Eθ

(
λmax(ZkZ

T
k )
))l+2

(
n
l+2

)
×

l∏
r=0


(
‖Ω− Ω̂‖op
λmin(Ω̂)

)2(tr+1−tr)
× λ2

max(Ω̂−1)× kl+1.

Therefore under the assumptions of Theorem 5 one has by using the fact that xj > 2x for any
x > 2, we have that there exists a c > 2 depending on M,B such that

Eθ

 m∑
j=3

ÎF j,j,k

2

= Eθ


m∑
j=3

j−2∑
l=0

∑
{t1,...,tl}
⊆{3,...,j}

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2






2

= Eθ


m−2∑
l=0

m∑
j=l+2∨3

∑
{t1,...,tl}
⊆{3,...,j}

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2






2

≤
m−2∑
l=0

2−lEθ
m−2∑
l=0

2l


m∑

j=(l+2)∨3

∑
{t1,...,tl}
⊆{3,...,j}

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2






2

≤ Eθ
m−2∑
l=0



2l

(
m∑

j=(l+2)∨3

(
j−2
l

))

×
m∑

j=(l+2)∨3

∑
{t1,...,tl}
⊆{3,...,j}

Un

(−1)j



[
εp̂Z

T
k

]
i1

Ω̂−1×
j∏
s=3

[
κ

(t1,...,tl)
s (H1ZkZ

T
k )isΩ̂

−1
]

×
[
Zkεb̂

]
i2






2


≤

m−2∑
l=0

 m∑
j=(l+2)∨3

(
j − 2

l

)2

cl+2kl+1(
n
l+2

) .

Proof of Theorem 5. The bias control is trivial since k log k � n. By simple change of vari-
able l→ l + 2

m−2∑
l=0

 m∑
j=(l+2)∨3

(
j − 2

l

)2

cl+2kl+1(
n
l+2

) =
m∑
l=2

 m∑
j=l∨3

(
j − 2

l − 2

)2

clkl−1(
n
l

)
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≤
m∑
l=2

 m∑
j=l

(
j − 2

l − 2

)2

clkl−1(
n
l

)
(1)
=

m∑
l=2

((
m− 1

l − 1

))2 clkl−1(
n
l

)
(2)

≤
m∑
l=2

(
m− 1

l − 1

)2(l−1) (e2c)
l
kl−1(

n
l

)
≤

m∑
l=2

(m
l

)2l c∗lkl−1(
n
l

) (c∗ = e2c/4)

(3)

≤ 1

n

m∑
l=2

(m
l

)2l
(

2c∗kl

n

)l−1 2c∗l
√
l

el

=
1

n

m∑
l=2

(
2c∗km2

nl

)l−1
2c∗m2

el
√
l
.

Above (1) and (2) follow by 12 part (ii) and part (i) respectively, and (3) follows by Stirling’s

approximation bound and Lemma 12 part (i). Letting k = n/ log nθ1 and m = lognθ2/2√
2c∗

we have

m−2∑
l=0

 m∑
j=(l+2)∨3

(
j − 2

l

)2

cl+2kl+1(
n
l+2

) ≤ 2c∗

n

m∑
l=2

(
log nθ2−θ1

l

)l−1
2c∗ log nθ2

el
√
l

.

Therefore taking θ1 = 3 and θ2 = 1 we have desired result by the dominated convergence theorem.

6. Technical Lemmas.

Lemma 8. Suppose O1, . . . , On ∼ P be i.i.d random vectors taking values in a measurable space
χ and let f : χm → R be a symmetric function of m ∈ N arguments. Let fl denote the lth

order degenerate component (l = 0, . . . ,m) of the Hoeffding decomposition of f into m orthogonal
components under P. Then

VarP(Un(f)) =
m∑
l=1

(
m

l

)
1(
n
l

)EPf
2
l .

Proof. Proof is simple by Hoeffding’s decomposition.

Lemma 9 (Lemma 13.1 of Robins et al. (2016b)). For a measurable space χ with any two
probability measures P� Q and f : χm → R any measurable function of m ∈ N arguments

EP(Un(f))2 ≤ 2m

(
1 +

∥∥∥∥ dPdQ
∥∥∥∥
∞

)2m

EQ(Un(f))2.

Lemma 10 (Rudelson (1999)). Let Q1, ..., Qn be a sequence of independent symmetric non-
negative k × k-matrix valued random variables with k ≥ 2 such that Q = 1

n

∑n
i=1 E(Qi) and
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sup
i=1,...,n

‖Qi‖op ≤M a.s.. Then for Q̂ = 1
n

∑n
i=1 E(Qi) and an absolute constant C > 0

‖Q̂−Q‖op ≤ C

(
M log k

n
+

√
M‖Q‖op log k

n

)
.

Lemma 11. For any given sequences of k × k matrices M0,M1, . . . ,Ml one has for a constant
C depending on the choice of basis functions

Eθ




[
Z
T
k

]
1
M0×

l−1∏
r=1

[
Mr(H1ZkZ

T
k )r+2

]
×Ml

[
Zk
]
2




2

≤

(
‖H1‖l∞Elθ(λmax(ZkZ

T
k ))

l∏
r=0

(λmax(Mr))
2

)
kl+1,

where the expectation is taken over the distribution of X1, . . . , Xl with M0, . . . ,Ml treated as fixed.

Proof. The proof follows by writing out the expectation as a multiple integral and then arguing
as Lemma 12.4 of Robins et al. (2016b) in conjunction with repeated use of the variational formula
of operator norm.

Lemma 12. For any three positive integers M ≥ N ≥ K the following hold

(i) (N/2)K/K! ≤
(
N
K

)
≤
(
eN
K

)K
.

(ii)
M∑

T=N

(
T
N

)
=
(
M+1
N+1

)
.
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