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Background

• When interested in small-sample properties of estimators,
researchers typically provide evidence from Monte Carlo
simulation, rather than analytical results.

• Typically relatively `stylised' Data Generating Processes
(DGPs) are used.



Background

• Huber et al. 2013 have criticised these stylised DGPs,
suggesting their external validity may be low.

• `Design dependence'.

• Similarly, Busso et al. (2013) encourage empirical researchers
to `conduct a small-scale simulation study designed to mimic
their empirical context'.

• Both propose instead generating data that mimics the original
data.



Motivation

• Suggestion by both Busso et al. and Huber et al. based on
premise that carefully designed, empirically motivated Monte
Carlo simulation can inform the empirical researcher about
performance of estimators.

• Implication that `the advantage [of an empirical Monte Carlo
study] is that it is valid in at least one relevant environment'
(Huber et al., 2013).

• i.e. its internal validity is high by construction.



Contribution

• We evaluate the recent proposition that `empirical Monte
Carlo studies' have high internal validity.

• We outline some conditions that are necessary for this to be
true.

• We show that these conditions are generically so restrictive
that they require the evaluation problem to be non-existent.

• Using the well-known National Supported Work (LaLonde,
1986) data, we show that in practice these conditions don't
hold.



Outline

• EMCS

• What is it?
• Di�erent designs
• When might it work (in theory)

• Application

• Data & Estimators
• Results

• Conclusions



What is EMCS?

• Empirical Monte Carlo Studies (EMCS) are studies where:

• We have an initial dataset of interest.
• We want to somehow generate samples from the same DGP

that created the initial data.
• We can then test the performance of estimators of a particular

statistic relative to the true e�ect in that sample.
• We use the results on performance to inform us about which

estimators are most useful in the original data.

• Key issue will be how to generate these samples from the same
DGP.



EMCS designs

• Suppose we have an original dataset with outcome Y ,
covariates X , and treatment status T .

• N observations: NT treated, NC control.

• Want to draw data from the DGP the created this, and
estimate, e.g. the ATT.

• Two approaches suggested in the literature:

• `Structured design' (Abadie and Imbens, 2011; Busso et al.

2013).
• `Placebo design' (Huber et al. 2013).



Structured design

• Generate N observations, and assign treatment status s.t NT
are treated.

• Draw covariates X from a distribution which mimics the
empirical distribution, conditional on T . Correlation

• For a binary variable, match Pr(X (1) = 1|T = t) in generated

sample to
∑

i
X

(1)
i

.1(T=t)∑
i
1(T=t) .

• For a continuous variable, draw from normal/log-normal with
appropriate mean and variance.

• Estimate a model for the outcome on the original data.

• Use this to construct �tted values for the new observations.
• Generate new outcome as the �tted value plus an error with

variance that matches that of the residuals.



Placebo design

• In original data, estimate a treatment status equation.

• Run logit of T on relevant part of X .
• Store �tted value.

• Draw N observations, with replacement, from the control
sample of the original data to create new samples.

• Assign `placebo' treatment status to observations in this
sample:

• Ti = 1(T ∗
i
> 0), where T ∗

i
= α+λX iβ+ εi and εi ∼ iid logit.

• Choose α s.t. Pr(T = 1) in sample is same as in original data.
• Choose λ = 1, as HLW. Calibrating Lambda

• By construction all treatment e�ects will be zero.



When might we expect EMCS to work?

• Suppose we ...

• observed all the variables determining treatment and the
outcome, and

• knew the functional forms for their relationships with the
covariates.

• Then clearly could generate data from the distribution...

• ... but would also already know what the treatment e�ect is,
so no need.



When might we expect EMCS to work?

• Treatment e�ect estimators we consider assume we observe all
the relevant covariates, so we can assume this for our DGP as
well.

• Already a big assumption.



When might we expect EMCS to work?

• Treatment e�ect estimators we consider assume we observe all
the relevant covariates, so we can assume this for our DGP as
well.

• `Structured' makes strong functional form assumptions.

• Reasonable likelihood of misspeci�cation.

• Proposition in literature is implicitly that EMCS is more
informative about the performance of estimators than a
stylised DGP would be, even if estimated structured DGP were

misspeci�ed.



When might we expect EMCS to work?

• Treatment e�ect estimators we consider assume we observe all
the relevant covariates, so we can assume this for our DGP as
well.

• `Structured' makes strong functional form assumptions.

• `Placebo' avoids functional form assumptions for outcome.

• Only uses subsample of data and has treatment e�ect of zero
by construction.

• Not clear when this might work.



Data

• National Supported Work: work experience programme in 15
locations in mid-1970s US.

• Programme had experimental control group, so could recover
experimental estimate of e�ect by comparing means.

• LaLonde (1986) famously used this to test treatment e�ect
estimators using non-experimental control groups drawn from
CPS and PSID data.

• We use similar idea: a `good' EMCS should be able to
replicate the true ranking of estimators, based on their ability
to uncover the experimental estimate.



Estimators

• Use a range of common estimators:

• standard parametric regression-based estimators.
• �exible parametric (Oaxaca-Blinder) estimators.
• kernel-based estimators i.e. matching, local linear regression.
• nearest-neighbour matching.
• inverse probability weighting (IPW).

• Want to recover ATT, so evaluation problem is only about
getting counterfactual outcome for treated observations.



Correlation

• Key idea: in a good EMCS, performance (in some dimension)
of estimators in the generated samples should be informative
about performance in the original data.

• Typically would like to choose estimators that have low bias
and low variance, so might want to compare estimators by
RMSE.

• But, don't observe variance of estimator in original data, only
bias.



Correlation

• We consider correlation in bias, correlation in absolute bias,
and ranking by absolute bias.

• At a minimum want to reproduce bias correctly.
• Absolute bias is the critereon a researcher would use if trying

to choose which estimator to use.



Results � Structured

• `Structured' EMCS can replicate bias.

• i.e. estimates from original data and EMCS samples are
positively correlated.



Results � Structured PSID

Table: Correlations Between the Biases in the Uncorrelated and Correlated
Structured Designs and in the Original NSW-PSID Data Set

�True biases�
Uncorrelated Correlated
(1) (2) (1) (2)

Correlations
Bias�Mean bias 0.371** 0.256 0.643*** 0.549***

(0.031) (0.189) (0.000) (0.002)
Abs. bias�Abs. mean bias

Rank�Rank

Sample restrictions
Exclude outliers Y Y Y Y
Exclude Oaxaca�Blinder N Y N Y

Number of estimators 34 28 35 29

NOTE: P-values are in parentheses. We de�ne outliers as those estimators whose
mean biases are more than three standard deviations away from the average mean
bias. The following estimators are treated as outliers: unnormalised reweighting
with the common support restriction (�rst columns).
*Statistically signi�cant at the 10% level; **at the 5% level; ***at the 1% level.



Results � Structured

• `Structured' EMCS can replicate bias.

• i.e. estimates from original data and EMCS samples are
positively correlated.

• Can't generally replicate absolute bias.



Results � Structured PSID

Table: Correlations Between the Biases in the Uncorrelated and Correlated
Structured Designs and in the Original NSW-PSID Data Set

�True biases�
Uncorrelated Correlated
(1) (2) (1) (2)

Correlations
Bias�Mean bias 0.371** 0.256 0.643*** 0.549***

(0.031) (0.189) (0.000) (0.002)
Abs. bias�Abs. mean bias �0.363** �0.217 �0.435*** �0.216

(0.035) (0.267) (0.009) (0.260)
Rank�Rank �0.357** �0.169 �0.380** �0.142

(0.038) (0.391) (0.025) (0.461)
Sample restrictions

Exclude outliers Y Y Y Y
Exclude Oaxaca�Blinder N Y N Y

Number of estimators 34 28 35 29

NOTE: P-values are in parentheses. We de�ne outliers as those estimators whose
mean biases are more than three standard deviations away from the average mean
bias. The following estimators are treated as outliers: unnormalised reweighting with
the common support restriction (�rst columns).
*Statistically signi�cant at the 10% level; **at the 5% level; ***at the 1% level.



Results � Structured

• `Structured' EMCS can replicate bias.

• Can't generally replicate absolute bias.

• True when in-sample bias is comparing to bias in original data.
• Bias in original data for an estimator is di�erence between the

estimate and the true e�ect.

• If instead we compare in-sample bias to a hypothetical bias,
calculated as di�erence between estimate and predicted value

of the model in the original data, performance is much better.



Results � Structured PSID

Table: Correlations Between the Biases in the Uncorrelated and Correlated
Structured Designs and in the Original NSW-PSID Data Set

�Hypothetical biases�
Uncorrelated Correlated

(1) (2) (1) (2)
Correlations

Bias�Mean bias 0.371** 0.256 0.643*** 0.549***
(0.031) (0.189) (0.000) (0.002)

Abs. bias�Abs. mean bias 0.408** 0.297 0.698*** 0.616***
(0.017) (0.125) (0.000) (0.000)

Rank�Rank 0.408** 0.222 0.693*** 0.599***
(0.017) (0.256) (0.000) (0.001)

Sample restrictions
Exclude outliers Y Y Y Y
Exclude Oaxaca�Blinder N Y N Y

Number of estimators 34 28 35 29

NOTE: P-values are in parentheses. We de�ne outliers as those estimators whose
mean biases are more than three standard deviations away from the average mean
bias. The following estimators are treated as outliers: unnormalised reweighting
with the common support restriction (�rst column).
*Statistically signi�cant at the 10% level; **at the 5% level; ***at the 1% level.



Results � Structured

• `Structured' EMCS can replicate bias.

• Can't generally replicate absolute bias.

• If instead we compare in-sample bias to a hypothetical bias,
calculated as di�erence between estimate and predicted value

of the model in the original data, performance is much better.

• In PSID data, true e�ect on unemployment is 11.06pp, but
`predicted value of model (�structured�)' estimates e�ect of
25.68pp.

• This is because DGP was based on Oaxaca-Blinder LPM,
which doesn't perform well here.

• In CPS we know that OB LPM does perform well (estimated
e�ect is 11.74pp), so `true' absolute bias results should be
good.



Results � Structured CPS

Table: Correlations Between the Biases in the Uncorrelated and Correlated
Structured Designs and in the Original NSW-CPS Data Set

�True biases�
Uncorrelated Correlated
(1) (2) (1) (2)

Correlations
Bias�Mean bias 0.390** 0.259 0.530*** 0.379**

(0.023) (0.184) (0.001) (0.042)
Abs. bias�Abs. mean bias 0.458*** 0.420** 0.396** 0.333*

(0.007) (0.026) (0.019) (0.078)
Rank�Rank 0.484*** 0.428** 0.426** 0.334*

(0.004) (0.023) (0.011) (0.077)
Sample restrictions

Exclude outliers Y Y Y Y
Exclude Oaxaca�Blinder N Y N Y

Number of estimators 34 28 35 29

NOTE: P-values are in parentheses. We de�ne outliers as those estimators whose
mean biases are more than three standard deviations away from the average mean
bias. The following estimators are treated as outliers: unnormalised reweighting
with the common support restriction (�rst column).
*Statistically signi�cant at the 10% level; **at the 5% level; ***at the 1% level.



Results � Placebo

• In `placebo' design we always know the true e�ect.

• But, it isn't clear that only using the control data to test for a
placebo treatment e�ect is a relevant comparison to the
original data.

• Only using a subset of the data.
• Treatment e�ect used is generally di�erent to truth.

• In general we �nd it is unable to even replicate biases let alone
absolute biases



Results � Placebo

Table: Correlations Between the Biases in the Uncalibrated and Calibrated Placebo
Designs and in the Original NSW-CPS and NSW-PSID Data Sets

Uncalibrated Calibrated
NSW-PSID NSW-CPS NSW-PSID NSW-CPS

Correlations
Bias�Mean bias �0.337** �0.353** �0.403** 0.470***

(0.048) (0.041) (0.018) (0.004)
Abs. bias�Abs. mean bias �0.022 0.045 0.273 �0.015

(0.900) (0.801) (0.119) (0.930)
Rank�Rank 0.061 �0.187 0.351** �0.178

(0.730) (0.289) (0.042) (0.307)
Sample restrictions

Exclude outliers Y Y Y Y
Number of estimators 35 34 34 35

NOTE: P-values are in parentheses. We de�ne outliers as those estimators whose mean biases
are more than three standard deviations away from the average mean bias. The following
estimators are treated as outliers: matching on the propensity score, N = 40 (second column)
and bias-adjusted matching on covariates, N = 40 (third column).
*Statistically signi�cant at the 10% level; **at the 5% level; ***at the 1% level.



Conclusions

• A number of recent papers have suggested some form of
EMCS might overcome the design dependence issues common
in MCS.

• We considered two forms of EMCS:

• `Structured'.
• `Placebo'.

• Find that structured design is only informative if treatment
e�ect in data is same as that implied by DGP.

• Clearly untestable, and if we knew the true treatment e�ect
then we would stop there.

• Placebo design appears to be even more problematic.
• Unfortunately only very negative results:

• Don't �nd any silver bullet for choosing estimator in particular
circumstance.

• For now best to continue using multiple approaches.



Structured design (correlated)

• As before, but now we want to allow covariates to be
correlated in a way that matches original data.

• In particular, want to draw each binary X (n), from the
distribution suggested by the data conditional on T and

{X (1), ...,X (n−1)}, and draw continuous outcomes jointly
conditional on the discrete covariates, so that we just need
mean, variance and covariance.

Back



Placebo design (calibrated)

• In `uncalibrated' placebo design, λ = 1.

• Huber et al. (2013) suggest this should guarantee `selection
[into treatment] that corresponds roughly to the one in our
�population�.'

• Only true if degree of covariate overlap between treated and
controls in original data were same as overlap between placebo
treated and placebo control in sample.

• No reason we should expect this to be true.



Placebo design (calibrated)

• Can grid search λ ∈ {0.01, 0.02, ..., 0.99} and �nd value of λ
that minimises RMSD between simulated overlap and overlap
in data.

• `Overlap' de�ned here as proportion of placebo treated
individuals whose estimated propensity score is between the
minimum and maximum pscore among placebo controls.

Back
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