<□ > < @ > < ≧ > < ≧ > ≧ り < ♡ 1/32

The Intergenerational Elasticity of Earnings: Exploring the Mechanisms

Uta Bolt, Eric French, Jamie Hentall Maccuish, and Cormac O'Dea

UCL, IFS, Cambridge, and Yale

October 6, 2023

Why do high income parents have high income children?

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

Why do high income parents have high income children?

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

Why do high income parents have high income children?

Potential explanations: Children of high income families ...

... attain more years of schooling

- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

Why do high income parents have high income children?

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

<□ > < @ > < E > < E > E の Q @ 2/32

Why do high income parents have high income children?

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

<□ > < @ > < E > < E > E の Q @ 2/32

Why do high income parents have high income children?

- ... attain more years of schooling
- ... have higher cognitive skills
- ... receive more investments: parental time & school quality
- ... face different family environment: more educated parents, fewer siblings

<□ > < @ > < ≧ > < ≧ > ≧ り < ⊘ 3/32

Why do high income parents have high income children?

What we do in this paper:

- \Rightarrow We quantify the importance of these explanations
- \Rightarrow We analyse how these different explanations are related

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 3/32

Why do high income parents have high income children?

What we do in this paper:

- \Rightarrow We quantify the importance of these explanations
- \Rightarrow We analyse how these different explanations are related

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Literature: Mechanisms

How can we explain intergenerational earnings persistence?

1. Human Capital:

- Schooling: Carneiro & Heckman (2002), Caucutt & Lochner (2020), Blanden et al. (2007)
- Cognitive and non-cognitive skills: Dahl & Lochner (2012), Agostinelli & Sorrenti (2018), Kautz et al. (2014)
- Parental Investments: Cunha & Heckman (2008), Cunha et al. (2010), Attanasio et al. (2020), Dearden et. al (2002)
- Family background: Meghir & Palme (2005), Heckman & Karapakula (2019), Bhalotra & Clarke (2020)
- 2. Alternative Explanations
 - Personal connections, aspirations, correlation of preferences for work, etc.

Literature: Mechanisms

How can we explain intergenerational earnings persistence?

1. Human Capital:

- Schooling: Carneiro & Heckman (2002), Caucutt & Lochner (2020), Blanden et al. (2007)
- Cognitive and non-cognitive skills: Dahl & Lochner (2012), Agostinelli & Sorrenti (2018), Kautz et al. (2014)
- Parental Investments: Cunha & Heckman (2008), Cunha et al. (2010), Attanasio et al. (2020), Dearden et. al (2002)
- Family background: Meghir & Palme (2005), Heckman & Karapakula (2019), Bhalotra & Clarke (2020)
- 2. Alternative Explanations
 - Personal connections, aspirations, correlation of preferences for work, etc.

Literature: Mechanisms

How can we explain intergenerational earnings persistence?

1. Human Capital:

- Schooling: Carneiro & Heckman (2002), Caucutt & Lochner (2020), Blanden et al. (2007)
- Cognitive and non-cognitive skills: Dahl & Lochner (2012), Agostinelli & Sorrenti (2018), Kautz et al. (2014)
- Parental Investments: Cunha & Heckman (2008), Cunha et al. (2010), Attanasio et al. (2020), Dearden et. al (2002)
- Family background: Meghir & Palme (2005), Heckman & Karapakula (2019), Bhalotra & Clarke (2020)
- 2. Alternative Explanations
 - Personal connections, aspirations, correlation of preferences for work, etc.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ◆ ○ \$/32

Literature: Methods

How can we explain intergenerational earnings persistence?

- "Structural Modeling" / "Path Analysis": popular in sociology in the 1960s-80s: Blau and Duncan (1967), Sewell et al. (1969), Sewell and Hauser (1972)
- 2. Dynamic lifecycle models: Gayle, Golan, Soytas (2018), Lee & Seshadri (2019), Daruich (2020), Bolt et al. (2021)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ◆ ○ \$/32

Literature: Methods

How can we explain intergenerational earnings persistence?

- 1. **"Structural Modeling" / "Path Analysis"**: popular in sociology in the 1960s-80s: Blau and Duncan (1967), Sewell et al. (1969), Sewell and Hauser (1972)
- 2. Dynamic lifecycle models: Gayle, Golan, Soytas (2018), Lee & Seshadri (2019), Daruich (2020), Bolt et al. (2021)

<□> < @> < E> < E> E の Q C 5/32

Literature: Methods

How can we explain intergenerational earnings persistence?

- 1. **"Structural Modeling" / "Path Analysis"**: popular in sociology in the 1960s-80s: Blau and Duncan (1967), Sewell et al. (1969), Sewell and Hauser (1972)
- 2. Dynamic lifecycle models: Gayle, Golan, Soytas (2018), Lee & Seshadri (2019), Daruich (2020), Bolt et al. (2021)

- Understand how these channels operate and interact ("Structural Modeling" from sociology)
- Mediation/path analysis: Allows for a large amount of flexibility
- Large number of direct and indirect effects of each channel on lifetime income: School quality → lifetime income School quality → schooling → lifetime income School quality → cognition → schooling → lifetime income
- Solving this would be very difficult with an economics structural model (just think of the number of states you'd have to keep track of....)

- Understand how these channels operate and interact ("Structural Modeling" from sociology)
- Mediation/path analysis: Allows for a large amount of flexibility
- Large number of direct and indirect effects of each channel on lifetime income: School quality → lifetime income School quality → schooling → lifetime income School quality → cognition → schooling → lifetime income
- Solving this would be very difficult with an economics structural model (just think of the number of states you'd have to keep track of....)

- Understand how these channels operate and interact ("Structural Modeling" from sociology)
- Mediation/path analysis: Allows for a large amount of flexibility
- Large number of direct and indirect effects of each channel on lifetime income:

 $\begin{array}{l} \mbox{School quality} \rightarrow \mbox{lifetime income} \\ \mbox{School quality} \rightarrow \mbox{schooling} \rightarrow \mbox{lifetime income} \\ \mbox{School quality} \rightarrow \mbox{cognition} \rightarrow \mbox{schooling} \rightarrow \mbox{lifetime income} \end{array}$

- Solving this would be very difficult with an economics structural model (just think of the number of states you'd have to keep track of....)

- Understand how these channels operate and interact ("Structural Modeling" from sociology)
- Mediation/path analysis: Allows for a large amount of flexibility
- Large number of direct and indirect effects of each channel on lifetime income: School quality → lifetime income School quality → schooling → lifetime income School quality → cognition → schooling → lifetime income
- Solving this would be very difficult with an economics structural model (just think of the number of states you'd have to keep track of....)

- Understand how these channels operate and interact ("Structural Modeling" from sociology)
- Mediation/path analysis: Allows for a large amount of flexibility
- Large number of direct and indirect effects of each channel on lifetime income: School quality → lifetime income School quality → schooling → lifetime income School quality → cognition → schooling → lifetime income
- Solving this would be very difficult with an economics structural model (just think of the number of states you'd have to keep track of....)

- Understand how these channels operate and interact ("Structural Modeling" from sociology)
- Mediation/path analysis: Allows for a large amount of flexibility
- Large number of direct and indirect effects of each channel on lifetime income: School quality → lifetime income School quality → schooling → lifetime income School quality → cognition → schooling → lifetime income
- Solving this would be very difficult with an economics structural model (just think of the number of states you'd have to keep track of....)
- Use of data that links early life circumstances to outcomes across the lifecycle for the same sample of individuals.

Outline

Introduction

Data & Key Facts

Approach

Results

Data - National Child Development Study (NCDS)

Tony

- Population born in one week in Britain in 1958
- Followed at ages 0, 7, 11, 16, 23, 26, 33, 37, 42, 49, 55
- Data on:
 - Parental income measured when child is 16
 - Individual's earnings over the lifecycle

Data - National Child Development Study (NCDS)

- Population born in one week in Britain in 1958
- Followed at ages 0, 7, 11, 16, 23, 26, 33, 37, 42, 49, 55
- Data on:
 - Parental income measured when child is 16
 - Individual's earnings over the lifecycle

Data - National Child Development Study (NCDS)

- Population born in one week in Britain in 1958
- Followed at ages 0, 7, 11, 16, 23, 26, 33, 37, 42, 49, 55
- Data on:
 - Parental income measured when child is 16
 - Individual's earnings over the lifecycle

- 1. ... grow up in a different family environment: Details
 - More educated parents, fewer siblings
- 2. ... receive more time investments: Details
 - e.g. reading to child, outings with child, interest in child's education
- 3. ... go to better quality schools: Details
 - e.g. student-teacher ratios, PTA, fraction that continues education
- 4. ... have better cognitive skills at age 16: Details
 - e.g. reading score, maths score, teacher-assessed ability
- 5. ... attain more years of schooling: Details

- 1. ... grow up in a different family environment: Details
 - More educated parents, fewer siblings
- 2. ... receive more time investments: Details
 - e.g. reading to child, outings with child, interest in child's education
- 3. ... go to better quality schools: Details
 - e.g. student-teacher ratios, PTA, fraction that continues education
- 4. ... have better cognitive skills at age 16: Details
 - e.g. reading score, maths score, teacher-assessed ability
- 5. ... attain more years of schooling: Details

- 1. ... grow up in a different family environment: Details
 - More educated parents, fewer siblings
- 2. ... receive more time investments: Details
 - e.g. reading to child, outings with child, interest in child's education
- 3. ... go to better quality schools: Details
 - e.g. student-teacher ratios, PTA, fraction that continues education
- 4. ... have better cognitive skills at age 16: Details
 - e.g. reading score, maths score, teacher-assessed ability
- 5. ... attain more years of schooling: Details

- 1. ... grow up in a different family environment: Details
 - More educated parents, fewer siblings
- 2. ... receive more time investments: Details
 - e.g. reading to child, outings with child, interest in child's education
- 3. ... go to better quality schools: Details
 - e.g. student-teacher ratios, PTA, fraction that continues education
- 4. ... have better cognitive skills at age 16: Details
 - e.g. reading score, maths score, teacher-assessed ability

5. ... attain more years of schooling: Details

- 1. ... grow up in a different family environment: Details
 - More educated parents, fewer siblings
- 2. ... receive more time investments: Details
 - e.g. reading to child, outings with child, interest in child's education
- 3. ... go to better quality schools: Details
 - e.g. student-teacher ratios, PTA, fraction that continues education
- 4. ... have better cognitive skills at age 16: Details
 - e.g. reading score, maths score, teacher-assessed ability
- 5. ... attain more years of schooling: Details

< □ ▶ < 圕 ▶ < 壹 ▶ < 壹 ▶ Ξ ∽ ♀ ⊙ ♀ (?)

Time investments differ by parental income

	Parental Income Tertile:			
	Bottom	Middle	Тор	P-val
Time investment				
% of fathers go on outings w child 7	65.2	72.5	71.5	0.00
% of parents want child to go to uni 11	81.2	82.8	85.2	0.08
% of mothers very interested at age 16	31.5	32.8	35.6	0.19
School quality				
% whose PTA holds meetings 7	56.8	57.6	58.7	0.71
Student-teacher ratio 11	24.8	24.7	24.3	
% from child's class studying for GCEs 16	44.0	44.4	50.5	0.00

School quality investments differ by parental income

	Parental Income Tertile:			
	Bottom	Middle	Тор	P-val
Time investment				
% of fathers go on outings w child 7	65.2	72.5	71.5	0.00
% of parents want child to go to uni 11	81.2	82.8	85.2	0.08
% of mothers very interested at age 16	31.5	32.8	35.6	0.19
School quality				
% whose PTA holds meetings 7	56.8	57.6	58.7	0.71
Student-teacher ratio 11	24.8	24.7	24.3	0.06
% from child's class studying for GCEs 16	44.0	44.4	50.5	0.00

◆□▶ ◆昼▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 10/32

Cognition differs by parental income

	Parental Income Tertile				
	Bottom	Middle	Тор	P-values	
Cognition					
Reading at age 16	-0.11	0.01	0.10	0.00	
Math at age 16	-0.08	-0.02	0.10	0.00	
Education					
Age left education	17.9	17.9	18.1	0.02	

Outline

Introduction

Data & Key Facts

Approach

Results

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ♡ < 11/32

Summary of our approach

- 1. Estimate dynamic model of human capital investments and earnings correcting for measurement error
- 2. Decompose IGE into multiple channels, allowing for increasing degrees of mediation

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 12/32

Lifetime earnings

$$\begin{aligned} \ln Y &= \alpha_0 + \alpha_1 S + \alpha_2 \ln \theta_C + \alpha_3 S \times \ln \theta_C + \alpha_4 \ln \theta_N + \alpha_5 S \times \ln \theta_N \\ &+ \alpha_6 \mathbf{F} + \alpha_7 \mathbf{I} + \alpha_8 \ln Y_{Parent} + u^Y \end{aligned}$$

where $E[u^{Y}|S, \ln \theta_{C}, \ln \theta_{N}, \mathbf{F}, \mathbf{I}, \ln Y_{Parent}] = 0.$

S = years of schooling $\theta_C, \theta_N =$ (latent) age 16 cognitive, non-cognitive skills $I = [\ln ti_7, \ln ti_{11}, \ln ti_{16}, \ln sq_7, \ln sq_{11}, \ln sq_{16}]$ $\ln ti_t, \ln sq_t =$ (latent) parental time, school quality investments $F = [ed_m, ed_f, sib] = ed.$ of mother, father, siblings $Y_{Parent} =$ parent's lifetime income

 \Rightarrow Can test restrictions, e.g. $\alpha_{sq_7} = \alpha_{sq_{11}} = \alpha_{sq_{16}} = 0$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 12/32

Lifetime earnings

$$\begin{aligned} \ln Y &= \alpha_0 + \alpha_1 S + \alpha_2 \ln \theta_C + \alpha_3 S \times \ln \theta_C + \alpha_4 \ln \theta_N + \alpha_5 S \times \ln \theta_N \\ &+ \alpha_6 \mathbf{F} + \alpha_7 \mathbf{I} + \alpha_8 \ln Y_{Parent} + u^Y \end{aligned}$$

where $E[u^{Y}|S, \ln \theta_{C}, \ln \theta_{N}, \mathbf{F}, \mathbf{I}, \ln Y_{Parent}] = 0.$

S = years of schooling $\theta_C, \theta_N =$ (latent) age 16 cognitive, non-cognitive skills $I = [\ln ti_7, \ln ti_{11}, \ln ti_{16}, \ln sq_7, \ln sq_{11}, \ln sq_{16}]$ $\ln ti_t, \ln sq_t =$ (latent) parental time, school quality investments $F = [ed_m, ed_f, sib] = ed.$ of mother, father, siblings $Y_{Parent} =$ parent's lifetime income

 \Rightarrow Can test restrictions, e.g. $\alpha_{sq_7} = \alpha_{sq_{11}} = \alpha_{sq_{16}} = 0$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 13/32

Skills

$$\begin{aligned} \theta_{k,t+1} &= & [\gamma_{t,k,1}\theta_{C,t}^{\phi_{t,k}} + \gamma_{t,k,2}\theta_{N,t}^{\phi_{t,k}} + \gamma_{t,k,3}\mathbf{I}_{t}^{\phi_{t,k}} + \gamma_{t,k,4}\mathbf{ed}_{m}^{\phi_{t,k}} + \gamma_{t,k,5}\mathbf{ed}_{f}^{\phi_{t,k}}]^{\frac{1}{\phi_{t,k}}} (A_{k,t+1}), \\ A_{k,t+1} &= & \exp(\gamma_{t,k,6} + \gamma_{t,k,7}sib + \gamma_{t,k,8}\ln Y_{Parent} + u_{t+1}^{k}) \end{aligned}$$

where $E[u_{t+1}^k|\theta_{C,t},\theta_{N,t},\mathbf{F},\mathbf{I},\ln Y_{Parent}]=0.$

$$A_{k,t+1} = \text{``TFP''}$$

 \Rightarrow Can test restrictions, e.g. $\gamma_{t,k,8} = 0$ (high income parents no more productive at producing skills, controlling for other factors)

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 13/32

Skills

$$\begin{aligned} \theta_{k,t+1} &= [\gamma_{t,k,1}\theta_{C,t}^{\phi_{t,k}} + \gamma_{t,k,2}\theta_{N,t}^{\phi_{t,k}} + \gamma_{t,k,3}\mathbf{I}_{t}^{\phi_{t,k}} + \gamma_{t,k,4}\mathbf{ed}_{m}^{\phi_{t,k}} + \gamma_{t,k,5}\mathbf{ed}_{f}^{\phi_{t,k}}]^{\frac{1}{\phi_{t,k}}} (A_{k,t+1}), \\ A_{k,t+1} &= \exp(\gamma_{t,k,6} + \gamma_{t,k,7}sib + \gamma_{t,k,8}\ln Y_{Parent} + u_{t+1}^{k}) \end{aligned}$$

where

$$E[u_{t+1}^k | \theta_{C,t}, \theta_{N,t}, \mathbf{F}, \mathbf{I}, \ln Y_{Parent}] = 0$$
$$A_{k,t+1} = \text{``TFP''}$$

 \Rightarrow Can test restrictions, e.g. $\gamma_{t,k,8} = 0$ (high income parents no more productive at producing skills, controlling for other factors)

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ • • ○ Q ○ 14/32

Schooling and investments

Determinants of years of schooling:

 $S = \gamma_{0,S} + \gamma_{1,S} \ln \theta_{C,t} + \gamma_{2,S} \ln \theta_{NC,t} + \gamma_{3,S} \mathbf{F} + \gamma_{4,S} \mathbf{I} + \gamma_{5,S} \ln Y_{Parent} + u^{S}$

Parental time investments

 $\ln t i_t = \gamma_{0,t i_t} + \gamma_{1,t i_t} \ln \theta_{C,t-1} + \gamma_{2,t i_t} \ln \theta_{NC,t-1} + \gamma_{3,t i_t} \mathbb{F} + \gamma_{4,t i_t} \ln Y_{Parent} + u_t^{t i_t} \mathbb{F} + v_{1,t i_t} \ln Y_{Parent} + u_t^{t i_t} \mathbb{F} + v_{1,t i_t} \ln Y_{Parent} + u_t^{t i_t} \mathbb{F} + v_{1,t i_t} \ln Y_{Parent} + u_t^{t i_t} \mathbb{F} + v_{1,t i_t} \ln Y_{Parent} + u_t^{t i_t} \mathbb{F} + v_{1,t i_t} \ln Y_{Parent} + v_t^{t i_t} \mathbb{F} +$

School quality investments

 $\ln sq_t = \gamma_{0,sq_t} + \gamma_{1,sq_t} \ln \theta_{C,t-1} + \gamma_{2,sq_t} \ln \theta_{NC,t-1} + \gamma_{3,sq_t} \mathbf{F} + \gamma_{4,sq_t} \ln Y_{Parent} + u_t^{sq_t} \ln Y_{Parent} + u_t$

Results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 14/32

Schooling and investments

Determinants of years of schooling:

 $S = \gamma_{0,S} + \gamma_{1,S} \ln \theta_{C,t} + \gamma_{2,S} \ln \theta_{NC,t} + \gamma_{3,S} \mathbf{F} + \gamma_{4,S} \mathbf{I} + \gamma_{5,S} \ln Y_{Parent} + u^{S}$ Parental time investments

 $\ln t i_t = \gamma_{0,t i_t} + \gamma_{1,t i_t} \ln \theta_{C,t-1} + \gamma_{2,t i_t} \ln \theta_{NC,t-1} + \gamma_{3,t i_t} \mathbf{F} + \gamma_{4,t i_t} \ln Y_{Parent} + u_t^{t i_t}$

School quality investments

 $\ln sq_t = \gamma_{0,sq_t} + \gamma_{1,sq_t} \ln \theta_{C,t-1} + \gamma_{2,sq_t} \ln \theta_{NC,t-1} + \gamma_{3,sq_t} \mathbf{F} + \gamma_{4,sq_t} \ln Y_{Parent} + u_t^{sq_t} \ln Y_{Parent} + u_t$

Results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 14/32

Schooling and investments

Determinants of years of schooling:

 $S = \gamma_{0,S} + \gamma_{1,S} \ln \theta_{C,t} + \gamma_{2,S} \ln \theta_{NC,t} + \gamma_{3,S} \mathbf{F} + \gamma_{4,S} \mathbf{I} + \gamma_{5,S} \ln Y_{Parent} + u^{S}$ Parental time investments

 $ln ti_t = \gamma_{0,ti_t} + \gamma_{1,ti_t} ln \theta_{C,t-1} + \gamma_{2,ti_t} ln \theta_{NC,t-1} + \gamma_{3,ti_t} \mathbf{F} + \gamma_{4,ti_t} ln Y_{Parent} + u_t^{ti}$ School quality investments

 $\ln sq_t = \gamma_{0,sq_t} + \gamma_{1,sq_t} \ln \theta_{C,t-1} + \gamma_{2,sq_t} \ln \theta_{NC,t-1} + \gamma_{3,sq_t} \mathbf{F} + \gamma_{4,sq_t} \ln Y_{Parent} + u_t^{sq_t} \ln Y_{Parent} + u_t$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ ○ 15/32

Latent Factors and Measurement Error

- We do not directly observe cognitive ln θ_{Ct} and non-cognitive ln θ_{Ct} skills, time investments ln ti_t, and school quality ln sq_t
- Instead: Multiple noisy measures for each $\omega = \theta_{Ct}, \theta_{Nt} t i_t, sq_t$

- Key assumptions: $\epsilon_{\omega,m} \perp$ all other variables
- Note: Exploiting multiple measures and correcting for measurement error matters! We will see later....

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ ○ 15/32

Latent Factors and Measurement Error

- We do not directly observe cognitive $\ln \theta_{Ct}$ and non-cognitive $\ln \theta_{Ct}$ skills, time investments $\ln t_{i_t}$, and school quality $\ln sq_t$
- Instead: Multiple noisy measures for each $\omega = \theta_{Ct}, \theta_{Nt} t i_t, sq_t$

- Key assumptions: $\epsilon_{\omega,m} \perp$ all other variables
- Note: Exploiting multiple measures and correcting for measurement error matters! We will see later....

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 · の Q @ 15/32

Latent Factors and Measurement Error

- We do not directly observe cognitive ln θ_{Ct} and non-cognitive ln θ_{Ct} skills, time investments ln ti_t, and school quality ln sq_t
- Instead: Multiple noisy measures for each $\omega = \theta_{Ct}, \theta_{Nt} t i_t, sq_t$

- Key assumptions: $\epsilon_{\omega,m} \perp$ all other variables
- Note: Exploiting multiple measures and correcting for measurement error matters! We will see later....

Latent Factors and Measurement Error - Details

- Key estimation steps :
 - 1. Select measures using exploratory factor analysis
 - 2. Estimate measurement system parameters (e.g., $\lambda_{\omega,m}$ s) More Details 1

Latent Factors and Measurement Error - Details

- Key estimation steps :
 - 1. Select measures using exploratory factor analysis
 - 2. Estimate measurement system parameters (e.g., $\lambda_{\omega,m}$ s) More Details 1

Identification of measurement parameters

$$Z_{\theta_{\mathcal{C}},i,m} = \lambda_{\theta_{\mathcal{C}},m} \ln \theta_{\mathcal{C},i} + \epsilon_{\theta_{\mathcal{C}},im}$$

Scaling parameter λ :

- $\epsilon_{\theta_{C},i,m}$ assumed independent across individuals and measures
- For example 3: Reading score, maths score, teacher rated ability
- We normalized $Var(\ln \theta_C) = 1$
- Then: Cov(Z_{read}, Z_{maths}) = λ_{read} λ_{maths} Var(ln θ_C) Cov(Z_{read}, Z_{teacher}) = λ_{read} λ_{teacher} Var(ln θ_C) Cov(Z_{teacher}, Z_{maths}) = λ_{teacher} λ_{maths} Var(ln θ_C)
 ⇒ 3 equations, 3 unknowns λ_{read}, λ_{maths}, λ_{teacher}

Back

Signal-to-Noise Ratios

$$Z_{\omega,i,m} = \lambda_{\omega,m}\omega_i + \epsilon_{\omega,i,m}$$

$$s_{\omega,m} = \frac{(\lambda_{\omega,m}^2) \operatorname{Var}(\omega)}{(\lambda_{\omega,m}^2) \operatorname{Var}(\omega) + \operatorname{Var}(\epsilon_{\omega,m})}$$

Cognition at 16		Time Inv 16		School Quality 16	
Reading Score	0.56	P:Supportive	0.32	School Type	0.08
Math Score	0.62	M:Interest in ed	0.90	%Cnt School	0.35
Teacher: Math	0.80	F: Interest in ed	0.75	%FT degree	0.82
Teacher: English	0.72			%Passed A-levels	0.93
				%Studying towards A-levels	0.45
				Teacher Student Ratio	0.20

Back

Estimation approach (Attanasio Meghir Nix (2020))

- 1. Approximate joint distribution of all variables in the data (including latent factors) as mixtures of normals
- 2. Simulate measurement error free data
- 3. Estimate production functions and other equations using NLLS

Decomposition approach

- 1. Use estimated model to simulate life histories, including lifetime earnings, calculate variance of lifetime earnings, covariance with parent's income, calculate IGE
- 2. Set one channel equal to sample means, re-simulate model, re-calculate variance of lifetime earnings, covariance with parent's income, calculate IGE

Baseline - Decomposition of IGE

Equalize variables (e.g., investments) only in the earnings equation

Level 2 - Indirect effects via years of schooling

Equalize variables (e.g., investments) in the earnings and schooling equations

Level 3 - Indirect effects via skills

Equalize variables (e.g., investments) in the earnings, schooling, and skills equations equation

Level 4- Indirect effects via investments

Equalize variables (e.g., parental education) in the earnings, schooling, skills, and investments equations $(a, b) \in (a, b) \in (a, b)$ and $(a, b) \in (a, b)$ and $(a, b) \in (a, b)$.

Results

Outline

Introduction

Data & Key Facts

Approach

Results

IGE Estimates with Measurement Error Corrections

 $\ln Y_i = \rho \ln Y_{Parent,i} + u_i$

where $\rho =$ Intergenerational Elasticity of Earnings (IGE)

	Male	Male	Male	Female	Female	Female
	model	corrected	uncorrected	model	corrected	uncorrected
IGE	0.332	0.339	0.160	0.211	0.213	0.103
		(0.097)	(0.045)		(0.101)	(0.048)

- **Problem:** we measure parents income at age 16 (when parent on avg. age 42), not lifetime income
- Solution: errors in variables approach
 - Calculate reliability ratios for the children (for whom we observe lifetime income, and age 42 income)

IGE Estimates with Measurement Error Corrections

 $\ln Y_i = \rho \ln Y_{Parent,i} + u_i$

where $\rho =$ Intergenerational Elasticity of Earnings (IGE)

	Male	Male	Male	Female	Female	Female
	model	corrected	uncorrected	model	corrected	uncorrected
IGE	0.332	0.339	0.160	0.211	0.213	0.103
		(0.097)	(0.045)		(0.101)	(0.048)

- **Problem:** we measure parents income at age 16 (when parent on avg. age 42), not lifetime income
- Solution: errors in variables approach
 - Calculate reliability ratios for the children (for whom we observe lifetime income, and age 42 income)

IGE Estimates with Measurement Error Corrections

 $\ln Y_i = \rho \ln Y_{Parent,i} + u_i$

where $\rho =$ Intergenerational Elasticity of Earnings (IGE)

	Male	Male	Male	Female	Female	Female
	model	corrected	uncorrected	model	corrected	uncorrected
IGE	0.332	0.339	0.160	0.211	0.213	0.103
		(0.097)	(0.045)		(0.101)	(0.048)

- **Problem:** we measure parents income at age 16 (when parent on avg. age 42), not lifetime income
- Solution: errors in variables approach
 - Calculate reliability ratios for the children (for whom we observe lifetime income, and age 42 income)
 - Assume reliability ratio is same for the parent

Results: Mediation Analysis - Level 1

 \Rightarrow 54% of IGE is explained by our channels

 \Rightarrow Cognitive skills and schooling significantly affect IGE

≣ ∽ ९ ペ 26/32

Results: Mediation Analysis - Level 1

- $\Rightarrow~54\%$ of IGE is explained by our channels
- \Rightarrow Cognitive skills and schooling significantly affect IGE

Results: Mediation Analysis - Level 2

\Rightarrow Effect of schooling is completely mediated by cognitive skills

Results: Mediation Analysis - Level 3

Results: Mediation Analysis - Level 4

- \Rightarrow Family background-related differences explain 19% of IGE.
- ⇒ Even if we control for family background, the income gradient in investments persists

< □ ▶ < @ ▶ < \ > ↓ < \ > ↓ \ = り < \ > ○ < ? 30/32

Results: Mediation Analysis - Females

Production functions: Effect of 1 unit increase in input

◆□ → ◆ □ → ◆ ■ → ● ■ ・ ○ Q ○ 31/32

Key Results - Summary

For both, men and women:

- Years of schooling and cognition explain the large shares of the IGE
- But: Effect of years of schooling is entirely mediated by cognition ...
 - ... and cognition is largely mediated by investments
- ⇒ Differences in investments between rich and poor families really matter for the IGE...
 - ... and not all of them can be explained by family background

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 32/32

Key Results - Summary

For both, men and women:

- Years of schooling and cognition explain the large shares of the IGE
- But: Effect of years of schooling is entirely mediated by cognition ...

... and cognition is largely mediated by investments

⇒ Differences in investments between rich and poor families really matter for the IGE...

... and not all of them can be explained by family background

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 32/32

Key Results - Summary

For both, men and women:

- Years of schooling and cognition explain the large shares of the IGE
- But: Effect of years of schooling is entirely mediated by cognition ...
 - ... and cognition is largely mediated by investments
- ⇒ Differences in investments between rich and poor families really matter for the IGE...
 - ... and not all of them can be explained by family background

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 32/32

Key Results - Summary

For both, men and women:

- Years of schooling and cognition explain the large shares of the IGE
- But: Effect of years of schooling is entirely mediated by cognition ...
 - ... and cognition is largely mediated by investments
- ⇒ Differences in investments between rich and poor families really matter for the IGE...

... and not all of them can be explained by family background

Key Results - Summary

For both, men and women:

- Years of schooling and cognition explain the large shares of the IGE
- But: Effect of years of schooling is entirely mediated by cognition ...

... and cognition is largely mediated by investments

⇒ Differences in investments between rich and poor families really matter for the IGE...

... and not all of them can be explained by family background