Measuring health and its consequences

Mariacristina De Nardi University of Minnesota, CEPR, NBER

October 2023

▶ Paper 1. The lifetime costs of bad health (with Pashchenko and Porapakkarm)

- Men with a high school degree, from age 21
- Bad health is very costly
- Health very unequally distributed even within this group

- People age 51+, regardless of education level
- Enormous health inequality by race, ethnicity, and gender

▶ Paper 1. The lifetime costs of bad health (with Pashchenko and Porapakkarm)

- Men with a high school degree, from age 21
- Bad health is very costly
- Health very unequally distributed even within this group

- People age 51+, regardless of education level
- Enormous health inequality by race, ethnicity, and gender

Paper 1. The lifetime costs of bad health (with Pashchenko and Porapakkarm)

- Men with a high school degree, from age 21
- Bad health is very costly
- Health very unequally distributed even within this group

- People age 51+, regardless of education level
- Enormous health inequality by race, ethnicity, and gender

Paper 1. The lifetime costs of bad health (with Pashchenko and Porapakkarm)

- Men with a high school degree, from age 21
- Bad health is very costly
- Health very unequally distributed even within this group

- People age 51+, regardless of education level
- Enormous health inequality by race, ethnicity, and gender

The lifetime costs of bad health, with Pashchenko and Porapakkarm

Among men with high-school degree, on average ...

- A. Large difference in economic outcomes by health
 - i. The healthy earn 37% more (conditional on working)...
 - ii. ...and have 65% more wealth at the time of retirement

Wealth gradient (HRS)

- **B**. Two important questions
 - What generates this large difference?
 - How costly it is to be unhealthy from the entire life-cycle perspective?

The lifetime costs of bad health, with Pashchenko and Porapakkarm

Among men with high-school degree, on average ...

- A. Large difference in economic outcomes by health
 - i. The healthy earn 37% more (conditional on working)...
 - ii. ...and have 65% more wealth at the time of retirement

• Wealth gradient (HRS)

B. Two important questions

- What generates this large difference?
- How costly it is to be unhealthy from the entire life-cycle perspective?

Channel 1: Health affects economic outcomes

Channel 2: Economic outcomes affect health

Channel 3: Healthy and unhealthy people are ex-ante different

 \Rightarrow Channel 3 well-recognized but overlooked in existing structural studies

 \Rightarrow This paper combines *Ch.1* with detailed investigation of *Ch.3*

Channel 1: Health affects economic outcomes

Channel 2: Economic outcomes affect health

Channel 3: Healthy and unhealthy people are ex-ante different

 \Rightarrow Channel 3 well-recognized but overlooked in existing structural studies

 \Rightarrow This paper combines *Ch.1* with detailed investigation of *Ch.3*

Channel 1: Health affects economic outcomes

Channel 2: Economic outcomes affect health

Channel 3: Healthy and unhealthy people are ex-ante different

- \Rightarrow Channel 3 well-recognized but overlooked in existing structural studies
- \Rightarrow This paper combines *Ch.1* with detailed investigation of *Ch.3*

What about *Channel 3*?

▶ People differ in genetic endowments, personality traits, early life experiences...

Empirical literature on importance of these factors for outcomes later in life (Anda et al., 2006; Barth et al., 2020; Case et al., 2005; Conti et al., 2005 ...)

We introduce rich unobserved heterogeneity in a structural life-cycle model

People differ in fixed characteristics that are multi-dimensional and possibly correlated among each other What about *Channel 3*?

- ▶ People differ in genetic endowments, personality traits, early life experiences...
- Empirical literature on importance of these factors for outcomes later in life (Anda et al., 2006; Barth et al., 2020; Case et al., 2005; Conti et al., 2005 ...)
- ▶ We introduce rich unobserved heterogeneity in a structural life-cycle model
- People differ in fixed characteristics that are multi-dimensional and possibly correlated among each other

1st Part, Estimate health shock process

Document new facts about health duration dependence

Estimate process for health consistent with these facts

Key Finding

 Health types are key drivers of health dynamics, even controlling for long history-dependence

1st Part, Estimate health shock process

Document new facts about health duration dependence

Estimate process for health consistent with these facts

► Key Finding

- *Health types* are key drivers of health dynamics, even controlling for long history-dependence

 2^{nd} **Part**: Study effects of health and types in a structural model

Estimate a life cycle model with health shocks and correlated ex-ante heterogeneity in

{health types, fixed labor productivity, patience }

Show that this heterogeneity and its correlation structure is important to explain disparity in economic outcomes by health

Quantify how costly it is to be unhealthy

 2^{nd} Part: Study effects of health and types in a structural model

Estimate a life cycle model with health shocks and correlated ex-ante heterogeneity in

{health types, fixed labor productivity, patience }

- Show that this heterogeneity and its correlation structure is important to explain disparity in economic outcomes by health
- Quantify how costly it is to be unhealthy

Health status transitions by previous health duration

Panel C1: % Transition from bad to good health

Age group: 55-69. The difference between waves is 2 years

Health status transitions by previous health duration

Panel C2: % Transition from good to bad health

Age group: 55-69. The difference between waves is 2 years

How can we account for these facts?

- Duration dependence
- Fixed health types

Formulate ordered logit model of health shocks that allows for

• History-dependence (τ_B, τ_G) and discrete health types (η)

 Health types are always significant even when controlling for long lagged health history (up to 8 years)

• Health types (η) are correlated with fixed labor productivity (γ)

	η_1	η_2	η_{3}
$Pr\left(\eta ight)$	0.08	0.35	0.57
$Pr\left(\eta\mid\gamma_{L} ight)$	0.13	0.44	0.43
$Pr\left(\eta \mid \gamma_{M} ight)$	0.08	0.36	0.56
$Pr(\eta \mid \gamma_H)$	0.04	0.24	0.72

Measure of η at age 21 (T=3)

Results : Estimated health transition probabilities (T=3) History dependence : fix health type to η_2

Results : Estimated health transition probabilities(T=3)

History dependence vs. Fixed health types

Variation in health transition prob. by health types larger than by health histories

▶ 21-64 \rightarrow work, 65-99 \rightarrow retired ...(model period = 2 yrs)

► Health types $\eta \in \{\eta_1, \eta_2, \eta_3\}$ and discount factor: $\beta \in \{\beta_{low}, \beta_{high}\}$ $0 \le Pr(\beta_j | \eta_m) \le 1; j \in \{low, high\}, m \in \{1, 2, 3\}$

People face productivity, health, medical expenses, and survival uncertainty

Retired people receive Social Security benefits and are covered by Medicare

▶ 21-64 \rightarrow work, 65-99 \rightarrow retired ...(model period = 2 yrs)

► Health types $\eta \in \{\eta_1, \eta_2, \eta_3\}$ and discount factor: $\beta \in \{\beta_{low}, \beta_{high}\}$ $0 \le Pr(\beta_j | \eta_m) \le 1; j \in \{low, high\}, m \in \{1, 2, 3\}$

People face productivity, health, medical expenses, and survival uncertainty

Retired people receive Social Security benefits and are covered by Medicare

▶ 21-64 \rightarrow work, 65-99 \rightarrow retired ...(model period = 2 yrs)

► Health types $\eta \in \{\eta_1, \eta_2, \eta_3\}$ and discount factor: $\beta \in \{\beta_{low}, \beta_{high}\}$ $0 \le Pr(\beta_j | \eta_m) \le 1; j \in \{low, high\}, m \in \{1, 2, 3\}$

People face productivity, health, medical expenses, and survival uncertainty

Retired people receive Social Security benefits and are covered by Medicare

$$u(c_t, l_t, h_t) = \frac{c_t^{-P}}{1 - \rho} - \phi_W \mathbf{1}_{\{l_t > 0\}} - \phi_F \mathbf{1}_{\{h_t = F, l_t > 0\}} - \phi_P \mathbf{1}_{\{h_t = P, l_t > 0\}} + \overline{\mathbf{b}}$$

parameters	value			targets
$\{\beta_{low}, \beta_{high}\}$	$\{0.877, 0.992\}$			11
Pr ($eta_{\textit{low}} \eta_i$)	$\frac{\eta_1}{0.78}$	η ₂ 0.79	η ₃ 0.38	wealth profiles by health (PSID)

* η_1 : worst health type

- Substantial preference heterogeneity
- Less patient people are more likely to be of the bad health types

Observed correlation between health and life-cycle outcomes generated by

$1\,$ Causal effects of bad health:

- a. Decreases productivity and increases disutility from work
- b. Increases OOP medical spending
- c. Lowers life expectancy

2 Composition effect:

- Heterogeneity in health types (η) , fixed productivity (γ) , and patience (β)
- $\{\eta, \gamma, \beta\}$ are correlated

Observed correlation between health and life-cycle outcomes generated by

- 1 Causal effects of bad health:
 - a. Decreases productivity and increases disutility from work
 - b. Increases OOP medical spending
 - c. Lowers life expectancy
- 2 Composition effect:

• Heterogeneity in health types (η) , fixed productivity (γ) , and patience (eta)

• $\{\eta, \gamma, \beta\}$ are correlated

Observed correlation between health and life-cycle outcomes generated by

- 1 Causal effects of bad health:
 - a. Decreases productivity and increases disutility from work
 - b. Increases OOP medical spending
 - c. Lowers life expectancy
- 2 Composition effect:
 - Heterogeneity in health types (η), fixed productivity (γ), and patience (β)
 - $\blacktriangleright~\{\eta,\gamma,\beta\}$ are correlated

- R1. Importance of composition difference between healthy and unhealthy
- R2. Lifetime monetary losses due to bad health
- R3. Lifetime welfare losses due to bad health

No correlation between types and patience, but still preference heterogeneity

Wealth difference by health	PSID	Baseline	No (eta,η) correlation
25 th pct	\$56	\$67	\$38
50 th pct	\$142	\$146	\$38
75 th pct	\$210	\$260	\$91
in 1000USD			

- Miss health-wealth gradient before retirement (age 60-64)
- Income-health gradient does not imply wealth-health gradient
No correlation between types and patience, but still preference heterogeneity

Wealth difference by health	PSID	Baseline	No (eta,η) correlation
25 th pct	\$56	\$67	\$38
50 th pct	\$142	\$146	\$38
75 th pct	\$210	\$260	\$91

in 1000USD

- Miss health-wealth gradient before retirement (age 60-64)
- Income-health gradient does not imply wealth-health gradient

R2. Lifetime monetary losses due to bad health

	Over entire life-cycle (21-death)						
-	All	η_1	η_2	η_3			
% of time in bad health	15%	58%	23%	4%			
Annual monetary losses (% of avg earning)	\$1,511 <i>(3.9%)</i>	\$8,896 <i>(23%)</i>	\$1,935 <i>(5%)</i>	\$225 (0.6%)			
Composition (%)							
Medical losses paid by insurance	36%	33%	39%	39%			
Out-of-pocket medical losses	27%	22%	30%	36%			
Income losses	37%	45%	31%	24%			

 \blacktriangleright Monetary losses vary a lot across η

Medical losses (Ins+OOP) is largest, but health insurance covers large portion

Income losses account for almost 40%

R2. Lifetime monetary losses due to bad health

	Over entire life-cycle (21-death)					
-	All	η_1	η_2	η_3		
% of time in bad health	15%	58%	23%	4%		
Annual monetary losses (% of avg earning)	\$1,511 <i>(3.9%)</i>	\$8,896 <i>(23%)</i>	\$1,935 <i>(5%)</i>	\$225 (0.6%)		
Composition (%)						
Medical losses paid by insurance	36%	33%	39%	39%		
Out-of-pocket medical losses	27%	22%	30%	36%		
Income losses	37%	45%	31%	24%		

• Monetary losses vary a lot across η

- ▶ Medical losses (Ins+OOP) is largest, but health insurance covers large portion
- ▶ Income losses account for almost 40%

	all	η_1	η_2	η_3
Compensated consumption equivalence	\$1,933	\$6,380	\$2,690	\$854
(% consumption equivalence, λ_c)	(10.6%)	(36.8%)	(14.8%)	(4.4%)
Contribution (%)				
- Only medical expenses channel	25%	39%	22%	17%
- Only income channel	38%	57%	42%	9%
- Only survival channel	44%	32%	33%	77%

 \blacktriangleright Welfare losses vary a lot across η

Survival effect: main welfare loss

Income channel most important for $\{\eta_1,\eta_2\}$ while survival channel most important for η_3

	all	η_1	η_2	η_3
Compensated consumption equivalence	\$1,933	\$6,380	\$2,690	\$854
(% consumption equivalence, λ_c)	(10.6%)	<i>(36.8%)</i>	(14.8%)	(4.4%)
Contribution (%)	()	()	((
- Only medical expenses channel	25%	39%	22%	17%
- Only income channel	38%	57%	42%	9%
- Only survival channel	44%	32%	33%	77%

- Welfare losses vary a lot across η
- Survival effect: main welfare loss
- ▶ Income channel most important for $\{\eta_1, \eta_2\}$ while survival channel most important for η_3

R3. Lifetime losses due to bad health: concentration and contribution of η

		variation		
-	top 5%	top 10%	top 20%	due to η
Monetary losses (21-death)				
- Income losses + medical losses (Ins+OOP)	38%	56 %	75%	69%
Welfare losses				
- Compensated consumption equivalence	24%	42%	71%	30%
Use 2% interest rate for monetary loss.				

Highly concentrated

Health types η responsible for large variation in both monetary and welfare losses

But variation due to η is lower for welfare losses

R3. Lifetime losses due to bad health: concentration and contribution of $\boldsymbol{\eta}$

		variation		
-	top 5%	top 10%	top 20%	due to η
Monetary losses (21-death)				
- Income losses + medical losses (Ins+OOP)	38%	56 %	75%	69%
Welfare losses				
- Compensated consumption equivalence	24%	42%	71%	30%
Use 2% interest rate for monetary loss.				

Highly concentrated

- Health types η responsible for large variation in both monetary and welfare losses
- But variation due to η is lower for welfare losses

Conclusions from paper with Pashchenko and Porappakkarm

- Health types key to capture health dynamics and income/health gradient
- Composition difference btw. the healthy and unhealthy key to capture wealth/health gradient
- Large lifetime losses due to bad health.

Conclusions from paper with Pashchenko and Porappakkarm

- Health types key to capture health dynamics and income/health gradient
- Composition difference btw. the healthy and unhealthy key to capture wealth/health gradient
- Large lifetime losses due to bad health
 - i. Lifetime costs of bad health are highly concentrated
 - ii. Survival channel key contributor to welfare loss
 - iii A large part of lifetime losses are pre-determined in early stage of life (69% for monetary loss, 30% for welfare loss)

Health inequality by race, ethnicity, and gender

with Nicolo' Russo, Margherita Borella, and Ross Abram

1. How should we measure health?

- 2. How large are health disparities?
- 3. What are the effects of health on key economic outcomes?
- 4. How should we model health by race, ethnicity, and gender? In progress

- 1. How should we measure health?
- 2. How large are health disparities?
- 3. What are the effects of health on key economic outcomes?
- 4. How should we model health by race, ethnicity, and gender? In progress

- 1. How should we measure health?
- 2. How large are health disparities?
- 3. What are the effects of health on key economic outcomes?
- 4. How should we model health by race, ethnicity, and gender? In progress

- 1. How should we measure health?
- 2. How large are health disparities?
- 3. What are the effects of health on key economic outcomes?
- 4. How should we model health by race, ethnicity, and gender? In progress

How should we measure health?

Self-reported health status (SRHS)

How would you rate your health? Poor, fair, good, very good, excellent

Frailty index

Share of health deficits at a given age

Health deficits in our frailty index

ADLs

Difficulty bathing Difficulty dressing Difficulty eating Difficulty getting in/out of bed Difficulty using the toilet Difficulty walking across a room Difficulty walking one block Difficulty walking several blocks

IADLs

Difficulty grocery shopping Difficulty making phone calls Difficulty managing money Difficulty preparing a hot meal Difficulty taking medication Difficulty using a map

Other Functional Limitations

Difficulty climbing one flight of stairs Difficulty climbing several flights of stairs Difficulty getting up from a chair Difficulty kneeling or crouching Difficulty lifting a weight heavier than 10 lbs Difficulty lifting arms over the shoulders Difficulty picking up a dime Difficulty pulling/pushing large objects Difficulty sitting for two hours

Diagnoses

Diagnosed with high blood pressure Diagnosed with diabetes Diagnosed with cancer Diagnosed with lung disease Diagnosed with a heart condition Diagnosed with a stroke Diagnosed with psychological or psychiatric problems Diagnosed with arthritis

Healthcare Utilization

Has stayed in the hospital in the previous two years Has stayed in a nursing home in the previous two years

Addictive Diseases

Has BMI larger than 30 Has ever smoked cigarettes

Self-reported health status (SRHS): ask people to rate their health

 $\Rightarrow\,$ Measurement error and differential reporting by group

Frailty index: share of health deficits at a given age

 \Rightarrow Differential access to health care and hence in diagnosed conditions by group

- Self-reported health status (SRHS): ask people to rate their health
 - $\Rightarrow\,$ Measurement error and differential reporting by group
- Frailty index: share of health deficits at a given age
 - \Rightarrow Differential access to health care and hence in diagnosed conditions by group

How should we measure health?

Measure of health that best predicts key economic outcomes and welfare

- Compare the predictive power of frailty and SRHS for
 - Disability claiming
 - Social Security claiming
 - Nursing home entry
 - Nursing home stay
 - Death

- Measure of health that best predicts key economic outcomes and welfare
- Compare the predictive power of frailty and SRHS for
 - Disability claiming
 - Social Security claiming
 - Nursing home entry
 - Nursing home stay
 - Death

Main findings, part 1

- 1. SRHS key predictor of economic outcomes by race, ethnicity, and gender
- 2. Frailty somewhat more predictive than SRHS
- 3. SRHS and frailty jointly significant

Measuring health disparities by race, ethnicity, and gender

			Women			Men	
		White	Hispanic	Black	White	Hispanic	Black
	Basic controls	0.048	0.046	0.036	0.045	0.022	0.032
CDI analiziant and survey	SRHS	0.212	0.122	0.129	0.186	0.112	0.122
SDI recipient next wave	Frailty	0.244	0.193	0.185	0.245	0.222	0.175
	Frailty and SRHS	0.268	0.202	0.199	0.264	0.241	0.196
	Basic controls	0.118	0.081	0.083	0.134	0.101	0.120
SS Benefits Recipient Next Wave	SRHS	0.128	0.110	0.102	0.140	0.128	0.126
	Frailty	0.126	0.091	0.097	0.142	0.112	0.139
	Frailty and SRHS	0.132	0.123	0.114	0.147	0.145	0.145
	Basic controls	0 241	0 172	0.169	0.220	0 144	0 1 2 2
	SPHS	0.295	0.200	0.206	0.266	0.104	0.176
NH Entry Next Wave	Frailty	0.205	0.209	0.200	0.200	0.134	0.234
	Frailty and SRHS	0.319	0.250	0.214	0.308	0.291	0.234
	Trancy and States	0.015	01200	U.L.L	0.000	0.201	0.211
	Basic controls	0.284	0.226	0.212	0.226	0.129	0.153
Commenting in a NIU	SRHS	0.338	0.259	0.250	0.296	0.222	0.214
Currently in a NH	Frailty	0.526	0.413	0.411	0.487	0.529	0.427
	Frailty and SRHS	0.533	0.437	0.417	0.492	0.540	0.449
	Basic controls	0.166	0.157	0.120	0.140	0.157	0.109
Death Next Wave	SRHS	0.240	0.194	0.169	0.219	0.212	0.151
Dearn Meyr Mang	Frailty	0.266	0.221	0.189	0.237	0.244	0.176
	Frailty and SRHS	0.276	0.230	0.201	0.251	0.253	0.182

> McFadden Pseudo R^2 . Health important determinant of all outcomes

Percentage changes

Main findings, part 2

1. Enormous health inequality by race and ethnicity

 \Rightarrow On average, a 51 year old Black woman has the frailty of a 69 year old White woman

2. Deficits prevalence

- \Rightarrow Most deficits are more prevalent for Black and Hispanic people than for White people
- \Rightarrow Except for diagnosed ones, especially for Black men

Main findings, part 2

1. Enormous health inequality by race and ethnicity

 \Rightarrow On average, a 51 year old Black woman has the frailty of a 69 year old White woman

2. Deficits prevalence

- \Rightarrow Most deficits are more prevalent for Black and Hispanic people than for White people
- \Rightarrow Except for diagnosed ones, especially for Black men

Enormous health inequality by race and ethnicity

White people have the lowest frailty, Black people the highest

Prevalence of Deficits - Men, 55-59

	White	Hispanic	Black	White - Hisp.	White - Black
Has ever smoked cigarettes	0.650	0.657	0.678	-0.007	-0.028**
Diagnosed with HBP	0.424	0.437	0.608	-0.012	-0.184***
Diagnosed with arthritis	0.365	0.267	0.358	0.098***	0.007
Has $BMI \ge 30$	0.327	0.404	0.354	-0.077***	-0.028**
Diff. kneeling or crouching	0.296	0.311	0.365	-0.016	-0.069***
Diff. getting up from chair	0.253	0.272	0.322	-0.020*	-0.070***
Diff. climbing several flights of stairs	0.233	0.330	0.355	-0.097***	-0.122***
Diagnosed with heart condition	0.152	0.114	0.146	0.038***	0.006
Hospital stay	0.148	0.146	0.207	0.002	-0.060***
Diff. walking several blocks	0.147	0.181	0.246	-0.034***	-0.099***
Diff. sitting for two hours	0.138	0.197	0.222	-0.059***	-0.084***
Diagnosed with diabetes	0.133	0.247	0.253	-0.114***	-0.120***
Diagnosed with psych. problem	0.119	0.112	0.134	0.008	-0.014*
Diff. pull/pushing large objects	0.118	0.187	0.233	-0.069***	-0.114***
Diff. lifting arms over shoulders	0.095	0.141	0.168	-0.045***	-0.072***
Diff. lifting >10 pounds	0.083	0.145	0.190	-0.062***	-0.107***
Diff. climbing flight of stairs	0.067	0.122	0.120	-0.055***	-0.053***
Diff. walking one block	0.066	0.073	0.114	-0.007	-0.047***
Diagnosed with lung disease	0.057	0.029	0.054	0.028***	0.003
Diagnosed with cancer	0.056	0.030	0.051	0.025***	0.005
Diff. dressing	0.050	0.107	0.090	-0.057***	-0.040***
Diff. using map	0.033	0.120	0.106	-0.086***	-0.073***
Diagnosed with a stroke	0.033	0.039	0.079	-0.006	-0.046***
Diff. picking up dime	0.032	0.039	0.045	-0.007	-0.013***
Diff. grocery shopping	0.032	0.052	0.065	-0.020***	-0.034***
Diff. getting in/out of bed	0.028	0.085	0.059	-0.057***	-0.031***
Diff. managing money	0.026	0.059	0.053	-0.033***	-0.027***
Diff. walking across room	0.025	0.033	0.054	-0.008*	-0.029***
Diff. bathing	0.022	0.040	0.047	-0.018***	-0.024***
Diff. using toilet	0.018	0.037	0.038	-0.019***	-0.020***
Diff. preparing hot meal	0.015	0.031	0.042	-0.016***	-0.027***
Diff. taking medication	0.013	0.031	0.028	-0.018***	-0.015***
Diff. making phone calls	0.011	0.041	0.026	-0.030***	-0.015***
Diff. eating	0.008	0.016	0.022	-0.008***	-0.014***
Nursing home stay	0.004	0.009	0.011	-0.005**	-0.007***

* p<.1, ** p<.05, *** p<.01

▶ Deficits women

Outcomes: receiving disability benefits, receiving Social Security benefits, entering a nursing home, living in a nursing home, dying

Main findings

- 1. Frailty has largest effect on the probability of death
 - \Rightarrow \uparrow 1 deficit increases probability of death by 0.8 p.p. for men and 0.6 p.p. for women. This is close to one year of life for each deficit.

Outcomes: receiving disability benefits, receiving Social Security benefits, entering a nursing home, living in a nursing home, dying

Main findings

1. Frailty has largest effect on the probability of death

 \Rightarrow \uparrow 1 deficit increases probability of death by 0.8 p.p. for men and 0.6 p.p. for women. This is close to one year of life for each deficit.

		Men			Women	
Frailty	White	Hispanic	Black	White	Hispanic	Black
25%	84.8	86.4	79.9	89.9	91.7	85.8
55%	78.6	82.4	75.6	85.6	88.7	83.0
75%	71.1	76.7	70.7	78.8	83.8	78.6
99%	58.4	60.4	60.5	59.1	61.8	61.2

Life expectancy at age 55 by frailty percentile

The frailty levels correspond to 2, 5, 9, and 26 conditions

- Large differences in life expectancy by frailty (20-30 years)
- Conditional on frailty, Hispanic people have the longest life expectancy and Black people the shortest (except at very high levels of frailty)

Conclusions

Paper 1: the life time costs of bad health

- Large health inequality even within high school men
- Bad health has very costly consequences
- A lot of it is predetermined as of age 21
- Paper 2: Health inequality by race and ethnicity
 - There is an enormous amount of health inequality by race and ethnicity
 - It implies very costly consequences
- Very important to model health and its consequences, including by race and ethnicity!

Conclusions

- Paper 1: the life time costs of bad health
 - Large health inequality even within high school men
 - Bad health has very costly consequences
 - A lot of it is predetermined as of age 21
- Paper 2: Health inequality by race and ethnicity
 - There is an enormous amount of health inequality by race and ethnicity
 - It implies very costly consequences
- Very important to model health and its consequences, including by race and ethnicity!

Conclusions

- Paper 1: the life time costs of bad health
 - Large health inequality even within high school men
 - Bad health has very costly consequences
 - A lot of it is predetermined as of age 21
- Paper 2: Health inequality by race and ethnicity
 - There is an enormous amount of health inequality by race and ethnicity
 - It implies very costly consequences
- Very important to model health and its consequences, including by race and ethnicity!

- Good health \in {excellent, very good, good}; bad health \in {fair, poor}

- Wealth controlled for year effects and family size

▶ The wealth gap is large even among a relatively homogeneous group

Percentage Changes in R^2

			Women			Men	
		White	Hispanic	Black	White	Hispanic	Black
-			Percentag	e change	from basi	c controls	
	SRHS	341%	166%	260%	318%	412%	283%
SDI Recipient Next Wave	Frailty	407%	320%	416%	450%	916%	449%
	Frailty and SRHS	458%	341%	454%	492%	1,005%	514%
			Percentag	e change	from basi	c controls	
	SRHS	9%	37%	23%	5%	27%	5%
SS Benefits Recipient Next Wave	Frailty	7%	13%	17%	6%	11%	16%
	Frailty and SRHS	12%	53%	38%	10%	43%	21%
		Percentage change from basic controls					
	SRHS	18%	21%	22%	21%	35%	44%
NH Entry Next Wave	Frailty	31%	34%	27%	38%	89%	92%
	Frailty and SRHS	32%	45%	34%	40%	102%	102%
			Percentag	ge change	from basi	c controls	
	SRHS	19%	15%	18%	31%	72%	40%
Currently in a NH	Frailty	85%	83%	94%	116%	311%	179%
	Frailty and SRHS	88%	93%	97%	118%	320%	320%
			Percentag	ge change	from basi	c controls	
	SRHS	45%	24%	41%	57%	35%	39%
Death Next Wave	Frailty	60%	41%	57%	69%	55%	62%
	Frailty and SRHS	66%	47%	67%	79%	61%	61%

Share of People with Zero Frailty

▲ Back

Deficits prevalence - Women, 55-59

	White	Hispanic	Black	White - Hisp.	White - Black
Has ever smoked cigarettes	0.545	0.406	0.553	0.140***	-0.007
Diagnosed with arthritis	0.474	0.430	0.521	0.044***	-0.047***
Diff. climbing several flights of stairs	0.388	0.515	0.535	-0.127***	-0.148***
Diff. kneeling or crouching	0.380	0.439	0.471	-0.059***	-0.091***
Diagnosed with HBP	0.352	0.448	0.672	-0.097***	-0.321***
Has BMI ≥ 30	0.336	0.443	0.554	-0.107***	-0.218***
Diff. getting up from chair	0.325	0.410	0.434	-0.085***	-0.108***
Diagnosed with psych. problem	0.213	0.201	0.175	0.012	0.038***
Diff. pull/pushing large objects	0.212	0.295	0.332	-0.084***	-0.121***
Diff. walking several blocks	0.198	0.266	0.332	-0.069***	-0.135***
Diff. sitting for two hours	0.184	0.276	0.256	-0.092***	-0.072***
Diff. lifting >10 pounds	0.180	0.290	0.320	-0.110***	-0.140***
Hospital stay	0.133	0.148	0.199	-0.015*	-0.066***
Diff. climbing flight of stairs	0.118	0.202	0.220	-0.084***	-0.103***
Diagnosed with diabetes	0.110	0.261	0.253	-0.151***	-0.143***
Diff. lifting arms over shoulders	0.106	0.192	0.217	-0.086***	-0.111***
Diagnosed with heart condition	0.104	0.087	0.156	0.016**	-0.053***
Diagnosed with cancer	0.100	0.068	0.067	0.032***	0.033***
Diff. using map	0.098	0.224	0.216	-0.126***	-0.118***
Diff. walking one block	0.081	0.091	0.163	-0.009	-0.081***
Diagnosed with lung disease	0.079	0.048	0.079	0.032***	0.000
Diff. grocery shopping	0.055	0.075	0.114	-0.019***	-0.059***
Diff. dressing	0.038	0.103	0.111	-0.065***	-0.073***
Diff. getting in/out of bed	0.037	0.107	0.097	-0.070***	-0.060***
Diff. picking up dime	0.036	0.040	0.055	-0.004	-0.018***
Diff. walking across room	0.034	0.042	0.080	-0.008*	-0.046***
Diagnosed with a stroke	0.030	0.033	0.067	-0.003	-0.037***
Diff. bathing	0.028	0.050	0.082	-0.022***	-0.054***
Diff. preparing hot meal	0.027	0.030	0.067	-0.003	-0.040***
Diff. using toilet	0.025	0.037	0.083	-0.012***	-0.058***
Diff. managing money	0.024	0.043	0.051	-0.019***	-0.027***
Diff. eating	0.012	0.021	0.024	-0.009***	-0.012***
Diff. taking medication	0.011	0.028	0.032	-0.017***	-0.021***
Diff. making phone calls	0.007	0.025	0.020	-0.017***	-0.012***
Nursing home stay	0.004	0.004	0.010	0.000	-0.006***

* p<.1, ** p<.05, *** p<.01

