Fertility and Family Labor Supply

Katrine Jakobsen¹ Thomas H. Jørgensen¹ Hamish Low²

¹CEBI, University of Copenhagen

²Oxford University

October 5th, 2023

Jakobsen, Jorgensen and Low

Motivation: Dynamics of Labor Supply and Fertility

- When do people work? When do they have children?
- Decisions intereact, yet studied in isolation
- Reforms targetting labour supply (tax cuts, childcare subsidies): additional consequences through fertility impacts
- Reforms targetting fertility (child subsidies): impact labour supply Key points:
 - Labour market and fertility decisions interact with each other
 - 2 Have life-time consequences

• We provide two main contributions

- We provide two main contributions
- Show that fertility responds to wage/tax changes empirically (variation from Danish tax-reforms)

- We provide two main contributions
- Show that fertility responds to wage/tax changes empirically (variation from Danish tax-reforms)

- Quantify the importance of fertility for labor market reforms through an estimated life-cycle model:
 - Labor supply of men and women
 - Fertility (endogenous number and timing)
 - Life-cycle implications through human capital (and wealth)

- We provide two main contributions
- Show that fertility responds to wage/tax changes empirically (variation from Danish tax-reforms)
 - wage of men $\uparrow \Longrightarrow$ fertility \uparrow
 - wage of women $\uparrow \Longrightarrow$ fertility \downarrow
- Quantify the importance of fertility for labor market reforms through an estimated life-cycle model:
 - Labor supply of men and women
 - Fertility (endogenous number and timing)
 - Life-cycle implications through human capital (and wealth)

- We provide two main contributions
- Show that fertility responds to wage/tax changes empirically (variation from Danish tax-reforms)
 - wage of men $\uparrow \Longrightarrow$ fertility \uparrow
 - wage of women $\uparrow \Longrightarrow$ fertility \downarrow
- Quantify the importance of fertility for labor market reforms through an estimated life-cycle model:
 - Labor supply of men and women
 - Fertility (endogenous number and timing)
 - Life-cycle implications through human capital (and wealth)
 - Labor supply elasticity of women 25% higher due to fertility adjustments
 - Fertility impacts: amplify (or mitigate) gender gaps in later life

Some Related Literature

- Fertility responses to financial incentives:
 - Child subsidies and tax reliefs (Cohen, Dehejia, & Romanov, 2013; Laroque & Salanié, 2014; Milligan, 2005; Olivetti & Petrongolo, 2017; Rosenzweig, 1999)
 - Child care costs (Blau & Robins, 1989; Del Boca, 2002; Mörk, Sjögren, & Svaleryd, 2013)
 - Wealth (housing) (Atalay, Li, & Whelan, 2017; Clark & Ferrer, 2019; Daysal, Lovenheim, Siersbæk, & Wasser, in press; Dettling & Kearney, 2014; Lovenheim & Mumford, 2013; Mizutani, 2015).
- Female labor supply and fertility: Hotz and Miller (1988); Francesconi (2002); Adda, Dustmann, and Stevens (2017); Eckstein, Keane, and Lifshitz (2019)
- Long run labor supply elasticities see e.g. Attanasio, Levell, Low, and Sánchez-Marcos (2018) and surveys by Keane (2011, in press)
- Gender Gaps and Child Penalties. Eg. Goldin (2014), Goldin and Katz (2002), Kleven, Landais, and Søgaard (2019)

Outline

Empirical Motivation

- Data
- Identification Strategy
- Results

2 Life-Cycle Model

- Model framework
- Estimation
- Simulations
- Quantifying the Importance of Fertility

Denmark: Some Background

Denmark is an interesting lab and can be seen as a looking glass for other western countries

- Small open economy in Scandinavia (3.6 million people in the working-age population in 2008)
- High labour force participation (women: 78%, men: 84%, 55-59yo in 2008)
- Taxation at individual level mostly
- High marginal tax rate (63% in top bracket, 2008)
- Highly subsidized child care (at most 25% in co-payment)
- Generous subsidies for low income and single parents (e.g. reduced child care costs)
- Universal and free education (including university)

Data and Sample Selection

• Use several Danish registers for 2004–2018

- Linking household members (married and cohabitating) details
- Information on income, fertility, wealth etc.
- Monthly pay-slip information (BFL, from 2010)
 - ★ Aggregate to annual freq.
 - * Center around calendar year or childbirth

• Common sample selection:

- Aged 25–60
- Has a partner (of opposite sex)
- Discard people who are mainly self-employed, student, retired or on disability insurance

• Two samples:

- tax sample (aged 25–40)
- estimation sample (2010–2018, max. 5 years age difference)

Identification Strategy: Tax Variation

Identification Strategy: Tax Variation

Figure: Danish Tax Variation, 2004–2018 (avg.).

Notes: This Figure illustrates the main tax variation in the tax thresholds and marginal tax rates from 2004 through 2018 (averages). Source: Jakobsen and Søgaard (2019).

Identification Strategy: Tax simulator

- Danish tax simulator in the spirit of TAXSIM for the US.
 Based on Jakobsen and Søgaard (2019); H. J. Kleven and Schultz (2014).
- Marginal net-of-tax wage rates, $1 \tau_{i,t}$
 - τ_{i,t} = τ_t(z_{i,t}, Z_{i,t}): marginal tax rate given personal income z_{i,t}, characteristics Z_{i,t} (marital status).
- Mechanical changes in net of marginal tax wage
 - ► $\tau_{i,t}^k = \tau_k(z_{i,t}, Z_{i,t})$: marginal tax rate given info at *t* with time *k* tax schedule.
- Recall: we focus on women and their male partners

• $\tau_{partner(i,t)}$ is thus the marginal tax rate of the male partner.

Identification Strategy: Regressions

• Estimate equations of the form (ETI literature)

$$\begin{split} \Delta_4 N_{i,t} = & \eta_w \Delta_4 \log(1 - \tau_{i,t}) + \eta_m \Delta_4 \log(1 - \tau_{partner(i,t)}) \\ &+ \gamma_w \Delta_4 \log(y_{i,t}) + \gamma_m \Delta_4 \log(y_{partner(i,t)}) \\ &+ \beta X_{i,t} + g(z_{i,t}) + \varepsilon_{i,t} \end{split}$$

where

- N_{i,t}: number of children of woman i at time t
- $\Delta_4 x_{i,t}$: four-year forward differences
- y_{i,t}: Virtual income
- ► X_{i,t}: year- and age dummies and human capital
- $g(z_{i,t})$ income controls for both partners in base year
- η_w : Compensated elasticity w.r.t women's marginal net-of-tax wage
- η_m : Compensated elasticity w.r.t **men's** marginal net-of-tax wage
- γ_w : Income effect w.r.t women's marginal net-of-tax wage
- γ_m : Income effect w.r.t **men's** marginal net-of-tax wage

Identification Strategy: 2SLS

- Endogenous marginal tax rates
- Instrument $\Delta_4 \log(1 \tau_{i,t})$ and $\Delta_4 \log(1 \tau_{partner(i,t)})$ with 4-year mechanical net-of-tax wage changes of each partner

$$\begin{split} \log(1-\tau_{i,t}^{t+4}) - \log(1-\tau_{i,t}) \\ \log(1-\tau_{\textit{partner}(i,t)}^{t+4}) - \log(1-\tau_{\textit{partner}(i,t)}) \end{split}$$

• Instrument $\Delta_4 \log(y_{i,t})$ and $\Delta_4 \log(y_{partner(i,t)})$ likewise

		(1)	(2)	(3)				
	$\Delta_4 \log(1 - \tau_{i,t})$, women	-0.035***	-0.023**	-0.023**				
		(0.010)	(0.010)	(0.010)				
	$\Delta_4 \log(y_{i,t})$, women	0.003	0.004*	0.005*				
		(0.003)	(0.003)	(0.003)				
	$\Delta_4 \log(1 - \tau_{i,t})$, men	0.008	0.005	0.005				
		(0.009)	(0.009)	(0.009)				
	$\Delta_4 \log(y_{i,t})$, men	0.020**	0.026***	0.028***				
		(0.008)	(0.008)	(0.008)				
-	Income dummies	Yes	Yes	Yes				
	Children dummies	Yes	Yes	Yes				
	Year dummies	Yes	Yes	Yes				
	Age dummies	Yes	Yes	Yes				
	Hum. cap. controls	No	Yes	Yes				
	Male partner controls	No	No	Yes				
-	Avg. dep. var. (y, level)	1.522	1.522	1.522				
	Obs.	2531181	2531181	2531181				
	First stage F-stat.	27585.8	27869.9	27903.8				

2SLS Estimation Results: Fertility

Jakobsen, Jorgensen and Low

ertility and Family Labor Suppl

12 / 34

SLS Estimation Results. Fertility							
		(1)	(2)	(3)			
-	$\Delta_4 \log(1 - \tau_{i,t})$, women	-0.035***	-0.023**	-0.023**			
		(0.010)	(0.010)	(0.010)			
	$\Delta_4 \log(y_{i,t})$, women	0.003	0.004*	0.005*			
		(0.003)	(0.003)	(0.003)			
	$\Delta_4 \log(1-\tau_{i,t})$, men	0.008	0.005	0.005			
		(0.009)	(0.009)	(0.009)			
	$\Delta_4 \log(y_{i,t})$, men	0.020**	0.026***	0.028***			
		(0.008)	(0.008)	(0.008)			
-	Income dummies	Yes	Yes	Yes			
	Children dummies	Yes	Yes	Yes			
	Year dummies	Yes	Yes	Yes			
	Age dummies	Yes	Yes	Yes			
	Hum. cap. controls	No	Yes	Yes			
	Male partner controls	No	No	Yes			
-	Avg. dep. var. (y, level)	1.522	1.522	1.522			
	Obs.	2531181	2531181	2531181			
	First stage F-stat.	27585.8	27869.9	27903.8			

2SLS Estimation Results: Fertility

Jakobsen, Jorgensen and Low

ertility and Family Labor Suppl

12 / 34

2SLS Estimation Results: Discussion

- Fertility responds to tax changes
 - Income effect dominates for men (marginal net-of-tax wage of men ↑ ⇒ fertility ↑)
 - Substitution effect dominates for women (marginal net-of-tax wage of women ↑ ⇒ fertility ↓)
- Low-income couples have strongest response table

labor supply responses

2SLS Estimation Results: Discussion

- Fertility responds to tax changes
 - Income effect dominates for men (marginal net-of-tax wage of men ↑ ⇒ fertility ↑)
 - Substitution effect dominates for women (marginal net-of-tax wage of women ↑ ⇒ fertility ↓)
- Low-income couples have strongest response table

labor supply responses

Next:

- Model joint decision
- Quantify importance of fertility adjustments for long-run labor supply of men and women

Outline

Empirical Motivation

- Data
- Identification Strategy
- Results

2 Life-Cycle Model

- Model framework
- Estimation
- Simulations
- Quantifying the Importance of Fertility

Model Overview

• Households maximize the expected discounted sum of future utility

Choose

- ► *C_t*: Consumption
- ► *I_{w,t}*: Labor supply, women
- I_{m,t}: Labor supply, men
- *e_t* : Fertility effort
- Given states
 - ► *K_{w,t}*: Human capital, women
 - ► K_{m,t}: Human capital, men
 - A_{t-1} : Wealth
 - *n_t*: Number of children
 - o_t : Age of youngest child

Labor Supply

- Endogenous labor supply of men and women, $j \in \{m, w\}$:
 - Not working, $I_{j,t} = 0$
 - Part time, $l_{j,t} = 0.75$
 - Full time, $l_{j,t} = 1$

Labor Supply

- Endogenous labor supply of men and women, $j \in \{m, w\}$:
 - Not working, $I_{i,t} = 0$
 - Part time, $l_{j,t} = 0.75$
 - Full time, $l_{j,t} = 1$
- Human capital accumulation

$$K_{j,t+1} = [(1-\delta)K_{j,t} + I_{j,t}]\epsilon_{j,t+1}$$

where $\epsilon_{j,t+1}$ is an iid log-normal mean-one shock.

Labor Supply

- Endogenous labor supply of men and women, $j \in \{m, w\}$:
 - Not working, $I_{i,t} = 0$
 - Part time, $l_{j,t} = 0.75$
 - Full time, $l_{j,t} = 1$
- Human capital accumulation

$$K_{j,t+1} = [(1-\delta)K_{j,t} + I_{j,t}]\epsilon_{j,t+1}$$

where $\epsilon_{i,t+1}$ is an iid log-normal mean-one shock.

Labor income is

$$Y_{j,t} = w_{j,t}I_{j,t}$$

where wages are

$$\log w_{j,t} = \gamma_{j,0} + \gamma_{j,1} K_{j,t}$$

details

Fertility

- Couples choose **fertility effort**, $e_t \in \{0, 1\}$ each period
- Imperfect fertility control

Fertility

- Couples choose **fertility effort**, $e_t \in \{0, 1\}$ each period
- Imperfect fertility control
- Childbirth next period with probability

$$\wp_t(e_t) = \begin{cases} \overline{\wp}_t & \text{if } e_t = 1\\ \overline{\wp}_t \underline{\wp} & \text{if } e_t = 0 \end{cases}$$

- $\overline{\wp}_t < 1$: biological fecundity (declining in age) details $\underline{\wp} > 0$: unintended pregnancies
- The age of the youngest, o_t , evolves deterministically
- Children move out stochastically details

Preferences

• Household preferences are (unitarian)

$$U(C_t, n_t, o_t, I_{w,t}, I_{m,t}) = \lambda u_w(\cdot) + (1 - \lambda)u_m(\cdot)$$

• Individual preferences are

$$u_{j}(C_{t}, n_{t}, o_{t}, l_{j,t}) = \frac{(C_{t} / \nu(n_{t}))^{1-\rho}}{1-\rho} \\ + \sum_{i=1}^{3} \omega_{i} \mathbf{1}(n_{t} \ge i) \\ + \eta_{0} e_{t} \mathbf{1}(o_{t} = 0) + \eta_{1} e_{t} \mathbf{1}(o_{t} = 1) \\ + f_{j}(l_{j,t}, age_{j,t}) \\ + q_{j}(l_{j,t}, n_{t}, o_{t}) \mathbf{1}(n_{t} > 0)$$

• Flexible interaction between labor supply and children in $q_j()$.

details

Institutional environment

- Partnership dissolution is random and absorbing details
- Retirement is exogenous and absorbing
- Involuntary unemployment risk of 3 percent each year

Institutional environment

- Partnership dissolution is random and absorbing details
- Retirement is exogenous and absorbing
- Involuntary unemployment risk of 3 percent each year
- Parsimonious versions of the Danish institutions (2010 rules)
 - Labor income tax system
 - Unemployment transfers [fixed amount in model]
 - Child care costs
 - Child benefits details

Estimation: Two steps

- Calibrate a set of parameters, γ . E.g. $\beta = 0.97$, $\rho = 1.5$, and $\lambda = 0.5$.
 - Investigate the sensitivity to calibrated parameters (Jørgensen, in press)

- **② Estimate** the remaining 30 parameters, θ . E.g. value of children, $\omega_1, \omega_2, \omega_3$ and dis-utility of work, $q(\cdot)$
 - Simulated Method of Moments
 - Using estimation sample from 2010 (post-reform)
 - Investigate the "informativeness" of estimation moments (Honoré, Jørgensen, & de Paula, 2020)

Moments: Children

(a) Share with at least 1 child. (b) Share with at least 2 children.

(c) Share with at least 3 children.(d) Years between 1st and 2nd birth.

Moments: Labor Supply

(a) Share Working, Women.

(b) Share Working, Men.

(c) Full time when working, Women.

(d) Full time when working, Men.

Moments: Labor Supply around Child Arrival

(a) Share Working, Women.

(b) Share Working, Men.

(c) Full time, Women.

(d) Full time, Men.

• Need to model and measure parental leave

Informativeness of Estimation Moments

(1)1	-10.56	18.24	29.48	1109.15	15.11	0.40
(1)	27.00	110.57	58.82	475.62	-11.79	2.21
(1)2	7.83	-23.95	96.01	-6.82	61.59	-37.16
$\widetilde{n_0}$	13.06	-5.93	39.57	15774.30	17.84	0.42
n_{1}^{0}	3.92	9.24	22.65	353.17	102.92	4.82
H_{FT}	-7.74	-2.85	107.28	40.02	18.06	0.59
HET ago w	0.33	12.98	16.23	165.79	55.95	-32.34
LIDT	9.20	2.70	95.98	37.24	18.21	5.25
HPT ago w	71.68	6.55	2.45	154.39	85.75	-0.22
ILTT m	-23.04	144.48	32.41	108.97	66.70	-35.45
HET and m	-29.33	-51.84	51.15	88.23	82.23	-39.90
LLDT m	-34.52	119.62	13.71	120.73	106.64	-42.33
HPT ago m	38.07	0.15	39.73	111.14	87.84	-17.89
AFT abild an	64.27	39.36	30.51	56.87	50.23	-18.31
α_{FT} more w	42.69	30.05	27.11	25.29	138.32	-0.47
α_{FT} nound w	-9.90	-2.63	90.04	6.66	1200.37	-9.41
APT abild av	51.28	3.42	33.36	22.06	202.65	-0.61
α_{PT} more w	39.94	8.16	25.11	-24.61	31.68	-0.10
α_{PT}	-12.58	2.91	21.50	79.86	530.55	-5.89
QET shild m	54.31	27.22	-2.08	260.49	84.84	-42.63
αFT more m	12.99	35.59	-1.67	-17.71	164.29	0.05
γ_{FT} wown a m	14.76	9.85	-8.56	22.74	228.53	-4.25
APT shild m	-19.26	-14.65	-11.54	0.17	606.30	-4.95
α_{PT} more m	12.23	52.32	-21.11	-14.28	254.42	0.56
γ_{PT}	-54.56	4.36	-0.11	-20.16	72.64	-1.90
γο _m	38.84	21.11	-27.53	46.71	10.41	-20.03
$\gamma_{1,w}^{0,w}$	51.53	25.46	-11.85	11.63	-26.44	7.40
$\gamma_{0,m}^{\prime 1,w}$	-32.14	122.85	-10.45	31.11	27.86	-4.90
$\gamma_{1}^{0,m}$	-25.55	7.09	-26.02	20.68	-9.21	-0.75
6V	27.27	4.95	36.31	42.38	65.47	-53.17
107	labor	income	children	spacing	interaction	wealth

(based on Honoré, Jørgensen, & de Paula, 2020) details

Labor market outcomes around childbirths (group 5)
 Informs non-seperability in labor market work and children (*α.,child,., α.,more,.* and *α.,young,.*).

Jakobsen, Jorgensen and Low

Estimation Results

- Non-separability between children and dis-utility of work
 - number of children $\uparrow \Longrightarrow$ marginal dis-utility of work \uparrow
Estimation Results

- Non-separability between children and dis-utility of work
 - number of children $\uparrow \Longrightarrow$ marginal dis-utility of work \uparrow

Figure: Change in Marginal Dis-Utility from Work from Additional Children.

Implications: Three Questions

- Wage changes affect fertility: what are the long-run implications for human capital, within couple inequality?
- e How much do fertility responses amplify labour supply elasticities?
- What are the impacts of child subsidies on long-run inequality?

1. Simulations: Life-Cycle Elasticities

Unanticipated Permanent wage increases (Life-Cycle Marshallian) details

1. Simulations: Life-Cycle Elasticities

Unanticipated Permanent wage increases (Life-Cycle Marshallian) details

	Partici	pation	Ho	urs	Wag	e at 55	Child	Comp.
Age	Women	Men	Women	Men	Women	Men	birth	fertility
			A. Elastic	cities w.	r.t. wages	of wome	en	
26	1.34	-0.10	1.54	-0.40	1.64	-0.15	-1.17	-0.72
30	0.95	-0.08	1.04	-0.25	1.48	-0.10	-0.58	-0.28
35	0.82	-0.02	0.84	-0.12	1.39	-0.05	-0.40	-0.07
40	0.57	-0.00	0.59	-0.04	1.27	-0.02	-0.17	-0.01
45	0.31	-0.00	0.35	-0.02	1.13	-0.01	-	-
50	0.21	-0.00	0.24	-0.02	1.05	-0.00	-	-
avg.	0.54	-0.02	0.60	-0.10	1.24	-0.04	-0.37	-0.11
			B. Elast	ticities w	v.r.t. wage	es of men	ו	
26	-0.81	0.31	-1.26	0.44	-0.56	1.14	3.12	1.89
30	-0.42	0.16	-0.80	0.23	-0.40	1.08	3.28	1.56
35	-0.37	0.03	-0.64	0.06	-0.32	1.03	2.32	0.42
40	-0.28	0.00	-0.52	0.02	-0.25	1.01	3.94	0.23
45	-0.11	0.00	-0.29	0.01	-0.12	1.00	-	-
50	-0.03	0.00	-0.16	0.00	-0.04	1.00	-	-
avg.	-0.25	0.06	-0.48	0.09	-0.21	1.03	3.46	0.46

Jakobsen, Jorgensen and Lov

27 / 34

1. Simulations: Life-Cycle Elasticities

Unanticipated Permanent wage increases (Life-Cycle Marshallian) details

	Partici	pation	Ho	urs	Wage	e at 55	Child	Comp.
Age	Women	Men	Women	Men	Women	Men	birth	fertility
			A. Elastic	cities w.	r.t. wages	of wom	en	
26	1.34	-0.10	1.54	-0.40	1.64	-0.15	-1.17	-0.72
30	0.95	-0.08	1.04	-0.25	1.48	-0.10	-0.58	-0.28
35	0.82	-0.02	0.84	-0.12	1.39	-0.05	-0.40	-0.07
40	0.57	-0.00	0.59	-0.04	1.27	-0.02	-0.17	-0.01
45	0.31	-0.00	0.35	-0.02	1.13	-0.01	-	-
50	0.21	-0.00	0.24	-0.02	1.05	-0.00	-	-
avg.	0.54	-0.02	0.60	-0.10	1.24	-0.04	-0.37	-0.11
			B. Elast	icities v	v.r.t. wage	es of mer	1	
26	-0.81	0.31	-1.26	0.44	-0.56	1.14	3.12	1.89
30	-0.42	0.16	-0.80	0.23	-0.40	1.08	3.28	1.56
35	-0.37	0.03	-0.64	0.06	-0.32	1.03	2.32	0.42
40	-0.28	0.00	-0.52	0.02	-0.25	1.01	3.94	0.23
45	-0.11	0.00	-0.29	0.01	-0.12	1.00	-	-
50	-0.03	0.00	-0.16	0.00	-0.04	1.00	-	-
avg.	-0.25	0.06	-0.48	0.09	-0.21	1.03	3.46	0.46
Jakobsen,	Jorgensen and	d Low			Fertility and F	amily Labo	or Supply	27 / 34

1. Long Run Implications

Meaningful labor market responses

(Attanasio, Levell, Low, & Sánchez-Marcos, 2018)

Impact of fertility adjustments:

- ► Wages of men ↑
 - \implies fertility \uparrow
 - \implies women's labor supply \downarrow
 - \implies long run wage (at 55) of women \downarrow
- ► Wages of women ↑
 - \implies fertility \downarrow
 - \implies women's labor supply \uparrow
 - \Longrightarrow long run wage (at 55) of women \uparrow

• Consistent with reduced form results

• How important are fertility adjustments for labor supply responses?

• How important are **fertility adjustments for labor supply responses**?

- We quantify this through counterfactual simulations
 - How different are labor supply elasticities if fertility cannot adjust?

- 5% permanent (unanticipated) increase in wage rate
 - Life-cycle Marshallian elasticity

We simulate effect of wage increase from 2 models:

- **baseline model**, with endogenous fertility
- 2 exogenous fertility, where couples cannot choose fertility
 - Expect children to arrive probabilistically based on realized fertility from the baseline model details

• Permanent unanticipated increased wages of women

(a) Hours.

(b) Number of children.

- Wages $\uparrow \Longrightarrow$ Fertility $\downarrow \Longrightarrow$ labor supply responsiveness \uparrow
- Larger long-run Marshall elasticity when fertility can adjust
 - $\blacktriangleright~\sim$ 22% of labor response is due to fertility adjustments
 - both from the extensive and intensive fertility margin

• Permanent unanticipated increased wages of men

(c) Hours.

- Small difference in the behavior of men
- Fertility is important for cross-effects:
 - Effect of men's wages on women larger when fertility can adjust
 - ► Larger reduction in long run offer wage of women ~20 percent

3. Child Subsidy

- Introduce unconditional cash transfer at childbirth
- Baseline model and alternative exogenous fertility model

	Particip	ation	Hou	rs	Wage	at 55	Child	Comp.
	Women	Men	Women	Men	Women	Men	birth	fertility
			,	A. Basel	ine model			
3000 9000	-2.23 -3.08	0.03 0.11	-2.23 -3.21	0.13 0.34	-0.53 -0.87	0.02 0.05	4.97 12.29	3.66 9.11
			B. Alternat	ive exog	enous fert	ility mode	el	
3000 9000	-0.14 -0.26	-0.02 -0.04	-0.15 -0.24	-0.03 -0.12	-0.03 -0.07	-0.01 -0.02	0.00	0.00 0.00

- Substantial human capital losses when fertility adjusts to child subsidy
- Government budget in worse position

• Fertility reacts to financial incentives

- Marginal wage rises for women decrease fertility
- Marginal wage rises for men increase fertility

• Fertility reacts to financial incentives

- Marginal wage rises for women decrease fertility
- Marginal wage rises for men increase fertility

• Labor Supply Responses

- Use a life-cycle model of joint labour supply and fertility
- Different fertility responses impact human capital and gender inequality later in life
- Labor supply responses for women to (permanent) wage changes are amplified when fertility can also adjust: 25% higher

• Fertility reacts to financial incentives

- Marginal wage rises for women decrease fertility
- Marginal wage rises for men increase fertility

• Labor Supply Responses

- Use a life-cycle model of joint labour supply and fertility
- Different fertility responses impact human capital and gender inequality later in life
- Labor supply responses for women to (permanent) wage changes are amplified when fertility can also adjust: 25% higher
- Welfare reforms have permanent effects through fertility, even if reforms are transitory
 - "Fertility Multiplier"

• Fertility reacts to financial incentives

- Marginal wage rises for women decrease fertility
- Marginal wage rises for men increase fertility

• Labor Supply Responses

- Use a life-cycle model of joint labour supply and fertility
- Different fertility responses impact human capital and gender inequality later in life
- Labor supply responses for women to (permanent) wage changes are amplified when fertility can also adjust: 25% higher
- Welfare reforms have permanent effects through fertility, even if reforms are transitory
 - "Fertility Multiplier"

Extra Slides

Definition of partnership

• Official definition of Statistics Denmark.

https://www.dst.dk/da/Statistik/dokumentation/Times/ cpr-oplysninger/familier-og-husstande/familie-type

- Either
 - Legally married
 - Living with a person with shared custody over a child (share legal address)
 - Living with one other person of opposite sex with an age difference less than 15.

(share legal address and both at least 16 years old)

back

Details on Instrument

Figure: Verification: 4-year differences across the income distribution.

(a) Mechanical tax change. (b) Log income. *Notes:* This figure illustrates the tax variation and the plausibility of the variation in generating exogeneous variation.

51 51	age results, aq log	(- <i>v</i> _{1,t})	, •••••••••	
		(1)	(2)	(3)
	$\Delta_4 \tau^m_{i,t}$, women	0.428***	0.426***	0.426***
	.,.	(0.002)	(0.002)	(0.002)
	$\Delta_4 \log(y_{i,t}^m)$, women	0.010***	0.010***	0.010***
	.,_	(0.000)	(0.000)	(0.000)
	$\Delta_4 \tau^m_{i,t}$, men	0.019***	0.019***	0.019***
	,, ,	(0.001)	(0.001)	(0.001)
	$\Delta_4 \log(y_{i,t}^m)$, men	0.028***	0.027***	0.027***
	- (- 1,2)	(0.001)	(0.001)	(0.001)
	Income dummies	Yes	Yes	Yes
	Children dummies	Yes	Yes	Yes
	Year dummies	Yes	Yes	Yes
	Age dummies	Yes	Yes	Yes
	Hum. cap. controls	No	Yes	Yes
	Male partner controls	No	No	Yes
	Avg. dep. var. (y, level)			
	Obs.	2531181	2531181	2531181
	First stage F-stat.			

First-stage Results, $\Delta_4 \log(1 - \tau_{i,t})$, Women

Jakobsen, Jorgensen and Low

38 / 34

<u> </u>	0 (3 1)4/1		
	(1)	(2)	(3)
$\Delta_4 \tau^m_{i,t}$, women	0.037***	0.037***	0.037***
.,-	(0.004)	(0.004)	(0.004)
$\Delta_4 \log(y_{i,t}^m)$, women	-0.024***	-0.024***	-0.023***
	(0.001)	(0.001)	(0.001)
$\Delta_4 \tau^m_{i,t}$, men	0.068***	0.068***	0.071***
	(0.003)	(0.003)	(0.003)
$\Delta_4 \log(y_{i,t}^m)$, men	0.306***	0.306***	0.304***
	(0.008)	(0.008)	(0.008)
Income dummies	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes
Hum. cap. controls	No	Yes	Yes
Male partner controls	No	No	Yes
Obs.	2531181	2531181	2531181

First-stage Results, $\Delta_4 \log(y_{i,t})$, Women

\underline{g}	$S(\mathbf{I} \mathbf{v}_{I,t})$, wich	
	(1)	(2)	(3)
$\Delta_4 \tau^m_{i,t}$, women	0.015***	0.013***	0.014***
	(0.001)	(0.001)	(0.001)
$\Delta_4 \log(y_{i,t}^m)$, women	0.008***	0.009***	0.008***
	(0.000)	(0.000)	(0.000)
$\Delta_4 \tau^m_{i,t}$, men	0.407***	0.407***	0.406***
.,.	(0.001)	(0.001)	(0.001)
$\Delta_4 \log(y_{i,t}^m)$, men	0.006***	0.005***	0.006***
- ~ 1,67	(0.001)	(0.001)	(0.001)
Income dummies	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes
Hum. cap. controls	No	Yes	Yes
Male partner controls	No	No	Yes
Obs.	2531181	2531181	2531181

First-stage Results, $\Delta_4 \log(1 - \tau_{i,t})$, Men

0	0 (51,271		
	(1)	(2)	(3)
$\Delta_4 \tau^m_{i,t}$, women	0.037***	0.037***	0.037***
.,-	(0.004)	(0.004)	(0.004)
$\Delta_4 \log(y_{i,t}^m)$, women	-0.024***	-0.024***	-0.023***
.,-	(0.001)	(0.001)	(0.001)
$\Delta_4 \tau^m_{i,t}$, men	0.068***	0.068***	0.071***
.,-	(0.003)	(0.003)	(0.003)
$\Delta_4 \log(y_{i,t}^m)$, men	0.306***	0.306***	0.304***
.,-	(0.008)	(0.008)	(0.008)
Income dummies	Yes	Yes	Yes
Children dummies	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Age dummies	Yes	Yes	Yes
Hum. cap. controls	No	Yes	Yes
Male partner controls	No	No	Yes
Obs.	2531181	2531181	2531181

First-stage Results, $\Delta_4 \log(y_{i,t})$, Men

2SLS	Results by Incom	l≎ncome ∈	$income \in$	less	high
	· · · · · · · · · · · · · · · · · · ·	[50, 350]	(350, 600]	skilled	skilled
		(1)	(2)	(3)	(4)
	$\Delta_4 \log(1 - au_{i,t})$, women	-0.030***	-0.048	-0.048***	-0.019
		(0.010)	(0.038)	(0.015)	(0.013)
	$\Delta_4 \log(y_{i,t})$, women	0.005*	0.009	0.002	0.003
		(0.003)	(0.016)	(0.003)	(0.004)
	$\Delta_4 \log(1- au_{i,t})$, men	0.007	0.004	0.038***	-0.026*
		(0.010)	(0.027)	(0.012)	(0.014)
	$\Delta_4 \log(y_{i,t})$, men	0.048***	0.040***	0.000	0.025**
		(0.016)	(0.010)	(0.013)	(0.011)
	Income dummies	Yes	Yes	Yes	Yes
	Children dummies	Yes	Yes	Yes	Yes
	Year dummies	Yes	Yes	Yes	Yes
	Age dummies	Yes	Yes	Yes	Yes
	Hum. cap. controls	Yes	Yes	Yes	Yes
	Male partner controls	Yes	Yes	Yes	Yes
	Avg. dep. var. (y, level)	1.526	1.496	1.664	1.372
	Obs.	2205258	325923	1299908	1231273
	First stage F-stat.	19869.3	1996.9	11197.1	15910.2

2SLS Results: Labor Supply Lack

	Women (1)	Men (2)
$\Delta_4 \log(1 - \tau_{i,t})$, women	0.213***	0.111***
	(0.015)	(0.013)
$\Delta_4 \log(y_{i,t})$, women	-0.016***	0.003
	(0.005)	(0.003)
$\Delta_4 \log(1- au_{i,t})$, men	-0.004	0.200***
	(0.015)	(0.014)
$\Delta_4 \log(y_{i,t})$, men	0.006	-0.019
	(0.011)	(0.016)
Income dummies	Yes	Yes
Children dummies	Yes	Yes
Year dummies	Yes	Yes
Age dummies	Yes	Yes
Hum. cap. controls	Yes	Yes
Male partner controls	Yes	Yes
Avg. dep. var. (y, level)	5.454	5.728
Obs.	2316021	2396584

Jakobsen, Jorgensen and Low

Details on Part Time **Details**

- The part time value of $I_{PT} = 0.75$ is motivated by
 - Statistics Denmark's definition of part time in work experience statistics
 - Close to typical hours in Denmark
 - * A normal full-time week is 37 hours in Denmark
 - ★ part time is typically 30 or 32 hours per week (81% − 87% of the full-time hours)
- The value affects the human capital accumulation process and the wage/income process
- Utility function is independent of the exact value
- Results are not overly sensitive to this choice.

Details on the Age of Youngest Lack

• The age of the youngest child aged 0-6, ot, evolves as

$$o_{t+1} = \begin{cases} 0 & \text{if } b_{t+1} = 1\\ o_t + 1 & \text{if } b_{t+1} = 0 \text{ and } o_{t+1} \in \{0, 1, 2, 3, 4, 5\}\\ o_t & \text{if } b_{t+1} = 0 \text{ and } o_t \in \{6+\}\\ NC & \text{if } b_{t+1} = 0 \text{ and } o_t \in \{NC\}. \end{cases}$$
(1)

Details on the Fertility Process Lack

• The number of children evolves as

$$n_{t+1} = n_t + b_{t+1}(e_t) - x_{t+1}$$
(2)

where x_{t+1} refers to a child moving out, as is given by

$$x_{t+1} = \begin{cases} 1 & \text{with probability } q_t(n_t, o_t) \\ 0 & \text{with probability } 1 - q_t(n_t, o_t) \end{cases}$$
(3)

• Children can move out once the fertile period ends at T_f

• x_{t+1} is a realization of a Binomial distribution with

$$q_t(n_t, o_t) = \begin{cases} P_{bin}(1, p_x | n_t - o_t) & \text{if } n_t > 0, \ t > T_f \text{ and } o_t \in \{6+\}\\ 0 & \text{else} \end{cases}$$

where

$$P_{bin}(1, p_x|n) = \frac{n!}{(n-1)!} p_x (1-p_x)^{n-1}$$

Details on Fertility and Partnership Dissolution **Details**

(c) Biological Fecundity, $\overline{\wp}_t$. (d) Partnership Dissolution Probabilities.

Figure: Biological Fecundity and Dissolution Probabilities.

Notes: Figure 4 shows in panel (a) the biological fecundity, $\overline{\wp}_t$, based on Leridon (2004). Panel (b) shows the probability of partnership dissolution as a function of the age of the woman and the existing number of children, based on Danish register data.

Details on Child Costs and Transfers **Details**

Figure: Costs net of Benefits, $C(n_t, o_t, Y_t, s_t)$.

Details on Preferences (back)

 We let the dis-utility from the amount of labor market work depend on the number of children and the age of the youngest child through

$$q_{j}(\bullet) = \mu_{PT,j} \mathbf{1}(l_{j,t} = l_{PT}) \left[\alpha_{PT,child,j} + \alpha_{PT,more,j}(n_{t} - 1) + \alpha_{PT,young,j} \mathbf{1}(o_{t} \le 3) \right]$$
$$+ \mu_{FT,j} \mathbf{1}(l_{j,t} = 1) \left[\alpha_{FT,child,j} + \alpha_{FT,more,j}(n_{t} - 1) + \alpha_{FT,young,j} \mathbf{1}(o_{t} o_{t} \le 3) \right]$$

where $l_{j,t} = 0$ is the reference alternative.

• All parameters are relative to the baseline dis-utility of work from

$$f_{j}(I_{j,t}, age_{j,t}) = \mu_{PT,j} \mathbf{1}(I_{j,t} = I_{PT}) \left[1 + \mu_{PT,age,j}(age_{j,t} - 25) \right]$$
$$+ \mu_{FT,j} \mathbf{1}(I_{j,t} = 1) \left[1 + \mu_{FT,age,j}(age_{j,t} - 25) \right]$$

Parameter Estimates (back)

Parameter		estimate	se
Utility from	children.		
ω_1	Value of having at least one child	11.698	(0.012)
ω_2	Value of having at least two children	13.002	(0.006)
ω_3	Value of having at least three children	9.591	(0.015)
η ₀	Value of fertility effort when child aged 0 present	-0.064	(0.000)
$\dot{\eta}_1$	Value of fertility effort when child aged 1 present	-0.015	(0.000)
Utility from	market work, $f_w(\bullet)$ and $f_m(\bullet)$. Relative to not working.		
$\mu_{FT,w}$	Value of full time work, women	-0.511	(0.001)
$\mu_{FT,age,w}$	Value of full time work wrt. age, women (pct)	-2.060	(0.005)
$\mu_{PT,w}$	Value of part time work, women	-0.269	(0.000)
HPT.age.w	Value of part time work wrt. age, women (pct)	-2.701	(0.006)
µFT.m	Value of full time work, men	-0.670	(0.001)
µFT.age.m	Value of full time work wrt. age, men (pct)	-1.966	(0.006)
µPT.m	Value of part time work, men	-0.372	(0.001)
µ _{PT,age,m}	Value of part time work wrt. age, men (pct)	-2.170	(0.008)
Utility from	market work w. children, $q_w(\bullet)$ and $q_m(\bullet)$. Relative to not w	working.	
α _{FT,child,w}	Value of full time work with children, women (pct)	11.394	(0.037)
α _{FT,more,w}	Value of full time work with children, women (pct)	5.603	(0.031)
α _{FT,young,w}	Value of full time work with young children, women (pct)	2.486	(0.029)
αPT.child.w	Value of part time work with more children, women (pct)	14.222	(0.064)
α _{PT,more,w}	Value of part time work with more children, women (pct)	6.705	(0.060)
α _{PT.voung.w}	Value of part time work with young children, women (pct)	3.909	(0.073)
α _{FT.child.m}	Value of full time work with children, men (pct)	5.363	(0.017)
α _{FT.more.m}	Value of full time work with children, men (pct)	-0.005	(0.011)
α _{FT.voung.m}	Value of full time work with young children, men (pct)	0.033	(0.022)
αPT.child.m	Value of part time work with more children, men (pct)	3.451	(0.047)
α _{PT.more.m}	Value of part time work with more children, men (pct)	0.157	(0.041)
α _{PT,young,m}	Value of part time work with young children, men (pct)	0.026	(0.054)
Wage equat	ions.		
γ _{0,w}	Wage: constant, women	0.773	(0.001)
$\gamma_{1,w}$	Wage: human capital, women	0.085	(0.000)
$\gamma_{0,m}$	Wage: constant, men	0.771	(0.001)
γ1,m	Wage: human capital, men	0.103	(0.000)
Miscellaneou	15.		
κ _V	Retirement: value function adjustement	0.519	(0.004)

Jakobsen, Jorgensen and Low

Fertility and Family Labor Supply

Change in the Marginal Dis-Utility of Work

• We denote the marginal dis-utility of work as

$$\Delta_{PT} U_j(n, o) = -q_j(PT, n, o) + q_j(NT, n, o)$$

$$\Delta_{FT} U_j(n, o) = -q_j(FT, n, o) + q_j(PT, n, o)$$

• The change in the marginal dis-utility from having another child is

$$\Delta_{I}(n) = \frac{\Delta_{I}U_{j}(n+1,0) - \Delta_{I}U_{j}(n,6+)}{\Delta_{I}U_{j}(n,6+)} \cdot 100$$

for $I \in \{PT, FT\}$, measured in percentage changes.

• Assumes that previous children were 6+ years old

Informativeness of Estimation Moments **Dark**

- Based on M₄ in Honoré et al. (2020)
- The percentage change in the asymptotic variance of elements of $\hat{\theta}$ from removing groups of moments in $g(\theta)$

$$I_k = \operatorname{diag}(\tilde{\Sigma}_k - \Sigma) / \operatorname{diag}(\Sigma) \cdot 100$$
 (4)

where

$$\begin{split} \tilde{\Sigma}_k &= (G'\tilde{W}_kG)^{-1}G'\tilde{W}_kS\tilde{W}_kG(G'\tilde{W}_kG)^{-1}\\ \tilde{W}_k &= W \odot (\iota_k\iota'_k) \end{split}$$

and \odot is element-wise multiplication and ι_k is a $J \times 1$ vector with ones in all elements except the *k*th *group* of moments being zeros.

- Share working and the share working full time conditional on working, split by age and gender.
- Average labor income when working, split by age and gender.
- Share with at least 1, 2 or 3 children, split by age.
 - Distribution of years between first and second childbirths.
- Share working and share working full time after first and second childbirth, split by gender.
 - Average wealth split by age.

Sensitivity: Change in the Marginal Dis-Utility of Work

(a) Part Time.

(b) Full Time.

Sensitivity: Change in the Marginal Dis-Utility of Work

• Based on the approximation (Jørgensen, in press)

$$rac{\partial \hat{oldsymbol{ heta}}}{\partial oldsymbol{\phi}'} pprox - (G'WG)^{-1}G'D$$

in which

$$G = \frac{\partial g(\hat{\theta}|\boldsymbol{\phi})}{\partial \hat{\theta}'}$$

$$D = \frac{\partial g(\hat{\theta}|\boldsymbol{\phi})}{\partial \boldsymbol{\phi}'}$$

We calculate

$$\frac{d\Delta_j(l,n)}{d\phi'} = \frac{\partial\Delta_j(l,n)}{\partial\theta'} \frac{\partial\theta}{\partial\phi'} \\ \approx -\frac{\partial\Delta_j(l,n)}{\partial\theta'} (G'WG)^{-1} G'D$$

and report elasticities
Simulation Details **back**

- Simulate 500,000 synthetic households from age 25 through 60
- Initialize all households as couples with zero net wealth and the empirical joint distribution of number of children, age of youngest and human capital.
- The effect at age t of a wage increase is

$$\Delta y_t = y_t - \tilde{y}_t$$

where $y_t = n_t^{-1} \sum_i y_{i,t}$ is the average simulated optimal outcome under the baseline estimated model and $\tilde{y}_t^{(s_1:s_2)} = n_t^{-1} \sum_i \tilde{y}_{i,t}^{(s_1:s_2)}$ is the average simulated optimal outcome under the counterfactual setting in which wages are scaled by μ percent in periods s_1 through s_2 . • Formally, wages in the alternative model are given as

$$\tilde{w}_{i,t}^{(s_1:s_2)} = \begin{cases} (1+\mu)w_{i,t} & \text{if } s_1 \leq t \leq s_2 \\ w_{i,t} & \text{else.} \end{cases}$$

Unless otherwise explicitly stated, we use a five percent increase, $\mu=0.05.$

Jakobsen, Jorgensen and Low

Simulated Birth Probabilities **back**

Figure: Realized Simulated Pregnancy Probabilities.

Baseline and Alternative Model Simulations **Gase**

Baseline and Alternative Model Simulations **Gase**

(e) Share Working, Women.

(f) Share Working, Men.

References I

- Adda, J., Dustmann, C., & Stevens, K. (2017). The career costs of children [Working Paper]. *Journal of Political Economy*, 125(2), 293-337.
- Atalay, K., Li, A., & Whelan, S. (2017). Housing wealth and fertility: Australian evidence (Working Paper No. 2017 - 08). University of sydney.
- Attanasio, O., Levell, P., Low, H., & Sánchez-Marcos, V. (2018, November). Aggregating elasticities: Intensive and extensive margins of women's labor supply. *Econometrica*, 86(6), 2049–2082.
- Blau, D. M., & Robins, P. K. (1989). Fertility, employment, and child-care costs. *Demography*, *26*(2), 287–299.
- Clark, J., & Ferrer, A. (2019). The effect of house prices on fertility: evidence from canada. *Economics: The Open-Access, Open-Assessment E-Journal.*, 13(38), 1–32.

References II

- Cohen, A., Dehejia, R., & Romanov, D. (2013). Financial incentives and fertility. *Review of Economics and Statistics*, *95*(1), 1–20.
- Daysal, M., Lovenheim, M., Siersbæk, N., & Wasser, D. (in press). Home prices, fertility, and early-life health outcomes. *Journal of public Economics*.
- Del Boca, D. (2002). The effect of child care and part time opportunities on participation and fertility decisions in italy. *Journal of Population Economics*, 15, 549–573.
- Dettling, L. J., & Kearney, M. S. (2014). House prices and birth rates: The impact of the real estatemarket on the decision to have a baby. *Journal of Public Economics*, *110*, 82–100.
- Eckstein, Z., Keane, M., & Lifshitz, O. (2019). Career and family decisions: Cohorts born 1935-1975. *Econometrica*, *87*, 217–253.
 Francesconi, M. (2002). A joint dynamic model of fertility and work of

married women. Journal of Labor Economics, 20(2).

References III

Goldin, C. (2014, April). A grand gender convergence: Its last chapter. American Economic Review, 104(4), 1091-1119. Retrieved from https://www.aeaweb.org/articles?id=10.1257/ aer.104.4.1091 doi: 10.1257/aer.104.4.1091 Goldin, C., & Katz, L. (2002). The power of the pill: Oral contraceptives and womenâs career and marriage decisions. Journal of Political Economy, 110(4), 730-770. Retrieved from https://doi.org/10.1086/340778 doi: 10.1086/340778 Honoré, B. E., Jørgensen, T. H., & de Paula, A. (2020). The informativeness of estimation moments [CeMMAP Working Paper]. Journal of Applied Econometrics, 35(7), 797–813. Hotz, V. J., & Miller, R. A. (1988). An empirical analysis of life cycle fertility and female labor supply. *Econometrica*, 56(1), 91–118. Retrieved from http://www.jstor.org/stable/1911843

References IV

Jakobsen, K., & Søgaard, J. E. (2019). On the estimation of taxable income responses using tax reforms (Unpublished mimeo). University of Copenhagen.

- Jørgensen, T. H. (in press). Sensitivity to calibrated parameters [Working paper]. *Review of Economics and Statistics*.
- Keane, M. P. (2011, December). Labor supply and taxes: A survey. Journal of Economic Literature, 49(4), 961-1075. Retrieved from http://www.aeaweb.org/articles?id=10.1257/jel.49.4.961 doi: 10.1257/jel.49.4.961
- Keane, M. P. (in press). Recent research on labor supply: Implications for tax and transfer policy. *Labour Economics*.
- Kleven, Landais, C., & Søgaard, J. E. (2019, October). Children and gender inequality: Evidence from denmark. American Economic Journal: Applied Economics, 11(4), 181-209. Retrieved from https://www.aeaweb.org/articles?id=10.1257/app.20180010 doi: 10.1257/app.20180010

References V

Kleven, H. J., & Schultz, E. A. (2014). Estimating taxable income responses using danish tax reforms. *American Economic Journal: Economic Policy*, 6(4), 271–301.

- Laroque, G., & Salanié, B. (2014). Identifying the response of fertility to financial incentives. *Journal of Applied Econometrics*, 29(2), 314–332.
- Leridon, H. (2004). Can assisted reproduction technology compensate for the natural decline in fertility with age? a model assessment. *Human Reproduction*, *19*(7), 548–1553.
- Lovenheim, M. F., & Mumford, K. J. (2013, May). Do family wealth shocks affect fertility choices? evidence from the housing market. *Review of Economics and Statistics*, *95*(2), 464–475.
- Milligan, K. (2005). Subsidizing the stork: New evidence on tax incentives and fertility. *The Review of Economics and Statistics*, *87*(3), 539–555.

References VI

- Mizutani, N. (2015). The effects of housing wealth on fertility decisions: Evidence from japan. *Economics Bulletin*, *35*(4).
- Mörk, E., Sjögren, A., & Svaleryd, H. (2013). Childcare costs and the demand for children evidence from a nationwide reform. *Journal of Population Economics*, *26*, 33–65.
- Olivetti, C., & Petrongolo, B. (2017, February). The economic consequences of family policies: Lessons from a century of legislation in high-income countries. *Journal of Economic Perspectives*, 31(1), 205-30. Retrieved from https://www.aeaweb.org/articles?id=10.1257/jep.31.1.205 doi: 10.1257/jep.31.1.205
- Rosenzweig, M. R. (1999). Welfare, marital prospects, and nonmarital childbearing. *Journal of Political Economy*, *107*(56).