Facts and figures about UK taxes, benefits and public spending.
Income distribution, poverty and inequality.
Analysing government fiscal forecasts and tax and spending.
Analysis of the fiscal choices an independent Scotland would face.
Case studies that give a flavour of the areas where IFS research has an impact on society.
Reforming the tax system for the 21st century.
A peer-reviewed quarterly journal publishing articles by academics and practitioners.
|
Type: cemmap Working Papers Authors: Andrew Chesher and Adam Rosen
JEL classification: C10, C14, C50, C51 Keywords: random coefficients, instrumental variables, endogeneity, incomplete models, set identification, partial identification, random sets
In this paper we study a random coefficient model for a binary outcome. We allow for the possibility that some or even all of the regressors are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalised instrumental variable models studied in Chesher and Rosen (2012a), and we thus apply identification results from that and related studies to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. Search |

