Facts and figures about UK taxes, benefits and public spending.
Income distribution, poverty and inequality.
Analysing government fiscal forecasts and tax and spending.
Analysis of the fiscal choices an independent Scotland would face.
Case studies that give a flavour of the areas where IFS research has an impact on society.
Reforming the tax system for the 21st century.
A peer-reviewed quarterly journal publishing articles by academics and practitioners.
|
Type: External publications Authors: Xavier de Luna and Per Johansson ISSN: 1651-1166
Volume, issue, pages: IFAU working papers, 2007:1
We perform inference on the effect of a treatment on survival times in studies where the treatment assignment is not randomized and the assignment time is not known in advance. We estimate survival functions on a treated and a control group which are made comparable through matching on observed covariates. The inference is performed by conditioning on waiting time to treatment, that is time between the entrance in the study and treatment. This can be done only when sufficient data is available. In other cases, averaging over waiting times is a possibility, although the classical interpretation of the estimated survival functions is lost unless hazards are not functions of the waiting times. To show unbiasedness and to obtain an estimator of the variance, we build on the potential outcome framework, which was introduced by J. Neyman in the context of randomized experiments, and adapted to observational studies by D. B. Rubin. Our approach does not make parametric or distributional assumptions. In particular, we do not assume proportionality of the hazards compared. Small sample performance of the estimator and a derived test of no treatment effect are studied in a Monte Carlo study. Search |

