Facts and figures about UK taxes, benefits and public spending.
Income distribution, poverty and inequality.
Analysing government fiscal forecasts and tax and spending.
Analysis of the fiscal choices an independent Scotland would face.
Case studies that give a flavour of the areas where IFS research has an impact on society.
Reforming the tax system for the 21st century.
A peer-reviewed quarterly journal publishing articles by academics and practitioners.
|
Type: cemmap Working Papers Authors: Le-Yu Chen ISSN: 1753-9196
Keywords: Structural dynamic discrete choice models, semiparametric identification, optimal stopping
This paper presents new identification results for the class of structural dynamic optimal stopping time models that are built upon the framework of the structural discrete Markov decision processes proposed by Rust (1994). We demonstrate how to semiparametrically identify the deep structural parameters of interest in the case where the utility function of an absorbing choice in the model is parametric but the distribution of unobserved heterogeneity is nonparametric. Our identification strategy depends on availability of a continuous observed state variable that satisfies certain exclusion restrictions. If such excluded variable is accessible, we show that the dynamic optimal stopping model is semiparametrically identified using control function approaches. Search |

