Facts and figures about UK taxes, benefits and public spending.
Income distribution, poverty and inequality.
Analysing government fiscal forecasts and tax and spending.
Analysis of the fiscal choices an independent Scotland would face.
Case studies that give a flavour of the areas where IFS research has an impact on society.
Reforming the tax system for the 21st century.
A peer-reviewed quarterly journal publishing articles by academics and practitioners.
|
Conditions are derived under which there is local nonparametric identification of derivatives of structural equations in nonlinear triangular simultaneous equations systems. The attack on this problem is via conditional quantile functions and exploits local quantile independence conditions. The identification conditions include local analogues of the order and rank conditions familiar in the analysis of linear simultaneous equations models. The objects whose identification is sought are derivatives of structural equations at a point defined by values of covariates and quantiles of the distributions of the stochastic drivers of the system. These objects convey information about the distribution of the exogenous impact of variables potentially endogenous in the data generating process. The identification conditions point directly to analogue estimators of derivatives of structural functions which are functionals of quantile regression function estimators. Search |

